Occurrence of organochlorine pesticides in indoor dust

Bräuner, Elvira; Mayer, Philipp; Gunnarsen, Lars; Vorkamp, Katrin; Raaschou-Nielsen, Ole

Published in:
Journal of Environmental Monitoring

Publication date:
2011

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
COMMUNICATION

Occurrence of organochlorine pesticides in indoor dust†

Elvira V. Bräuner,⁎a Philipp Mayer,⁎b Lars Gunnarsen,c Katrin Vorkampb and Ole Raaschou-Nielsena

Received 16th December 2010, Accepted 7th January 2011
DOI: 10.1039/c0em00750a

Organochlorine pesticides are present in the environment and suspected of causing serious health effects. Diet has been the main exposure source, but indoor source release is gaining focus. Within a monitoring study of polychlorinated biphenyls of Danish buildings built during the 1960s and 1970s, we coincidently determined extreme levels of dichlorodiphenyltrichloroethane (DDT) levels in two of ten random samples. This raises concern and further large scale investigations are warranted to confirm this.

Persistent and lipid-soluble organochlorine pesticides such as dichlorodiphenyltrichloroethane (DDT) are ubiquitously present as a complex mixture of parent compounds and metabolites in the environment. DDT is a manufactured chemical, which was introduced in the 1940s and became one of the most widely used chemicals for controlling pests that are detrimental to agricultural crops and carry diseases such as malaria and typhus. In Denmark, DDT was restricted in 1969 and banned in 1986, but more than 520 metric tonnes of DDT have been sold in Denmark alone.1 The organochlorines hexachlorobenzene (HCB), hexachlorocyclohexane (HCH) and chlordane were less extensively used in Denmark.

Although these compounds have been banned in most Western countries for decades, their previous extensive worldwide application, continued use in developing countries and environmental persistence2 have resulted in continued redistribution in the environment. DDT, HCB and chlordane are regulated by the Stockholm Convention on Persistent Organic Pollutants (POPs), with the objective for parties to eliminate and reduce the emissions of POPs. HCH is included in the Aarhus Protocol on POPs adopted by the United Nations Economic Commission for Europe, 1998, with the ultimate objective to eliminate any discharge, emissions and losses of POPs.

Organochlorine pesticides are carcinogenic in animals3 and their immunotoxicity has been documented in vitro,4 in vivo,5 as well as in animals6–8 and human foetal, neonatal and infant immune systems.9–11 Concern about health risks has prompted research into potential exposure sources. As the compounds bioaccumulate and biomagnify in the food chain, organochlorine pesticides have been detected in high concentrations in meat, milk and fish,12–16 but lower levels in fruit, vegetables and cereals.17 The indoor environment has been shown to be important for human exposure to several halogenated organic pollutants such as polychlorinated biphenyls18 and brominated flame retardants.19 However little is known about indoor sources of organochlorine pesticides. Prior to its ban, the direct application of DDT to treat new carpets and textiles for pests was a common practice.20 Carpet and other textiles act as long-term reservoirs for organochlorine pesticides,21–23 which are continually transferred to indoor air and dust.24–28 Organochlorine pesticides bound to dust are more persistent indoors due to a lack of degradation (microbial and photolytical) and other dissipation (volatilisation, dissolution) processes.25,26 The fact that populations in industrialised countries spend 85–90% of their time in indoor environments27 increases the relevance of indoor exposure to these compounds. Quantification of the amount of organochlorine pesticides in indoor environments is presently the focus of increasing concern and four recent studies have reported elevated concentrations in indoor dust21,23,25,28 in industrialised countries, whilst two others have related these concentrations to cancer.22,29

Environmental impact

Lipid-soluble organochlorine pesticides are ubiquitously present in the environment and have been detected worldwide in humans. These compounds are of environmental health interest because of their persistent nature and potential adverse health effects. Established human exposure sources include meat, milk and fish, but there is presently increasing focus on the indoor environment. Although several research groups have investigated the indoor environment in relation to organochlorines such as PCBs and PBDEs, little is known about the indoor environment as a source of exposure to organochlorine pesticides such as DDT. This is one of the first reports indicating that indoor dust is an important DDT exposure source and this raises concern—not least for children’s health—and addresses the ongoing debate about human exposure sources of organochlorines.
In the present study we report the concentrations of DDTs, \(\alpha \)-, \(\beta \)-, and \(\gamma \)-HCH, HCB, and trans-nonachlor (TNC) in household dust collected from ten Danish addresses.

Between October 2003 and December 2003, municipalities in the Eastern Zealand of Denmark and the National Knowledge Center for Caulking were invited to provide possible locations for the study. Questionnaires were then sent out to the owners of 100 selected indoor localities to gather information on potential sources of polychlorinated biphenyls. Based on the information in these questionnaire replies, ten of these addresses (Fig. 1) were selected for chemical analyses of window sealants, indoor air, indoor dust and garden soils. Localities were selected based on participant willingness, suspicion of PCB contamination and proximity to the Danish building Research Institute in Hoersholm. The ten localities represent the different municipalities along the Eastern Zealand coast of Denmark (see Fig. 1) and also represent varying building types including six residential (five private one-family homes and one apartment) and four educational (two schools and two university research facilities) buildings. All of the selected buildings were constructed in the period 1960 to 1973, which corresponds to the period of the most intensive PCB usage in various types of sealants and also to the most intensive DDT usage worldwide (Table 1).

Fig. 1 Distribution of geocoded addresses \((n = 10)\) in six Eastern Danish municipalities.
In January and February 2004 all questionnaire responses were reviewed and the measurements in the selected ten indoor localities were prepared. Sampling of indoor dust was undertaken between March 2004 and June 2004. A specially made filter cassette was mounted on a traditional vacuum cleaner (1600 W) for dust sampling. Dust was collected on circular glass fibre filters with a diameter of 80 mm. The suction opening was 10 mm × 60 mm. To ensure that the vacuum cleaner did not scrape the surface of the floor, small wheels were mounted on the opening to maintain a distance of 5 mm between the vacuum cleaner head and the sampling surface (Fig. 2). A floor or carpet area of 2 m² was sampled during 2 minutes at each location. One sample was taken at each locality in front of a window in the most frequently used area at each location. The filters were immediately wrapped in aluminium foil and stored in sealed plastic bags for chemical analysis.

Details of organochlorine pesticide analyses in dust and gas-chromatography-spectrometry parameters are provided in our ESI†. The dust concentrations (ng g⁻¹) of the organochlorine pesticides found in each of the ten localities are presented in Table 2. All of the DDTs, with the exception of α,α′-DDE were extremely elevated in samples from private homes A and B, with respective levels of 1253 and 19 756 ng g⁻¹ for ΣDDT. All other pesticides were detected in the dust samples from schools, institutions and the remaining private homes at relatively low levels or levels below the limit of detection (Table 2).

It is surprising that DDE, the major metabolite of DDT, was not recovered in samples A and B. But this is probably because ΣDDT bound to dust is more persistent indoors due to a lack of degradation and other dissipation processes.25,26 Organochlorine pesticides are trapped in carpet and other textiles.21–23 Interestingly, both samples with high levels of ΣDDT originated from private homes with carpeting on floors, whilst only one of the localities with low levels of ΣDDT had carpeting on floors. This supports the theory that carpets can act as a reservoir for ΣDDT, perhaps with an origin from the prior ban direct application of DDT for pest control or imported carpeting from lands still using DDT.

These high levels of ΣDDT raise concern. When considering oral exposure, the acute oral minimum risk level (MRL) for DDT in humans is 0.5 μg kg⁻¹ day⁻¹.24 Toddlers and younger children have vulnerabilities to chemicals that are distinct from adults. Their exposure is expected to be higher because of their activities on the floor and their tendency for ingestion of non-food items and hand-to-mouth behaviour.25 The ingestion “central tendency” value of indoor dust in toddlers aged 1 to 3 years is 60 mg per day.24 If we consider a 10 kg toddler in either private home A or B, then the ingestion of 60 mg of dust would be equivalent to a DDT intake of 0.0075 and 0.1186 μg kg⁻¹ day⁻¹ respectively. These levels contribute significantly to the acute MRL for the average toddler and would be even greater for younger infants with lower body mass.

Concentrations of organic contaminants in dust are known to vary both spatially and temporally, and relative standard deviations of up to 200% have been shown for polybrominated diphenylethers congeners in indoor dust.32 Although we did not include follow-up measurements and the absolute ΣDDT concentration could vary with time and within the room, there is a strong indication of significant DDT sources in private homes A and B.

The present results are based on ten indoor environments and may thus not reflect the true frequency of high DDT concentrations in dust inside all buildings in Denmark so we cannot draw any firm conclusions here regarding the indoor environment (dust, carpets, and textiles) as a source of DDT exposure or health risks at the population level. But these results are disquieting and need to be confirmed. Work on a larger scale, with the inclusion of indoor environments occupied by susceptible groups such as small children in child day care centres and a wider range of persistent organic pollutants, is warranted.

In conclusion, the exposure to organochlorine pesticides has generally been associated with fatty fish and other food items, but

![Fig. 2 A specially made filter cassette was mounted on a traditional vacuum cleaner (1600 W) for dust sampling. Small wheels were mounted on the opening to maintain a distance of 5 mm between the vacuum cleaner head and the sampling surface.](image)

Table 1 Building characteristics

<table>
<thead>
<tr>
<th>ID</th>
<th>Type</th>
<th>Year</th>
<th>Area/m²</th>
<th>Carpet (Y/N)</th>
<th>Dust sample mass/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Private home</td>
<td>1971</td>
<td>135</td>
<td>Y</td>
<td>1.330</td>
</tr>
<tr>
<td>B</td>
<td>Private home</td>
<td>1973</td>
<td>173</td>
<td>Y</td>
<td>0.055</td>
</tr>
<tr>
<td>C</td>
<td>Apartment</td>
<td>1960</td>
<td>137</td>
<td>N</td>
<td>0.054</td>
</tr>
<tr>
<td>D</td>
<td>Private home</td>
<td>1964</td>
<td>80</td>
<td>N</td>
<td>0.058</td>
</tr>
<tr>
<td>E</td>
<td>Private home</td>
<td>1961</td>
<td>115</td>
<td>N</td>
<td>0.048</td>
</tr>
<tr>
<td>F</td>
<td>Private home</td>
<td>1972</td>
<td>123</td>
<td>Y</td>
<td>0.092</td>
</tr>
<tr>
<td>G</td>
<td>High School</td>
<td>1960</td>
<td>870</td>
<td>N</td>
<td>0.103</td>
</tr>
<tr>
<td>H</td>
<td>High School</td>
<td>1972</td>
<td>2000</td>
<td>N</td>
<td>0.115</td>
</tr>
<tr>
<td>I</td>
<td>University, research centre</td>
<td>1963</td>
<td>4721</td>
<td>N</td>
<td>0.241</td>
</tr>
<tr>
<td>J</td>
<td>University, research centre</td>
<td>1973</td>
<td>10 318</td>
<td>N</td>
<td>0.191</td>
</tr>
</tbody>
</table>

* Building details obtained from the Danish Enterprise and construction Authority. † Private homes D and E were neighbours.
little attention has been paid to the indoor environment. This is one of
the first studies reporting indoor dust as an important human
exposure source of these compounds and the presence of high
concentrations of DDTs in the indoor environment raises concern for
human health. More work on a larger scale is warranted.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDT</td>
<td>dichlorodiphenyltrichloroethane</td>
</tr>
<tr>
<td>HCH</td>
<td>hexachlorocyclohexane</td>
</tr>
<tr>
<td>HCB</td>
<td>hexachlorobenzene</td>
</tr>
<tr>
<td>MRL</td>
<td>minimum risk level</td>
</tr>
<tr>
<td>PCB</td>
<td>polychlorinated biphenyl</td>
</tr>
<tr>
<td>POP</td>
<td>Persistent Organic Pollutant</td>
</tr>
<tr>
<td>TNC</td>
<td>trans-nonachlor</td>
</tr>
</tbody>
</table>

Acknowledgements

Dr Bräuner was supported by a Research Grant from The Danish
Medical Research Council and the following Foundations: Aase and
Einar Danielsen, King Christian the 10th, A.P. Møller, The Hart-
mann Brothers, The Foundation of 1870, Snedker Jacobsen and
Hustru Astrid Jacobsen, Architect Holger Hjortenberg and Hustru
Hustru Aurin was supported by a Research Grant from The Danish
Medical Research Council and the following Foundations: Aase and
Einar Danielsen, King Christian the 10th, A.P. Møller, The Hart-
mann Brothers, The Foundation of 1870, Snedker Jacobsen and
Hustru Astrid Jacobsen, Architect Holger Hjortenberg and Hustru
Aurin was supported by a Research Grant from The Danish
Medical Research Council and the following Foundations: Aase and
Einar Danielsen, King Christian the 10th, A.P. Møller, The Hart-
mann Brothers, The Foundation of 1870, Snedker Jacobsen and
Hustru Astrid Jacobsen, Architect Holger Hjortenberg and Hustru

References

1 T & A (Teknik & Administration) Nr. 4, Brancheskrivelse for
skovbrugen med fokus pa anvendelse af DDT, Amteners
Videncenter for Jordforurening, Copenhagen, Denmark (in
Danish), 1988.
2 ATSDR, Selected PCBs (Aroclor-1260, 1254, 1248, 1242, 1232,
1221 and 1016), Agency for Toxic Substances and Disease Registry,
Atlanta, GA, USA, 1993.
3 International Agency for Research on Cancer, Overall Evaluations of
Carcinogenicity: An Updating of IARC Monographs Volumes 1 to 42,
4 H. Bilrha, R. Roy and B. Moreau, et al., In vitro activation of cord
blood mononuclear cells and cytokine production in a remote
coastal population exposed to organochlorines and methyl mercury,
5 E. T. Lavoie and K. A. Grasman, Effects of in vivo exposure to PCBs
and heavy metals in the human and animal brain, in the terminal
organ (organochlorines in immune suppression: the
in vivo and in vitro effects of DDT (dichlorodiphenyltrichloroethane) and PCBs
(polychlorinated biphenyls) and an overview of organochlorines in
6 H. Tryphonas, M. I. Luster and K. L. White, Jr., et al., Effects of PCB
(Aroclor 1254) on non-specific immune parameters in rhesus (Macaca
7 K. A. Grasman and G. A. Fox, Associations between altered immune
function and organochlorine contamination in young Caspian terns (Sterna caspia)
8 A. Bernhoft, J. U. Skaare and O. Wiig, et al., Possible immunotoxic
effects of organochlorines in polar bears (Ursus maritimus) at
9 E. Dewaillly, P. Ayotte and S. Bruneau, et al., Susceptibility to
10 C. Heilmann, P. Grandjean and P. Weihe, et al., Reduced antibody
responses to vaccinations in children exposed to polychlorinated
journal.pmed.0030311.
11 R. Repetto and S. S. Baliga, Pesticides and immunosuppression: the
risks to public health, Health Policy Plan., 1997, 12, 97–106.
12 M. P. Longnecker, W. J. Rogan and G. Lucier, The human health
effects of DDT (dichlorodiphenyltrichloroethene) and PCBs
(polychlorinated biphenyls) and an overview of organochlorines in
13 WHO, Health Risks of Persistent Organic Pollutants from Long Range
Transboundary Air Pollution, World Health Organisation, Regional
Office for Europe, Copenhagen, 2003.
compounds in relation to breast cancer, endometrial cancer, and endometriosis: an assessment of the
biological and epidemiological evidence, Crit. Rev. Toxicol., 1995,
25, 463–531.
15 P. O. Darnerud, S. Atuma and M. Aune, et al., Dietary intake
estimations of organohalogen contaminants (dioxins, PCB, PBDE
and chlorinated pesticides, e.g. DDT) based on Swedish market
16 J. E. McGraw and D. P. Waller, Fish ingestion and congener specific
polychlorinated biphenyl and p,p′-dichlorodiphenyl dichloroethylene
serum concentrations in a great lakes cohort of pregnant African
17 S. Tao, F. L. Xu and X. J. Wang, et al., Organochlorine pesticides in
agricultural soil and vegetables from Tianjin, China, Environ. Sci.

Table 2 Concentrations (ng g⁻¹) of the organochlorine pesticide in household dust from ten different localities

<table>
<thead>
<tr>
<th>Concentration (ng g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>p,p-DDT</td>
</tr>
<tr>
<td>o,p-DDT</td>
</tr>
<tr>
<td>p,p-DDE</td>
</tr>
<tr>
<td>o,p-DDE</td>
</tr>
<tr>
<td>ΣDDTs</td>
</tr>
<tr>
<td>α-HCH</td>
</tr>
<tr>
<td>β-HCH</td>
</tr>
<tr>
<td>γ-HCH</td>
</tr>
<tr>
<td>HCB</td>
</tr>
<tr>
<td>TNC</td>
</tr>
</tbody>
</table>

* All sampling was undertaken between March 10 to June 29, 2004. Dust was sampled over a 2 m² area using a 1600 Watt vacuum cleaner for 2 minutes.

