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Abstract

In this paper, a new energy management model is proposed to determine the optimal scheduling

of an office building which includes electric vehicle (EV) charging piles, batteries, and rooftop

photovoltaic systems. To optimally manage the electricity procurement of the building and mit-

igate the rate of transformer aging, the building energy management system (BEMS) employs

the flexibility of batteries and EV charging. In the proposed model, to incentivize EV owners to

offer their flexibility, the BEMS organizes a transactive market among plugged-in EVs. To this

end, EV owners submit their response curves and the target state-of-charge to the BEMS. Then,

the transactive market is cleared to determine the market-clearing price for each EV, the opti-

mal EV charging decisions, and accordingly, the scheduling of office building. Also, to model

the correlated uncertainties of solar power generation and demand, the distributionally robust

chance-constrained method is employed. Moreover, the ”Big-M” technique and the piecewise

linear approximation method are utilized to linearize the optimization problem. Finally, the case

of a building with 100 charging piles is studied. The numerical results illustrate a decrease in

the total operating cost of BEMS and the rate of transformer aging compared to uncontrolled

charging and direct control approaches.
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Nomenclature

A. Sets and indices

V Set of EVs, indexed by v

T Set of time intervals, indexed by t

B. Parameters and constants

T Transactive market time interval

Pr,EV
v Rated charging power of EV battery v

Pr,BB Rated power of building battery

γ Base rate for EV charging

λmax
v Required reimbursement for response ∆P = Pr

v

LMPt/FITt Price for buying/selling electricity from/to the main grid at time t

PDt Non-responsive demand at time t

PVt solar power generation at time t

EEV
v Energy capacity of EV battery v

EBB Energy capacity of building battery

Pup Limitation of energy exchange with the main grid

ηEV
v Charging efficiency of EV battery v

ηch/dis,BB Charging/Discharging efficiency of battery

S OCmin/max Minimum/Maximum level of SOC

S OCini/tar Initial/Target level of SOC
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sv,t EV parking status at time t

CBAC Degradation cost coefficient of battery

ta, td Arrival time and departure time

θA
t Ambient temperature at time t

∆θTR/T H Rated top-oil temperature rise over ambient temperature/Rated conductor tem-

perature rise over top-oil temperature

R Ratio of load losses at rated load to no-load

NIL Normal insulation life

LOLmax Allowable transformer’s loss of life factor

C. Variables

S OCEV
v,t SOC of EV battery v at time t

S OCBB
t SOC of building battery at time t

∆Pmax
v,t Maximum offered flexibility of EV battery v at time t

∆Pcl
v,t Reduced charging power of EV battery v at time t

Pch,EV
v,t Charging power of EV battery v at time t

Pch/dis,BB
t Charging/Discharging power of building battery at time t

Pbuy/sell
t Buying/Selling energy from/to the main grid at time t

Γt Binary variable represents the direction of exchanged power with the main

grid at time t

Λt Binary variable represents the charge/discharge state of battery at time t

DCBB
t Degradation cost of battery at time t
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λcl
v,t Clearing price of EV battery v at time t

FAA
t Aging acceleration factor at time t

θH
t Hottest spot temperature at time t

∆θTO
t Top-oil temperature rise over ambient temperature at time t

LOL Transformer’s loss of life factor

1. Introduction

Widespread deployment of small-scale distributed energy resources (DERs), particularly

electric vehicles (EVs), at the demand side of power systems has changed the operation and

characteristics of distribution systems [1]. Although EVs have vast benefits such as reducing air

pollution and society’s reliance on fossil fuels, the uncontrolled charging of a large population of

EVs will potentially create significant negative impacts on the operation of distribution systems

[2, 3]. A review of [4] and [5] indicates that uncontrolled charging of EVs will impose new peak

loads on distribution systems. Once these new peak loads coincide with the maximum demand of

other electrical loads, it can provoke several problems such as distribution transformer overload-

ing as a primary concern [6]. Since the capacity of distribution transformers is commonly chosen

according to peak loads of the connected homes, overloading caused by uncontrolled charging

of EVs leads to an acceleration of transformers aging and eventual early failure [7].

In the literature, several methods and approaches have been proposed to control EV charging

loads. These approaches are categorized into four classes [8]: incentive-based demand response

(DR) [9], price-based DR [10], centralized optimization [11], and transactive energy (TE). Au-

thors in [9] proposed an incentive-based DR operation method for EV charging to manage the

distribution system stability and renewable energy curtailment. In [10], a price-based method for

the coordination of EV charging has been proposed to mitigate peak load and prevent transformer

overloading. A multi-objective control and regulation algorithm was proposed in [11] to balance

generation and demand through the bidirectional control of energy flows. Among the above-

mentioned energy management approaches, the TE that fully utilizes the response potential of
4



flexible DERs using market-based mechanisms is the most efficient method that yields distinct

benefits [12]. The TE provides a new jointly economic and control platform that enables inde-

pendent agents to trade energy within distribution systems. Thus, using the TE method, EVs can

directly participate in the local electricity markets to achieve optimal real-time charge/discharge

decisions through an exchange of value-based information [13, 14].

Over the past years, several works have proposed various TE frameworks to optimally control

EV charging. The work in [15] presented a TE concept-based EV charging management scheme

for commercial parking lots equipped with photovoltaic on-site generation. In [16], a linear

programming (LP)-based TE model was proposed to enable the EV aggregators’ participation

in the local energy market considering the distribution network topology. A bi-level TE market

framework was proposed in [17] to optimize the energy trading between EV charging stations

equipped with rooftop solar units. The work in [18] proposed a day-ahead market platform for

EV aggregators to alleviate congested feeders in smart distribution networks. Although these

reviewed works achieve benefits for aggregators and system operators, the active participation of

EVs in the local energy market has not been considered.

In addition, the authors in [19] proposed a real-time transactive EV charging management

framework that enables the active participation of EV owners in the local electricity market. In

[20], a TE-based charging control scheme was developed to determine the optimal charge/discharge

decisions of EVs with a voltage control system. An iterative algorithm for transactive charging

management of EVs with mitigating the voltage unbalance was proposed in [21]. In the above-

reviewed TE models [19–21], the retail market operator clears the real-time market after estimat-

ing the EV owners’ bids and offers price-quantity. Authors in [22] developed a market platform

that enables EVs to offer their flexibility at the distribution grid level to avoid grid reinforcement

necessity. Although these studies have properly taken into account the active participation of

individual EV owners in the TE market, the impact of uncertainties associated with solar power

generation, demand, and EV owners’ activities on the market operation has not been considered.

To model the uncertainties in the operation of power systems, several methods have been

developed such as stochastic programming (SP) and robust optimization (RO) [23]. Authors in
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[24–26] utilized the SP approach to model the prevailing uncertainties in the energy management

problem. The work in [24] developed a stochastic scenario-based model to manage the uncer-

tainties of solar power generation using the flexibility of EV batteries. Authors in [25] presented

a stochastic two-stage optimization problem to achieve the optimal charge/discharge decisions of

EVs in the residential building. In [26], a stochastic mixed-integer linear programming (MILP)

model was developed to manage flexible demand, storage devices, and EVs in cooperative en-

ergy communities. The major drawback of the SP approach is its running time and computational

complexity which addresses by employing the scenario reduction method. Thus, SP approaches

give less realistic solutions due to eliminating lots of scenarios during the scenario reduction pro-

cedure and ignoring the occurrence of some states for the uncertainty in solving the optimization

problem.

Moreover, authors in [27] presented an RO-based charging control model for EVs in low

voltage distribution systems considering the uncertainties associated with the mobility behavior

of EV drivers. A multi-objective RO-based approach was proposed in [28] to manage smart

buildings under uncertainties of renewable energy sources (RESs) and electricity demand. RO

approaches can not model the stochastic nature of the uncertainties that are subject to the high

fluctuation during a day such as solar power generation and demand. To address this challenge,

some studies in the literature have utilized the distributionally robust chance-constrained (DRCC)

method [29–31]. Compared to the RO, the DRCC approach considers the worst probability dis-

tribution function rather than the worst-case situation. This consideration provides more realistic

solutions compared to SP and RO approaches due to considering the benefits of both approaches.

In [29], the DRCC method was employed to model the uncertainty of solar power generation

in the operation of building energy management systems. In that study, the DR program has

been applied to the building appliances through load shifting and curtailment. Authors in [30]

proposed a DRCC model based on the TE approach to optimally schedule a multi-carrier energy

microgrid under uncertainties of RESs as well as natural gas and electricity market prices. A

DRCC-based energy management model to maximize the profit of retailers considering uncer-

tainties of renewable generation and electricity demand was proposed in [31]. These reviewed
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Table 1: Taxonomy of research works in the realm of TE management frameworks.

Ref. Participation Transformer Uncertainty Correlated Optimization
of EV owners aging modeling Uncertainty problem

[15] - - SP - MILP
[16] - - - - LP
[17] - - - - heuristic iterative
[18] - - - - NLP
[19] ✓ - - - MILP
[20] ✓ - - - MILP
[21] ✓ - - - heuristic iterative
[24] ✓ - SP - MINLP
[25] ✓ - SP - MILP
[26] - - SP - MILP
[27] - - RO - LP
[28] - - RO - MILP
[29] - - DRCC - MILP
[30] - - DRCC - MINLP
[31] - - DRCC - MILP

This work ✓ ✓ DRCC ✓ MILP

studies have proved the high efficiency of using the DRCC approach by providing numerical

analyses and illustrating the capability of this approach in uncertainty modeling to achieve the

research objectives.

In summary, table 1 compares the related works reviewed above in terms of enabling active

participation of EV owners, considering the transformer aging, uncertainty modeling, consider-

ing the correlation between uncertain parameters, and mathematical formulation of the optimiza-

tion problem. As observed from this table, none of the above-reviewed studies have considered

transformer aging and correlated uncertainties in the TE-based charging management of EVs.

Moreover, a few works have considered the active participation of EV owners in the energy man-

agement problem in which the prevailing uncertainties were not modeled or simply modeled by

defining a set of scenarios. To this end, this paper proposes a DRCC-based energy management

model for office buildings that allows EV owners to actively participate in the transactive market.

The proposed model employs the flexibility of EV charging and building batteries to minimize

the total operating cost of BEMS considering the constraint of the transformer’s loss of life. It is

to be noted that the BEMS acts as the owner of building batteries and has full control permission
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on the scheduling of these resources. However, similar control permission on the EV batter-

ies is not available to the BEMS. Thus, the EV owners must be encouraged with incentives to

change their charging patterns (delaying the charging). Further, each EV owner requires different

reimbursement for its response that is presented by means of the response curve. To this end,

the EV owners individually determine their response curves, i.e., the required reimbursement

for the response to the price signal, and the target level of state-of-charge (SOC) at departure,

and submit this information to the BEMS. Then, the BEMS solves an optimization problem to

determine the transactive market clearing prices, EV charging decisions, scheduling of building

batteries, and accordingly, the scheduling of office building. Due to the non-linearities associated

with the proposed EV owner’s response curve and the transformer’s loss of life, the original op-

timization model is formulated as a mixed-integer non-linear programming (MINLP) problem.

To mitigate the computational burden, this model is recast into MILP one using appropriate lin-

earization methods. Also, to model the uncertainties of solar power generation and demand as

well as their mutual correlation in the scheduling problem, the DRCC method is employed. The

utilized uncertainty modeling approach not only considers the stochastic nature of uncertainties

but also guarantees a specific amount of economic benefit for the BEMS of an office building

with a certain probability. The main contributions of this paper are outlined as follows.

• This study proposes a transactive charging management framework to enable the active

participation of EV owners in the local energy market. In this paper, unlike [24], in which

a complicated response curve has been proposed, a new response curve model is developed

that can be easily submitted to the BEMS by adjusting the required price of the EV owner

for the maximum response.

• Unlike most reviewed studies in which the impact of uncertainties on the transactive mar-

ket operation has not been taken into account, we employ the DRCC method to model the

uncertainties associated with solar power generation and demand and their mutual corre-

lation.

• The aging of distribution transformer due to overloading is properly considered in the

8



proposed energy management model. Incorporating this term is inevitable in practice with

the increasing penetration of EVs in distribution systems.

• To mitigate the computational burden and improve the accuracy of the solution, the orig-

inal MINLP model is recast into the MILP problem by linearizing the non-linear terms

associated with the proposed response curve and transformer’s loss of life using the ”Big-

M” and piecewise linear approximation techniques.

The rest of this paper is organized as follows. Section 2 provides the general structure of

the proposed TE market and EV owners’ response curves. The optimization framework and

linearization procedure to determine the scheduling of BEMS are expressed in Section 3. Sec-

tion 4 represents the simulation assumptions, numerical results, and discussions. Finally, the

conclusion is drawn in Section 5.

2. TE Market Framework

Figure 1 depicts the conceptual framework of the proposed energy management model. In

the presented framework, the distribution system operator (DSO) acts as the leader of the system

operation and sends the day-ahead price signals to the BEMSs of office buildings. Then, each

BEMS, which is the follower in the proposed system operation, reacts to the received price signal

and determines its scheduling under the uncertainties of solar power generation and demand. In

this study, we have focused on an individual BEMS of the office building which tries to minimize

its total operating cost considering the constraint of the distribution transformer’s loss of life by

employing the flexibility of building batteries and EV charging. As shown in this figure, to

employ the flexibility of EV charging, the BEMS organizes a transactive market among plugged-

in EVs. The proposed transactive market allows EV owners to offer their charging flexibility and

get reimbursed accordingly. For this purpose, EV owners submit their response curves and target

levels of SOC at departure to the BEMS. The response curve of the EV owner that represents

the required reimbursement for different values of response is shown in Figure 2. As seen in this

figure, each EV owner individually can determine its response curve by setting the parameters
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λmax
v (required reimbursement for the maximum response) and Pr

v (rated charging power of EV).

The value of Pr
v is constant, and therefore, each EV owner can submit its preferred response

curve to the BEMS in a user-friendly manner by setting the parameter λmax
v .

Figure 1: The conceptual structure of the proposed control model

Figure 2: Response curve of the EV owner

Without any smart charging algorithms, the EV battery is charged as soon as possible with

the base charging price till achieving the target SOC level. On the other hand, with the proposed
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transactive charging management model, the EV owners allow the BEMS to decrease the charg-

ing power of EV batteries based on their submitted response curves for reimbursement. Hence,

the charging power of EV battery is calculated as follows.

Pch,EV
v,t = ∆Pmax

v,t − ∆Pcl
v,t (1)

∆Pmax
v,t =

⌊
Pr,EV

v ,
(S OCtar

v − S OCEV
v,t )EEV

v

ηEVT

⌋
(2)

where ⌊.⌋ represents the min function and ∆Pmax
v,t is the allowable charging power of EV battery

v at time t that is the minimum value between rated charging power of EV and the possible

charging power based on the residual capacity of EV battery.

After submitting the response curves, the BEMS solves its optimization problem to clear

the transactive market and determine the market clearing price. According to the clearing price

and using the response curve, the decreased charging power of EVs is determined. It is to be

noted that, the maximum offered flexibility of EV battery v at corresponding time t is equal to

∆Pmax
v,t . For example, once the EV battery achieves the target level of SOC (S OCv,t = S OCtar

v ),

the maximum flexibility that the corresponding EV can offer will be equal to zero. Thus, the

response curve of EV battery is formulated as (3).

∆Pcl
v,t =


kvλ

cl
v,t λcl

v,t <
1
kv
∆Pmax

v,t

∆Pmax
v,t λcl

v,t ≥
1
kv
∆Pmax

v,t

(3)

In above kv is the inverse of the response curve’s slope that is computed as kv = Pr
v/λ

max
v .

When the optimization problem is solved and accordingly the transactive market clearing price

and the decreased EV batteries’ charging power are obtained, the actual payment for charging

of EV battery v at time t (Payv,t) can be computed by subtracting the reimbursement to the EV

owner (Reimbv,t) from the charged energy cost (CCv,t) as (4).

Payv,t = CCv,t − Reimbv,t (4)
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where the reimbursement to the EV owner for the flexibility and the charged energy cost are

calculated as (5).

Reimbv,t = λ
cl
v,t∆Pcl

v,tT

CCv,t = γP
ch,EV
v,t T

(5)

3. Building Energy Management Model

In this Section, the mathematical formulation of the proposed TE management model is

presented. For a better understanding, first, the optimization problem of the proposed model

without considering the prevailing uncertainties is presented. After that, the uncertainties of solar

power generation and demand are modeled in the presented problem using the DRCC method.

3.1. Deterministic Model

The deterministic optimization problem of the proposed transactive charging management

model is formulated as follows.

min
∑
t∈T

[(
LMPtP

buy
t T − FITtPsell

t T
)
−

∑
v∈V

(
γPch,EV

v,t T − Reimbv,tT
)
+ DCBB

t T
] (6)

Subject to:

Reimbv,t = λ
cl
v,t∆Pcl

v,t (7)

DCBB
t = CBAC(Pch,BB

t ηch,BB + Pdis,BB
t /ηdis,BB) (8)

Pbuy
t − Psell

t =
∑
v∈V

Pch,EV
v,t + PDt − PVt + Pch,BB

t − Pdis,BB
t (9)

0 ≤ Pbuy
t ≤ PupΓt (10)
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0 ≤ Psell
t ≤ Pup(1 − Γt) (11)

Pch,EV
v,t = (∆Pmax

v,t − ∆Pcl
v,t)sv,t (12)

∆Pcl
v,t =


kvλ

cl
v,t λcl

v,t <
1
kv
∆Pmax

v,t

∆Pmax
v,t λcl

v,t ≥
1
kv
∆Pmax

v,t

(13)

∆Pmax
v,t = min{Pr,EV

v ,

(
S OCtar

v − S OCEV
v,t

)
EEV

v

ηEVT
} (14)

S OCEV
v,t = S OCEV

v,t−1 +
Pch,EV

v,t ηEVT

EEV
v

(15)

S OCmin,EV
v ≤ S OCEV

v,t ≤ S OCmax,EV
v (16)

S OCEV
v,ta = S OCini,EV

v (17)

S OCEV
v,td = S OCtar

v (18)

0 ≤ Pch,BB
t ≤ Pr,BBΛt (19)

0 ≤ Pdis,BB
t ≤ Pr,BB(1 − Λt) (20)

S OCBB
t = S OCBB

t−1 +
(Pch,BB

t ηch,BB − Pdis,BB
t /ηdis,BB)T

EBB
(21)
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S OCmin,BB ≤ S OCBB
t ≤ S OCmax,BB (22)

S OCBB
1 = S OCini,BB (23)

LOL ≤ LOLmax (24)

LOL =
∑

t∈T FAA
t T

NIL
(25)

FAA
t = exp

( 15000
110 + 273

−
15000
θH

t + 273
)

(26)

θH
t = θ

A
t + ∆θ

TO
t + ∆θ

H
t (27)

∆θTO
t = ∆θTR(K2

t R + 1
R + 1

)n (28)

∆θH
t = ∆θ

T H(K2
t )m (29)

The objective of BEMS’s scheduling (6) is to minimize its cost including four terms. The

first and the second terms are respectively the cost and revenue of exchanged electricity with

the main grid. The third term is the payment of EVs to the BEMS that its value is the charged

energy cost minus the reimbursement to the EVs in the TE market (7). The fourth term is the

degradation cost of building batteries that is calculated as (8). It is worth mentioning that the

battery will degrade with the charging and discharging process. Thus, the degradation cost of

batteries must be taken into consideration in the energy management problem. In this paper, we

select a linear model to compute the battery degradation cost [32].
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The equality constraint (9) provides the power balance between generation and demand of

the building. Equations (10) and (11) are presented to prevent the simultaneous import/export

power from/to the main grid. Further, equations (12)-(18) provide the constraints associated with

EVs. The charging power of the EV batteries is determined by (12) as well as the response curve

of EVs is expressed as (13). Equation (14) calculates the maximum offered flexibility of the EV

battery at each time interval, and (15) represents the hourly energy balance in the EV batteries.

The allowable range of SOC for EV batteries is shown as (16), and the initial and target levels of

SOC respectively at arrival and departure times are expressed as (17) and (18), respectively. It

is worth mentioning that since the arrival and departure times of employees (EV owners) can be

forecasted with high accuracy, the uncertainties associated with EV owners’ arrival and departure

times are neglected. Also, it is assumed that each EV owner upon departure submits the target

SOC for the next day.

Moreover, equations (19)-(23) represent the constraints of building batteries. Constraints

(19) and (20) limit the charging and discharging power of EV batteries, respectively. The hourly

energy balance and the allowable range of SOC level in EV batteries are represented as (21) and

(22), and the initial value of SOC level in building batteries is shown as (23). Moreover, equations

(24)-(29) represent the constraints associated with the distribution transformer’s loss of life. In

this regard, constraint (24) retains the transformer’s loss of life factor within the allowable limit

set by IEEE standard C 57.91 [33]. Note that the transformer’s loss of life factor is calculated as

(25)-(29).

In the above formulation, (7), (13), (14), and transformer’s loss of life equations are non-

linear. To mitigate the computational complexity and find the global solution using available

solvers, these non-linear equations are linearized as follows.

3.1.1. Linearization of (7)

For linearizing this equation, first, the continuous variable λcl
v,t is approximated to an integer

variable using definition of a set of binary variables Ψi,v,t. Thus, (7) is expressed as follows.
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Reimbv,t = λ
cl
v,t∆Pcl

v,t =
∑
i∈I

2i−1Ψi,v,t∆Pcl
v,t (30)

Suppose Ψi,v,t∆Pcl
v,t = Φi,v,t, by means of the ”Big-M” method, the non-linear equation is

linearized as follows.

λcl
v,t =
∑
i∈I

2i−1Ψi,v,t (31)

Reimbv,t =
∑
i∈I

2i−1Φi,v,t (32)

0 ≤ Φi,v,t ≤ Ψi,v,t M1 (33)

∆Pcl
v,t − (1 − Ψi,v,t)M1 ≤ Φi,v,t ≤ ∆Pcl

v,t (34)

3.1.2. Linearization of (13)

For linearizing this equation, a binary variable Nv,t is employed. Hence, this equation can be

formulated as follows.

∆Pcl
v,t = kvλ

cl
v,tNv,t + ∆Pmax

v,t (1 − Nv,t) (35)

λcl
v,t ≥

1
kv
∆Pmax

v,t (1 − Nv,t) − M2Nv,t (36)

λcl
v,t <

1
kv
∆Pmax

v,t Nv,t + M2(1 − Nv,t) (37)

In the above equations, the products of binary variable Nv,t and continuous variables λcl
v,t

and ∆Pmax
v,t creates non-linearity. Using auxiliary continuous variables Ωv,t = λ

cl
v,tNv,t and Υv,t =

∆Pmax
v,t Nv,t , these equations are replaced as follows.
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∆Pcl
v,t = kvΩ

cl
v,t + ∆Pmax

v,t − Υv,t (38)

λcl
v,t ≥

1
kv

(∆Pmax
v,t − Υv,t) − M2Nv,t (39)

λcl
v,t <

1
kv
Υv,t + M2(1 − Nv,t) (40)

0 ≤ Ωv,t ≤ Nv,t M3 (41)

λcl
v,t − (1 − Nv,t)M3 ≤ Ωv,t ≤ λ

cl
v,t (42)

0 ≤ Υv,t ≤ Nv,t M4 (43)

∆Pmax
v,t − (1 − Nv,t)M4 ≤ Υv,t ≤ ∆Pmax

v,t (44)

3.1.3. Linearization of (14)

This constraint can be recast as a two-conditional equation as:

∆Pmax
v,t =


(S OCtar

v −S OCEV
v,t )EEV

v

ηEVT

(S OCtar
v −S OCEV

v,t )EEV
v

ηEVT
< Pr,EV

v

Pr,EV
v

(S OCtar
v −S OCEV

v,t )EEV
v

ηEVT
≥ Pr,EV

v

(45)

For linearizing the above equation, the binary variable Qv,t is employed. Thus, constraint

(14) is replaced by the following constraints.

∆Pmax
v,t = (1 − Qv,t)Pr,EV

v + Qv,t

(
S OCtar

v − S OCEV
v,t

)
EEV

v

ηEVT
(46)
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(
S OCtar

v − S OCEV
v,t

)
EEV

v

ηEVT
≥ (1 − Qv,t)Pr,EV

v − M5Qv,t (47)

(
S OCtar

v − S OCEV
v,t

)
EEV

v

ηEVT
< Qv,tPr,EV

v + M5(1 − Qv,t) (48)

The product of binary variable Qv,t to continuous variable S OCEV
v,t makes (46) non-linear.

Suppose Qv,tS OCEV
v,t = Xv,t, then, (46) can be linearized as follows.

∆Pmax
v,t = (1 − Qv,t)Pr,EV

v +
(Qv,tS OCtar

v − Xv,t)EEV
v

ηEVT
(49)

0 ≤ Xv,t ≤ Qv,t M6 (50)

S OCEV
v,t − (1 − Qv,t)M6 ≤ Xv,t ≤ S OCEV

v,t (51)

3.1.4. Linearization of transformer’s loss of life constraints

Non-linear constraints (26)-(29) for calculation of transformer’s loss of life represent the

aging acceleration factor (FAA
t ) as an exponential function of transformer loading (Kt), i.e., FAA

t =

exp(a + b/Kc
t + d) where a, b, c, and d are constants. This function can be approximated using

the piecewise linear approximation method as shown in Figure 3 as follows [34].

F̃AA
t = αk,tKt − βk,t,Kk−1

t ≤ Kt ≤ Kk
t , k = 1, ...,M (52)

where M is the number of segments.
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Figure 3: Aging acceleration factor FAA
t and its piecewise approximation F̃AA

t

Finally, using the linearized expressions above, the MILP model is as follows.

Eq. (6) (53)

Subject to:

Eqs. (8) − (12), (15) − (25) (54)

Eqs. (31) − (34), (38) − (44), (47) − (52) (55)

3.2. DRCC-based Model

The proposed deterministic MILP model (53)-(55) should be developed to incorporate the

prevailing uncertainties. The main uncertainties in this work are the solar power generation and

demand which are highly correlated [35]. Thus, the DRCC method is employed to incorporate

the uncertainties such that the constraints subject to uncertainty will be satisfied within a con-

fidence set and would be robust against all probability distribution functions corresponding to

random variables [30].
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Since the solar power generation and demand (i.e., P̃Dt and P̃V t) are uncertain parameters,

we formulate the power balance constraint (9) based on DRCC approach ∀t ∈ T as follows

[32, 36].

inf
P∈D

P
(
Pbuy

t − Psell
t −

∑
v∈V

Pch,EV
v,t − Pch,BB

t + Pdis,BB
t ≥ P̃Dt − P̃V t

)
≥ 1 − ϵ (56)

where D is the confidence set that represents the family of all distributions that have the same

moment information such as mean, variance, and covariance [30]. The inf operator determines

the worst distribution in the confidence set for which the above constraint must be satisfied. The

confidence set can be represented as follows.

D =
{
P ∈ M+ : EP[ζ̃t] = µ̃t,EP[(ζ̃t − µ̃t)(ζ̃t − µ̃t)T ] = Σ̃t

}
(57)

In aboveM+ denotes the set of all probability distribution functions. Moreover, ζ̃t = [P̃Dt, P̃V t]

is the vector of uncertain parameters with the first and second moments of µ̃t and Σ̃t, respectively.

Since the uncertainties arising from the demand and solar power generation are primarily driven

by forecast errors, in this work, the uncertain parameters ζ̃t are modeled as the sum of the fore-

casted values ζ t and the random variable ζt as:

ζ̃t = ζ t + ζt; ∀t ∈ T (58)

where ζt follows an unknown probability distribution with zero mean (µt = 0) and covariance

matrix Σt as:

Σt =


(
σd

t

)2
σd

t σ
pv
t ρt

σd
t σ

pv
t ρt

(
σ

pv
t

)2
 (59)

where σd
t and σpv

t are the standard deviation of forecast error of demand and solar power genera-

tion at time t and ρt is the correlation factor between random variables. With this definition, (56)

can be rewritten in compact form as:
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inf
P∈D′

P
(
At(x)T ζt ≤ bt(x)

)
≥ 1 − ϵ; ∀t ∈ T (60)

where the confidence setD′ is defined as:

D′ =
{
P ∈ M+ : EP[ζt] = µt = 0,EP[ζtζtT ] = Σt

}
(61)

The DRCC equation (60) is equivalent to the convex constraint as follow.

√
1 − ϵ
ϵ

∥∥∥Σ1/2
t At(x)

∥∥∥
2 ≤ bt(x); ∀t ∈ T (62)

This constraint is derived based on a variant of the Chebyshev inequality. The full proof and

description for equivalence were given in [37, 38].

4. Case Study

4.1. Simulation Setup

To assess the effectiveness of the proposed DRCC-based energy management model, the case

of an office building with 100 electric vehicle charging piles has been studied. In this work, we

consider an office building containing 200 kW installed solar systems and a building battery

with capacity of 200 kWh and rated power of 50 kW. These values were selected to have a

balance between total demand and generation of the building. The initial SOC level of building

batteries is set to be 0.4 and its degradation cost coefficient is considered as 0.35 ¢/kWh [39].

Moreover, the key parameters of EV battery can be found in [19], and it is assumed that the EV

owners’ target SOC is 100% in order to have the most comfort level. The arrival and departure

times of EVs are assumed 7 AM, and 4 PM, respectively, based on a statistical analysis of EV

charging behavior in the UK [40]. The other input data associated with EV owners including the

initial SOC level at arrival and price requirement for maximum response (λmax) are randomly and

uniformly distributed within the range of [0.5,0.6] and [1.5,3.5] ¢/kWh, respectively [25, 40].

In addition, the hourly mean values of solar power generation and demand as well as the

hourly price for buying electricity from the main grid are shown in Figure 4, and the FIT rate
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is assumed 1.5 ¢/kWh less than buying electricity price [25, 35]. Also, to calculate the hourly

correlation factor between uncertainties associated with solar power generation and demand, we

utilized Denmark historical data in 2019 [35]. The mutual correlation factor and the standard

deviation values of uncertainties associated with solar power generation and demand can be

found in [41]. Finally, the base charging price of EVs is assumed 6 ¢/kWh, and the confidence

level that is determined by the decision maker is set to be 1 − ϵ = 0.95.

Figure 4: Non-responsive demand and solar power generation (bar chart: left y-axis) and price for buying electricity

from the main grid (line plot: right y-axis)

4.2. Numerical Results and Analysis

Considering the parameters and input data mentioned above, we solved the presented DRCC-

based building energy management optimization problem. Since the battery plays a key role in

the building energy management by peak load shifting, we determine the optimal scheduling of

building battery as shown in Figure 5. This figure shows that the building battery is charged

during the first few hours of the day when the electricity price is at its minimum level. The

charging of battery continues for three hours till the fully charged state is achieved. Then, the

battery will remain in the idle mode for six hours till 11:00, and after that when the electricity

price increases sufficiently the battery starts to be discharged for three hours, i.e., 11:00-13:00.

It is to be noted that the degradation cost of battery in the illustrated optimal scheduling is equal

to 1.65$.
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Figure 5: Optimal scheduling of building battery

In the following parts of the simulation study, our proposed model is compared with two

other cases: i) uncontrolled model where EVs are charged as soon as they are plugged-in, and

ii) direct control model where the BEMS minimizes the cost of buying electricity from the main

grid. Note that in all cases, the EVs will get reimbursed for changing the charging pattern of

EV batteries (delaying the charging). Figure 6 depicts the imported electricity from the main

grid and charging demand of EVs during plugged-in hours (7:00-16:00). As inferred from this

figure, the peak demand in the proposed model has been decreased by 4.4% and 3.6% compared

to uncontrolled and direct control models, respectively. Also, this figure illustrates that in the un-

controlled charging case, the EVs are charged as soon as they are plugged-in without considering

the electricity price that will put pressure on the network, while the proposed model decreases the

charging of EVs during high electricity price hours, i.e., (11:00-13:00). Moreover, in the direct

control model, the EVs are charged when the electricity price is low, which makes the minimum

cost of importing electricity from the main grid for charging EVs compared to other EV charging

models. However, since the direct control model postpones part of charging the EV batteries to

the last two hours (15:00-16:00), the BEMS must pay a significant amount of reimbursement to

the EV owners. To better illustrate the above discussions, the cost and revenue of BEMS of the

office building in the three cases mentioned above are shown in Table 2. As seen in this table,
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Table 2: Cost and Revenue of BEMS
Proposed Uncontrolled Direct
model charging control

Cost of imported electricity ($) 1020.8 1030.2 1019.6
EV owners’ payment for charging ($) 76.3 82.4 60.1
Reimbursement to EV owners ($) 6.1 0.0 22.3
Total operating cost of BEMS ($) 946 949.5 961.2

the reimbursement to EVs in the direct control model is more than that of other cases due to the

charging of the EV batteries close to their departure. Also, this table shows that our proposed

model has the least total operating cost in comparison to other cases. It is to be noted that the

biggest portion of the total operating cost in all cases is related to the cost of importing electricity

for supplying non-responsive demand.

Figure 6: Imported electricity from main grid (line plot: left y-axis) and EVs’ charging demand (bar chart: right y-axis)

Moreover, the box plot of transactive market clearing prices and the curve of reduced charg-

ing power of EV batteries within plugged-in hours are depicted in Figure 7. As seen in this

figure, the clearing price, the decreased charging power of EV batteries, and accordingly, the re-

imbursement to the EV owners in higher electricity price hours have maximum values. In other

words, in this period since the price for buying electricity from the main grid is high, the BEMS

employs more of the offered flexibility of EV charging by generating greater clearing prices to
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convince more EV owners to reduce their charging demand.

Figure 7: Variations of transactive market clearing price (box plot: left y-axis) and reduced EVs’ charging power (line

plot: right y-axis)

In addition, the transformer’s loss of life factor (LOL) for different standard capacities of the

distribution transformer in the three cases mentioned above are reported in Table 3. As shown in

this table, the transformer aging is significantly accelerated due to the penetration of EVs. For

instance, in the case of 630 kVA transformer, penetration of EVs increases the transformer’s loss

of life factor by at least 5.6 times. Another observation of this table shows that the transformer

aging in the proposed model is lower than those of the other two charging models. In this study,

the limitation of the transformer’s loss of life factor (LoLmax) was considered as 0.0137% which

is equal to 5% aging per year [42]. Thus, using the proposed method there is no need to change

the transformer to meet the LOL limitation for the integration of 100 EVs in this case. However,

the direct control and uncontrolled charging approaches necessitate a distribution transformer

of greater size. In other words, using these two approaches, we need to replace the 800 kVA

transformer with a 1000 kVA transformer, which causes a higher investment cost to the building

owner.
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Table 3: Transformer’s LOL for different capacities of transformer

630 kVA 800 kVA 1000 kVA
No EVs 0.07313% 0.0029% 0.00028%
Proposed model 0.40793% 0.01196% 0.00086%
Direct control 0.61150% 0.01605% 0.00104%
Uncontrolled 0.70711% 0.01834% 0.00117%

4.3. Sensitivity Analysis

In this section, the impacts of different values of ϵ and correlation factors (ρ) on the cost of

BEMS are investigated. For this purpose, first, a sensitivity analysis is carried out to measure the

influence of parameter ϵ on the optimal scheduling of building. In this regard, the procurement

cost of building with different parameter ϵ, including 0.01, 0.05, 0.1, 0.15, and 0.2 is determined

and depicted in Figure 8. As can be seen, the smaller values of ϵ result in the greater value of

total cost. In other words, when the value of ϵ decreases, the BEMS will pay more to achieve a

more reliable system. Moreover, this figure shows that decreasing the parameter ϵ from 0.05 to

0.01 will increase the procurement cost significantly. Hence, selecting a proper confidence level

helps the BEMS to avoid the extremely high cost caused by a strict reliability constraint.

In the second step of sensitivity analysis, we measure the influence of the correlation fac-

tor on the optimal solution. The uncertainties of solar power generation and demand might be

positively or negatively correlated. For instance, in the area with a high penetration of air condi-

tioning systems for cooling purposes, when the solar radiation and accordingly the solar power

generation increases, the demand increases, too. Thus, these uncertain parameters are positively

correlated. On the other hand, in the area where the air conditioning systems are utilized in the

heating mode, the increase in solar radiation will reduce the demand; and therefore, there is a

negative correlation between the uncertainties of solar power generation and demand. In this

regard, the procurement cost of building with different values of correlation factor, including

−1,−0.5, 0, 0.5, and 1 is shown in Figure 8. As can be inferred from this figure, the negative

correlation between uncertainties of solar power generation and demand will increase the total

operating cost of building.
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Figure 8: Total operating cost of building with different ϵ and ρ

Table 4: Computational Analysis of the Proposed MILP Model

Obj. function ($) Running time (m)
MILP MINLP MILP MINLP

# of EVs = 10 928 930 <1 4
# of EVs = 50 937 940 <1 58
# of EVs = 100 948 − 2 −

# of EVs = 150 969 − 7 −

4.4. Computational Performance

In this section, we study the computational performance and solution accuracy of the pro-

posed MILP problem compared to the original MINLP formulation. To attain this goal, the

MILP and MINLP optimization problems are respectively solved using CPLEX and BARON

solvers on a laptop with the configuration of 16 GB RAM and AMD Ryzen 7 CPU. The running

times and the values of objective functions for different numbers of EVs are reported in Table

4. As inferred from this table, the MILP formulation reaches the optimal solution with a lower

computation time in comparison to the MINLP model. Also, this table shows that the origi-

nal MINLP formulation fails to achieve a feasible solution for cases with numbers of EVs 100

and 150. Thus, the linearization procedure that has been performed in this study significantly

improves the computational efficiency and the accuracy of the optimal solution.
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5. Conclusion

This paper proposed a DRCC-based transactive energy management model to determine the

optimal scheduling of an office building considering the uncertainties of solar power generation

and demand. To optimally schedule the BEMS of the office building, the flexibility of building

batteries and EVs charging were employed. In this regard, to incentivize the EV owners to take

part in the energy management program, the BEMS organized a TE market among plugged-in

EVs. In the proposed TE market model, the EV owners got reimbursed for the flexibility they

offered to the BEMS. To this end, the EV owners individually submitted their response curves and

target levels of SOC at departure to the BEMS. Then, the BEMS ran an optimization problem

to determine its electricity procurement considering the transactive market among plugged-in

EVs. Moreover, due to existing the non-linear equations in the original optimization problem,

various linearization techniques were utilized to mitigate the computational burden and extract

a more accurate solution. The case of an office building with 100 charging piles was studied to

evaluate the effectiveness and applicability of the proposed model. Numerical results illustrated

that the proposed model has decreased the cost of BEMS for charging EV batteries (summation

of payment for importing electricity and reimbursement to EV owners) by 3.2% and 12.6%

compared to uncontrolled and direct control models, respectively. Also, by implementing the

proposed model, the EV owners’ charging payment has been decreased by 7.4% compared to

the uncontrolled charging model. In addition, considering an 800 kVA transformer for the office

building, the transformer’s loss of life in the proposed building energy management model has

been mitigated by 34.8% and 25.5% compared to the other above-mentioned cases.

References

[1] K. G. Firouzjah, A techno-economic energy management strategy for electric vehicles in public parking lot con-

sidering multi-scenario simulations, Sustainable Cities and Society 81 (2022) 103845.

[2] V. S. Kasani, D. Tiwari, M. R. Khalghani, S. K. Solanki, J. Solanki, Optimal coordinated charging and routing

scheme of electric vehicles in distribution grids: Real grid cases, Sustainable Cities and Society 73 (2021) 103081.

[3] K. N. Qureshi, A. Alhudhaif, G. Jeon, Electric-vehicle energy management and charging scheduling system in

sustainable cities and society, Sustainable Cities and Society 71 (2021) 102990.

28



[4] M. C. Kisacikoglu, F. Erden, N. Erdogan, Distributed control of pev charging based on energy demand forecast,

IEEE Transactions on Industrial Informatics 14 (1) (2017) 332–341.

[5] M. H. Mobarak, J. Bauman, Vehicle-directed smart charging strategies to mitigate the effect of long-range ev

charging on distribution transformer aging, IEEE Transactions on Transportation Electrification 5 (4) (2019) 1097–

1111.

[6] R. Habibifar, A. A. Lekvan, M. Ehsan, A risk-constrained decision support tool for ev aggregators participating in

energy and frequency regulation markets, Electric Power Systems Research 185 (2020) 106367.

[7] H. Li, A. Rezvani, J. Hu, K. Ohshima, Optimal day-ahead scheduling of microgrid with hybrid electric vehicles

using msfla algorithm considering control strategies, Sustainable Cities and Society 66 (2021) 102681.

[8] Q. Shi, C.-F. Chen, A. Mammoli, F. Li, Estimating the profile of incentive-based demand response (ibdr) by inte-

grating technical models and social-behavioral factors, IEEE Transactions on Smart Grid 11 (1) (2019) 171–183.

[9] S.-W. Park, K.-S. Cho, G. Hoefter, S.-Y. Son, Electric vehicle charging management using location-based incentives

for reducing renewable energy curtailment considering the distribution system, Applied Energy 305 (2022) 117680.

[10] L. Gong, W. Cao, K. Liu, J. Zhao, Optimal charging strategy for electric vehicles in residential charging station

under dynamic spike pricing policy, Sustainable Cities and Society 63 (2020) 102474.

[11] G. Merhy, A. Nait-Sidi-Moh, N. Moubayed, Control, regulation and optimization of bidirectional energy flows for

electric vehicles’ charging and discharging, Sustainable Cities and Society 57 (2020) 102129.

[12] K. Kok, S. Widergren, A society of devices: Integrating intelligent distributed resources with transactive energy,

IEEE Power and Energy Magazine 14 (3) (2016) 34–45.

[13] M. F. Dynge, P. C. del Granado, N. Hashemipour, M. Korpås, Impact of local electricity markets and peer-to-peer

trading on low-voltage grid operations, Applied Energy 301 (2021) 117404.

[14] M. Daneshvar, B. Mohammadi-Ivatloo, S. Asadi, A. Anvari-Moghaddam, M. Rasouli, M. Abapour, G. B. Ghareh-

petian, Chance-constrained models for transactive energy management of interconnected microgrid clusters, Jour-

nal of Cleaner Production 271 (2020) 122177.

[15] A. Mohammad, R. Zamora, T. T. Lie, Transactive energy management of pv-based ev integrated parking lots, IEEE

Systems Journal 15 (4) (2020) 5674–5682.

[16] A. Masood, J. Hu, A. Xin, A. R. Sayed, G. Yang, Transactive energy for aggregated electric vehicles to reduce

system peak load considering network constraints, IEEE Access 8 (2020) 31519–31529.

[17] L. Affolabi, M. Shahidehpour, W. Gan, M. Yan, B. Chen, S. Pandey, A. Vukojevic, E. A. Paaso, A. Alabdulwahab,

A. Abusorrah, Optimal transactive energy trading of electric vehicle charging stations with on-site pv generation in

constrained power distribution networks, IEEE Transactions on Smart Grid 13 (2) (2021) 1427–1440.

[18] A. Asrari, M. Ansari, J. Khazaei, P. Fajri, A market framework for decentralized congestion management in smart

distribution grids considering collaboration among electric vehicle aggregators, IEEE Transactions on Smart Grid

11 (2) (2019) 1147–1158.

[19] H. Saber, M. Ehsan, M. Moeini-Aghtaie, M. Fotuhi-Firuzabad, M. Lehtonen, Network-constrained transactive

29



coordination for plug-in electric vehicles participation in real-time retail electricity markets, IEEE Transactions on

Sustainable Energy 12 (2) (2020) 1439–1448.

[20] M. M. Hoque, M. Khorasany, R. Razzaghi, H. Wang, M. Jalili, Transactive coordination of electric vehicles with

voltage control in distribution networks, IEEE Transactions on Sustainable Energy 13 (1) (2021) 391–402.

[21] H. Saber, M. Ehsan, M. Moeini-Aghtaie, H. Ranjbar, M. Lehtonen, A user-friendly transactive coordination model

for residential prosumers considering voltage unbalance in distribution networks, IEEE Transactions on Industrial

Informatics 18 (9) (2022) 5748–5759.

[22] A. Gadea, M. Marinelli, A. Zecchino, A market framework for enabling electric vehicles flexibility procurement

at the distribution level considering grid constraints, in: 2018 Power Systems Computation Conference (PSCC),

IEEE, 2018, pp. 1–7.

[23] H. Mazaheri, H. Ranjbar, H. Saber, M. Moeini-Aghtaie, Expansion planning of transmission networks, in: Uncer-

tainties in Modern Power Systems, Elsevier, 2021, pp. 35–56.

[24] Q. Wu, M. Shahidehpour, C. Li, S. Huang, W. Wei, et al., Transactive real-time electric vehicle charging man-

agement for commercial buildings with pv on-site generation, IEEE Transactions on Smart Grid 10 (5) (2018)

4939–4950.

[25] H. Saber, H. Ranjbar, S. Fattaheian-Dehkordi, M. Moeini-Aghtaie, M. Ehsan, M. Shahidehpour, Transactive energy

management of v2g-capable electric vehicles in residential buildings: An milp approach, IEEE Transactions on

Sustainable Energy 13 (3) (2022) 1734–1743.

[26] M. Tostado-Véliz, S. Kamel, H. M. Hasanien, R. A. Turky, F. Jurado, Optimal energy management of coopera-

tive energy communities considering flexible demand, storage and vehicle-to-grid under uncertainties, Sustainable

Cities and Society 84 (2022) 104019.

[27] W. Sun, F. Neumann, G. P. Harrison, Robust scheduling of electric vehicle charging in lv distribution networks

under uncertainty, IEEE Transactions on Industry Applications 56 (5) (2020) 5785–5795.

[28] H. Golpı̂ra, S. A. R. Khan, A multi-objective risk-based robust optimization approach to energy management in

smart residential buildings under combined demand and supply uncertainty, Energy 170 (2019) 1113–1129.

[29] P. Zhao, H. Wu, C. Gu, I. Hernando-Gil, Optimal home energy management under hybrid photovoltaic-storage

uncertainty: A distributionally robust chance-constrained approach, IET Renewable Power Generation 13 (11)

(2019) 1911–1919.

[30] M. Daneshvar, B. Mohammadi-Ivatloo, M. Abapour, S. Asadi, R. Khanjani, Distributionally robust chance-

constrained transactive energy framework for coupled electrical and gas microgrids, IEEE Transactions on In-

dustrial Electronics 68 (1) (2020) 347–357.

[31] Y. Zhou, W. Yu, S. Zhu, B. Yang, J. He, Distributionally robust chance-constrained energy management of an

integrated retailer in the multi-energy market, Applied Energy 286 (2021) 116516.

[32] Z. Shi, H. Liang, S. Huang, V. Dinavahi, Distributionally robust chance-constrained energy management for is-

landed microgrids, IEEE Transactions on Smart Grid 10 (2) (2018) 2234–2244.

30



[33] IEEE Guide for Loading Mineral Oil Immersed Overhead and Pad Mounted Distribution Transformers.

[34] P. Andrianesis, M. Caramanis, Distribution network marginal costs: Enhanced ac opf including transformer degra-

dation, IEEE Transactions on Smart Grid 11 (5) (2020) 3910–3920.

[35] K. P. Olsen, Hourly time series data of wind and solar power production as well as electricity consumption for all

of denmark from the danish tso energinet, Technical University of Denmark (2019).

URL https://doi.org/10.11583/DTU.7599629.v2

[36] O. Ciftci, M. Mehrtash, A. Kargarian, Data-driven nonparametric chance-constrained optimization for microgrid

energy management, IEEE Transactions on Industrial Informatics 16 (4) (2019) 2447–2457.

[37] M. R. Wagner, Stochastic 0–1 linear programming under limited distributional information, Operations Research

Letters 36 (2) (2008) 150–156.

[38] G. C. Calafiore, L. El Ghaoui, On distributionally robust chance-constrained linear programs, Journal of Optimiza-

tion Theory and Applications 130 (1) (2006) 1–22.

[39] Y. Guo, C. Zhao, Islanding-aware robust energy management for microgrids, IEEE Transactions on Smart Grid

9 (2) (2016) 1301–1309.

[40] J. Quirós-Tortós, L. F. Ochoa, B. Lees, A statistical analysis of ev charging behavior in the uk, in: 2015 IEEE PES

Innovative Smart Grid Technologies Latin America (ISGT LATAM), IEEE, 2015, pp. 445–449.

[41] Input data: Hourly electricity price, fit rate, demand, pv generation, and correlation factor,

https://docs.google.com/spreadsheets/d/1CrJvu36KvovIHMNoXX7Hui4rNuzkbv6/edit?usp =

sharingouid = 108196526015412389907rtpo f = truesd = true.

[42] P. Sen, S. Pansuwan, Overloading and loss-of-life assessment guidelines of oil-cooled transformers, in: 2001 Rural

Electric Power Conference. Papers Presented at the 45th Annual Conference (Cat. No. 01CH37214), IEEE, 2001,

pp. B4–1.

31


