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Abstract 
Due to the environmental concerns, getting deteriorated ongoingly, it is becmoing essential to encourage 

people to use sustainable energies. One of the most effective alternatives to mitigate pollution is to promote 

green mobility via electric vehicles (EVs). However, the lack of electric charging stations (EVCS) may 

decrease individuals’ satisfaction to use EVs in daily life. To bridge the gaps, this paper aims to 

simultaneously allocate EVCS and smart photovoltaic inverters (SPIs) in distribution networks to optimize 

three important objetive functions, including power loss, voltage deviation (VD), and voltage unbalance 

factor (VUF). To solve such a multi-objective optimization problem, a novel hybrid fuzzy Pareto 

dominance concept with differential evolution algorithm (FPDEA) is proposed to identify non-dominanted 

solutions. For practical considerations, the uncertainty of loads is also captured using Monte Carlo 

Simulations (MCSs). The effectiveness of the stochastic multi-objective approach is then examined and 

verified on an unbalanced 37-bus network under different case studies. Attained results illustrate that 

EVCSs can be effectively integrated into networks where SPIs are installed and able to support ancillary 

services (e.g., reactive power compnesation).  

Keywords: Electric vehicle, unbalanced distribution networks, unbalanced voltage compensation, smart PV 

inverters, multi-objective optimization. 
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1. Introduction 
Electric vehicles (EVs) are indeed a convenient option for transportation systems due to pressure from 

carbon dioxide emissions, environmental degradation, and energy shortages. Nevertheless, limitted number 

of charging stations is also becoming a significant impediment to the broad adoption of EVs. Moreover, the 

global fleet market for EVs is growing imposing new challenges to the power systems operators in terms 

of peak load mamagement, and frequency and voltage regulations, among others [1]. 

So far, various investigations have been done to optimally allocate EV charging stations (EVCSs) in 

balanced distribution networks. Authors in [2] proposed a stochastic approach based on a point estimation 

model to find out the optimal location and sizing of charging stations for EVs. The objective function was 

the summation of several objective functions, e.g., the cost of purchasing land, the cost of facilities for 

establishing EV stations, maintenance costs, etc. The problem was then solved via a genetic algorithm. 

Similarly, in [3], EVCSs were determined by a teaching-learning based optimization (TLBO) algorithm to 

consider three objective functions, including real power loss, voltage deviation index, and voltage stability 

index. All these functions were combined via three coefficient (weighted-sum approach) and were 

implemented on two balanced distribution networks, namely 33 and 69 buses. In addition, EVCSs 

considering capacitor banks and distributed generations were allocated in balanced distribution grids via 

the genetic algorithm in [4]. Power losses minimization by placing EVCSs and DGs was also addressed in 

balanced distribution grids in [5]. Similarly, in [6], a bi-objective planning approach, e.g., energy cost and 

emission, was developed to allocate EVCSs, renewable energies, and energy storage in distribution grids. 

The model was solved by multi-objective particle swarm optimization and was implemented in a case study 

in China. A comprehensive assessment of the advantages of EVCSs and renewable energies was also 

investigated in [7]. Authors of [8] used a planning approach for EVCSs, and distributed generation in 

balanced distribution networks via three heuristic algorithms. A hybrid approach based on the genetic and 

particle swarm optimization algorithms was developed in [9] to optimize several objective functions, 

including power losses, voltage deviation, the cost of charging and load, and the cost of an EV battery. 

EVCSs and capacitor banks were placed in distribution networks to alleviate of the power loss, maximize 
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the network’s benefit, and reliability enhancement in [10]. All these investigations were concentrated on 

balanced distribution systems and the properties of unbalanced networks have not been taken into account. 

However, distribution networks are inherently unbalanced, so EVCSs at various loading rates drastically 

affect voltage regulation, transformer loading, and power flows through different phases of distribution 

grids. When EVCSs are connected in an unsettling form among different phases, nodal voltages, line 

currents, active and reactive powers, and energy loss might get changed and deteriorated from what initially 

calculated/planned [11, 12]. Under real conditions, the distribution systems may be unbalanced which has 

some drawbacks compared to balanced networks, like more power losses, equipment malfunction, etc. 

Several research efforts have been focused on unbalanced networks to prevent such a problem. For instance, 

in [13], the authors elaborated on the allocation of EVCSs and distributed generations in unbalanced 

systems. The objective function was power loss minimization and solved via particle swarm optimization 

algorithm. Similarly, authors in [14], proposed a multi-objective planning of EVCSs in unbalanced 

distribution networks, considering several objective functions, such as minimizing the annualized 

investment cost, system losses, voltage deviation, etc. However, unbalanced voltage compesation and 

reactive power capability of smart inverters were not considered in that study. In [15], a modified version 

of the dragonfly algorithm was proposed for power loss minimization of distribution networks, where the 

impact of demand increase in some phases of network was investigated on voltage unbalance. However, 

unbalanced voltage compensation was not considered as an objective function. 

As clearly seen from the reviewed literature, there are still some gaps needing further investigations. Firstly, 

most of the previous works have been focused on balanced electrical systems while in practice, operators 

deal with many unbalanced conditions. Although some efforts have been made on unbalanced networks, 

they did not consider abilities of photovoltaic (PV) inverters in compensating the reactive power and voltage 

regulation which in turn increases system flexibility and decreases complexity in real-time operation. 

Finally, the multi-objective stochastic procedure was framed without considering several important 

objective functions simultaneously from the viewpoint of distribution system operators, such as power loss, 

voltage unbalance, and voltage deviation. Accordingly, this paper tends to provide a comprehensive 
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planning of EVCSs in unbalanced networks while addressing the aforementioned issues. The contributions 

of the work are as follows: 

• In the proposed study, EVCSs are allocated in unbalanced networks for decreasing power loss, 

voltage deviation (VD), and voltage unbalance factor (VUF).   

• A multi-objective framework is developed based on the hybridizing fuzzy Pareto dominance with 

differential evolution algorithm (FPDEA) to recognize a set of non-dominated solutions. A 

compromised solution is finally selected based on the fuzzy rules. 

• The reactive power capabilities of smart PV inverters (PSIs) are also deployed as an ancillary 

service to support system when EVCs are integrated into networks. The advantage of this solution 

compared to conventional ones are demonstrated in several case studies. 

• To capture realistic working conditions, uncertainty of load is also modeled via Monte Carlo 

simulations (MCSs). 

2. Smart inverters 
Conventionally, PV inverters were developed for converting the DC solar power to AC active power at 

unity power factor. However, distribution system operators or solar farm owners tend to get inverters’ 

potential to absorb or inject reactive power into the system. To put it differently, when transforming DC 

electricity from PV panels to AC real power, the inverters’ capacities are not deployed entirely. Reactive 

power could therefore be compensated by employing the inverter's unused capacity. To illustrate that, an 

example is shown in Fig.1. The amount of generated reactive power can be specified by the 4 point 

characteristics (A1-A4). The first segment of the curve (before point A1) denotes a condition where the 

maximum amount of injected reactive power (into the grid) has been reached. The next segment (from point 

A1 to point A2), denotes the ability to inject reactive power into the network by the inverter. The region 

between points A2 and A3 is described as the dead band range, in which the reactive power is neither 

injected to nor absorbed from the system. The last segment (between points A3 and A4) shows the ability 

of an inverter to absorb reactive power till the maximum capacity is reached. In this investigation, the rating 
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of smart PV inverters is calculated to support the unbalanced distribution network under different loading 

conditions which is mainly affected by EVs charging demands. 

A1

A2 A3

A4

Voltage (p.u)Dead Band

V1
V2 V3

V4

Qpv(max)

-Qpv(max)

Injecting

Absorbing

 

Fig. 1 the characteristic of smart PV inverter to support the reactive powers 

3. Problem formulation 

3.1. Objective functions 
Three objective functions are considered in this paper as discussed in the following. 

3.1.1. Power loss 

Generally, 5-10 percent of the entire energy produced in electricity grids is lost at the distribution side [16]. 

High energy losses in distribution networks could give rise to equipment deterioration due to overheating 

[17]. To this end, line losses reduction in distribution networks is considered as the first objective in this 

work. 

( )( )
*

, , , , , , , ,

ij i j ij

a b c a b c a b c a b cSLoss V V I= −  (1) 

, , , ,( )ij ij

a b c a b cPLoss real SLoss=  (2) 

in above, , ,

ij

a b cSLoss , and , ,

ij

a b cPLoss denote the complex, and real power losses, respectively; , ,

i

a b cV and 

, ,

j

a b cV  are voltages of buses i and j, respectively; , ,

ij

a b cI shows the current of line ij. 

, ,1 min ij

a b c

m

Obj PLoss
 

=  
 
  (3) 
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3.1.2. Voltage deviation 

The goal of this fitness function is to maximize the voltage at all nodes of the network by reducing 

the difference between the voltage of the slack node and the voltage of the ith node. It results in a 

flatter voltage profile across the network, which reduces under voltage at feeders located too far from 

the substation. The voltage deviation decrease is given as the second objective function as follows 

[18]: 

, , , ,

i sub i

a b c a b cVD V V= −  (4) 

here, , ,

sub

a b cV
 and , ,

i

a b cV
are the voltages of the substation and nodes for three phases. 

The second objective function is eventually modeled by the following equation. 

2 min i

i

Obj VD
 

=  
 
  (5) 

3.1.3. Voltage unbalance factor 

Unbalanced voltage compensation is one of the most important objective functions for electrical 

distribution system operation and planning. This is because a significant portion of consumers are 

linked to single-phase of networks, resulting in voltage imbalance in the system. Similarly, in 

unbalanced distribution systems, EVCSs are distributed across multiple phases, affecting the voltage 

of other buses through the network. As a result, when EVCSs are placed at the single-phase network, 

VUF should be considered as an objective function. The following relation expresses VUF [12]: 

100

i

negi

i

pos

V
VUF

V
=   (6) 

In distribution systems, rising electricity supply varies the voltage levels, resulting in negative or 

positive voltage sensitivity. The Fortescue transform is used to determine the positive and negative 

voltage sequences as follows [19]: 
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2

3

i i i
i a b c

neg

V a V aV
V

+ +
=  (7) 

2

3

i i i
i a b c

pos

V aV a V
V

+ +
=  (8) 

1 120a =   (9) 

where, 

i

negV
and 

i

posV
respectively signify the negative and positive voltage sequences at the ith node; 

i

aV
, 

i

bV
, and 

i

cV
denote the voltages of phases a, b, c, respectively. Finally, the third objective 

function, VUF, is defined as follows: 

3 min i

i

Obj VUF
 

=  
 
  (10) 

3.2.  Operational constraints 
Following constraints are used to secure operation of the system under the planning of EVCSs. The 

constraints (11) is used to keep voltage within acceptable ranges; in (12), the line current capacity is 

enforced; equations (13) and (14) are representing the active and reactive power capacity of PV resources; 

the size of EVCSs could be then limited between its maximum and minimum values via (15) and (16). 

min max

, , , , , ,

i

a b c a b c a b cV V V   (11) 

max

, , , ,

ij

a b c a b cI I  (12) 

min max

, , , , , ,

k

a b c a b c a b cPV PV PV   (13) 

min max

, , , , , ,

k

a b c a b c a b cQPV QPV QPV   (14) 

min max

, , , , , ,

l

a b c a b c a b cPEVCS PEVCS PEVCS   (15) 

min max

, , , , , ,

l

a b c a b c a b cQEVCS QEVCS QEVCS   (16) 

here, 
min

, ,a b cV and 
max

, ,a b cV denote the maximum and minimum permissible voltages, respectively. , ,

ij

a b cI  and 

max

, ,a b cI are the line current and its maximum capacity, respectively. 
min

, ,a b cPV  and 
max

, ,a b cPV respectively show 

the maximum and minimum active rating of PVs. 
min

, ,a b cQPV  and 
max

, ,a b cQPV respectively show the maximum 
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and minimum reactive rating of smart PV inverters. 
min

, ,a b cPEVCS  and 
max

, ,a b cPEVCS denote the minimum 

and maximum capacities of active demand of EVCSs. 
min

, ,a b cQEVCS  and 
max

, ,a b cQEVCS illustrate the 

minimum and maximum capacities of reactive demand of EVCSs. 

4. Scenario generation 
Uncertainties play the prominent role in the operation and planning of power systems. To model the 

uncertain parameters, a proper probability density function (PDF) is considered initially. Every PDF is then 

separated into multiple segments, i.e. a normal PDF with seven components is illustrated in Fig.2. As can 

be seen, every probability level indicates a particular error in the parameter under uncertainty. The 

procedure of scenario creation is accompanied by deploying a roulette wheel mechanism (RWM). For each 

uncertain variable, a number is randomly generated in the interval [0, 1]. This random number falls into 

one of the probability levels of the PDF. This approach is repeated until a set of scenarios are generated 

[20, 21]. 
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Fig. 2 a sample of normal PDF 

5. Optimization process 
As a heuristic approach, the differential evolution (DE) method is capable of solving non-deterministic 

polynomial-time challenging tasks. This method was created to address the fundamental disadvantage of 

the genetic algorithm, which is its lack of local search. There are four critical steps in this procedure. At the 
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beginning, this approach creates the population between the upper and lower limits of problems. The 

function called mutation is then employed to produce a new member regarding selecting several individuals 

in the population. The mutant individual is then joined with the ith member of the population through the 

crossover operator. By getting operators mentioned above, a new member is created and assessed according 

to the objective function.  This individual's fitness is matched against the fitness of the corresponding 

individual, and the best one is chosen for the coming generations. It is noted that these processes are 

performed until the terminating conditions are fulfilled. The preceding procedure shows these steps [22, 

23]. 

5.1. Initialization 
Within the problem's search space, the population is produced probabilistically as follows : 

( ), , , , 1*              1,2, ,     &    1,2, ,n m n m n m n mW LB UB LB rand for n NP m NV= + − =  =     (18) 

where W denotes the problem's decision variables; The terms NP, UB, and LB signify the population size, 

as well as the upper and lower boundaries; rand1 is a number with a consistent value between 0 and 1; The 

number of variables is represented by NV. 

5.2. Mutation operator  

Since one new solution is developed via existing individuals, this phase is the most crucial segment of the 

DE process. Three members of the population are picked at random, and a new solution named 𝑋𝑛
𝐺+1 is 

generated by: 

( )1

1 2 3*G G G G

n r c r rX W F W W+ = + −   (19) 

𝐹𝑐 in the above expression is a fixed value in the range [0, 2]. Furthermore, the three parameters picked at 

random are expressed by 𝑊𝑟1
𝐺 , 𝑊𝑟2

𝐺  and 𝑊𝑟3
𝐺 . 

5.3. Crossover operator 

The new solution, which was previously created during the mutation stage, is now blended with the 

population's ith member to increase its variety. A solution that allows escaping from local optimal solution 

is created based on the solution obtained from the mutation operator and the nth member of the population. 



10 | P a g e  

 

1

, 2

1

,

,

       

  

G

n m r

G

n m

ra

n

nd

G

m

X or mif rand C

Y

W otherwise

m+

+

 
 

=  



=




 (20) 

The 𝑌𝑛
𝐺+1 solution is constructed using the 𝑊𝑛

𝐺  and 𝑋𝑛
𝐺+1, as well as the 𝐶𝑟  term (a user-selected number 

between zero and one). randm  is a uniform random number ranging from [0 1]. 

5.4. Selection operator 

The desired solution is saved for next generation in this stage. It means if the efficiency of the produced 

member, that is, 𝑌𝑛
𝐺+1, is better than the nth individual in the population, it will be retained for the next 

generation; conversely, the preceding member, i.e., 𝑊𝑛
𝐺 will be kept for the next generation. 

( ) ( )1 1

1

      

                                            

n n

G G G

n

G

G

n

n

Y if fitness Y fitness W

W

W otherwise

+ +

+

 
  

=  
 
  

  (21) 

here, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(∙) refers to the fitness values of the underlying solutions. 

5.5. Fuzzy Pareto dominance 
Even though the mentioned DE algorithm can be either used to solve a single objective function or utilized 

for solving multi-objective functions by combining multiple objectives into just one objective is easier to 

use for tackling optimization problems, it is incapable of identifying alternate solutions. The Pareto-

dominance technique is a subclass of metaheuristic algorithms that gives a broader variety of possible 

solutions, resulting in greater flexibility in decision-making. Specific methods, for instance, may result in 

a more significant quality enhancement in voltage deviation, whereas others result in improved 

compensation for voltage imbalance. Because multiple solutions are available, the operator can select the 

solution that enhances the indices depending on the system status [24–26] .  

The fuzzy Pareto dominance (FPD) approach is used in this research to identify the non-dominated solutions 

by the DEA. Mathematically explaining, a solution, here f1, is dominated by another solution, e.g., f2, at 

the degree of p is given as: 
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min( 1 , 2 )

( 1, 2)
2

i i

i

i

i

f f

p f f
f

 =



 (22) 

in which f1 and f2 are indeed the fitness values of the two selected solutions. The amount of domination 

ranges from 0 to 1. If it is equal to 1, f2 completely dominates f1. The solutions are non-dominated if 

1( , 2)p f f  and 1( , 2)p f f are both smaller than 1. 

After identifying the non-dominant solutions, selecting one of the solutions is required. To accomplish so, 

the list of solutions is normalized into ranges between zero and one as shown. 

min

max

min max

max min

max

1
( )

( )
( ) ( )

( )
0

i i

i i
fi i i i

i i

i i

fitness W fitness
fitness fitness W

W fitness fitness W fitness
fitness fitness

fitness W fitness



 
 

− 
=   

− 
  

  (23) 

The ith function's minimum and maximum fitness are indicated by 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖
𝑚𝑖𝑛 and 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

𝑚𝑎𝑥, 

respectively. Using the following criteria, the final solution is chosen from among the normalized solutions: 

1

1 1

( )

( )

( )

of

ofr

N

i fi n

i

NN

i fi n

m i

C x

n

C x









=

= =



=






 (24) 

In the above equation, 𝑁𝑟 denotes the number of solutions in the repository, and 𝜇𝑓𝑖 means the normalized 

fitness function for the nth solution. Furthermore, the weighting coefficient is represented by the parameter 

𝐶𝑖. 

The procedure of mentioned optimization approach is illustrated in Fig.3. 
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Fig.3 the flowchart of the proposed optimization procedure 

6. Simulation results 
A modified 37-bus unbalanced distribution network shown in Fig. 4 is used as a test system to verify the 

applicability of the proposed method [27]. This is a real test system corresponding to an underground 

network in California. Bus 1 is selected as the slack bus and base voltage is 4.8kV. Comparing to the 

original 37-bus network, some voltage regulators were removed and replaced by lines. The data of test 

system is provided in Appendix. It is assumed that a three-phase EVCS which the capacity of each phase 

is 100kW and 100kVAr is candidate to be allocated into the network. Despite those, three three-phase SPIs 

are also considered to be assigned to the system. Also, the uncertainty of loads have direct effect on planning 

and operation schemes. Accordingly, the uncertainty of load should be modeled for making a robust 

decision under such circumstances. To this end, some errors are added into the forecasted values (see Table 

1 in appendix) to generate the load scenarios based on the procedure discussed in section 4. The generated 

load scenarios are illustrated in Fig. 5. The proposed approach is then evaluated under the following cases. 

• Case 1: base case without any resources 

• Case 2: merely EVCSs allocation 

• Case 3: merely SPIs allocation 

• Case 4: both EVCSs and SPIs allocations 
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Fig.4 the line diagram of 37-bus unbalanced distribution grid 

 

 

 

Fig.5 the generated scenarios for the loads of 37-bus test network. 
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As can be seen from Fig. 6, the power loss of the system varies from 300 to 350 kW in case 1 depended on 

load scenarios. However, it is increased if EVCS is integrated in case 2, where the power loss is between 

400 to 480. This trend decreases effectively when SPIs are installed in the system in case3. On the other 

hand, in case 4 where EVCS and SPIs co-exist, the power loss has a slightly different pattern, meaning that 

SPIs contribute in the power loss minimization while EVCS impose additional power loss into the system. 

From this comparison, it is clear that SPIs can compensate for the power loss imposed into the system. 

 

Fig.6 the power loss of the network 

Fig. 7 illustrates the voltage deviation of system under 4 cases. The total voltage deviation (Obj 2) in case 

1 is approximately between 7.4 p.u and 8.2 p.u. However, it accounts for between 8.6 p.u and 9.4 p.u in 

case 2, which is higher than case 1. Surprisingly, it varies from 1.5 p.u to 2.2 p.u, when SPIs were allocated 

to network. Consequently, in case 4 where EVCS and SPIs are installed, there is also a significant decrease 

in voltage deviation, even compared to case 1. Accordingly, simultaneous integration of EVCS and SPIs 

can be an excellent remedy to support the system and decrease voltage violations. 
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Fig.7 the voltage deviation of the network 

Unbalanced voltage compensation is also an essential factor when planning EVCSs. The VUF for all cases 

is depicted in Fig. 8. It should be noted that these values are the summation of VUF across the network 

(Obj 3). As clearly seen, the VUF is the highest in case 2, where EVCS is integrated to the network. 

However, a significant decrease is witnessed in Case 3 due to the allocation of SPIs. In other words, this 

reaches the least VUF in case 3. Finally, in case 4, the amount of VUF is more minor than case 1 and 2, 

although there is a slight increase compared with case 3. This comparison shows that the amount of VUF 

decreases, if SPIs cooperate in supporting system. 

 

Fig.8 the voltage unbalance factor of the network 
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The PDFs of active power generated by PVs in cases 3 and 4 are revealed in Fig. 9. In more detail, as 

mentioned above, the three three-phase SPIs are allocated into network. For example, active power of PV1 

is the amount of generated power by PV1 which is injected to phase A, B, and C. As can be seen, the active 

power generated by PVs in case 3 is less than in case 4. This is because a significant consumption is 

supported by PVs. However, the consumption of network has a little increased by EVCS, so the generation 

of PVs increases slightly. 

Fig. 10 depicts the PDFs for reactive power generation of PVs for cases 3 and 4. Similarly, the reactive 

powers in case 4 which PVs must generate are higher than case 3. As explained above, there is reactive 

power penetration in networks via EVCS in case 4. PVs, on the other hand, could participate in supporting 

reactive power by smart inverters. 

 

Fig.9 the active power generation of PVs in cases 3 and 4 
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Fig.10 the reactive power generation of PVs for cases 3 and 4 

 

In the Fig.11, there are possible locations for different resources in all cases. In other words, a set of 

locations are obtained after solving the problem for various scenarios. A number of scenarios lead to 

different loacations. To find optimal locations to allocate resources, the most repeated locations should be 

selected. According this, the optimal location can be recognized. The optimal location and capacities for 

resources are finally shown in Table 1, which are extracted based on Fig.11. 

The voltage profile of the network per each phase is depicted in Fig. 12. It is clear that, when EVCS is 

integrated in the system, voltage at all phases decreases. However, it can be enhanced by PV inverters as 

shown in case 3 and 4. 

At each bus, the VUF is illustrated in Fig.13. The amount of VUF decrees significantly in case 3, where 

just PVs are allocated. However, it reaches the summit in case 2, where EVCS is allocated into the network. 

On the other hand, simultaneous integration of EVCS and SPIs, case4, helps to keep this factor under 

expected value. 
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Table 1. The results obtained based on the different scenarios 

Case No. 
Obj1 

(kW) 

Obj2 

(p.u) 

Obj3 

(%) 

EVCS location EVCS Capacity SPIs location SPIs Capacity 

Case1 
196.87 5.80 43.11 

- - - - 

Case2 
220.62 6.21 44.74 

Phase ABC:  3 Phase ABC: 100kW, 100kVAr - - 

Case3 53.87 1.82 20.86 - - 

PV1: PhaseABC:14 

PV2: PhaseABC: 4 

PV3: PhaseABC:9 

PV1: Phase ABC:500 kW, 195 kVAr 

PV2: Phase ABC:500 kW, 325 kVAr 

PV3: Phase ABC: 500kW, 250 kVAr 

Case4 49.56 1.71 22.57 Phase ABC: 3  Phase ABC: 100kW, 100kVAr 

PV1: PhaseABC:10 

PV2: PhaseABC:4 

PV3: PhaseABC:15 

PV1: Phase ABC:500 kW, 195 kVAr 

PV2: Phase ABC:500 kW, 275 kVAr 

PV3: Phase ABC:500 kW, 265 kVAr 

 

 

 
Fig.11 the location of resources in different cases 
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Fig.12 the voltage profile of network 

 
Fig.13 the VUF at each bus of network 

7. Conclusion 
In this paper, smart photovoltaic inverters have been deployed as means of ancillary service to 

support extra demand imposed to the network via allocating EVCSs. The proposed planning of 

EVCSs was formulated as a stochastic multi-objective framework based on a hybrid fuzzy 

dominance concept with a differential evolution algorithm. The performance of planning approach 

was studied on an unbalanced network under four different cases, including base case, just EVCS 

allocation, merely SPIs sizing and placement, and simultaneous EVCS and SPIs integration. 

Simulations results demonstrated that EVCS could impose various challenges into the network 

such as the increase in power loss, voltage deviation, and voltage unbalance. However, it could be 

seen that, such problems can be tackled if SPIs are appropriately designated into the system. 

Accordingly, SPIs were deemed as a promising remedy to compensate the voltage imbalance, 

voltage profile enhancement, and power loss reduction. In sequel investigations, power quality 

issues would be considered when EVCSs are integrated into the unbalanced networks. 
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Appendix 

Table A. the data of modified 37-bus unbalanced distribution network 

Branch 

Number 

Sending 

End 

Receiving 

End 

Conductor 

type 

Length 

(ft) 

Demand at receiving 

end of Phase A 

(kVA) 

Demand at receiving 

end of Phase B 

(kVA) 

Demand at receiving 

end of Phase C 

(kVA) 

1 1 2 1 1850 210  + 105j 210   + 105j 525   + 262.5j 

2 2 3 2 960 0.00  + 0.00j 189   + 93.0j 0.00  + 0.00j 

3 3 4 2 1320 0.00  + 0.00j 0.00  + 0.00j 0.00  + 0.00j 

4 4 5 3 600 0.00  + 0.00j 0.00  + 0.00j 127.5 + 60.0j 

5 5 6 3 200 0.00  + 0.00j 0.00  + 0.00j 0.00  + 0.00j 

6 6 7 3 320 0.00  + 0.00j 0.00  + 0.00j 0.00  + 0.00j 

7 7 8 3 320 127.5 + 60.0j 0.00  + 0.00j 0.00  + 0.00j 

8 8 9 3 560 0.00  + 0.00j 0.00  + 0.00j 63.0  + 31.5j 

9 9 10 3 640 210   + 105j 0.00  + 0.00j 0.00  + 0.00j 

10 10 11 3 400 189   + 93.0j 0.00  + 0.00j 0.00  + 0.00j 

11 11 12 3 400 0.00  + 0.00j 0.00  + 0.00j 31.5  + 15.0j 

12 12 13 3 400 0.00  + 0.00j 63.0  + 31.5j 63.0  + 31.5j 

13 3 14 3 360 0.00  + 0.00j 0.00  + 0.00j 127.5 + 60.0j 

14 14 15 3 520 0.00  + 0.00j 0.00  + 0.00j 31.5  + 15.0j 

15 15 16 3 800 0.00  + 0.00j 0.00  + 0.00j 127.5 + 60.0j 

16 16 17 3 600 0.00  + 0.00j 0.00  + 0.00j 0.00  + 0.00j 

17 17 18 4 280 0.00  + 0.00j 63.0  + 31.5j 0.00  + 0.00j 

18 16 19 4 920 0.00  + 0.00j 0.00  + 0.00j 0.00  + 0.00j 

19 19 20 4 760 0.00  + 0.00j 63.0  + 31.5j 0.00  + 0.00j 

20 19 21 4 120 0.00  + 0.00j 210   + 105.j 31.5  + 15.0j 

21 15 22 4 80 25.5  + 12.0j 31.5  + 15.0j 0.00  + 0.00j 

22 22 23 4 520 127.5 + 60.0j 0.00  + 0.00j 0.00  + 0.00j 

23 3 24 4 400 0.00  + 0.00j 0.00  + 0.00j 0.00  + 0.00j 

24 24 25 4 320 12.0  + 6.00j 127.5 + 60.0j 0.00  + 0.00j 

25 24 26 4 240 0.00  + 0.00j 0.00  + 0.00j 127.5 + 60.0j 

26 4 27 4 240 0.00  + 0.00j 0.00  + 0.00j 63.0  + 31.5j 

27 27 28 3 280 63.0  + 31.5j 0.00  + 0.00j 0.00  + 0.00j 

28 28 29 4 280 63.0  + 31.5j 0.00  + 0.00j 0.00  + 0.00j 

29 28 30 4 200 63.0  + 31.5j 63.0  + 31.5j 63.0  + 31.5j 

30 6 31 3 0 0.00  + 0.00j 0.00  + 0.00j 0.00  + 0.00j 
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31 6 32 3 600 0.00  + 0.00j 127.5 + 60.0j 0.00  + 0.00j 

32 7 33 4 320 0.00  + 0.00j 0.00  + 0.00j 63.0  + 31.5j 

33 9 34 4 520 0.00  + 0.00j 0.00  + 0.00j 0.00  + 0.00j 

34 34 35 4 200 0.00  + 0.00j 0.00  + 0.00j 127.5  + 60.0j 

35 34 36 4 1280 0.00  + 0.00j 63.0  + 31.5j 0.00  + 0.00j 

36 12 37 4 200 0.00  + 0.00j 0.00  + 0.00j 127.0  + 60.0j 

 

Table B. the self and mutual impedances of lines (see Fig. A for more information) 

Conductor Type 

Impedance in ohms/mile 

phase a b c 

1 

a 0.2926+0.1973j 0.0673-0.0368j 0.0337-0.0417j 

b 0.0673-0.0368j 0.2646+0.1900j 0.0673-0.0368j 

c 0.0337-0.0417j 0.0673-0.0368j 0.2926+0.1973j 

 

2 

a 0.4751+0.2973j 0.1629-0.0326j 0.1234-0.0607j 

b 0.1629-0.0326j 0.4488+0.2678j 0.1629-0.0326j 

c 0.1234-0.0607j 0.1629-0.0326j 0.4751+0.2973j 

 

3 

a 1.2936+0.6713j 0.4871+0.2111j 0.4585+0.1521j 

b 0.4871+0.2111j 1.3022+0.6326j 0.4871+0.2111j 

c 0.4585+0.1521j 0.4871+0.2111j 1.2936+0.6713j 

 

4 

a 2.0952+0.7758j 0.5204+0.2738j 0.4926+0.2123j 

b 0.5204+0.2738j 2.1068+0.7398j 0.5204+0.2738j 

c 0.4926+0.2123j 0.5204+0.2738j 2.0952+0.7758j 

 

Va(i) Va(j)
Zaa(ij)

Vb(i) Vb(j)
Zbb(ij)

Vc(i) Vc(j)
Zcc(ij)

Zab(ij)

Zbc(ij)

Zac(ij)

 
Fig. A. a three-phase feeder model 
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