

Aalborg Universitet

Pore Pressure Measurements inside Rubble Mound Breakwaters

Publication date: 2005

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Helgason, E., Burcharth, H. F., & Grüne, J. (2005). *Pore Pressure Measurements inside Rubble Mound Breakwaters*. Paper presented at Pore Pressure Measurements inside Rubble Mound Breakwaters.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Pore Pressure Measurements inside Rubble Mound Breakwaters.

Einar Helgason¹, Hans F. Burcharth¹ and Joachim Grüne²

¹Hydraulic & Coastal Engineering Laboratory, Aalborg University ² Coastal Research Centre FZK, Merkurstrasse 11, D-30419 Hannover, Germany

INTRODUCTION

Large scale model tests have been performed in the LARGE WAVE CHANNEL (GWK) of the Coastal Research Centre (FZK). The main objectives of the above mentioned project were firstly to investigate the influence of rock density on the armour layer stability and secondly to collect large scale data on wave run-up and wave overtopping for comparison with small scale model test results.

Simultaneously pore pressure variations within the core of the breakwater were measured.

OBJECTIVES

Pore pressure variations within the core of a rubble mound breakwater are important to enable correct scaling of core materials in physical models. Burcharth et al. (1999) purposed a scaling method based on similarity between velocities with in the core. One of the crucial points in this method is the determination of a damping factor (δ) within the structure, cf. figure 1.There are only few available measurements of wave induced pore pressures in rubble mound breakwaters in the literature. Comprehensive measurements are available from GWK (Oumeraci, 1991). World unique prototype measurements are

available from the Zeebrugge breakwater in Belgium, cf. Troch et al (2002), Troch (2000). However, some scatter is found when comparing previous GWK-data sets, field data and a new data sets from large scale testing in GWK.

The proposed linier damping model by Burcharth et al. is:

$$\delta = a \frac{n^{0.5} L_p}{H_s b} \qquad \text{where}$$

a denotes empirical coefficient determined from model tests.

n denotes the porosity of the core material.

 L_p denotes the wave-length.

 \hat{H}_s denotes the significant wave height.

b denotes the width of the core at the level of consideration, cf. fig 1.

The main objectives of the forthcoming paper will be to introduce the new model data-set from the large scale model-tests combined with data from small scale model tests.

LARGE SCALE TESTS

A rubble mound breakwater has been built in the LARGE WAVE CHANNEL (GWK). The total height of the structure was 5.5 m. The

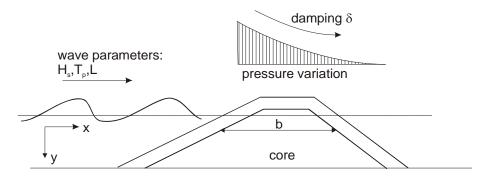
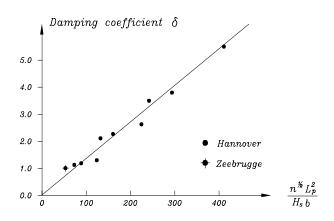



Figure 1. Parameter definition

breakwater was built on a 2 m thick sand bed which was extended to 100 m in front of the a)

ACKOWLEDGMENT

The large scale tests in the GWK are b)

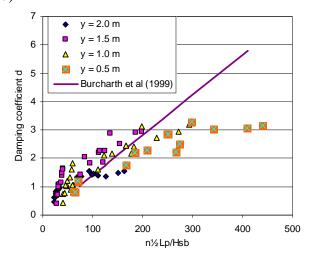


Fig 2. Different results from large scale tests, a) from Burcharth et al 1991, b) new tests.

breakwater on a 1:50 slope. Twentytwo capacitance type wave gauges were installed in the flume. Pore pressures in the core of the breakwater were measured using 19 pore pressure transducers ef. figure 1. Both standard JONSWAP spectra ($T_p = 1.5 \text{ s}$ to 6 s and $H_s = 0.3 \text{ m}$ to 1.0 m) and spectra measured in the field (along the German coastline) have been used to generate irregular wave trains. Tests have been performed at three different water levels (water depth at the wave paddle d = 3.5 m, 4.0 m and 4.5 m).

RESULTS

The former test in GWK (Burcharth et al 1999) gave results as shown in fig. 2a and the new data set gave the results shown in fig. 2b.

As seen from fig. 2 there is some difference between the two data sets. However, the geometry of the two tested structures is not the same. The main difference is the b parameter. For the high value of δ in the early Hannover GWK test (fig. 2a) the core width b is very small; this which is not the case for the new tests.

supported by *European Community* under the *Access to Research Infrastructures action of the Improving Human Potential Programme*. (contract HPRI-1999-CT-00101).

REFERENCES

Burcharth, H. F., Zhou, L. and Troch, P. (1999), "Scaling of core material in rubble mound breakwater model tests", Proc. Int. Conf. On Coastal and Port Engineering in the Developing Countries, Cape Town, SA, (COPEDEC V).

Troch, P. (2000), "Experimental study and numerical simulation of wave interaction with rubble mound breakwaters", PhD thesis, Dept. Of Civil Engineering, Ghent University, Belgium.

Troch, P., De Rouch, J. and Burcharth, H. F. (2002), "Experimental study and numerical modelling of wave induced pore pressure attenuation inside a rubble mound breakwater", International Conference on Coastal Engineering (ICCE), Cardiff, UK Wales.

Oumeraci H., (1991), "Wave induced pore pressure in a rubble mound breakwater.", Internal Technical Report LWI, Technical University Braunschweig, Germany