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Abstract—To eliminate low-frequency oscillations, this paper
proposes an active-damping method for multiple grid-tied virtual
synchronous generators (VSGs) in a power plant. Firstly, using
the Lyapunov’s indirect method, the damping ratio of multiple
VSGs in parallel is analyzed. The average damping ratio reveals
that this multi-VSG power plant can be poorly damped in a wide
range of inertia and damping settings. Then, self- and mutual-
damping controllers are developed to suppress self- and mutually
induced low-frequency power oscillations, respectively. For the
practical implementation, an adaptive tuning algorithm that en-
ables automatic realization is proposed. Through a reassessment,
a remarkable damping-ratio improvement is validated. Moreover,
the inertial response improvement is validated by the frequency
response analysis. Finally, simulations in Digsilent/PowerFactory
and experiments are performed to demonstrate the accuracy of
the analyses and the effectiveness of the proposed method.

Index Terms—active damping, power oscillation, small-signal
stability, virtual synchronous generator (VSG)

I. INTRODUCTION

TODAY, the virtual synchronous generator (VSG) is draw-
ing more attention for the renewables integration [1]. It

provides an explicit emulation of the synchronous machine
(SG) swing characteristic [2]; however, this explicit emulation
may lead to insufficient damping effects, which in turn causes
low-frequency output power oscillations [2], [3].

For the low-frequency power oscillation attenuation, differ-
ent swing equation modifications have been proposed in the lit-
erature. For example, a solution using an additional phase lock
loop (PLL) was proposed by Huang et al. in [4]. In spite of the
effectiveness in attenuating power oscillations, the PLL-related
instability can be problematic in the implementation. Different
from the methods using PLLs, in [5] and [6], Dong et al. and
Liu et al. proposed damping-correction filters for the grid-tied
VSGs. Moreover, the virtual inductance concept was adopted
in [7] for the damping purpose. These algorithms are realized
by embedding extra filters in the swing equation. Taking both
power oscillation attenuation and inertial effect preservation
into account, in [8]–[10], Meng et al., Rathnayake et al. and Yu
et al. gave distinct solutions. Specifically, Meng et al. proposed
a generalized droop method which uses a derivative filter in
the active power feedback. To mitigate the noise-amplifying
problem of using derivative filters, Rathnayake et al. proposed
a generalized VSG design. To decouple the set point tracking
and the inertial response, Yu et al. proposed a feedforward
control scheme to enable a quantitative and independent tuning
of VSG set point tracking and inertial response.

The aforementioned active-damping algorithms were devel-
oped on the basis of the fixed-parameter control. Nevertheless,
the VSG control parameters are not necessarily constant. For
instance, a bang-bang control strategy was proposed in [11] to
realize an alternating virtual inertia. A further improvement,
which utilizes a combination of adaptive inertia and adaptive
damping, was proposed in [12]. With more degrees of freedom
involved in the adaptive control law, additional improvements
in the VSG dynamic response can be attained. Another group
of adaptive methods involves the optimal control. For example,
an adaptive algorithm was developed in [13] to guarantee an
optimal damping ratio during the transient. Moreover, in [14],
an optimal adaptive control was realized using the adaptive
dynamic programming, where an optimal regulation problem
was formulated to improve the VSG dynamic response.

In these works, the investigation was only made for a single
unit, whereas the interactions among different VSG units were
disregarded for the analysis benefit. In the case of a multi-VSG
system, e.g., a microgrid or a power plant, the effectiveness of
the active-damping method for a single VSG may significantly
degrade. Considering the operation of a multi-VSG microgrid,
Alipoor et al. proposed a real-time tuning algorithm in [15] for
ensuring the microgrid global stability. Furthermore, focusing
on the VSG parallel operation, a multi-VSG microgrid was
investigated in [16], and an inertia control was developed for
smoothing the transient. A active-damping strategy combining
the virtual damping and virtual reactance was proposed in [17],
where the former was used for the oscillation attenuation, and
the latter was applied for reducing the oscillation excitation.
Another damping strategy using the VSG angular acceleration
was developed in [18], where additional frequency and power
feedback was included for the active damping. Moreover, Fu
et al. proposed decentralized mutual-damping algorithms in
[19] and [20] to attenuate the power oscillations in a multi-
VSG microgrid. From the existing investigations on the multi-
VSG system, it is clear that the investigations mainly focus on
the islanded case, and the research on multiple grid-tied VSGs
is still limited. In the literature, Qin et al. developed an unified
impedance model for analyzing the system oscillation mode
of multiple grid-tied VSGs in [21]. Considering the damping
of multiple grid-tied VSGs, Sun et al. developed a stabilizer
by linking the angular frequency deviation with the excitation
in [22]. In addition, VSG tuning guidelines were presented in
[23] for the stable operation of a multi-VSG power plant.

A technical future summary of the active-damping methods
is given in Table I. Clearly, more investigations are needed
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Table I
TECHNICAL FEATURES OF EXISTING ACTIVE-DAMPING METHODS

Reference VSG Grid-tied Islanded Inertial response Tuning Reference VSG Grid-tied Islanded Inertial response Tuning
[4]–[7] 1 ✓ ✗ Disregarded Manual [15] 3 ✗ ✓ Disregarded Optimization
[8], [9] 1 ✓ ✗ Involved Manual [16] 2 ✗ ✓ Involved Manual

[10] 1 ✓ ✗ Involved Calculation [17], [18] 2 ✗ ✓ Involved Manual
[11], [13] 1 ✓ ✗ Disregarded Manual [19] 4 ✗ ✓ Involved Manual

[14] 1 ✓ ✗ Disregarded Data-driven [20] 4 ✗ ✓ Involved Manual
[12] 1 ✗ ✓ Involved Manual [22] 3 ✓ ✗ Disregarded Optimization

for multiple VSGs, especially in the grid-tied case. Therefore,
an active-damping strategy, which consists of both self- and
mutual-damping controllers, is developed in this paper. The
technical contributions are summarized as follows:

1) Damping characteristics of the parallel operation of mul-
tiple grid-tied VSGs in a power plant are analyzed via a
full-order model and the Lyapunov’s indirect method.

2) An active-damping method has been proposed for the par-
allel operation of multiple grid-tied VSGs. This method
enables an effective attenuation of both self- and mutually
induced low-frequency power oscillations, which leads to
smooth and decoupled transients.

3) Compared with the existing active-damping methods, by
applying the proposed controllers, the inertial response of
multiple parallel grid-tied VSGs can be better enhanced
for supporting the grid frequency.

4) Quantitative tuning guidelines are derived. The proposed
tuning algorithm is designed to be implemented online to
adapt to the system setting change, which leads to more
flexibility in practice.

This paper is arranged as follows: The system is introduced
in Section II. In Section III, a damping-ratio assessment is
conducted, and the proposed active-damping method is given.
In Section IV, the evaluations are given. Finally, the conclusion
and future work are summarized in Section V and VI.

II. SYSTEM DESCRIPTION

A. Circuit Topology

A system equivalent representation is shown in Fig. 1. Here,
Rfn, Lfn and Cfn are resistance, inductance and capacitance
of the nth VSG output filter, where n = 1, 2, . . . , N , and N is
the VSG number. Rln and Lln are equivalent resistance and in-
ductance between the filter and the point of common coupling
(PCC). Considering that the investigation on the oscillation
focuses on the power plant, the external electrical networks
are simplified into grid-side resistance and inductance, i.e.,
Rg and Lg . Pn and Qn are active and reactive power of the

Figure 1. Multiple parallel grid-tied VSGs in a power plant.

nth VSG. The boldface letters with the superscript s denote
current and voltage vectors in the nth αβ frame, such as vs

on,
isfn, vs

fn, isln, vs
pcc, isg and vs

g . Vectors in the nth dq frame
are written as von, ifn, vfn, iln and vpccn, and vectors in the
grid DQ frame are written as I ln, V pcc, Ig and V g .

B. Circuit Model

Referring to Fig. 1, the circuits between the nth inverter and
the PCC are modeled in the nth dq frame as follows:

Lfni̇fn = von − (Rfn + jωnLfn) ifn − vfn (1)
Cfnv̇fn = ifn − jωnCfnvfn − iln (2)

Llni̇ln = vfn − (Rln + jωnLln) iln − vpccn (3)

where ωn is the the nth VSG angular frequency.
Then, the grid DQ frame is taken as the common coordinate

frame, and its angular frequency ωg is considered as a constant.
Let δn denote the angle difference between the nth VSG and
grid coordinates, we have δn = θn − θg , where θ̇n = ωn and
θ̇g = ωg . Afterwards, the coordinate transformations between
the nth dq and DQ frames can be defined as follows:

vpccn = e−jδnV pcc, I ln = ejδniln. (4)

Referring to Fig. 1, the dynamic of the grid-side transmis-
sion line is modeled in the DQ frame as

Lgİg = V pcc − (Rg + jωgLg) Ig − V g. (5)

C. VSG Control Basis

The control scheme of each inverter is illustrated in Fig. 2. It
includes the active power control (APC), reactive power con-
trol (RPC), virtual impedance, inner current-voltage control.
The instantaneous power of the nth VSG is

Pn + jQn = 3vfnīln/2 (6)

where īln is the conjugate vector of iln.
For the nth VSG, the APC is written as

Mnω̇n = P ∗
n − Pn −Dn (ωn − ω0) (7)

where P ∗
n is the active power set point; Mn denotes the virtual

inertia that is equal to 2SbaseHn/ω0, where Sbase, Hn, and
ω0 are rated power, inertia constant, and nominal frequency,
respectively; Dn denotes the VSG damping factor.

For the nth VSG, the RPC is formulated as

V ∗
n = mpn(Q

∗
n −Qn) +minxV n + V0 (8)

where Q∗
n is the reactive power set point. mpn and min are

proportional and integral control gains; V0 and V ∗
n are nominal
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Figure 2. The VSG with a cascaded current-voltage control.

voltage amplitude and nth VSG voltage amplitude set point;
xV n is a state variable, whose derivative is ẋV n = Q∗

n −Qn.
The virtual impedance is included in the control as

v∗
fn = V ∗

n − iln (Rvn + jXvn) (9)

where v∗
fn is the voltage-control set point; Rvn is the virtual

resistance, and Xvn denotes the virtual inductance.
The dq-frame voltage and current controls yield

i∗fn = kpn(v
∗
fn − vfn) + kinγn + jωnCfnvfn (10)

v∗
on = lpn(i

∗
fn − ifn) + linζn + jωnLfnifn + vfn (11)

where i∗fn and v∗
on are current-control and inverter-output set

points. kpn, kin, lpn, and lin are proportional and integral gains
of the voltage and current control, respectively. γn and ζn are
two state variables, and their derivatives are defined as

γ̇n = v∗
fn − vfn, ζ̇n = i∗fn − ifn. (12)

The effect of the control latency is formulated as

v̇on ≈ (v∗
on − von) (1.5Tc)

−1 (13)

where Tc is the time period for the sampling and control.

III. DAMPING OF MULTIPLE GRID-TIED VSGS

A. Damping-Ratio Assessment

Using equations (1) to (13), the multiple grid-tied VSGs can
be represented by a set of differential equations as ẋ = f(x).
The vector function f(x) is formulated as

f(x) = [f1(x1, . . . , xS) . . . fS(x1, . . . , xS)]
T (14)

where S is the number of states. Here, it is equal to 15N +2.
f1(x1, . . . , xS) to fS(x1, . . . , xS) denote components of the
vector function f(x), and x1 to xS are state variables. The
state matrix x is expressed as

x = [xcir1 xvsg1 xcir2 xvsg1 . . . xcirN xvsgN xIg]
T

≜ [x1 x2 . . . xS ]
T (15)

where xIg, xcirn, and xvsgn are

xIg = [IgD IgQ] , xcirn = [ifdn ifqn vfdn vfqn ildn ilqn] ,

xvsgn = [vodn voqn γdn γqn ζdn ζqn xV n ωn δn] .

From (14), the Jacobian matrix J can be obtained as

J = [∂f/∂x1 ∂f/∂x2 . . . ∂f/∂xS ] . (16)

Then, the damping ratio can be estimated via the eigenvalues
λi of the matrix J, where i = 1, 2, . . . , S.

Table II
CIRCUIT PARAMETERS

Symbol Values Symbol Values Symbol Values
Sbase 1 MVA Vline 690 V Rfn 0.006 p.u.
Lfn 0.12 p.u. Cfn 0.2 p.u. Rln 0.01 p.u.
Lln 0.1 p.u. Rg 0.007 p.u. Lg 0.066 p.u.

Table III
VSG CONTROL PARAMETERS

Symbol Values Symbol Values Symbol Values
lpn 0.64 p.u. lin 38.59 p.u. kpn 0.25 p.u.
kin 52.37 p.u. Rvn 0.013 p.u. Xvn 0.22 p.u.
Tc 0.0005 s Hn 15 s Dn 10 p.u.
mpn 1.15 p.u. min 3 p.u. V0 563 V

The circuit data are given in Table II, and the VSG control
parameters are presented in Table III. The bandwidths of the
voltage and current control are adjusted to 135 Hz and 225 Hz.
The resulting phase margins are 45◦ and 49◦. The equivalent
grid-side impedance is adjusted by the virtual impedance to be
mainly inductive. Hn and Dn correspond to 15 s inertia con-
stant and 10% static droop. Regarding the RPC, its bandwidth
is adjust to the same level as the APC [3]. For the damping-
ratio assessment and the active-damping strategy development,
the dominant oscillation modes are calculated under different
N . Here, the eigenvalues with a real part greater than −2 are
taken as dominant. The remaining eigenvalues are so far that
their effects can be disregarded.

Table IV
VSG NUMBER AND DOMINANT OSCILLATION MODES

N = 1 N = 2 N = 3 N = 4 N = 5
−0.38±j5.3 −0.3±j4.8 −0.26±j4.3 −0.25±j3.8 −0.25±j3.3

NA −0.52±j5.9 −0.52±j5.8 −0.51±j5.7 −0.51±j5.5
NA −1.55±j35 −1.47±j34 −1.34±j34 −1.14±j34

As depicted in Table IV, when 1 < N ≤ 5, there are three
dominant oscillation modes. Roughly, they tend to be settled
when 3 ≤ N . As the main scope of this paper is to develop an
active-damping method for the dynamic improvement rather
than maximizing the number of VSGs, the number of VSGs
is thus set to 3 in this paper as a generalized case.

Figure 3. Dominant eigenvalue loci when Dn = 10 p.u., and Hn ∈ [5, 15] s.

1) Same Hn and Dn: In this scenario, Hn and Dn are set to
the same, the system dominant eigenvalues are shown in Fig. 3.
When Dn = 10 p.u. and Hn = 15 s, there are poorly-damped
complex eigenvalues which are close to the imaginary axis.
It indicates that the system has oscillatory responses under
perturbations. Then, an average damping ratio ζav is calculated



4

in the range of Hn ∈ [5, 15] s and Dn ∈ [10, 50] p.u. as

ζav =

L∑
l=1

−Real(λl)

L
√
Real(λl)2 + Imag(λl)2

(17)

where L is the number of the dominant eigenvalues.
The results are shown in Fig. 4. It is clear that, on the most

of the Hn-Dn parameter plane, the average damping ratio is
less than 0.2. Only when the Hn is small and Dn is large
enough, it increases slightly to 0.23.

Figure 4. Average damping ratio in the range of Hn ∈ [5, 15] s and Dn ∈
[10, 50] p.u.. (a) damping ratio (b) damping ratio contour lines.

2) Different Hn and Dn: In this scenario, the parameters of
two VSGs are fixed, for example, H2 = 11.25 s, H3 = 15 s,
D2 = 15 p.u. and D3 = 10 p.u.. Then, only the parameters
of one VSG are changed.

Figure 5. Dominant eigenvalue loci when D1 = 20 p.u., and H1 ∈ [5, 15] s.

As shown in Fig. 5, when D1 = 20 p.u., and H1 varies from
5 s to 15 s, some dominant eigenvalues move toward the left-
side locations that has higher damping ratios. Meanwhile, two
poorly-damped complex eigenvalues barely move. The average
damping ratio is always less than 0.3. On the most of the H1-
D1 parameter plane, it is less than 0.26, as shown in Fig. 6.

Figure 6. Average damping ratio in the range of H1 ∈ [5, 15] s and D1 ∈
[10, 50] p.u.. (a) damping ratio (b) damping ratio contour lines.

From the above analyses, it can be derived that the multiple
grid-tied VSGs can be poorly-damped, even when parameters
Hn and Dn are changed in a wide range. Consequently, in
the case of a perturbation, e.g., set point change, frequency or
voltage variation, the output power may contain oscillations.
Normally, a larger Dn will lead to a better damping effect, as

depicted in Figs. 5 and 6; however, it also affects the droop
factor that determines the inverter primary-frequency support.

B. Active-Damping Algorithm
Considering the previous results, an algorithm is proposed

to improve the damping ratio without changing Dn.

Figure 7. APC with the proposed active-damping algorithm.

As shown in Fig. 7, the proposed active-damping algorithm
consists of the self-damping controller fsn(s) and the mutual-
damping controller fmn(s). Controller fsn(s) limits the self-
induced oscillations. Simultaneously, using the communication
links of the upper layer, controller fmn(s) attenuates the
mutually induced oscillations. The resulting APC yields

ωn = ωsn + ωmnfmn(s) (18)
Mnω̇sn = P ∗

n − Pn −Dn [ωsn − ω0 + fsn(s)ω̇sn] (19)

where ωmn =
∑N

i=1(ωsi −ω0)− (ωsn −ω0) is the frequency
variation fed into the mutual-damping controller fmn(s); ωsn

denotes the angular frequency that is generated by the swing
equation and the self-damping controller fsn(s).

C. Self-Damping Controller fsn(s)

The grid is first assumed to be an infinite bus, and the VSG
is simplified as a voltage source. The voltage amplitudes of
the grid and VSG are assumed to be V0. The active power of
each VSG is then written as

Pn =
3V 2

0

2Xen
sin δn ≈ 3V 2

0

2Xen
δn (20)

where Xen = ω0 (Lg + Lln) +Xvn is the output impedance.
As Lg may change depending on the operating condition, To
obtain Xen, an online impedance detection can be applied.

Neglecting the mutual-damping controller fmn(s), we have
ωn = ωsn. Afterwards, using (20) and (19), the APC loop in
the sense of small signal, i.e., ∆Pn/∆P ∗

n , is derived as

fpn(s) =
3V 2

0

2Xen [Mns2 +Dnfsn(s)s2 +Dns] + 3V 2
0

. (21)

Here, one of the self-damping controller fsn(s) design cri-
teria is to minimize the magnitude of fpn(s) at the oscillation
frequency without degrading the APC bandwidth. Meanwhile,
the magnitude of fpn(s) within the bandwidth should be small
enough. For this, an objective function is defined as follows:

min |fpn(jωon)| (22)
s.t. 20 log10|fpn(jωcn)| = −3 dB (23)

∀ω ∈ [0, ωcn] 20 log10 |fpn(jω)| ≤ 3 dB (24)

where ωon is the oscillation frequency, and ωcn is the the cut-
off frequency; ω denotes any frequency between 0 and ωcn.
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1) fsn(s) = 0: In this scenario, fsn(s) is first set to 0,
which corresponds to the VSG without the proposed damping
algorithm. Then, from (21), it can be derived that fpn(s) has
two complex eigenvalues, the natural frequency of which is
the oscillation frequency ωon, and it is expressed as

ωon =

√
3V 2

0

2XenMn
. (25)

Assuming that ωcn is the cut-off frequency of the original
APC loop which is applied without fsn(s), and substituting
s = jωcn into (21), we have∣∣∣∣ 3V 2

0

2Xen (jDnωcn −Mnω2
cn) + 3V 2

0

∣∣∣∣ = 0.708 (26)

where 0.708 ≈ 10
−3
20 . Using the fsolve function in MATLAB,

the solution for (26), namely ωcn, can be easily obtained.
2) fsn(s) ̸= 0: Due to the integrator in the swing equation,

the phase difference between ωsn and ω̇sn is π/2. Thus, when
ω̇sn is utilized to generate the additional damping term, it is
preferable to let the output of fsn(s) has a π/2 phase delay at
the frequency of oscillation ωon. In this manner, the damping
power Pdn in Fig. 7 still has the similar oscillatory pattern as
ωsn. Then, Pdn can be enlarged properly during the transient
process, and it is only governed by the damping factor Dn

when VSGs come to the steady state, i.e., ω̇sn = 0. To achieve
this, the controller fsn(s) is proposed as follows:

fsn(s) =
ksnTsnω

2
dn

s2 + Tsnωdns+ ω2
dn

(27)

where ksn and Tsn are parameters for adjusting the controller
gain and bandwidth; ωdn denotes the center frequency where
the sinusoidal signal has a π/2 phase delay, and it is is set to
the same value as (25), i.e., ωdn = ωon.

Subsequently, substituting ωcn into (23), an equality con-
straint is obtained. Regarding the inequality constraint (24),
there are infinite points between 0 and ωcn. In order to solve
the optimization problem, several frequencies are selection for
the frequency ω in (24), e.g., ω = 0.1ωsn, 0.2ωsn, . . . , 0.9ωsn.
Then, using (22), (23), and (24), and applying the fmincon
function in MATLAB, ksn and Tsn in (27) are solved.

To reflect the impact of fsn(s) on the VSG inertial response.
The small signal model that indicates the inertial response is
derived from (19) as [8], [9]

fin(s) = − 1

[Mn +Dnfsn(s)] s+Dn
. (28)

From (28), it is clear that Dnfsn(s) works as an additional
frequency-dependent inertia term, and it contributes to enhanc-
ing the virtual inertia mainly in the low frequency range since
(27) inherently exhibits a low-pass characteristic. In this sense,
applying fsn(s) fits the aim of preserving the inertial response.

D. Mutual-Damping Controller

The mutually induced power oscillations are caused by the
interactions among parallel VSGs. Due to the existence of the
grid impedance, once there are active power variations in one
VSG, phase angle changes of the grid voltage are introduced

Figure 8. Flowchart of the tuning processes.

in the other VSGs dq coordinates. Subsequently, the mutually
induced power oscillations at different oscillation frequencies
ωon are triggered. To compensate these phase angle changes,
the mutual-damping controller fmn(s) is applied as

fmn(s) =
kmnωrs

Tms2 + ωrs+ Tmω2
r

(29)

where ωr denotes the center frequency, where fmn(s) has the
highest gain kmn, and Tm is the parameter for adjusting the
filter selectivity. ωr and Tm can be written as

ωr =
√
ωlωh, Tm =

√
ωlωh

ωh − ωl
(30)

where ωl and ωh are filter lower and upper cut-off frequencies.
In order to let fmn(s) have enough gain for all the mutually

induced oscillations, we should have

∀n ∈ [1, N ] ωl ≪ ωon ≪ ωh. (31)

For simplicity, ωl and ωh can be directly set to 0.1ωo,min

and 10ωo,max, where ωo,min and ωo,max are minimum and
maximum values of ωon. In this way, only the kmn is left for
tuning. Then, substituting (20) into (18) and (19), the small-
signal model of ∆ωsn over ∆ωmn is derived as

fωn(s) =
−3V 2

0 fmn(s)s

2Xen (Mns+Dnfsn(s)s+Dn) + 3V 2
0 s

. (32)

Since ∆ωmn just compensates the disturbances, it should
not affect the regulation of the swing equation and the self-
damping controller fsn(s). In another word, fmn(s) should be
designed to let ∆ωmn have almost no impact on ∆ωsn. Thus,
the magnitude of fωn(s) should be much smaller than unity
in the entire frequency range, and it is formulated as

∀ω ∈ [0,∞] 20 log10 |fωn(jω)| ≪ 0 dB. (33)

For the benefit of the controller design, the maximum value
of 20 log10 |fωn(jω)| is set to −15 dB to ensure (33). Then,
with the help of the getPeakGain function in MATLAB, the
kmn, which corresponds to this magnitude, can be estimated
by iterations. The entire design is then illustrated by Fig. 8.
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IV. EVALUATIONS

To validate the proposed method, a study case with the
lowest damping ratio in Figs. 4 and 6 is adopted: Hn = 15 s
and Dn = 10 p.u.. Then, using the proposed tuning algorithm,
the parameters of controllers fsn(s) and fmn(s) are obtained
as shown in Table V. As the communication in practice may
cause additional latency, the time delay Tcom that origins from
the communication among multiple VSGs is set to 25 ms.

Table V
PARAMETERS OF CONTROLLERS fsn(s) AND fmn(s)

VSG ωdn ksn Tsn ωr Tm kmn

1∼3 5.21 rad/s 2.27 3.78 5.21 rad/s 0.21 0.185

A. Damping-Ratio Reassessment

Replacing (7) with (18) and (19), substituting (27) and (29),
approximating the communication latency as (Tcoms+ 1)−1,
the system model (14) is reformulated as ẋad = g(xad), and
the new vector function g(xad) is written as

g(xad) = [g1(x1, . . . , xS), . . . , gS(x1, . . . , xS)]
T (34)

where g1 to gS are components of the vector function g(xad);
xad denotes the state vector with extended state variables, and
x1 to xS are state variables. Here, S = 20N + 2.

Using the same settings in Section III-A, an extended Jaco-
bian matrix Jad is obtained. New eigenvalues are subsequently
calculated for the comparison. As shown clearly in Fig. 9 (a),
when the proposed self-damping controller fsn(s) is applied
for each VSG, the most dominant oscillation modes have been
eliminated. The average damping ratio ζav in (17) increases
from 0.15 to 0.45. In this manner, the majority of output power
oscillations can be well attenuated. Then, the mutual-damping
controller fmn(s) is applied. As depicted in Fig. 9 (b), when
both fsn(s) and fmn(s) are applied, real eigenvalues will shift
toward the imaginary axis, and ζav increases to 0.57.

Figure 9. Dominant eigenvalues with and without the proposed method: (a)
With only fsn(s); (b) With both fsn(s) and fmn(s).

The impact of the grid impedance and communication delay
variations on the proposed active-damping method is verified.
As depicted in Fig. 10 (a), when that the real grid inductance
varies from 0.6 to 1.4 times the estimation value Lg , the
dominant eigenvalues only change slightly. The well-damped
performance remains. When the communication delay changes
from 0 to 75 ms, it can be observed in Fig. 10 (b) that, the
eigenvalues barely move. Clearly, the proposed active-damping
method provides enough robustness against the grid impedance
and communication delay variations.

Figure 10. Dominant eigenvalues under grid impedance and communication
delay variations: (a) The real grid inductance varies from 0.6Lg to 1.4Lg ;
(b) The communication delay varies from 0 to 75 ms.

Figure 11. Dominant eigenvalues with and without one extra VSG: (a) Three
VSGs with only fsn(s); (b) Three VSGs with both fsn(s) and fmn(s).

In order to reflect the impact of an uncertain VSG number,
the proposed controllers are first designed based on N = 3.
An extra VSG is then added without being involved in the
proposed active-damping method. The dominant eigenvalues
are depicted in Fig. 11. It is clear that, newly-added oscilla-
tion modes become the most dominant, but the well-damped
performance of the original VSGs remains the same.

B. Simulation Validation

Subsequently, EMT simulations in Digsilent/PowerFactory
are conducted. The system as Fig. 1 is implemented, and the
parameters given in Table II, III, and V are adopted. As shown
in Figs.12 (a) and (b), without the proposed method, VSG
angular frequency ωn and output power Pn oscillate under
power set point changes (∆P ∗

n = −0.2 p.u.). With the self-
damping controller fsn(s), those oscillations are effectively
attenuated, whereas the interactions among VSGs still exist,
as depicted in Figs. 12 (c) and (d). When the mutual-damping
controller fmn(s) is applied, both oscillations and slight
interactions are well attenuated. In this manner, VSG output

Figure 12. VSG output power Pn and angular frequency ωn under set point
changes (∆P ∗

n = −0.2 p.u.). Without the proposed method: (a) and (b); With
fsn(s): (c) and (d); With fsn(s) and fmn(s): (e) and (f).
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Figure 13. VSG output power Pn and angular frequency ωn under set point
changes (∆P ∗

n = −0.2 p.u.). With the method in [17]: (a) and (b); With the
method in [19]: (c) and (d); With the method in [22]: (e) and (f).

Figure 14. VSG output power Pn and angular frequency ωn under set point
changes (∆P ∗

n = −0.2 p.u.). With fsn(s): (a) Set points of VSG1 to VSG3
change; (b) The set point of VSG4 changes; With fsn(s) and fmn(s): (c)
Set points of VSG1 to VSG3 change; (d)The set point of VSG4 changes.

powers are smooth and decoupled from each other, as depicted
in Fig. 12 (e). Although these interactions are not intensive to
threaten the system stability significantly, for a better output
power quality, it is preferable to let VSGs output decoupled.
The active-damping methods in [17], [19] and [22] are adopted
for the comparison, and the APC bandwidth is adjusted to
the same level for the fairness. As depicted in Fig. 13, from
the response of VSG1, it is clear that these methods improve
the damping ratio well. However, without taking interactions
into consideration, these methods provide less effectiveness in
attenuating the oscillations caused by the interaction, as shown
in the responses of VSG2 and VSG3.

When an extra VSG without the proposed damping method,
i.e., VSG4, is applied, as shown in Fig. 14, its output inevitably
oscillates, and the oscillation frequency is roughly the same
as the dominant oscillation mode shown in Figs. 11 (a) and
(b). Regarding VSG1-3, as shown in Figs. 14 (a) and (b),
when VSG1-3 are applied with the self-damping controller
fsn(s), there are still slight oscillations that are caused by the
interactions. In comparison, as shown in Figs. 14 (c) and (d),
once the mutual-damping controller fmn(s) is applied, those
slight oscillations are attenuated. The output of VSG1-3 can
be regulated well without being affected by the VSG4.

Table VI
SG AND ELECTRICAL NETWORK DATA

Variable Symbol Values
Inertia constant HG 15 s
Damping factor DG 1 p.u.
Droop constant RG 0.05 p.u.

Speed governor coefficient TG 0.1 s
Turbine HP coefficient FHP 0.3

Time constant of reheater TRH 7 s
Time constant of main inlet volumes TCH 0.2 s

Line impedance X1,X2, and X2 0.32 p.u.
Line impedance X4 0.065 p.u.

C. Compatibility With SG

For an impact analysis, the power-frequency dynamic of a
system shown in Fig. 15 is investigated. Here, one area is a
VSG-based power plant, and another is the conventional SG.

Figure 15. Equivalent electrical diagram of a two-area system.

Figure 16. Block diagram of the two-area system.

The simplified block diagram of the system is presented in
Fig. 16, where ∆PL1, ∆PL2, ∆PL3 and ∆PL4 denote load
powers supplied by the VSGs and SG, and they are written as

∆PLi =
1

Xi

∑4
j=1

1
Xj

∆PL (35)

where ∆PL is the total load power, i = 1, 2, 3, 4, and

X1 = XVSG1 +XT1 +XL1, X2 = XVSG2 +XT2 +XL2,

X3 = XVSG3 +XT3 +XL3, X4 = XSG +XTg +XLg.

In addition, in Fig. 16, Fmn(s) and Fin,pu(s) are

Fmn(s) =
fmn(s)

Tcoms+ 1
, Fin,pu(s) =

ω0fin(s)

Sbase
(37)

where n = 1, 2, 3; K12, K23, K31, K14, K24 and K34 are

K12 =
K

X1 +X2
, K23 =

K

X2 +X3
, K31 =

K

X3 +X1
,

K14 =
K

X1 +X4
, K24 =

K

X2 +X4
, K34 =

K

X3 +X4

where K = 1.5V 2
nω0/Sbase.
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HG is the SG inertia constant, and DG is the load damping.
RG and TG are droop coefficient and the speed governor time
constant. FHP , TRH and TCH denote coefficients of the reheat
turbine. The system data are presented in Table VI.

To demonstrate the VSGs output power decoupling, the SG
is first assumed to have an infinite inertia that its frequency is
constant, i.e., ∆ω4 = 0. ∆P2/∆P ∗

1 is derived from Fig. 16,
and its frequency response is shown in Fig. 17. Taking −10 dB
as a threshold, the methods in [17], [19] and [22] still enable a
passband; however, the proposed method limits the interaction
well, and a better oscillation attenuation can be achieved.

Figure 17. ∆P2/∆P ∗
1 bode plot. (a) With the method in [17]; (b) With the

method in [19]; (c) With the method in [22]; (d) With the proposed method

Figure 18. ∆ωm1/∆PL bode plot. (a) With the method in [17]; (b) With the
method in [19]; (c) With the method in [22]; (d) With the proposed method

Afterwards, assuming that ∆ω4 is governed by the SG, the
power-frequency dynamic assessment is applied by analyzing
∆ωm1/∆PL. The frequency response of ∆ωm1/∆PL is first
shown in Fig. 18. Under the identical operating condition, the
proposed method can limit the ∆ωm1/∆PL cutoff frequency
better than the others. Correspondingly, under 0.1 p.u. load
change, as the frequency trajectory depicted in Fig. 19, the
proposed method provides a better inertial response to limit
the rate of change of frequency and frequency nadir, which is
a desirable feature for the system frequency stability.

D. Experimental Validation

A scale-down experimental validation is then applied. The
test setup is illustrated in Fig. 20, where three 2.2 kW Danfoss

Figure 19. System frequency trajectory under 0.1 p.u. load change.

Table VII
THE PARAMETERS USED IN THE EXPERIMENT

Symbol Values Symbol Values Symbol Values
Sbase 2.2 kW Vline 220 V Rfn 0.005 p.u.
Lfn 0.077 p.u. Cfn 16.08 p.u. Rln 0.005 p.u.
Lln 0.051 p.u. Rg 0.018 p.u. Lg 0.036 p.u.
lpn 0.14 p.u. lin 9.09 p.u. kpn 7.7 p.u.
kin 1320 p.u. Rvn 0 p.u. Xvn 0 p.u.
Tc 100 µs Hn 5 s Dn 10 p.u.
mpn 0.5 p.u. min 0.25 p.u. V0 180 V
ωdn 19 rad/s ksn 0.77 Tsn 3.89
ωr 19 rad/s Tm 0.21 kmn 0.17

inverters are used for implementing multiple grid-tied VSGs,
and the controllers are realized via dSPACE DS1006. Chroma
61845 is used to simulate the grid. The grid-side current
and VSG output power are recorded by the oscilloscope. The
parameters used in the experiment are listed in Table VII. In
the experiment, the power set point change (∆P ∗

n = 0.2 p.u.),
grid frequency variation (∆fg = −0.1 Hz), and grid voltage
dip (Vline = 0.8 p.u.) are applied to test the proposed method.

Figure 20. Experimental setup.

1) Power set point variation: As shown in Fig. 21 (a), when
multiple grid-tied VSGs are poorly damped, the output power
inevitably oscillates when the set point is changed, and the
oscillation which is caused by the interaction among VSGs is
obvious. Meanwhile, the grid-side current gets distorted, which
degrades the power quality and increases the risk of instability.
As a comparison, when the proposed active-damping method
is applied, both self- and mutually induced oscillations are
suppressed remarkably, and the set point tracking is reached
within 50 ms. Only slight variations are left, and the impact
of them is negligible.

2) Grid frequency variation: Under a grid frequency vari-
ation (∆fg = −0.1 Hz), it can be seen in Fig. 22 (a)
that the grid-side current and VSG output power contain
sustained oscillations at a frequency of 16 rad/s. Roughly,
the oscillations sustain for 4 s. By comparison, with the
proposed active-damping method, the power oscillations are
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(a)

(b)

Figure 21. Waveform under the set point changes (∆P ∗
n = −0.2 p.u.). (a)

Without the proposed algorithm; (b) With the proposed algorithm.

fully eliminated, and only the inertial response is left. Clearly,
after reaching the peak output of 0.63 kW, the active power
decreases to the steady output of 0.23 kW without oscillations.

(a)

(b)

Figure 22. Waveform under the frequency change (∆fg = −0.1 Hz). (a)
Without the proposed algorithm; (b) With the proposed algorithm.

3) Symmetrical grid voltage dip: As shown in Fig. 23 (a),
under a voltage dip (Vline = 176 V), VSGs are still able to
remain the synchronism, and the grid-side current increases
to deliver the same amount of power. Without the proposed
active-damping method, output power contains oscillations
that sustain for around 2.8 s, and they are attenuated by the
proposed method. As shown in Fig. 23 (b), under the same
disturbance, the power output is almost unaffected.

V. DISCUSSION

The proposed active-damping method is developed on the
basis of an equivalent grid model for attenuating the low-

(a)

(b)

Figure 23. Waveform under the voltage dip (Vline=176 V). (a) without the
proposed algorithm; (b) with the proposed algorithm.

frequency oscillations that come from the parallel operation of
multiple grid-tied VSGs. In this sense, the proposed method
mainly contributes to the low-frequency oscillation damping
within multiple grid-tied VSGs, e.g., an VSG-based power
plant. Therefore, in the case of disturbances like short-circuit
faults, especially considering different types of faults, short-
circuit levels, and fault points, additional algorithms need to be
developed and integrated to deal with the potential wide-band
oscillations that may happen in the electrical network.

VI. CONCLUSION

In this paper, an active-damping control method is proposed
to attenuate both self- and mutually induced low-frequency
power oscillations in multiple grid-tied VSGs. The eigenvalue
analysis indicates that the parallel operation of multiple grid-
tied VSGs may lead to a low damping ratio of the dominant
modes. An active-damping control with both self- and mutual-
damping controllers is developed. Applying the self-damping
controller, the self-induced power oscillations are attenuated.
With the mutual-damping controller, VSGs output powers are
further improved with almost no interactions. Moreover, the
preferable inertial response is enhanced. For the practical im-
plementation, control parameter tuning criteria are presented.
Considering the parallel operation of multiple VSGs inevitably
involves system setting variations, an online automatic tuning
algorithm is proposed to adapt to the changes. Using the eigen-
value analyses, simulations and experiments, the effectiveness
of the proposed method has been validated.

The investigation on the active-damping of multiple VSGs
in parallel can be further expanded in the following aspects: i)
removing the need for communication to reduce the complex-
ity of the control implementation; ii) considering the operation
under fault conditions, for instance, the transient stability, over
current prevention and damping of wide-band oscillations; iii)
considering the complexity of the external network.
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