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h i g h l i g h t s g r a p h i c a l a b s t r a c t

� A revised heterogeneity invariant
model is presented which assumes
that constitutional heterogeneity is
correlated to size fraction and phase
density.

� The model successfully reproduced
sampling variance due to constitu-
tional heterogeneity from previous
studies on analyte-enriched particu-
late matter.

� The model successfully corrected
sampling variance due to constitu-
tional heterogeneity from previous
studies on analyte-coated particulate
matter.

� It is a practical model of constitu-
tional heterogeneity extended to
mixed particulate matter composed
of analyte-enriched and analyte-
coated particles.

� The model can be practically imple-
mented in sampling protocol design.
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a b s t r a c t

For some real-world material systems, estimations of the incompressible sampling variance based on
Gy's classical s2(FSE) formula from the Theory of Sampling (TOS) show a significant discrepancy with
empirical estimates of sampling variance. In instances concerning contaminated soils, coated particular
aggregates and mixed material systems, theoretical estimates of sampling variance are larger than
empirical estimates, a situation which does not have physical meaning in TOS. This has led us to revisit
the development of estimates of s2(FSE) from this famous constitutional heterogeneity equation and
explore the use of size-density classes for mixed material systems (mixtures of both analyte-enriched and
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coated particles), an approach which has been mostly unused since Gy's original derivation. This
approach makes it possible to avoid taking into account the granulometric and liberation factors from
Gy's classical treatment, and present grounds for criticising the use of ‘standard’ input values of critical
parameters such as f: ¼ 0.5, and g: ¼ 0.25. But, as always, the “liberation factor” (l) issue still plays an
important role, which is paid due attention. The constitutional heterogeneity formula based on size-
density classes is presented in a form that allows for easy implementation in practice, within specified
limitations. We present extensive experimental results from real-world systems. Using the “SDCD model”
with published data reproduced the relative sampling variances calculated for the standard “mineral-like
matrices”, but more importantly corrected the relative sampling variance calculated for real contami-
nants by several orders of magnitudes. In all cases, the recalculated relative sampling variances were
decreased to below their corresponding experimental measurements, now fully as expected from TOS,
substantiating our development.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

There exists a long tradition for enthusiastic use of the famous
“Gy's formula”, aka “Gy's equation”, in several important sectors of
technology and industry, dominantly within the exploration, mining,
minerals processing and waste management sectors. This popularity
isunderstandable as this equationpurports to relate the Fundamental
SamplingError, s2(FSE), to theeffectiveheterogeneityof thematerial to
be sampled, on the basis of which Gy managed a monumental theo-
retical breakthrough in deriving a first approximative relationship
between the FSE sampling error as a function of a set of in-principle
measurable physical and chemical material parameters. This was
quickly welcomed by all manner of practically minded samplers
because of its alluring promise to be able to determine an operable
minimum sample mass that in some way, under a set of specific as-
sumptions, would appear to honour TOS0 objective demands for
representativity. In the industry sectors that first embraced Gy's for-
mula this formalismmet with a lot of practical success.

However, through its use over many decades in several other
sectors, the critical underlying assumptions were not always at the
forefront of the samplers' minds, but were in fact often ignored (as
shall be traced in some detail below) in the view of the obviously
desirable holy grail: Estimate four or five material parameters, plug
them into Gy's equation, and obtain a minimum sample mass
which, with reference to the published formula, allows one to claim
sampling representativity.

Alas, this is a road filled with many dangers, especially when
Gy'smandate that all Incorrect Sampling Errors (ISE) first must have
been eliminated before even beginning to put estimated numbers
in the formula ([1] p.52-532, [2]); one must also be wary of the
crucial random distributional heterogeneity assumptions regarding
Gy's formula (treated more in full below).

Nevertheless, agreement between calculated s2(FSE) estimates
and measured experimental values of the relative sampling vari-
ance has been broadly satisfactory for many types of ore, some
similar rock types and aggregate mixtures, as well as for certain
artificial sampleswith an aim to simulate natural material types, e.g.
Refs. [3,4,5] [however these latter may show more or less corre-
spondence with most of the real-world sampling targets in science,
technology and industry].

Specifically, it has recently surfaced that agreement is distinctly

poor for the specific case of contaminated soils [6,7]. Typically, pre-
dicted theoretical relative sampling variances can overestimate
experimental relative sampling variances by several orders of
magnitude when sampling typical contaminated soils encountered
in environmental science and monitoring [6,7], indicating that the
assumptions behind the use of Gy's equation for s2(FSE) (see eq. [5])
are perhaps not applicable for the constitution of this type of com-
pound material. This point is further reinforced below by reporting
other such usages, and misusages, of the classical equation.

The present thrust takes its point of departure in the reali-
zation that in contaminated soils, the heterogeneity carried by
the contaminants both comes from intrinsic contaminants, i.e.
contaminant particles either liberated or embedded in neutral
matrix particles (i.e. soil and waste particles) and from extrinsic
contaminants, i.e. contaminants concentrated at the surface of
neutral matrix particles, for example caused by reactions with
solutions percolating through the soil. This latter situation con-
stitutes a distinct departure from the traditional assumptions
behind the use of Gy's equation.

This forces us to outline the different nature of contaminated
soils in relation to the more ‘traditional’ particulate material classes
and types for which this famous equation has met with notable
success.3 It is also possible that the material class presently in focus,
i.e. contaminated soils and related mixed materials, can be
extended to other similarmaterials, to be delineated further below.

The objectives of the present paper are therefore to:

1) Investigate the source of the discrepancies between theoretical
and experimental relative variances for contaminated soil and
similar materials;

2) Examine the relevance of the current practical equation and its
parameters for the constitutional heterogeneity of contami-
nated soils and similar materials;

3) Derive and validate an equation of constitutional heterogeneity
which is better applicable to contaminated soils and similar
materials. It is imperative that this equation shall be easy to
implement in practice.

2 After a long career, Gy in private expressed his displeasure with too many
applications in which this mandate was not complied with. He was pleased that his
name would be associated with many compliant applications - but distinctly un-
happy with “all too many” incorrect usages (pers. com. 2005 (KHE)).

3 The present authors acknowledge the extensive discussion that has taken place
within the TOS community on the conditions and limitations of applicability of Gy's
equation, in particular the role played by the liberation parameter, which has un-
dergone a tortuous journey of evolving interpretations since Gy's original defini-
tion; see Minnitt [8] and François-Bongarçon [9,10] for the most recent overviews.
In the latter François-Bongarçon present a historical survey of recent treatments of
both the shape factor and the granulometric factor in addition to the liberation
factor; these factors are also commented upon in similar context by Minkkinen and
Esbensen [11].
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2. The “mineral model” e successes and shortcomings

In order to understand the possible shortcomings of the current
model of constitution heterogeneity and its relative sampling
variance when it is used in the sampling of contaminated soil, and
mixed materials, it is necessary to briefly review a few salient
principles of Gy's Theory of Sampling (TOS).

Herein, the relative variance of the Fundamental Sampling Error,
FSE, is defined as

s2ðFSEÞ¼ ð1 =ms �1 =mLÞHIL [1]

where.

s2(FSE) ¼ relative variance due to the FSE (dimensionless)
HIL ¼ Heterogeneity Invariant of the lot material to be sampled
(g)
mS ¼ sample mass (g)
mL ¼ mass of the lot (g)

Basically, the general form of the lot Heterogeneity Invariant,
HIL, is defined by Gy [12] for a population of lot fragments, Fi, as

HIL ¼
X
i

ðai � aLÞ2
a2L

m2
i

mL
[2]

i.e. the mass-weighted sum of concentration heterogeneities car-
ried by each fragment, Fi, of the lot and where:

ai ¼ critical content of the analyte of interest in each fragment Fi
(dimensionless);
aL ¼ critical content in the lot of the analyte of interest
(dimensionless);

mi ¼ mass of each fragment Fi ½M�;

mL ¼ mass of the lot ½M�:
From Equation [2], it can be seen that the constitution hetero-

geneity carried by fragment Fi increases with its compositional
deviations ðai �aLÞ and with relative fragment mass. Conversely, a
lot can only be constitutionally homogeneous if all fragments,
which all have positive mass, carry the exact same analyte grade
equal to aL, i.e. all ðai � aLÞ ¼ 0. As is well acknowledged, there does
not exist homogenous materials in this definition in the world of
technology and industry, see e g. DS 3077 [13].

Pitard [14,15] developed Equation [2] further, by considering
that the critical content of a fragment in general is more correlated
with its density than with its size. Therefore, following a set of
reasonable approximations, Pitard [14,15] defines the lot Hetero-
geneity Invariant as

where.

va ¼ volume of the average fragment Fab of size fraction a [L�3];
rb ¼ density of fragment Fab [M L�3];

aab ¼ critical content of density fraction b, οf size fraction, a
(dimensionless);
ab ¼ critical content of density fraction b (dimensionless);
mLab ¼ mass of density fraction b, οf size fraction, a [M];
mLa ¼ mass of size fraction a [M];
mLb ¼ mass of density fraction b [M];
X ¼ heterogeneity carried by the ensemble of differentiated size
fractions (Fig. 1aeb);
Y ¼ heterogeneity carried by the ensemble of differentiated
density fractions (Fig. 1c).

After further approximations intending to honor reality w.r.t.
most aggregate material classes (see Refs. [1,12,14e19]), Equation
[3] leads to the well-known form of HIL, which is practically
implementable in principle - provided its parameters are all rele-
vant and amendable to estimation, or can be measured directly
without undue difficulty, namely:

HIL ¼ clfgd3N [4]

where.

dN ¼ nominal particle size at 95% passing [L];
f ¼ particle shape factor (dimensionless; 0 < f < 1);
g ¼ granulometric factor (dimensionless; 0 < g < 1);

c ¼ mineralogical factor ¼ rM
ð1�aLÞ2

aL þ rgð1�aLÞ [M L�3]
rM ¼ density of the pure mineral (the ‘analyte’, subscript “M”)
[M L�3]
rg ¼ density of the gangue (subscript “g”) [M L�3]
l ¼ liberation factor (dimensionless; 0 < l < 1)

Equation [4] will be referred in the present treatment as the
“mineral model”. Note that Equation [4] describes a binary density-
class based model, since it describes the heterogeneity carried by
the analyte as being correlated with two density phases, the
analyte-carrying mineral and the gangue.

It is important that the material parameters f, g, c and l in
Equation [4] can be assumed to bemeaningful averages in their role
of describing real-world particulate matter. In Gy's work, and that
of others (e.g. Refs. [12,14,15], scientifically-based expressions are
provided for these parameters; also treated in Minkkinen and
Esbensen [11]. However, practical use of Gy's equation has often
been performed by directly plugging-in ‘typical values’ rather than
by characterizing them using these basic expressions. This has often
led to inappropriate use of Gy's equation for certain important
material classes as described later. Therefore, using standard proxy
values for f or gwill often be debatable, for example: howwell will a
grain size distribution be adequately represented by a sorting or
size range factor, g, or: are all fragment shapes indeed describable by
a singular particle shape factor, f. Nevertheless, this is very nearly
always assumed to be realistic with standard g ¼ 0.25 and f ¼ 0.5

values, which is one of the dissatisfactions of the present authors
and others [20].

The mineralogical composition factor, c, has units of (but not the
meaning of) specific gravity (g cm�3), and takes the average grade

HIL ¼
X
a

va
X
b

rb

�
aab � aL

�2
a2L

mLab

mL
¼
 X

a

va
mLa
mL

!
,

 X
b

rb

�
ab � aL

�2
a2L

mLb

mL

!
¼X,Y [3]
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and densities of the two component phases into account. Factor c is
to be understood as the density of the ‘mineral of interest’ (i.e. the
phase carrying the analyte) divided by the grade - so c becomes
larger as the average grade of the material decreases e the sam-
pling variance increases the lower the analyte grade.

The liberation factor, l, was originally defined as the grain size at
which embedded analyte particles were liberated upon commi-
nution. It was later defined as l ¼ (dl=dN)

0.5, where dl is the analyte
liberation diameter, and which varies between 0 (for totally non-
liberated fragments) and 1 (for completely liberated fragments);
see historical overviews in François-Bongarçon& Gy [20]; François-
Bongarçon [9,10].

As shall be clear below, the differing interpretation as to the
meaning and validity of the liberation factor, l, is of particular
importance for the realism one can ascribe to a variance estimate
calculated by Gy's formula. It is of considerable interest that Pierre
Gy was of the opinion that far too much credence has been put on
this formula by many direct calculations based on standard values
for f, g, c and l. Gy himself stated vigorously that this formula was
but a very first attempt to establish a quantitative relationship
between lotmaterials properties and the related sampling variance,
were all other sampling errors completely eliminated (strong
emphasis on the conditional). Indeed, Gy was adamant that the
formula often was subjected to “simplistic” quantifications with a
debilitating effect vis-�a-vis realism (see footnote 2). It is worth
mentioning that Gy emphasized that even under the strongest
adherence to its assumptions, calculation of s2(FSE) should clearly
be understood as but an order-of-magnitude estimate only [11,21].

Against the background of these qualifications, Equation [4]
constitutes the classical “mineral model” of constitution hetero-
geneity, because it explicitly considers the critical element, the
analyte, either as fully liberated (e.g. gold-quartz mineralizations)
or as embedded in one, or more, analyte-enriched particle types.
This implies that the heterogeneity carried by different empirical
size fractions will be dominated by the largest fragments and that
the heterogeneity carried by the density fractions is maximal when
l ¼ 1, meaning that the heterogeneity carried by the separate
density fractions is maximal, or c ¼ Ymax. This is so because the
mineralogical factor, c, is defined as the heterogeneity of two
completely liberated density fractions, i.e. the pure mineral of in-
terest versus the gangue. Then the liberation factor, l, defines the
degree to which these two phases are actually liberated from each
other. Only when the liberation factor is exactly equal to 1 is the
analyte available to be sampled independently.

In practice, the liberation factor is known to be difficult and very
laborious to measure or estimate with realism and validity, which
explains the rare application areas in which it has been found
‘profitable’ to do so [6,15,18,22e24].

Combining Equations [1] and [4] leads to the historically most
popular version of Gy's formula:

s2ðFSEÞ¼
�

1
ms

� 1
mL

�
clfgd3N z

clfgd3N
ms

¼Kd3N
ms

[5]

which can be found in many standard TOS references, for applica-
tion to the sampling of ores in particular but also for other, similar
materials. The parameter K is known as the “sampling constant”
allowing characterisation of the ease of sampling of specific ma-
terials with different compositional makeups. The sampling con-
stant is specific for a given state of comminution, i.e. for a given top
nominal grain size of the mineral of interest [12,15,22e24]. Esti-
mates of s2ðFSEÞ are consequently only valid for a specific commi-
nution stage or state e and for the specific test material
investigated, Minkkinen and Esbensen [11].

The historical record shows that Gy's formula has been found
particularly useful in gold exploration, mining and minerals pro-
cessing and within a few other application areas (other ores of
broadly similar granular makeup). The excessive efforts needed
when trying to apply it to more complex matrices has very often
been felt prohibitive, i.e. the more complex the heterogeneity of the
material the less applicability.

Equation [5] was e.g. used by Gerlach and Nocerino [4] to
develop a rationale for sampling environmental matrices (including
contaminated soil), where it was successful in estimating the
fundamental sampling variance for simple two e or three-
component artificial granular matrices (such as those in
Refs. [3,4], i.e. quartz sand with NaCl and magnetite particles.
Application to such matrices (which by design are composed of
fully liberated density phases and which are constitutionally
similar to the mineral-like material described by the mineralogical
factor, c, in Equation [4]) are understandably successful. Recently an
extension to this kind of laboratory experiments was presented by
Svensmark [5] (who treats extensions to Gy's equation in a
completely different way than here, summing classes with globally
similar properties).

However, Equation [5] failed to provide meaningful estimates of
s2(FSE) for real-world soils contaminated with trace metals, as re-
ported in Boudreault et al. [6] and Dub�e et al. [7]. In these studies,
Equation [5] provided estimates of s2(FSE) which were much larger
than the experimental estimates of sampling variance, an impos-
sible situation per TOS, as s2(FSE) is defined as the minimum irre-
ducible variance caused by the constitutional heterogeneity of a lot
in which the analyte is ideally randomly distributed. In reality
however, even if all incorrect sampling errors are diligently elimi-
nated, there always exist some residual pattern or form of segre-
gation within the lot which will cause the sampling variance to be
greater than s2(FSE). This aspect is discussed further below.

The latter authors have examined the influence of the liberation
factor, l, on these disagreements. They suggested that the rule-of-
thumb l ¼ 1 when there is no satisfactory model available for l, as
proposed by Gy [16], is actually detrimental to the applicability of
Equation [5] to sampling of contaminated soil and similar materials.
Unfortunately, this rule is currently more or less formalized in
USEPA guidelines [4]; p. 44) under the sweeping justification that
“for most pollutants, [l ¼ 1] should be acceptable, as the methods
are for total analyte”.4

However this assumption is misleading, because l does not
connote availability of the analyte to chemical extraction but spe-
cifically to the degree to which individual analyte particles are
physically susceptible of being selected i.e. sampled independently
from non-analyte particles. Based on experimental evidence, Bou-
dreault et al. [6] and Dub�e et al. [7] suggested that the model of
complete liberation of a mineral from its gangue may in fact not be
relevant for the heterogeneity of trace metal contents in contami-
nated soil. Minkkinen and Esbensen [11] also suggest that the
liberation factor is not only a measure of liberation but also of
segregation within the lot.

Boudreault et al. [6] also investigated the use of the model for l
presented by Pitard [15]:

l¼ðdl=dNÞb [6]

where,

dl ¼ analyte liberation diameter [L];

4 Emphasis on the conditional by present authors.

J.-S. Dub�e and K.H. Esbensen Analytica Chimica Acta 1193 (2022) 339227

4



b ¼ empirical exponent.

Equation [6] implies that after material comminution to the
“liberation limit” at dN ¼ dl, the mineral of interest (i.e. the an-
alyte) is now supposed to be completely liberated from the
gangue. Boudreault et al. [6] and Dub�e et al. [7] have stressed
that the problem with the use of Equation [6] when sampling
contaminated soils lies in the determination of dl and b as there
is a lack of available data on these parameters for such a diverse
class of particulate matter. It may even be that these concepts are
not relevant for this, and similar cases - as is further explored
below.

2.1. The need for a different formula for specific material systems

The liberation factor can alternatively be formulated directly
from Equation [3] following another set of assumptions, see Pitard
[15]; to obtain:

l¼ amax � aL
1� aL

[7]

where amax ¼ critical content of the largest fragments
(dimensionless).

Therefore, a significantly large difference between the critical
content of the largest fragments and the average content of the lot
implies that the analyte is more located in the set of large fragments.
Again, the hypothesis of amineral-like analyte occurrencemaywell
be inconsistent with the state of the analyte inmatrices like soil and
similar, where the analyte may be, fully or partially, distributed
both “mineralogically” but also in a different manner, e.g. as coatings
on otherwise inert gangue particles.

In point of fact, in contaminated soils, the observation is prev-
alent that the largest grainsize fractions can have a smaller analyte
content than the smaller grainsize fractions due to their smaller
particular surface area. This would lead to a situation where
amax < aL and thus l < 0, which violates all assumptions leading to
Equation [7].

Therefore, due to such difficulties in estimating l, instead of

using Y ¼ cl, one alternative would be to use Y ¼
 P

b

rb
ðab�aLÞ2

a2L

mLb
mL

!

directly in Equation [3]. This would require identification of each
contaminant-bearing phase, its corresponding average content and
density. Using the technique of QEMSCAN, Lyman and Schouwstra
[26] have successfully performed exactly this on rocks with min-
erals with elemental grades between 3 and 40% (i.e. 30 000 and
400 000 mg kg�1).

However, pollutant-bearing minerals and chemical complexes
are very much more diverse and perhaps also differently distrib-
uted in contaminated soil [27,28] and critically, usually occur at
much smaller grades, often close to or below the detection limit
relevant for the standard mineralogical techniques. Therefore,
calculating Y from Equation [3] may not be practical for solving
problems in sampling of contaminated soils and similar mixed
materials matrices, because of technical limitations in the identi-
fication and quantification of the relevant geochemical phases.
Again the work involved would fast become prohibitive for a sys-
tem as complex as soil.

Based on such apparent shortcomings, we venture below to
revisit the development of a variant of Gy's equation to be used
on material systems with contaminated soils used as a starting
point.

3. Modelling constitutional heterogeneity using size-density
classes

To circumvent the above shortcomings and difficulties, we
consider that the analyte, i.e. the contaminant of interest, may not
only be present as a set of, or embedded in, more-or-less enriched
particles, but may also be present on the surface of soil particles
through common retention mechanisms such as ion exchange,
adsorption, precipitation or complexation [27,28]; see also the
thought-experiment presented in Svensmark [5] inwhich PAHs are
considered sorbed onto organic matter (clearly very fine grained),
which in turn was very unevenly distributed in the pertinent soil.
Importantly, the retention capacity of soil particles is proportional
to their surface area and inversely proportional to their size.
Therefore, the standard approximation that the critical content of a
fragment is more strongly correlated to its density than to its size
will manifestly have to be revised for matrices such as contami-
nated soils and aggregates of coated mixtures, i.e. the critical con-
tent of a soil particle shall have to be considered to be correlated
with both particle size and density. A diagrammatic framework for
the conceptual formula derivation described below, is given in
Fig. 1aec. The authors owe a debt of gratitude to Lyman [29] for an
early inspired physical illustration on the conceptual decomposi-
tion into size and density classes (which may make it easier to
contemplate the physical meanings of the many single and double-
summations presented below).

In order to obtain a mathematical expression capable of
describing all cases of constitutional heterogeneity illustrated by
Fig. 1b and c, Equation [3] shall first be rewritten as

HIL¼
X
a

va
X
b

rab

�
aab�aL

�2
a2L

mLab

mL
¼
X
a

va
mLa
mL

X
b

rab

�
aab�aL

�2
a2L

mLab

mLa

[8]

where rab ¼ density of fragment Fab of density fraction b from size
fraction a. Also, indices La and Lab represent size fraction a and
density fraction b of size fraction a respectively.

Equation [8] constitutes a model of constitutional heterogeneity
based on size-density classes; it is equivalent to themodel developed
in Lyman and Schouwstra [26]. Equation [8] and its variants, Equa-
tions [9] to [13], will be referred to herein collectively as the size-
density-class derived model or the SDCD model for conciseness.

The application of Equation [8] can be rationalized by consid-
ering three general cases, as illustrated in Fig. 1b and c.

The first two are partially idealized, and not often likely to be
fully realistic in real-world matrices, but they serve well for
verification of the proposed “SDCD model” and the development
of methods for its practical implementation. The third case rep-
resents a reasonable hypothesis about the state of many analytes
occurring in real-world contaminated soils or aggregates of
coated particulate mixtures, e.g. precipitated or adsorbed metals,
as well as adsorbed organic compounds, amongst others. The
heterogeneity invariant for each case can be derived from a
specific variant of Equation [8]. It needs emphasising that Equa-
tion [8] and its variants developed in the following sections,
describe the heterogeneity carried by solid-phase analytes. While
in contaminated soil, as well as possibly in other matrices, there
can also exist liquid-phase, or gaseous-phase analytes, Equation
[8] and its variants do not take these into account. The SDCD
model specifically extends the expression of the heterogeneity
carried by solid-phase analytes to analyte-coated particulate
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materials or mixed analyte-enriched and analyte-coated particu-
late materials only. It will need to be further developed to be
extended to liquid-phase and gaseous-phase analytes, if/where/
when relevant. Also, to be absolutely clear, the terms “coating”
and “analyte-coated” refer herein to any form of concentration of
the analyte at the surface of soil particles.

3.1. Case 1: analyte totally contained in mineral or organic coatings
on soil particles

This case is schematically represented by Fig. 1b. Examples of
analyte-coated particles would be the cases of fine gold particles
coating fragments of crushed material presented in Pitard [15];

Fig. 1b. Same granular soil model as in Fig. 1a. Left: Heterogeneity carried by the fragments as a function of their size. If a soil is sampled for the determination of its particle size
distribution or the quantification of a specific size fraction, this schematic representation of constitutional heterogeneity is sufficient. It is mathematically described by Equations [9]
and [10]; Right: Heterogeneity carried by the size fraction as well as an analyte present as a coating (color) on the soil particles. The ‘warmer’ the colors (from blue to red), the larger
is the analyte content in a given size fraction. In this representation, analyte content is correlated with fragment size. If this soil is sampled for the determination of its analyte
content, this schematic representation of constitutional heterogeneity is appropriate. It is mathematically described by Equation [12], where a reasonable approximation is that the
density of soil particles is not changed significantly by analyte coating.

Fig. 1a. A simplified soil model as a mixture of distinct granular classes of fragments of various size and mineral composition (left) and sorted into size fractions (right). The density
of naturally occurring soil particles is between 2.6 and 2.8 g cm�3 as usually assumed, which is indeed the range of density of the Earth's crust fromwhich the soils are formed (e.g.
Refs. [30,31]. Therefore, this basic soil model does not have density fractions, only size fractions.
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aflatoxin-contaminated pistachio nuts in Lyn et al. [32]; and salt-
coated sand particles in Gerlach et al. [4]. These are only a very
few published examples of coated particulate matter that have
been subjected to sampling and/or s2(FSE) estimation.

In such cases, rab ¼ ra since it can be assumed that the coating
does not modify significantly the density of the particles, i.e. for
analyte contents approximately below 1%, as investigated by the
thought-experiment in Appendix A. In contaminated soil, pollution
criteria usually correspond to concentrations lower than 1%, or
10 000mg kg�1 of a single contaminant. Therefore, instances of soil
being considered contaminated at concentrations below 1% are
very common.

Thus an estimate of HIL could in this case be made based solely
on the distribution of particle sizes as illustrated on the left of
Fig. 1b. It is then critical to obtain a representative sample of all size
fractions to make a relevant and reliable measurement of the an-
alyte content of each size fraction [15]. Moreover, the critical con-
tent of size fraction La, namely aa, becomes the content of
fragments of that size fraction in itself, which is 1 by definition [15].
Therefore, Equation [8] can be reduced and rewritten as follows,

HIL ¼
X
a

va
mLa
mL

ra
ðaa � aLÞ2

a2L
¼
X
a

vaaLara
ð1� aLaÞ2

a2La

¼
X
a

vara
ð1� aLaÞ2

aLa
[9]

where aLa is the content of fragments of size fraction La in the lot
and ra is the density of the coated particles in size fraction La.
Equation [9] can be further simplified, by considering HIL as the
dichotomous sum of i) the constitutional heterogeneity of a specific
size fraction of interest and ii) the complement of the particle size
distribution, namely

HIL ¼
X
a

vara
ð1� aLaÞ2

aLa
¼ f r

"
d3c

ð1� aLcÞ2
aLc

þ
X
a

d3aaLa

#
[10]

Moreover, Pitard [15] assumes that if aLc <0:05, i.e. the size
fraction of interest corresponds to the top nominal particle size, or
larger, then

P
a
d3aaLaz0 in Equation [10].

However, if the material is well graded and can be effectively
screened into several size fractions, the analyte content can be
measured in each size fraction. The resulting distribution of the
analyte content as a function of particle size can then be used to
provide a more accurate estimate of HIL using Equation [11] or [12],
as illustrated on the right of Fig. 1b and presented in section 3.3
below, since it would account for the constitution heterogeneity
carried by the analyte. This latter HIL estimate would have to be
smaller than that obtained from Equation [9] because
mLa
mL

ðaa�aLÞ2
a2L

< ð1�aLaÞ2
aLa .

3.2. Case 2: analyte exclusively contained in liberated enriched
particles

In this classical case, the analyte solely occurs as identifiable and
quantifiable liberated enriched particles, as illustrated in the left
part of Fig. 1c. Examples of liberated and enriched particles found in
the literature are the cases of the mixtures of sand, salt and
magnetite in Gerlach et al. [3,4] or the mixture of steel micro-
spheres and crushed stone in Sona and Dub�e [33]. One can there-
fore use Equation [3] or [4], which are now particular cases of
Equation [8], and in which each type of analyte-enriched particles
can be considered as a distinct density fraction for each size fraction
in which it is found.

Fig. 1c. Same basic soil model as in Fig. 1a. Left: Particles differ in density. Increasing grey tone darkness reflects increasing density. In a soil, particle density will mostly change due
to the presence of waste particles (e.g. metals scraps, concrete, brick, slag, clinker, ash). This schematic representation shows heterogeneity carried both by the size fractions and an
analyte contained in the density fractions. When analyte content varies across the density fractions, but not across the size fractions, this is mathematically described by Equations
[3] or [4]. Right: This schematic representation illustrates the same soil matrix as in the left figure, but with added analyte coatings (identical to the right-hand illustration of Fig. 1b.
Therefore, it illustrates the heterogeneity carried by size fractions by an analyte, the content of which varies across both density and size fractions. This case represents the “size-
density-class derived model” developed here; it is mathematically described by Equation [8] or [11].
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3.3. Analyte contained in coated and enriched particles

In this more realistic case, the assumption is that the analyte is
present as a mixture of different mineral and organic phases, some
enriched in the analyte (classical case) and some as coating on soil
particles, the latter coated to any degree from 0 to 100%. This is
schematically represented by the illustration of the right of Fig.1c. If
each phase, coating or enriched, can be identified and quantified,
Equation [8] can again be used as in the preceding case, at least in
principle. However, technical limitations, or economic constraints,
will assuredly very often hamper such a detailed characterization in
practice. Moreover, in environmental sciences and engineering,
samples are commonly analyzed for their total content of an
element or an organic compound, e.g. Pb or benzo(a)pyrene.
Equation [8] must then be simplified for its use in this context, wiz.
that the total analyte content and density are now averaged over
each size fraction. Thus,

HIL ¼
X
a

va
mLa
mL

X
b

rab

�
aab � aL

�2
a2L

mLab

mLa
¼
X
a

va
mLa
mL

ra
ðaa � aLÞ2

a2L

¼ f
X
a

d3a
mLa
mL

ra
ðaa � aLÞ2

a2L
[11]

where aa is the total analyte content in size fraction La.
If density does not vary amongst size fractions, such that ra ¼ r,

Equation [11] reduces to

HIL ¼ f r
X
a

d3a
mLa
mL

ðaa � aLÞ2
a2L

[12]

The last part of Equation [11] and Equation [12] were origi-
nally obtained by Gy (e.g. [12]). However, Equation [12], which is
especially useful with materials such as contaminated soil, was
subsequently dismissed as inapplicable to “the metal, mining and
processing industries” “due to an unusual density contrast be-
tween the components” in matrices encountered in these fields
[12]; p. 79). It may have been this early dismissal which caused
Equation [12] to be almost totally forgotten and left unused in
other fields.

In this last HIL expression for the specific classes of materials
treated here, the general shape factor, f, remains in the form used in
the Gy's classical formula. Therefore, the various issues related to
the shape factor remain in Equation [12]. Gerlach and Nocerino [25]
indicate that “the majority of particulate samples have shape fac-
tors from 0.3 to 0.5” and that hazardous waste particles have shape
factors closer to 0.5 but there is little empirical evidence available;
this kind of blanket argumentation does not sit well with the
present authors.

It would be possible to extend Equation [11] to include an
explicit definition of the shape factor for the average particle of
each size-density class, namely fa ¼ mpa=ðrad3aÞ [15], where mpa is
the mass of the average particle of size class La, so that

HIL ¼
X
a

fad3a
mLa
mL

ra
ðaa � aLÞ2

a2L
¼
X
a

mpa

rad3a
d3a

mLa
mL

ra
ðaa � aLÞ2

a2L

¼
X
a

mpa
mLa
mL

ðaa � aLÞ2
a2L

[13]

Characterizingmpa for each size class would be time consuming,
but it could conceivably be achievable in most material science
laboratories. However, some published studies used below to

validate the use Equation [8] and its variants for contaminated soils
and similar materials do not provide mpa. Lyn et al. [32] did
calculate a shape factor specific to their studied material, but the
other studies simply used a ‘typical value’ for f. Therefore, Equation
[12] was used with the data in the published studies presented
below with the aforementioned typical values for f rather than
Equation [13].

4. Materials and method

4.1. Validation of the “SDCD model” using data from Lyn et al. [32]
and Gerlach et al. [3,4]

In Lyn et al. [32], the uncertainty in sampling pistachio nuts for
the determination of aflatoxin concentrationwas estimated by both
theoretical and empirical means. The theoretical sampling uncer-
tainty was estimated by modelling the heterogeneity invariant of
the nuts using Equation [4]. The parameters used were as follows
[32]: ms ¼ 250 g, r ¼ 0.9951 g cm�3, aL ¼ 8.6 x 10�10,
c ¼ 288.3 g cm�3, l ¼ 1, f ¼ 0.27, g ¼ 0.75, dN ¼ 2 cm. Empirical
estimation of the sampling uncertainty was made using duplicate
sampling, measurement of aflatoxin concentrations and robust
analysis of variance (RANOVA). The authors estimated sampling,
analysis and measurement uncertainties respectively.

In Gerlach et al. [3], artificial soil, made up by layering sand, salt
and magnetite particles, was sampled using five different mass
reduction techniques: riffle splitting, paper cone riffle splitting,
fractional shoveling, coning& quartering, and grab sampling. These
techniques were ranked based on their bias and precision. The
latter was compared to relative standard deviation (RSD) values
obtained from s2ðFSEÞ values calculated with the “mineral model”,
i.e. Equation [5].

In Gerlach et al. [4], three studies were conducted. The first
compared the bias and precision of incremental sampling and
rotary sectorial splitting used to sample an artificial soil made of
a mixture of sand and salt particles. The second study was
designed to examine the effect of large particles on bias and
precision of rotary sectorial splitting by using artificial samples
made of sand, salt and coarse sandstone particles, while the
third was designed to examine the constitution heterogeneity of
particles coated with salt. In these studies, the experimental
RSDs were compared to those obtained from s2ðFSEÞ values
calculated with the “mineral model”, i.e. Equation [5], for the
first two studies, and with Equations [1] and [2] for the third
study.

In the present study, variants of Equation [8] are used with
Equation [1] to recalculate s2ðFSEÞ and corresponding RSD values
obtained by Lyn et al. [32] (case 1 variant) and Gerlach et al. [3,4]
(cases 2 and 3 variants).

4.2. Comparing the “mineral model” and the “SDCD model” for real-
world contaminated soils

The agreement between theoretical sampling variances calcu-
lated using applicable variants of Equation [8] (with Equation [1])
and experimentally determined sampling variances was investi-
gated using existing data from three published studies, namely
Boudreault et al. [6] and Dub�e et al. [7,34]. Details about these lots
and their materials, sampling protocols, and analytical methods are
provided in the aforementioned studies. A brief description of each
will suffice below.
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4.2.1. Boudreault et al. [6] and Dub�e et al. [7] studies
These studies were conducted using samples from an urban

brownfield consisting of a surface fill of waste fragments (bricks,
concrete fragments, clinker, ash, metal scraps) mixed with remol-
ded soil-type material to a depth of 2e3 m, overlying an uncon-
taminated till deposit [6,34]. The water table was at an average
depth of 2e3 m, thus just underneath the fill. Previous site
assessment studies confirmed that the fill was contaminated with
several trace metals (Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn), as well as
PAHs (e.g. chrysene, phenanthrene, benzo(a)pyrene). The afore-
mentioned studies focused on sampling the fill with the purpose of
determining the uncertainty associatedwith estimating tracemetal
concentrations in the soil.

Fig. 2aeb shows the brownfield site and the sampling stations
where samples were taken for Boudreault et al. [6] and Dub�e et al.
[7] studies. Fig. 2a shows the locations of 32 sampling stations
along a systematic sampling plan with a grid spacing of 6 m � 7 m.

Fig. 2b shows 6 supplemental sampling stations intercalated
between stations of the systematic grid, and which were used for
assessing short-range variability.

Each station was sampled at two depths. Therefore, a set of 64
samples, from the systematic grid, and another of 12 samples, from
the short-range stations, were used for a study on the assessment
and control of uncertainty in estimating concentrations at the field
scale using conditional simulations [35]. Moreover, the set of 12
samples was used for the studies by Boudreault et al. [6] and Dub�e
et al. [7]. Finally, from the set of 64 samples, 9 samples were
randomly selected for the present study in order to determine
characteristic HIL values for this brownfield using Equation [12]
(see section 4.2.3).

4.2.1.1. Sampling protocols and data analysis in Boudreault et al. [6].
In Boudreault et al. [6], two protocols for contaminated soil sam-
pling and analysis were compared based onmeasured contaminant
concentrations and their variance, namely grab sampling and
alternative sampling procedures (i.e. GSP and ASP). Both protocols
involved subsampling steps from the field to the laboratory. Details
of both protocols can be found in Boudreault et al. [6].

For the present purposes, only the results of the laboratory
sampling stage in Boudreault et al. [6] are used, i.e. the specific field
sampling issues and their associated uncertainties were excluded
in order to present a clear experimental design, without loss of
generalisation. Therefore, the comparison between theoretical and
experimental relative sampling variances below takes its point of
departure at the laboratory sampling stages.

For the ASP, 96 500-g tertiary field samples were produced from
the 12 primary field samples andwere brought to the laboratory for
further subsampling. These were first dried at 60 �C and sieved at
1 cm. Each was subsequently ground to a nominal particle size of
1 mm, and divided into eight 50-g subsamples with a rotary
sectorial splitter. Two subsamples were then randomly selected
among these, further ground separately to a nominal particle size of
0.212 mm, and further divided again using the rotary sectorial
splitter into 1-g analytical subsamples for chemical analysis. Three
1-g analytical subsamples were then randomly selected for trace
metal content analysis. In total, trace metal content was deter-
mined in 576 1-g analytical subsamples produced from the 12 field
sampling locations. This procedure is considered to comply well
with the tenets of TOS.

For the GSP, 24 300-g field samples were brought to the labo-
ratory, dried at a temperature of 60 �C, and sieved at 2 mm using a

Fig. 2a. Site plan for Boudreault et al. [6] and Dub�e et al. [7] showing systematic sampling locations. The red line delineates the open brownfield area located between buildings
(dark grey polygons). Hatched areas show the locations of former buildings. Each blue rectangle represents a sampling location. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)
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plastic sieve. Then, six 1-g analytical subsamples were obtained
from the surface of each sieved field sample by grab sampling using
a plastic spatula. A total of 144 1-g analytical subsamples were
produced from the 24 field samples and were analyzed for trace
metal content. This procedure is obviously not in accordance with
TOS’ stipulations for representative subsampling.

All analytical samples were analyzed for their trace metal con-
tent by ICP-OES (Varian Vista-MPX) following acid digestion ac-
cording to CEAEQ [36]. Experimental relative sampling variances
were estimated for each step of each protocol using a fully-nested
ANOVA. Theoretical relative sampling variances were calculated
following the mineral model (Equation [5]).

The purpose is not to compare these opposing sampling pro-
cedures against one another, but for each procedure, comparison
shall be made between the measured experimental relative sam-
pling variance, s2(EXP), and the corresponding calculated theoret-
ical relative sampling variance, s2(THEO).

4.2.1.2. Sampling protocols and data analysis in Dub�e et al. [7].
Five laboratory sampling protocols (termed A through E) were
assessed using the 12 field samples obtained from the Boudreault
et al. [7] study, which had initially been dried and sieved at a
nominal particle size of 1 cm.

Protocol A consisted in sieving the soil at a nominal particle size
of 2 mm followed by grabbing three replicate 1-g sub-samples with
a small plastic spatula. Protocols B and C consisted in reducing the
mass of the field samples by rotary sectorial splitting in three
successive divisions, in order to produce the same size 1-g
analytical samples. Protocols D and E used the same rotary split-
ting procedure as protocols B and C, but comprised an initial

comminution to a nominal particle size of 1 mm before the first
mass division, and a second comminution to a nominal particle size
of 0.212 mm between the first and second mass divisions. Protocols
C and D were similar to protocols B and E respectively, except for a
preliminary screening of the soil at a nominal particle size of 2 mm.

Again, comparison shall be made between the measured
experimental relative sampling variance of each procedure, s2(EXP),
to the corresponding calculated theoretical relative sampling vari-
ance, s2(THEO).

Trace metal analysis were performed as in [6]. Experimental
relative variances were determined using a fully nested ANOVA as
in [6].

4.2.3. Calculation procedures with the “mineral model” vs. the
“SDCD model”

For the “mineral model”, Equation [5] was used to calculate the
s2(FSE) of sampling techniques from each study.

For the “SDCD model”, HILwas first calculated using Equation
[12] and then inputted in Equation [1] to calculate s2(FSE). These
characteristic HIL values were used to recalculate theoretical rela-
tive sampling variances from Boudreault et al. [6] and Dub�e et al.
[7]. These were compared to the theoretical relative sampling
variances previously calculated using the mineral model using
Equation [5] and to the experimental (measured) relative sampling
variances reported in these studies.

Using Equation [12] requires dividing the soil into grain size
fractions and determining the analyte content in each resolved size
fraction. Nine primary field samples were randomly selected from
the set of 64 primary field samples and were reduced to 530-g
tertiary field samples using fractional shoveling. Each tertiary

Fig. 2b. Site plan for Boudreault et al. [6] and Dub�e et al. [7] showing supplemental sampling locations. The red line delineates the open brownfield area located between buildings
(dark grey polygons). Hatched areas show the locations of former buildings. Each blue rectangle represents a supplemental sampling location. (For interpretation of the references
to color in this figure legend, the reader is referred to the Web version of this article.)

J.-S. Dub�e and K.H. Esbensen Analytica Chimica Acta 1193 (2022) 339227

10

mailto:Image of Fig. 2b|tif


field samples was then dried in an oven at 60 �C and subsequently
divided in seven grain size fractions by mechanical sieving as
presented in Table B1 in the appendices.

Total extractible trace metal content was determined in each
grainsize fraction after acid digestion [36] and analysis by induc-
tively coupled plasma atomic emission spectroscopy (ICP-AES)
(Agilent VISTA-MPX). The following trace metals were analyzed as
in Boudreault et al. [6] and Dub�e et al. [7]: Cd, Co, Cr, Cu, Mn, Ni, Pb,
and Zn.

Polypropylene, ceramic, or aluminum laboratory tools and
equipment were used throughout in order to prevent contami-
nation of the samples from the sampling equipment. Before
each use, any piece of equipment in contact with the samples
was washed with distilled water and soap, rinsed with water,
soaked in a solution of dilute nitric acid (1∶10 v/v), and rinsed in
distilled water to avoid cross-contamination. All chemicals used
were of Reagent A.C.S. grade. In addition, reference materials
(SCP Science) were used for quality control. The detection limits
(DL) and the quantification limits (QL) for the trace metals were
as shown in Table 1. The DLs and QLs were determined ac-
cording to CEAEQ [37].

Trace metal content in each grainsize fraction, aa, was inputted
in Equation [12] along with the average particle diameter and the
relative mass of each grainsize fraction, da and mLa= mL respec-
tively. Moreover, particle density was set at r ¼ 2.65 g cm�3, i.e. the
generally accepted average density of soil particles, and the shape
factor was set identically at f ¼ 0.5 for consistency (using the
standard value for f is justified here because of the comparison
setup). In this fashion, a comparative HIL value was determined for
each trace metal analyzed in the soil (i.e. Cd, Co, Cr, Cu, Mn, Ni, Pb,
and Zn) for each primary field sample. A characteristic HILwas then
obtained for each trace metal by averaging HIL values over these
nine samples. Since some sampling protocols in Boudreault et al. [6]
and Dub�e et al. [7] involved grinding and sieving, the calculation
procedure with Equation [12] had to account for the resulting
modifications to grain size fractions. However, since grainsize dis-
tribution and trace metal content amongst grainsize fractions were
not determined after each comminution or sieving step, mLa= mL

and aa were adjusted based on the hypotheses and calculations
presented in Appendix B.

5. Results

5.1. Validation of the “generalized model”

5.1.1. Case 1: sampling analyte-coated particles [4,32]
The case of Lyn et al. [32] is particularly interesting to review

here since these authors used the “mineral model”, i.e. Equation [5],
to estimate the uncertainty in sampling pistachio nuts for the
determination of their aflatoxin concentration.

Unfortunately, this is an obvious misuse of Equation [5]
because in doing so, the authors implicitly assumed a liberation
factor of 1 and, thus, that aflatoxin-bearing fungi and pistachio
nuts could in fact be sampled independently, whereas the fungi
coating was in reality sampled with the nuts. Thus, the authors
obtained a theoretical uncertainty of 137%, which is coherent
with the larger constitutional heterogeneity assumed by the
“mineral model” for two liberated phases, but not with the actual
heterogeneity carried by the analyte. Therefore, their theoretical
estimate of sampling uncertainty was bound to much larger than
their empirical estimates of 22.5% (1k, 68% confidence) and 45%
(2k, 95% confidence). Lyn et al. [32] concluded that Gy's model of
constitutional heterogeneity could not be used to adequately
estimate sampling uncertainty and sampling variance in this
material system. However, it is manifestly not Gy's mineral model
which is at fault, but rather, its application to this particular
material system. As shown earlier in this paper, it is possible to
derive particular forms of Equation [2] for specific materials
systems. Thus, Equation [5] was not appropriate for the material
system studied by Lyn et al. [32] because the heterogeneity car-
ried by the analyte, the aflatoxin, could not be adequately rep-
resented by two distinct phases, nut and aflatoxin, assumed to be
completely liberated from one another.

However, when using Equations [1] and [10] with the same
parameter values from Lyn et al. [32] the present authors obtain

HIL ¼ f r

"
d3c

ð1� aLcÞ2
aLc

þ
X
a

d3aaLa

#

¼0:27�0:9951
g

cm3 �
"
ð2 cmÞ3 �ð1� 0:05Þ2

0:05
þ0

#
¼38:8 g

and

s2ðFSEÞ¼ ð1 =ms �1 =mLÞHIL zHIL=ms ¼38:8 g=250 g¼0:1552

RSD¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1552

p
� 100 ¼ 39:4%

This re-calculated sampling uncertainty using Equations [1]
and [10] lies between the empirical uncertainty estimates of Lyn
et al. [32] and thus provides a significantly improved theoretical
estimate of the latter than the one obtained from applying
Equation [5].

Equation [11] or [12] could not be used with the data from Lyn
et al. [32]; as the distribution of aflatoxin content as a function of
nut sizewas not available. Moreover, a batch of commercial nuts is a
naturally sized, strongly sorted material with a minimal size range,
so it would in any way have been difficult, if not impossible, to
obtain a meaningful characterization of aflatoxin content as a
function of nut size distribution. Hence, for such a case, Equation
[10] would be a more appropriate model of constitutional
heterogeneity.

Table 3 presents the RSD value obtained by Gerlach et al. [4] for
salt-coated sand particles. Neglecting the salt concentration of size
fractions, one can simply use Equations [1] and [9] and obtain

HIL ¼
X
a

vara
ð1� aLaÞ2

aLa
¼ 2:65

g
cm3 �

ð1� 0:33Þ2
0:33

�
h
ð0:045Þ3 þð0:136Þ3 þð0:300Þ3

i
cm3 ¼0:1067 g

Table 1
Detection and quantification limits.

Trace metal Detection limit (mg kg�1) Quantification limit (mg kg�1)

Cd 0.77 7.7
Co 0.49 4.9
Cr 0.35 3.5
Cu 0.31 3.1
Mn 13 130
Ni 1.1 11
Pb 3.0 30
Zn 3.3 33
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Table 2
HIL and s2ðFSEÞ recalculated with Equation [11] from data in Gerlach et al. [3].

Analyte Soil composition La Lab mLa (g) mLab (g) mL (g) ms (g) rab (g cm�3) dN (cm) davg (cm) aab aL fa HIL (g) s2ðFSEÞ RSD (%) RSDz (%) [3] Measured RSD¥ (%) [3]

Salt (NaCl) Fine Fine sand 1 1 70 70 80 5 2.650 0.015 0.010 0 0.0625 1 3.82 x 10�4 7.16 x 10�5 0.84 0.75 RS: 5.3
PCRS: 7.0
FS: 15
C&Q: 18
GS: 32

Magnetite 2 1 10 5 5.175 0.025 0.023 0
Salt 2 5 2.165 0.025 0.023 1

Coarse Coarse sand 1 1 80 70 2.650 0.025 0.023 0 4.08 x 10�4 7.66 x 10�5 0.88
Magnetite 2 5 5.175 0.025 0.023 0
Salt 3 5 2.165 0.025 0.023 1

Magnetite Fine Fine sand 1 1 70 70 2.650 0.015 0.010 0 9.01 x 10�4 1.69 x 10�4 1.3 1.2 RS: 5.1
PCRS: 5.7
FS: 6.1
C&Q: 8.2
GS: 51

Magnetite 2 1 10 5 5.175 0.025 0.023 1
Salt 2 5 2.165 0.025 0.023 0

Coarse Coarse sand 1 1 80 70 2.650 0.025 0.023 0 9.28 x 10�4 1.74 x 10�4 1.3
Magnetite 2 5 5.175 0.025 0.023 1
Salt 3 5 2.165 0.025 0.023 0

z: Recalculated from Equation [8] with data from Gerlach et al. [3]. Note that the value of aL in Gerlach et al. [3] was incorrect.
¥: RS ¼ Riffle Splitter; PCRS: Paper Cone Riffle Splitter; FS ¼ Fractional Shoveling; C & Q: Coning and Quartering; GS ¼ Grab Sampling.

Table 3
HIL and s2ðFSEÞ recalculated with Equations [11] and [12] from data in Gerlach et al. [4].

Analyte Study # from
[4]

Soil
composition

La Lab mLa (g) mLab (g) mL (g) ms (g) rab (g cm�3) dN (cm) davg (cm) aab aL fa HIL (g) HIL total (g) s2ðFSEÞ RSD (%) RDSz (%)
[4]

Measured
RSD (%) [4]

Salt (NaCl) 1 Sand 1 1 39.8 39.8 40 5 2.650 0.060 0.040 0 0.0050 0.50 8.44 x 10�5 4.03 x 10�2 7.05 x 10�3 8.4 8.2 18
Salt 2 1 0.2 0.2 2.165 0.050 0.050 1 0.75 4.02 x 10�2

2 Sand 1 1 23 23 36 1 2.650 0.060 0.040 0 0.0278 0.50 5.42 x 10�5 6.22 x 10�2 6.04 x 10�2 25 160 35
Salt 2 1 1 1 2.165 0.050 0.050 1 0.75 6.91 x 10�3

Coarse
particles

3 1 12 12 2.650 0.500 0.500 0 0.50 5.52 x 10�2

2 (no coarse
particles)

Sand 1 1 23 23 24 2.650 0.060 0.040 0 0.0417 0.50 8.13 x 10�5 4.56 x 10�3 4.43 x 10�3 6.7 6.7 17
Salt 1 1 1 1 2.16 0.050 0.050 1 0.75 4.47 x 10�3

3 (1:1:1 mixture) Small
particles

1 1 2 2 6 2.650 0.071 0.045 0.0038 0.0026 1 7.25 x 10�6 6.62 x 10�3 5.51 x 10�3 7.4 7.4 12

Medium
particles

2 1 2 2 2.650 0.200 0.136 0.0029 9.64 x 10�6

Large
particles

3 1 2 2 2.650 0.400 0.300 0.0013 3.29 x 10�3

z: Recalculated from Equation [8] for studies 1 and 2 and from Equation [5] for study 3 with data from Gerlach et al. [4]. Note that the HIL values for the case without coarse particles in study 2 and the case of small particles in
study 3 were incorrect in Gerlach et al. [4].

Table 4
Sample distribution of analyte content amongst size fractions.

Trace metal

Cd Co Cr Cu Mn Ni Pb Zn

da (cm) mLa=mL aa ðaa � aLÞ2 aa ðaa � aLÞ2 aa ðaa � aLÞ2 aa ðaa � aLÞ2 aa ðaa � aLÞ2 aa ðaa � aLÞ2 aa ðaa � aLÞ2 aa ðaa � aLÞ2

0.67 28% 5.10 x 10�6 6.25 x 10�12 5.30 x 10�6 4.17 x 10�12 1.30 x 10�5 5.93 x 10�11 4.16 x 10�5 1.62 x 10�9 3.65 x 10�4 9.30 x 10�9 1.33 x 10�5 2.87 x 10�11 2.76 x 10�4 2.31 x 10�7 3.92 x 10�4 1.33 x 10�7

0.27 15% 9.80 x 10�6 4.84 x 10�12 9.40 x 10�6 4.23 x 10�12 2.40 x 10�5 1.09 x 10�11 8.58 x 10�5 1.54 x 10�11 4.60 x 10�4 2.75 x 10�12 2.37 x 10�5 2.54 x 10�11 6.77 x 10�4 6.28 x 10�9 7.74 x 10�4 2.68 x 10�10

0.14 10% 8.60 x 10�6 1.00 x 10�12 8.40 x 10�6 1.12 x 10�12 2.24 x 10�5 2.89 x 10�12 9.60 x 10�5 2.00 x 10�10 5.17 x 10�4 3.01 x 10�9 2.12 x 10�5 6.47 x 10�12 6.72 x 10�4 7.08 x 10�9 7.83 x 10�4 6.39 x 10�10

0.06 14% 7.80 x 10�6 4.00 x 10�14 7.60 x 10�6 6.61 x 10-14 2.38 x 10�5 9.61 x 10�12 8.40 x 10�5 4.53 x 10�12 5.13 x 10�4 2.65 x 10�9 1.98 x 10�5 1.31 x 10�12 8.94 x 10�4 1.88 x 10�8 8.43 x 10�4 7.39 x 10�9

0.032 5% 6.20 x 10�6 1.96 x 10�12 6.10 x 10�6 1.54 x 10�12 1.69 x 10�5 1.44 x 10�11 6.64 x 10�5 2.39 x 10�10 4.00 x 10�4 3.79 x 10�9 1.54 x 10�5 1.06 x 10�11 7.70 x 10�4 1.97 x 10�10 7.11 x 10�4 2.10 x 10�9

0.018 10% 6.30 x 10�6 1.69 x 10�12 6.00 x 10�6 1.80 x 10�12 1.75 x 10�5 1.02 x 10�11 5.74 x 10�5 5.99 x 10�10 3.87 x 10�4 5.56 x 10�9 1.41 x 10�5 2.08 x 10�11 6.65 x 10�4 8.40 x 10�9 5.94 x 10�4 2.67 x 10�8

0.008 18% 9.40 x 10�6 3.24 x 10�12 8.60 x 10�6 1.58 x 10�12 2.73 x 10�5 4.36 x 10�11 1.42 x 10�4 3.60 x 10�9 5.90 x 10�4 1.64 x 10�8 2.31 x 10�5 1.97 x 10�11 1.34 x 10�3 3.42 x 10�7 1.20 x 10�3 2.00 x 10�7

aL 7.60 x 10�6 7.34 x 10�6 2.07 x 10�5 8.19 x 10�5 4.62 x 10�4 1.87 x 10�5 7.56 x 10�4 7.57 x 10�4
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and

s2ðFSEÞ¼ ð1 =ms �1 =mLÞHIL zHIL=ms¼ 0:1067 g=1 g¼ 0:1067

RSD¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1067

p
� 100 ¼ 32:7%

This theoretical RSD value is almost three times larger than the
RSD of 12% estimated empirically by Gerlach et al. [4]. A better RSD
estimate can be obtained by using the available data on the analyte
content of each size fractionwith Equation [12] as shown in section
5.1.3.

5.1.2. Case 2: sampling analyte-enriched particles [3,4] (studies 1
and 2))

Tables 2 and 3 present the RSD (i.e.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðFSEÞ

p
� 100) values

calculated with the mineral model (Equation [5]) and recalculated
using Equations [1] and [11] from the data in Gerlach et al. [3] and
Gerlach et al. [4] respectively. Densities and shape factors were
taken as in Gerlach et al. [3,4]; while average mass fractions, i.e. aL
values, were recalculated, hence leading to a correction of the RSD
values reported in Gerlach et al. [3,4].

RSD values calculated using Equations [1] and [11] were close to
those reported in Gerlach et al. [3,4]; except for the case of coarse
particles in study 2 [13]. As expected, all RSD values calculated
using Equations [1] and [11] were smaller than the measured RSD
(%) values, similarly to those from the Gerlach et al. studies [3,4].

However, except for the stated case of coarse particles, values
calculated using Equations [1] and [11] were systematically larger,
albeit only slightly, than values calculated using Equation [5]. A
possible reason for this is that Equation [11] does not rely on a
granulometric factor, which is an assumption regarding the char-
acteristics of the grainsize distribution. Gerlach et al. [3,4] used
g ¼ 0.55, thus assuming a calibrated material [15]. However, when
using g ¼ 0.75, for a naturally calibrated material [15], the recal-
culated RSD ¼ 0.88%. Therefore, the assumption made for g by
Gerlach et al. may not have been appropriate for the mixture of
sand, salt and magnetite e a clear warning against insertion of
standard numbers without specific justification.

The case of the coarse particles in study 2 also illustrates well
the limitations of Equation [4] for materials that do not conform to
the underlying assumptions. Gerlach et al. [4] report an estimated
RSD of 160% for study 2, compared to a measured RSD of 35%. Not
only is this is a poor theoretical estimate of the measured RSD, but
it is incoherent with the fact that it should be smaller since, by
definition, it represents the minimum relative sampling variance.
Gerlach et al. [4] explained this discrepancy by the fact that the use
of the nominal diameter, dN , in Equation [4] assumes that this is the
upper bound of a continuous distribution of particle sizes, while the
distribution of their sand is distinctly discrete and bimodal, due to
the addition of a large proportion (33%) of well-screened coarse
particles. This is another application of the standard formula in a
situation in which this is logically unsound; the formula should
simply not have been invoked.

Using the appropriate Equation [11] provided an estimated RSD
of 25%, which is smaller than the measured RSD of 35% reported
and a much better estimate than that obtained by Gerlach et al. [4]
using the mineral model. The fact that Equation [11] does not rely
on assumptions regarding the particle size distribution provides it
with a better predictive capacity of HILwhen the sampled materials
do not follow the assumptions of Equation [4].

5.1.3. Case 3: sampling a mixture of analyte-enriched and analyte-
coated particles [4]

Table 3 presents s2ðFSEÞ values calculated by Gerlach et al. [4]
using Equation [5] compared to our recalculated values using
Equations [1] and [12] for a mixture of salt-coated sand particles of
different sizes. The RSD value calculated in the present study were
generally at the same level as that calculated by Gerlach et al. [4]
and smaller than the empirically measured RSD. This result shows
that Equation [12] can be used with good reason for analyte-coated
particles, provided the analyte content in each size fraction is
quantifiable. Moreover, contrary to Equation [4], Equation [12] does
not require the determination of the number of particles in each
size fraction, which, in all likelihood, is an impossible task with
real-world soils.

5.2. Comparing the “mineral model” and the “SDCD model” for real-
world contaminated soils

Initial s2ðTHEOÞ values calculated with Equation [5] in Bou-
dreault et al. [6] and Dub�e et al. [7] largely overestimated the
measured s2ðEXPÞ. As mentioned earlier, the use of the “mineral
model” in these studies served as an example of how the diffi-
culty in characterizing its parameters for contaminated soils can
lead to an ill-advised use of “blanket” values for many of them,
i.e. f, g, and l. Moreover, the mineralogical factor, c, as defined in
the “mineral model” (i.e. as in Equations [4] and [5]) is extremely
difficult to calculate for contaminated soils within any practical
horizon. Most particularly, the density of the analyte is defined as
that of a pure mineral, rM, a concept extremely difficult to
reconcile with the many possible different states of contaminants
in soil (e.g. precipitates, complexes, exchangeable ions). More-
over, at the very low grades of contaminants in polluted soils
compared with ores, the mineralogical factor becomes very large
indeed. Combined with the suggested “blanket” value of l ¼ 1
[25], the resulting s2ðTHEOÞ estimate takes on nonsensical high
values when compared to experimental variances. To ‘control’
this inflation of c and, as a result, of s2ðTHEOÞ estimates, l would
have to take on a very small value.

This is precisely what Boudreault et al. [6] and Dub�e et al. [7]
reflected upon by investigating the use of Equation [6] for esti-
mating l, but without conclusive results as to its applicability for
contaminated soils. These early reflections lead to the de-
velopments presented in the present treatment.

At the heart of these developments is the hypothesis that in
contaminated soil the analyte (i.e. the contaminant) content must
be viewed as correlated with both particle size and density. This
fundamentally changes how the practical equation stemming from
Equation [2] is derived (i.e. Equation [8] and its variants Equations
[9]-[12] vs Equation [4]). Sample calculations made with the “SDCD
model” using data from Boudreault et al. [6] and Dub�e et al. [7] are
presented in Appendix B. The following will refer to this appendix
were appropriate.

An important feature of the “SDCD model” is the term ðaa �aLÞ
in Equations [11] and [12], which reflects the heterogeneity carried
by the analyte to its distribution amongst size fractions. This is
crucial for a proper understanding of the constitutional heteroge-
neity of contaminated soil and its relation to sampling.

Assuming that all incorrect sampling errors have been elimi-
nated (an absolute must before any considerations of correct
sampling errors can occur e but which is in fact one of the prom-
inent transgressions most often met with), a soil in which the
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contaminant is more-or-less equally distributed amongst all size
fractions will have a lower constitutional heterogeneity and for

which it will be “easier” to minimize the correct sampling errors
than for more divergent cases.

Fig. 3a. Theoretical vs. empirical relative sampling variances from Boudreault et al. [6]. Solid 45-degree sloping line denotes perfect correlation. See text for interpretation. (Lab GSP
values were incorrectly reported in Boudreault et al. [6]; but are corrected here, without changing any of the findings illustrated).

Fig. 3b. Theoretical vs. empirical relative sampling variance from Dub�e et al. [7]. Solid 45-degree sloping line denotes perfect correlation. See text for interpretation.
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Therefore at the other end of this spectrum, a soil in which the
contaminant is more-or-less prominently (or perhaps only)
concentrated in a specific size fraction, will have a much larger
constitutional heterogeneity because ðaa �aLÞ will be large for this
size fraction and null for the others and, therefore, minimizing
correct sampling errors will require more attention. Table 4 illus-
trates this with a sample distribution of trace element concentra-
tions amongst size fractions in one of the soil samples selected for
the present study. These data show empirically that all trace metals
are found in all size fractions and that their content in each size

fraction was close to their average soil content, i.e. ðaa � aLÞ2 in
Equation [12].

Analyte distributions such as shown by Table 4 were therefore
used to recalculate HIL and s2ðTHEOÞ values for both Boudreault
et al. [6] and Dub�e et al. [7]. Appendix B presents sample calcula-
tions for HIL values. Fig. 3a and 3b present the s2ðTHEOÞ values
obtained from the HIL values reported in Boudreault et al. [6] and
Dub�e et al. [7]; calculated with the “mineral model” versus those
recalculated in the present study with the “SDCD model” for
graphical comparison.

NB. Note that the s2ðTHEOÞ values obtained in Boudreault et al.
[6] for GSP at the laboratory sampling stage were incorrectly
reported in that publication; they should have been smaller.
However, this does not lead to any loss of generalization. These
values were corrected in the present study in Fig. 3a, and
nevertheless remain much larger than s2ðEXPÞ, which is still
impossible. Thus, the aforementioned shortcomings of the
“mineral model” for contaminated soil and similar materials
stand unaffected.

Table B2 presents average HIL values obtained with bothmodels.
The “SDCD model” resulted in HIL values several orders of magni-
tude smaller than those obtained with the “mineral model”, as the
latter is unable to represent the analyte distribution amongst

grainsize fractions because it does not account for ðaa � aLÞ2. As
shown in Table 4, the typical analyte distribution found in the

studied soil resulted in very small ðaa � aLÞ2 in Equation [12] and,
therefore, in much smaller s2ðTHEOÞ values.

As shown in Fig. 3a and b all s2ðTHEOÞ values recalculated with
the “SDCD model” were smaller than measured s2ðEXPÞ, i.e. in the
geometric setup of this plot they all fall below the line of perfect
correlation. This implies that, contrary to the s2ðTHEOÞ values ob-
tained with the “mineral model”, the recalculated s2ðTHEOÞ values
are in de facto agreement with the general principles of TOS since
s2ðTHEOÞ reflects the irreducible minimum Fundamental Sampling
Error, while s2ðEXPÞ also encompasses other sampling errors, such
as not fully eliminated incorrect sampling errors or residual
grouping and segregation error effects. Therefore, it should always
be expected that s2ðTHEOÞ < s2ðEXPÞ. In this context, in the present
study a perfect correlation between theoretical and experimental
relative variances was not to be expected, as this would have
implied that absolutely no sampling error other than the FSE was
made during the sampling experiments of Boudreault et al. [6] and
Dub�e et al. [7]; which they likely were not - despite significant
efforts.

From these results, it must be presumed that the classical
“mineral model” has a poor predictive capability for distinguishable
material classes characterized by a mixture of classical fragments
(analyte enriched particles) and coated particles, such as the

contaminated soil studied in Boudreault et al. [6] and Dub�e et al.
[7,34]. On the other hand, the “SDCD model” provides a more
practical approach for more meaningful estimates of HIL and
s2ðTHEOÞ.

6. Discussion

In the examples above, it was noted that very often the
calculated s2ðTHEOÞ was actually larger than its empirically esti-
mated counterpart s2(EXP). This is distinctly inconsistent with the
logic of TOS, at least if the theoretical model for HIL, or its
modifications, are taken at face value to mean that s2(FSE) is
indeed the incompressible absolute minimum sampling error. In
very many applications of the “mineral model” found in the
literature this traditional understanding is prevalent. Thus and
therefore, any s2(EXP) found to be smaller than its theoretical
counterpart presents an illogical empirical finding in need of a
deeper explanation.

We have here investigated various possible explanations for
such “impossible” state of affairs. First, one could argue that the
“mineral model” is not at fault, but rather the values attributed to
its parameters are. This has been discussed in previous papers [6,7]
where it was shown that it is indeed possible to adjust the values of
parameters, such as the liberation factor, to match empirically
measured sampling variances. By doing so, the aforementioned
studies attempted to highlight the discrepancy between the blan-
ket value of l ¼ 1 and the maximal value l could have taken if the
measured sampling variances were due solely to the fundamental
sampling error. Since other sources of sampling errors are always
embedded in measured sampling errors, the real l value was
deemed to be smaller than the adjusted value, and much smaller
than 1 for contaminated soil. However, looking at Equation [5], one
could have also chosen to adjust c, f or g instead of l. Hence the
inverse problem of adjusting theoretical sampling variances to
experimental sampling variances becomes insoluble, indeed a
travesty. These factors were categorically never intended as such
fudge factors by Gy himself, see introduction above.

The parameters c and l, which are constitutive of the “mineral
model” for HIL (i.e. Eq [4]) and s2ðTHEOÞ (i.e. Equation [5]), are
difficult (if at all possible) to estimate a priori for contaminated
soils, because they lack mathematical definitions based on
measurable characteristics of the soil and the distribution of the
contaminants it contains. Therefore, even if the values attributed to
the parameters of the “mineral model” could be adjusted to
experimental measurements of sampling variances, they would
still not be substantiated by independent physical measurements.
Conversely, the “SDCD model” for HIL presented herein with
Equations [8] to [13] provides the means to design sampling pro-
tocols based on measureable parameters, most importantly the
distribution of the analyte between the size classes in Equations
[11] to [13].

Second, one could also argue that the soil sampled in Boudreault
et al. [6] and in Dub�e et al. [7] is a special case that would warrant a
specific mathematical derivation s2ðTHEOÞ from Equation [2] and
that the theoretical “mineral model” is a general model repre-
senting the vastmajority of analytes in particulatematter. However,
the analysis presented above showed that when the “mineral
model” and the “SDCD model” were applied to the same sampling
data (i.e. from the Lyn et al. [32] and the Gerlach et al. [3,4] studies),
the “mineral model” failed to represent cases where the analyte
distribution differed from the case of analyte-enriched particles,
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while the “SDCD model” was able to correctly model all cases.
An undeniable strength of the classical “mineral model” is its

capacity to provide estimates of HIL and s2ðTHEOÞ using a priori
values of its constitutive parameters. However, for cases other than
analyte-enriched particles, this is at the cost of specific ad-hoc as-
sumptions on the analyte distribution in the particulate matter.
Therefore, the “SDCD model” is a de facto improvement on the
“mineral model” inasmuch as it provides demonstrably better es-
timates of HIL and s2ðTHEOÞ, while avoiding the limiting assump-
tions of the latter.

Contrary to the “mineral model”, the “SDCD model” is directly
unable to provide these estimates using a priori values of its
constitutive parameters because it only relies on empirical,
measured values for grainsize and analyte distribution. Thus,
depending on the specific case, its use may require a preliminary
sampling experiment in order to make such measurements as a
form of calibration of the model before using it for designing a final
sampling protocol. We find this a small price to pay relative to the
vastly increased realism provided by the “SDCD model”.

If the constitutional heterogeneity of contaminated soil can be
represented by that of coated particles (case 1), then s2ðTHEOÞ can
be calculated using Equations [1] and [10]. Equation [10] can be
simplified when considering that the critical size fraction is larger
than the nominal particle size (section 3.1). The latter can also be
established from a preliminary observation of the soil. The mini-
mum sample mass and a sampling protocol can thus be derived,
and then adjusted if necessary, frommeasurement of the empirical
grain size distribution.

If the constitutional heterogeneity of the soil stems from
analyte-enriched and coated particles (cases 2 and 3), the pre-
liminary sampling phase can be conducted as described for a “case
1” application, with the imperative objective to obtain samples
representative of all grain size fractions, in order to be able to obtain
meaningful estimates of HIL from Equation [11] or [12] or [13].
Then, using Equation [1] with the estimated HIL, the minimum
sample mass and a first sampling protocol can be readjusted to
ensure that the measurements of analyte concentration meet the
required degree of representativeness.

A last, very important, general point: It should be noted that
all models for HIL reported herein, i.e. the “mineral model” as
well as all variants of the “SDCD model”, are based on the
assumption that the analyte is randomly distributed in the lot.
This assumption goes all the way to Gy's original derivations. The
models only provide a valid estimate of the sampling variance, or
of the minimum sample mass, for randomly distributed lots from
which samples can be extracted (grab or composite sampling) by
collecting particles individually. Of course, such an idealized lot
seldom exists in reality. Therefore, the sampling variance esti-
mated by these models will always constitute an absolute mini-
mum sampling variance. In reality, several residual sampling
errors often occur that will make sampling variance larger. As
mentioned throughout this paper (see also Minkkinen and
Esbensen [21]), Incorrect Sampling Errors (ISE) must be fully
eliminated before any meaningful analysis and comparison of
sampling variance can be attempted. Even when/if this is the
case, the reality is that in almost all instances, it is impossible to
collect samples from individual particles from the lot - and the
distribution of the analyte is almost always affected by some
form of segregation, ibid. except in marginal, often artificial lab-
oratory cases from which no generalization is merited. Therefore,
as thoroughly demonstrated by Minkkinen and Esbensen [11]; for
such cases there will very nearly always be a residual grouping

and segregation error effect, which will increase variance and
make impossible valid determination of the sampling variance
based on HIL only. Sampling variance will invariably include
terms resulting from short-range and long-range effects from one
or several forms of segregation (original, induced, pouring. mix-
ing … segregation), or such as autocorrelation characterising the
distribution of the analyte in stationary or moving 1-D lots (the
latter in the form of process lots). This realization is particularly
important for primary sampling, e.g. field sampling on contami-
nated sites, where it is obviously impossible to reduce segrega-
tion before sampling lest the whole site must undergo forceful
mixing, and clearly transgressing any-and-all realistic sampling
cost considerations.

In the studies recalled in the present study, especially those
of Gerlach et al. [3,4] in which the lot to be sampled was pur-
posefully segregated, segregation could explain the differences
between the theoretical estimates of sampling variance recal-
culated with the “SDCD model”. It should also be noted that
when segregation and short/long-range autocorrelation patterns
are present in the lot, sampling variance will also depend on the
sample mass and especially on the sampling mode (systematic,
stratified random or random sampling), Minkkinen and Esben-
sen [11,21]. Some studies reported above involved different
sampling modes, such as Gerlach et al. [3]; Boudreault et al. [6]
and Dub�e et al. [7] and it could clearly be seen that difference
between experimental sampling variance and its theoretical
estimation from the “SDCD model” depend on the mode of
sampling used, grab sampling corresponding to the largest
differences.

Finally, it should be noted that minimum sample masses were
not calculated using the “SDCD model” and compared to masses
used in the comparative studies because, as explained above,
contributions to sampling variance due to segregation are not
accounted for by any HIL model presented here.

7. Conclusions

At the heart of TOS is the well-known often-called “Gy's
equation”, or “Gy's Formula” (Equation [5] above), which gives
the irreducible relative sampling variance due to the Funda-
mental Sampling Error, s2(FSE). The latter is considered to be an
estimate of the absolute minimum sampling error variance,
provided all other sampling errors have been properly minimized
and/or eliminated (“Gy's mandate”, see introduction). It cannot be
over-emphasized that adequate competence with respect to TOS
along the full lot-to-analysis pathway is a critical success factor
for this endeavor. Ill-reflected, voluntary, complacent parameter
plug-in actions have no place in the science of representative
sampling.

Gy's equation is based on a practical implementation of the
heterogeneity invariant for lot materials made up of aggregates of
assemblages of distinct fragments from different size fractions
and density phases. Equation [5] is based on parameters which
for many particulate materials, but certainly not all, can be esti-
mated a priori (i.e. before actual sampling), which makes it a
powerful tool for designing practical sampling protocols. How-
ever, research has shown that Equation [5] does not adequately
represent the constitutional heterogeneity for example of
contaminated soils and similar mixed materials. In fact, estimates
of the theoretical relative sampling variance with Equation [5] for
typical real-world contaminated soils were several orders of
magnitude larger than experimentally measured relative
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sampling variances. This is due to the misuse of Equation [5] for
granular matrices having a constitutional heterogeneity not
adequately represented by the model of constitutional hetero-
geneity upon which this equation is based. The model of
constitutional heterogeneity in Equation [5] corresponds to a
granular material made of analyte-enriched particles distinct
from analyte-free particles, while in contaminated soils for
example, the analyte can also, or wholly, be present as a coating
on soil matrix particles.

Following this realization, this paper returns to the concept of
size-density classes to show how one can obtain a model of
constitutional heterogeneity capable of representing mineral-like
as well as soil-like materials. This “size-density-class derived” or
“SDCDmodel” is based on the assumptions that the analyte content
amongst the soil fragments is correlated both to size fraction as
well as to phase density, whereas the effect of the correlation of
analyte content to size fraction is not represented in Equation [5].
According to these assumptions, an analyte uniformly distributed
amongst size fractions has a smaller heterogeneity than an analyte
found mainly in a specific size fraction, or only. Importantly, there
undoubtedly exists a gradual spectrum of real-world situations
between these end-member scenarios.

Using the “SDCD model” with published data reproduced the
relative sampling variances calculated for mineral-like matrices (as
in the Gerlach et al. studies), but more importantly also corrected
the relative sampling variance calculated for real contaminants by
several orders of magnitudes. In all cases, the recalculated relative
sampling variances were decreased below their corresponding
experimental measurements, thus now fully as expected from TOS,
i.e. relative sampling variance due to constitutional heterogeneity is
indeed the minimum irreducible variance when all sampling errors
are properlyminimized or eliminated. Therefore, the “SDCDmodel”
has the capacity of producing estimates of relative sampling vari-
ance due to the fundamental sampling error, which are fully
meaningful with respect to all TOS conceptual understandings and
principles.

Further empirical validation of the “SDCD model” is highly
desirable, and strongly encouraged, but upon its first merits pre-
sented here, it shows a very promising potential of increasing TOS’
applicability to contaminated soils, coated particular aggregates
and similar mixed material systems. Further work on the “SDCD
model” will need to address the many facetted forms and effects of
grouping and segregation.
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Appendix A. Influence of analyte content on particle density

A thought-experiment was conducted to investigate the rela-
tionship between the concentration of a trace metal in soil and the
density of the soil particles it is attached to through common
retention mechanisms. Metal-enriched particles liberated from soil
particles were not considered as both types of particles are then
considered to have their specific density.

Cadmium (Cd) and lead (Pb) were considered for this experi-
ment as well as possible geochemical species of these two elements
that could be found on soil particles, namely Cd- or Pb-carbonate,
hydroxide, oxide, and sulphide.

Table A.1 presents the density and the molar mass of each
geochemical species, while Table A.2 presents the resulting particle
density as a function of the concentration of each geochemical
species.

For example, for a Pb concentration of 10 000 mg per kg of dry
particulate matter (or 1%) and PbCO3 as the geochemical species,
the calculation of the resulting density is as follows.

First, the concentration of PbCO3(s), i.e. ½PbCO3�s, is calculated as,

½PbCO3�s¼½Pb�s�MPb

.
MPbCO3

¼1�104mgkg�1

�
�
207:2gmol�1

.
267:2gmol�1

�
¼1:29�104mg kg�1

Then, the resulting density of a soil particle having the above
concentration PbCO3(s) is calculated as the weighted mean of the
respective densities of soil particle and PbCO3(s),

r¼ rsoil �
�
1� aPbCO3ðsÞ

�þ rPbCO3ðsÞ � aPbCO3ðsÞ ¼2:65 g cm�3

�
h
1�

�
1:29�104 mg

.
106 mg

�i
þ6:6 g cm�3 �1:29

�104 mg
.
106 mg¼2:70 g cm�3

Fig. A.1 shows the relationship between the concentration of the
geochemical species in the soil and soil particle density. Since soil
particle density is expected to vary between 2.6 and 2.8 g cm�3,
trace metal species attached to it will not change it significantly for
concentration below 10 000 mg kg�1 or 1%.

Table A.1
Density and molar mass of geochemical species

Geochemical species Density (g cm�3) Molar mass (g mole�1)

Pb 11.3 207.2
PbCO3 6.6 267.2
Pb(OH)2 7.41 225.2
PbO 9.64 223.2
PbS 7.6 239.2
Cd 8.65 112.4
CdCO3 4.26 172.4
Cd(OH)2 4.79 146.4
CdO 7.0 128.4
CdS 4.82 144.5
Soil particle 2.65 N/A
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Appendix B. Sample calculations of HIL values

This appendix present hypotheses and sample calculations for
the determination of characteristic HIL values with Equation [12],
for trace metals in the samples randomly selected from the Bou-
dreault et al. study [38] (see section 4.2.1).

The characteristic HIL values were used for recalculating the
s2ðTHEOÞ calculated with Equation [5] and presented in Boudreault
et al. [6] and Dub�e et al. [7]. As explained in section 4.2.1, Equation
[12] requires a sample to be separated into size fractions and the
analyte content to be determined in each fraction. Table B.1 pre-
sents such data obtained for Cd content in one of the samples. For

each size fraction, it provides the average particle diameter, da, the
analyte (i.e. Cd) content, aa, the size fraction proportion, mLa

mL
, as well

as the heterogeneity carried by the analyte (i.e. Cd),

farad
3
a
mLa
mL

ðaa�aLÞ2
a2L

.

The initial tertiary field samples brought to the laboratory (see
section 4.2.1) had a nominal particle diameter, dN ¼ 1 cm. Then,
depending on the subsampling protocol, some were ground in two
comminution stages at dN ¼ 0.1 cm, and then at dN ¼ 0.0212 cm,
while other were sieved at 0.2 cm prior to being ground at
dN ¼ 0.1 cm, and then at dN ¼ 0.0212 cm. All possible states of a
sample are presented in Table B.2, but, first, Table B.1 presents data

Fig. A.1. Particle density as a function of the concentration of precipitated Cd or Pb species.

Table A.2
Calculated densities of a soil particle coated with a precipitated Cd or Pb species

Lead (Pb)

Total Pb concentration (mg kg¡1) Total Pb concentration (%) Geochemical species concentration (%) Density of soil particle coated with
Pb species (g cm¡3)

PbCO3 Pb(OH)2 PbS PbO PbCO3 Pb(OH)2 PbO PbS

1 0.0001 0.000129 0.000109 0.000115 0.000108 2.65 2.65 2.65 2.65
10 0.001 0.00129 0.00109 0.00115 0.00108 2.65 2.65 2.65 2.65
100 0.01 0.0129 0.0109 0.0115 0.0108 2.65 2.65 2.65 2.65
1000 0.1 0.129 0.109 0.115 0.108 2.66 2.66 2.66 2.66
10 000 1 1.29 1.09 1.15 1.08 2.70 2.71 2.74 2.71
100 000 10 12.90 10.87 11.54 10.77 3.16 3.26 3.55 3.29

Cadmium (Cd)

Cd concentration (mg kg¡1) Cd concentration (%) Geochemical species concentration (%) Density of soil particle coated with
Cd species (g cm¡3)

CdCO3 Cd(OH)2 CdS CdO CdCO3 Cd(OH)2 CdO CdS

1 0.00 0.000153 0.000130 0.000129 0.000114 2.65 2.65 2.65 2.65
10 0.00 0.00153 0.00130 0.00129 0.00114 2.65 2.65 2.65 2.65
100 0.01 0.0153 0.0130 0.0129 0.0114 2.65 2.65 2.65 2.65
1000 0.10 0.153 0.130 0.129 0.114 2.66 2.66 2.66 2.66
10 000 1.00 1.53 1.30 1.29 1.14 2.71 2.72 2.76 2.73
100 000 10.00 15.34 13.03 12.85 11.42 3.26 3.38 3.72 3.41
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for three such distinct states of a sample, which were chosen to
illustrate typical calculations that were performed.

Therefore, for the initial state of a sample, i.e. unsieved and
unground, with dN ¼ 1 cm, a sample calculation for the heteroge-
neity carried by Cd in size fraction F1 would be:

farad
3
a

mLa
mL

ðaa � aLÞ2
a2L

¼0:5�2:65
g

cm3 �ð1cmÞ3 �ð0:28Þ

�
�
5:10� 10�6 � 7:48� 10�6

�2
�
7:48� 10�6

�2 ¼1:13� 10�2 g

Note that for all calculations, f ¼ 0.5, and ra ¼ 2.65 g cm�3.
For protocols which involved sieving to remove grainsize frac-

tions larger than 0.2 cm, aa remained unchanged, while mLa= mL

was recalculated with mL as the total mass of grainsize fractions
<0.2 cm (see sample calculation in footnote “a” under Table B.1). For
the grainsize fractions removed by sieving, mLa ¼ 0.

For protocols which involved grinding, both aa and mLa= mL

were recalculated. Therefore, depending on the aforementioned

nominal particle size obtained by grinding, i.e. either 1 mm or
0,212 mm, aa was recalculated as the weighted sum of trace metal
mass fractions down to the grainsize fraction immediately smaller
than the new nominal particle size (see sample calculation in
footnote “b” under Table B.1). Moreover, mLa=mL was recalculated
for the size fraction immediately smaller than the new nominal
particle size as the sum of all mLa=mL above this new nominal
particle size (see sample calculation in footnote “c” under
Table B.1). mLa=mL values remained the same for the other size
fractions.

Several HIL values were thus obtained for each trace metal
corresponding to each possible state of a sample under the different
sampling protocols. These calculations were repeated for each of
the nine samples and averaged to obtain mean HIL values for each
trace metal. These are presented in Table B.2 for each possible state
of a sample depending on the subsampling protocol. It must be
noted that these calculations were made a posteriori using data
from previous studies and therefore, required hypotheses on
mLa=mL and aa to account for modifications to the state of the
sample due to sieving and grinding. In further studies, these hy-
potheses can be avoided by measuring these parameters a priori.

Table B.1
Sample grainsize data, Cd content and sample state for HIL calculations for a given sampling location

No sieving or grinding, dN ¼ 1 cm Sieving and no grinding, dN ¼ 0.2 cm Sieving and grinding, dN ¼ 0.1 cm

Sieve openings
(cm)

da (cm) aa (x 10�6) mLa
mL farad

3
a

mLa
mL

ðaa � aLÞ2
a2L

(g)
aa (x 10�6) mLa

mL farad
3
a

mLa
mL

ðaa � aLÞ2
a2L

aa (x 10�6) mLa
mL farad

3
a

mLa
mL

ðaa � aLÞ2
a2L

(g)

Size fraction F1 1.00 0.67 5.10 0.28 1.13 x 10�2

0.335
F2 0.335 0.27 9.80 0.15 3.67 x 10�4

0.200
F3 0.200 0.14 8.60 0.10 8.50 x 10�6 8.60 0.17a 3.15 x 10�6

0.085
F4 0.085 0.06 7.80 0.14 8.99 x 10�8 7.80 0.25 8.22 x 10�8 3.48b 0.42c 4.74 x 10�5

0.043
F5 0.043 0.032 6.20 0.05 6.28 x 10�8 6.20 0.09 1.99 x 10�7 6.20 0.09 1.99 x 10�7

0.021
F6 0.021 0.018 6.30 0.10 1.88 x 10�8 6.30 0.17 6.28 x 10�8 6.30 0.17 6.28 x 10�8

0.015
F7 0.015 0.008 9.40 0.18 6.57 x 10�9 9.40 0.31 4.97 x 10�9 9.40 0.31 4.97 x 10�9

0
HIL (g) 1.16 x 10�2 3.50 x 10�6 4.77 x 10�5

a e.g.
mLF3
mL

¼ 0:10
ð0:10þ 0:14þ 0:05þ 0:10þ 0:18Þ ¼ 0:17

b e.g. aF4 ¼ ½ð0:17 � 8:60Þ þ ð0:25 � 7:80Þ� � 10�6 ¼ 3:48� 10�6

c e.g.
mLF4
mL

¼ 0:17þ 0:25 ¼ 0:42

Table B.2
Average HIL (g) values calculated with the mineral and generalized models (Equations [4] and [12] respectively)

Trace metal Initial dN (cm)

1 0.2

dN after grinding (cm) dN after grinding (cm)

1 (no grinding) 0.1 0.0212 0.2 (no grinding) 0.1 0.0212

HIL

Eq. [4] Eq. [12] Eq. [4] Eq. [12] Eq. [4] Eq. [12] Eq. [4] Eq. [12] Eq. [4] Eq. [12] Eq. [4] Eq. [12]

Cd 1.04 x 105 1.23 x 10�2 1.04 x 102 1.10 x 10�6 9.88 x 10�1 2.41 x 10�8 8.29 x 102 1.71 x 10�5 1.04 x 102 1.18 x 10�6 9.88 x 10�1 2.17 x 10�8

Co 1.29 x 105 7.03 x 10�3 1.29 x 102 4.85 x 10�7 1.23 x 100 2.51 x 10�8 1.03 x 103 1.23 x 10�5 1.29 x 102 7.19 x 10�7 1.23 x 100 2.59 x 10�8

Cr 4.64 x 104 1.53 x 10�2 4.64 x 101 1.39 x 10�6 4.42 x 10�1 7.15 x 10�8 3.71 x 102 1.14 x 10�5 4.64 x 101 8.44 x 10�7 4.42 x 10�1 6.27 x 10�8

Cu 1.96 x 104 2.42 x 10�2 1.96 x 101 4.08 x 10�6 1.87 x 10�1 1.96 x 10�7 1.57 x 102 3.53 x 10�5 1.96 x 101 4.14 x 10�6 1.87 x 10�1 2.46 x 10�7

Mn 1.97 x 103 5.49 x 10�3 1.97 x 100 5.42 x 10�7 1.88 x 10�2 2.49 x 10�8 1.58 x 101 2.27 x 10�5 1.97 x 100 1.04 x 10�6 1.88 x 10�2 3.26 x 10�8

Ni 4.65 x 104 1.12 x 10�2 4.65 x 101 5.10 x 10�7 4.43 x 10�1 4.58 x 10�8 3.72 x 102 7.76 x 10�6 4.65 x 101 5.54 x 10�7 4.43 x 10�1 4.19 x 10�8

Pb 4.63 x 103 3.94 x 10�2 4.63 x 100 1.04 x 10�5 4.41 x 10�2 2.26 x 10�7 3.71 x 101 1.92 x 10-4 4.63 x 100 5.98 x 10�6 4.41 x 10�2 1.83 x 10�7

Zn 4.06 x 103 1.44 x 10�2 4.06 x 100 2.30 x 10�6 3.87 x 10�2 9.85 x 10�8 3.25 x 101 1.60 x 10�5 4.06 x 100 2.05 x 10�6 3.87 x 10�2 1.12 x 10�7
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Table B.2 shows that there is a large discrepancy between HIL
values calculated with Equation [4] or [12]. It was observed that
trace metal content in each size fraction, aa, is close to the esti-
mated trace metal content of the lot aL for all size fractions and all
metals (see Table 4 for an example). Therefore, trace metals are
distributed amongst all size fractions. This is modeled by Equation
[12] in which, as a result, ðaa �aLÞ is very small. This distribution of
the analyte cannot be adequately modeled by Equation [4] without
making debatable assumptions about the liberation factor.

Finally, as an example, Table B.3 presents all HIL for Cd, calcu-
lated as above, for all sampling locations and for a specific state of
comminution. It can be seen that there was a significant variability
in constitutional heterogeneity between sampling locations. The
mean HIL value was used for recalculating s2ðTHEOÞ for Fig. 3a and
b. As it can be seen, using the mean HIL led to larger and more
conservative estimates of s2ðTHEOÞ as HIL values were smaller at
some sampling locations.
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Table B.3
HIL ðgÞ for Cd per size fraction for all sampling location and mean HIL ðgÞ (Initial dN ¼ 1 cm, no sieving or grinding)

Sampling location

Size fraction da (cm) 1 2 3 4 5 6 7 8 9

Size
fraction

F1 0.67 1.13 x 10�2 1.66 x 10�2 1.02 x 10�5 3.09 x 10�2 3.55 x 10�4 4.10 x 10�5 4.00 x 10�2 9.61 x 10�3 1.19 x 10�4

F2 0.27 3.67 x 10�4 4.40 x 10�4 5.99 x 10�6 7.58 x 10�7 1.16 x 10�5 2.08 x 10�5 3.25 x 10�4 2.17 x 10�5 2.35 x 10�5

F3 0.14 8.50 x 10�6 5.10 x 10�5 2.25 x 10�9 1.47 x 10�4 1.46 x 10�5 1.52 x 10�6 2.34 x 10�5 1.55 x 10�6 1.07 x 10�5

F4 0.06 8.99 x 10�8 8.77 x 10�7 7.24 x 10�8 4.30 x 10�6 5.58 x 10�8 7.32 x 10�8 4.14 x 10�7 8.90 x 10�7 1.08 x 10�7

F5 0.032 6.28 x 10�8 1.68 x 10�7 3.67 x 10�8 4.98 x 10�8 2.72 x 10�7 2.57 x 10�8 7.14 x 10�8 1.40 x 10�7 9.95 x 10�8

F6 0.018 1.88 x 10�8 3.54 x 10�8 1.23 x 10�8 1.73 x 10�8 2.40 x 10�8 3.25 x 10�9 5.91 x 10�9 1.31 x 10�9 3.72 x 10�8

F7 0.008 6.57 x 10�9 3.29 x 10�9 1.54 x 10�9 1.01 x 10�8 5.83 x 10�9 2.90 x 10�11 3.04 x 10�8 7.86 x 10�9 7.58 x 10�10

HILðgÞ ¼ f r
P
a
d3a

mLa
mL

ðaa � aLÞ2
a2L

1.16 x 10�2 1.71 x 10�2 1.63 x 10�5 3.10 x 10�2 3.82 x 10�4 6.35 x 10�5 4.03 x 10�2 9.63 x 10�3 1.53 x 10�4

Mean HIL (g) 1.23 x 10�2

J.-S. Dub�e and K.H. Esbensen Analytica Chimica Acta 1193 (2022) 339227

20

http://refhub.elsevier.com/S0003-2670(21)01053-9/sref1
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref1
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref1
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref1
https://doi.org/10.1255/978-1-906715-29-8
https://doi.org/10.1255/978-1-906715-29-8
https://doi.org/10.1002/cem.705
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref4
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref4
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref4
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref4
https://doi.org/10.1016/j.aca.2021.339127
https://doi.org/10.1016/j.aca.2021.339127
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref6
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref6
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref6
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref6
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref6
https://doi.org/10.1007/s11356-015-4447-1
https://doi.org/10.1007/s11356-015-4447-1
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref8
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref8
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref8
https://doi.org/10.1255/tosf.79
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref10
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref10
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref10
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref10
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref10
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref11
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref11
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref11
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref11
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref11
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref11
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref11
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref12
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref12
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref12
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref13
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref13
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref13
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref14
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref14
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref15
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref15
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref16
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref17
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref17
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref17
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref17
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref18
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref18
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref18
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref18
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref18
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref18
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref19
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref19
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref19
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref19
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref19
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref19
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref20
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref20
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref20
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref20
https://doi.org/10.1016/j.aca.2009.08.039
https://doi.org/10.1016/j.aca.2009.08.039
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref22
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref22
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref22
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref22
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref23
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref23
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref23
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref23
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref24
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref24
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref24
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref24
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref25
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref25
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref25
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref26
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref26
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref26
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref26
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref27
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref27
https://doi.org/10.1007/978-94-007-4470-7_3
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref29
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref29
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref29
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref29
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref30
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref30
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref30
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref31
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref31
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref32
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref32
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref32
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref32
https://doi.org/10.1016/j.aca.2021.338982


anthropogenic soils, J. Environ. Eng. 140 (6) (2014), https://doi.org/10.1061/
(ASCE)EE.1943-7870.0000825.

[35] J.-P. Boudreault, et al., Quantification and minimization of uncertainty by
geostatistical simulations during the characterization of contaminated sites:
3-D approach to a multi-element contamination, Geoderma 264 (2016)
214e226, https://doi.org/10.1016/j.geoderma.2015.10.019.

[36] Centre d’expertise en analyse environnementale du Qu�ebec (CEAEQ),
D�etermination des m�etaux : m�ethode par spectrom�etrie de masse �a source

ionisante au plasma d’argon, MA. 200 e M�et. 1.2, r�evision 7, minist�ere de
l'Environnement et de la Lutte contre les changements climatiques, 2020,
p. 18.

[37] Centre d’expertise en analyse environnementale du Qu�ebec (CEAEQ), Proto-
cole pour la validation d’une m�ethode d’analyse en chimie, DR-12-VMC,
minist�ere de l'Environnement et de la Lutte contre les changements clima-
tiques, 2021, p. 35.

J.-S. Dub�e and K.H. Esbensen Analytica Chimica Acta 1193 (2022) 339227

21

https://doi.org/10.1061/(ASCE)EE.1943-7870.0000825
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000825
https://doi.org/10.1016/j.geoderma.2015.10.019
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref36
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref36
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref36
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref36
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref36
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref36
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref36
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref36
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref36
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref36
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref36
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref36
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref36
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref36
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref36
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref37
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref37
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref37
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref37
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref37
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref37
http://refhub.elsevier.com/S0003-2670(21)01053-9/sref37

