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Abstract

Due to the environmental concerns, getting deteriorated ongoingly, it is becmoing essential to encourage
people to use sustainable energies. One of the most effective alternatives to mitigate pollution is to promote
green mobility via electric vehicles (EVs). However, the lack of electric charging stations (EVCS) may
decrease individuals’ satisfaction to use EVs in daily life. To bridge the gaps, this paper aims to
simultaneously allocate EVCS and smart photovoltaic inverters (SPIs) in distribution networks to optimize
three important objetive functions, including power loss, voltage deviation (VD), and voltage unbalance
factor (VUF). To solve such a multi-objective optimization problem, a novel hybrid fuzzy Pareto
dominance concept with differential evolution algorithm (FPDEA) is proposed to identify non-dominanted
solutions. For practical considerations, the uncertainty of loads is also captured using Monte Carlo
Simulations (MCSs). The effectiveness of the stochastic multi-objective approach is then examined and
verified on an unbalanced 37-bus network under different case studies. Attained results illustrate that
EVCSs can be effectively integrated into networks where SPIs are installed and able to support ancillary

services (e.g., reactive power compnesation).

Keywords: Electric vehicle, unbalanced distribution networks, unbalanced voltage compensation, smart PV

inverters, multi-objective optimization.
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1. Introduction
Electric vehicles (EVs) are indeed a convenient option for transportation systems due to pressure from

carbon dioxide emissions, environmental degradation, and energy shortages. Nevertheless, limitted number
of charging stations is also becoming a significant impediment to the broad adoption of EVs. Moreover, the
global fleet market for EVs is growing imposing new challenges to the power systems operators in terms

of peak load mamagement, and frequency and voltage regulations, among others [1].

So far, various investigations have been done to optimally allocate EV charging stations (EVCSs) in
balanced distribution networks. Authors in [2] proposed a stochastic approach based on a point estimation
model to find out the optimal location and sizing of charging stations for EVs. The objective function was
the summation of several objective functions, e.g., the cost of purchasing land, the cost of facilities for
establishing EV stations, maintenance costs, etc. The problem was then solved via a genetic algorithm.
Similarly, in [3], EVCSs were determined by a teaching-learning based optimization (TLBO) algorithm to
consider three objective functions, including real power loss, voltage deviation index, and voltage stability
index. All these functions were combined via three coefficient (weighted-sum approach) and were
implemented on two balanced distribution networks, namely 33 and 69 buses. In addition, EVCSs
considering capacitor banks and distributed generations were allocated in balanced distribution grids via
the genetic algorithm in [4]. Power losses minimization by placing EVCSs and DGs was also addressed in
balanced distribution grids in [5]. Similarly, in [6], a bi-objective planning approach, e.g., energy cost and
emission, was developed to allocate EVCSs, renewable energies, and energy storage in distribution grids.
The model was solved by multi-objective particle swarm optimization and was implemented in a case study
in China. A comprehensive assessment of the advantages of EVCSs and renewable energies was also
investigated in [7]. Authors of [8] used a planning approach for EVCSs, and distributed generation in
balanced distribution networks via three heuristic algorithms. A hybrid approach based on the genetic and
particle swarm optimization algorithms was developed in [9] to optimize several objective functions,
including power losses, voltage deviation, the cost of charging and load, and the cost of an EV battery.

EVCSs and capacitor banks were placed in distribution networks to alleviate of the power loss, maximize
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the network’s benefit, and reliability enhancement in [10]. All these investigations were concentrated on
balanced distribution systems and the properties of unbalanced networks have not been taken into account.
However, distribution networks are inherently unbalanced, so EVCSs at various loading rates drastically
affect voltage regulation, transformer loading, and power flows through different phases of distribution
grids. When EVCSs are connected in an unsettling form among different phases, nodal voltages, line
currents, active and reactive powers, and energy loss might get changed and deteriorated from what initially
calculated/planned [11, 12]. Under real conditions, the distribution systems may be unbalanced which has
some drawbacks compared to balanced networks, like more power losses, equipment malfunction, etc.
Several research efforts have been focused on unbalanced networks to prevent such a problem. For instance,
n [13], the authors elaborated on the allocation of EVCSs and distributed generations in unbalanced
systems. The objective function was power loss minimization and solved via particle swarm optimization
algorithm. Similarly, authors in [14], proposed a multi-objective planning of EVCSs in unbalanced
distribution networks, considering several objective functions, such as minimizing the annualized
investment cost, system losses, voltage deviation, etc. However, unbalanced voltage compesation and
reactive power capability of smart inverters were not considered in that study. In [15], a modified version
of the dragonfly algorithm was proposed for power loss minimization of distribution networks, where the
impact of demand increase in some phases of network was investigated on voltage unbalance. However,

unbalanced voltage compensation was not considered as an objective function.

As clearly seen from the reviewed literature, there are still some gaps needing further investigations. Firstly,
most of the previous works have been focused on balanced electrical systems while in practice, operators
deal with many unbalanced conditions. Although some efforts have been made on unbalanced networks,
they did not consider abilities of photovoltaic (PV) inverters in compensating the reactive power and voltage

regulation which in turn increases system flexibility and decreases complexity in real-time operation.

Finally, the multi-objective stochastic procedure was framed without considering several important
objective functions simultaneously from the viewpoint of distribution system operators, such as power loss,

voltage unbalance, and voltage deviation. Accordingly, this paper tends to provide a comprehensive
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planning of EVCSs in unbalanced networks while addressing the aforementioned issues. The contributions

of the work are as follows:

e In the proposed study, EVCSs are allocated in unbalanced networks for decreasing power loss,
voltage deviation (VD), and voltage unbalance factor (VUF).

o A multi-objective framework is developed based on the hybridizing fuzzy Pareto dominance with
differential evolution algorithm (FPDEA) to recognize a set of non-dominated solutions. A
compromised solution is finally selected based on the fuzzy rules.

e The reactive power capabilities of smart PV inverters (PSIs) are also deployed as an ancillary
service to support system when EVCs are integrated into networks. The advantage of this solution
compared to conventional ones are demonstrated in several case studies.

o To capture realistic working conditions, uncertainty of load is also modeled via Monte Carlo

simulations (MCSs).

2. Smart inverters
Conventionally, PV inverters were developed for converting the DC solar power to AC active power at

unity power factor. However, distribution system operators or solar farm owners tend to get inverters’
potential to absorb or inject reactive power into the system. To put it differently, when transforming DC
electricity from PV panels to AC real power, the inverters’ capacities are not deployed entirely. Reactive
power could therefore be compensated by employing the inverter's unused capacity. To illustrate that, an
example is shown in Fig.1. The amount of generated reactive power can be specified by the 4 point
characteristics (A1-A4). The first segment of the curve (before point A1) denotes a condition where the
maximum amount of injected reactive power (into the grid) has been reached. The next segment (from point
Al to point A2), denotes the ability to inject reactive power into the network by the inverter. The region
between points A2 and A3 is described as the dead band range, in which the reactive power is neither
injected to nor absorbed from the system. The last segment (between points A3 and A4) shows the ability

of an inverter to absorb reactive power till the maximum capacity is reached. In this investigation, the rating
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of smart PV inverters is calculated to support the unbalanced distribution network under different loading

conditions which is mainly affected by EVs charging demands.
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Fig. 1 the characteristic of smart PV inverter to support the reactive powers

3. Problem formulation

3.1. Objective functions
Three objective functions are considered in this paper as discussed in the following.

3.1.1. Power loss
Generally, 5-10 percent of the entire energy produced in electricity grids is lost at the distribution side [16].
High energy losses in distribution networks could give rise to equipment deterioration due to overheating

[17]. To this end, line losses reduction in distribution networks is considered as the first objective in this

work.
SLOSSg,b C = (Va[,b C _Va{b C )(Izij,b C ) (1)
PLoss?, . =real(SLoss?, ) 2)

i
ab.c

in above, SLoss and PLOSSZib . denote the complex, and real power losses, respectively; Va’;b o and

Va{ ». are voltages of buses i and j, respectively; / v

ab,c

shows the current of line ij.

Obj1= min[ZPLossg’b . J 3)
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3.1.2. Voltage deviation

The goal of this fitness function is to maximize the voltage at all nodes of the network by reducing
the difference between the voltage of the slack node and the voltage of the ith node. It results in a
flatter voltage profile across the network, which reduces under voltage at feeders located too far from
the substation. The voltage deviation decrease is given as the second objective function as follows

[18]:

VD' =WV V.. (4)

sub i

here, “*< and “’<are the voltages of the substation and nodes for three phases.

The second objective function is eventually modeled by the following equation.

Obj 2 = min (ZVD" j (5)

3.1.3. Voltage unbalance factor

Unbalanced voltage compensation is one of the most important objective functions for electrical
distribution system operation and planning. This is because a significant portion of consumers are
linked to single-phase of networks, resulting in voltage imbalance in the system. Similarly, in
unbalanced distribution systems, EVCSs are distributed across multiple phases, affecting the voltage
of other buses through the network. As a result, when EVCSs are placed at the single-phase network,

VUF should be considered as an objective function. The following relation expresses VUF [12]:

i
neg
i

VUF' = x100 (6)
V

pos

In distribution systems, rising electricity supply varies the voltage levels, resulting in negative or
positive voltage sensitivity. The Fortescue transform is used to determine the positive and negative

voltage sequences as follows [19]:
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i 2rr i i
V,+taV, +aV,

Vnieg - 3 (7)
. VitaV, +a¥!

Vs == ; ‘ )

a=1-120° ©)

i i

where, "¢ and ?* respectively signify the negative and positive voltage sequences at the itk node;

view,

a, , and V. denote the voltages of phases a, b, c, respectively. Finally, the third objective

function, VUF, is defined as follows:

Obj3 = min(ZVUF[ j (10)

3.2.  Operational constraints
Following constraints are used to secure operation of the system under the planning of EVCSs. The

constraints (11) is used to keep voltage within acceptable ranges; in (12), the line current capacity is
enforced; equations (13) and (14) are representing the active and reactive power capacity of PV resources;

the size of EVCSs could be then limited between its maximum and minimum values via (15) and (16).

Ve SVipe SV (11)
1], <175 (12)
PVt <PV <PV % (13)
QPV " <QPV )  <QPV ™ (14)
PEVCS!) <PEVCS., <PEVCSI (15)
QEVCS!) <QEVCS., <QEVCSI X (16)

min max . .. .. . ij
here, V') and V' ;" denote the maximum and minimum permissible voltages, respectively. /”, = and

I™* are the line current and its maximum capacity, respectively. PV " and P V .y respectively show

ab,c abc
. .. . . min max . .
the maximum and minimum active rating of PVs. QPV )" and QPV }" respectively show the maximum
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max

.5 o denote the minimum

and minimum reactive rating of smart PV inverters. PEVCS ,;nc and PEVCS

and maximum capacities of active demand of EVCSs. QEVCS™" and QEVCS™ illustrate the

abc ab,c

minimum and maximum capacities of reactive demand of EVCSs.

4. Scenario generation
Uncertainties play the prominent role in the operation and planning of power systems. To model the

uncertain parameters, a proper probability density function (PDF) is considered initially. Every PDF is then
separated into multiple segments, i.e. a normal PDF with seven components is illustrated in Fig.2. As can
be seen, every probability level indicates a particular error in the parameter under uncertainty. The
procedure of scenario creation is accompanied by deploying a roulette wheel mechanism (RWM). For each
uncertain variable, a number is randomly generated in the interval [0, 1]. This random number falls into
one of the probability levels of the PDF. This approach is repeated until a set of scenarios are generated

[20, 21].

Level 1

Probability Density

30 -20 -O 0 o 20 30

Forecasted Error

Fig. 2 a sample of normal PDF

5. Optimization process
As a heuristic approach, the differential evolution (DE) method is capable of solving non-deterministic

polynomial-time challenging tasks. This method was created to address the fundamental disadvantage of

the genetic algorithm, which is its lack of local search. There are four critical steps in this procedure. At the
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beginning, this approach creates the population between the upper and lower limits of problems. The
function called mutation is then employed to produce a new member regarding selecting several individuals
in the population. The mutant individual is then joined with the ith member of the population through the
crossover operator. By getting operators mentioned above, a new member is created and assessed according
to the objective function. This individual's fitness is matched against the fitness of the corresponding
individual, and the best one is chosen for the coming generations. It is noted that these processes are
performed until the terminating conditions are fulfilled. The preceding procedure shows these steps [22,
23].

5.1. Initialization
Within the problem's search space, the population is produced probabilistically as follows:

w,,=LB,,+(UB,, LB, Yrand, for n=12.. NP & m=12,. NV (18)
where W denotes the problem's decision variables; The terms NP, UB, and LB signify the population size,
as well as the upper and lower boundaries; rand1 is a number with a consistent value between 0 and 1; The

number of variables is represented by NV.

5.2. Mutation operator

Since one new solution is developed via existing individuals, this phase is the most crucial segment of the
DE process. Three members of the population are picked at random, and a new solution named X$*1 is

generated by:
X7 =w S +E WS- S) (19)

F. in the above expression is a fixed value in the range [0, 2]. Furthermore, the three parameters picked at

random are expressed by W, , W,% and W5

5.3. Crossover operator

The new solution, which was previously created during the mutation stage, is now blended with the
population's ith member to increase its variety. A solution that allows escaping from local optimal solution
is created based on the solution obtained from the mutation operator and the nth member of the population.
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G+1 .
X if rand, <C, orm=m,,
Y= (20)

w ¢ otherwise

n,m
The Y,%*1 solution is constructed using the W,¢ and XS*1, as well as the C, term (a user-selected number

between zero and one). 7, is a uniform random number ranging from [0 1].

5.4. Selection operator

The desired solution is saved for next generation in this stage. It means if the efficiency of the produced
member, that is, ¥,2*1, is better than the nth individual in the population, it will be retained for the next
generation; conversely, the preceding member, i.e., W,¢ will be kept for the next generation.

Y " if fitness (Yf”) < fitness (WnG )

WnGJrl — (21)

w e otherwise

here, fitness(-) refers to the fitness values of the underlying solutions.

5.5. Fuzzy Pareto dominance

Even though the mentioned DE algorithm can be either used to solve a single objective function or utilized
for solving multi-objective functions by combining multiple objectives into just one objective is easier to
use for tackling optimization problems, it is incapable of identifying alternate solutions. The Pareto-
dominance technique is a subclass of metaheuristic algorithms that gives a broader variety of possible
solutions, resulting in greater flexibility in decision-making. Specific methods, for instance, may result in
a more significant quality enhancement in voltage deviation, whereas others result in improved
compensation for voltage imbalance. Because multiple solutions are available, the operator can select the

solution that enhances the indices depending on the system status [24-26] .

The fuzzy Pareto dominance (FPD) approach is used in this research to identify the non-dominated solutions
by the DEA. Mathematically explaining, a solution, here f1, is dominated by another solution, e.g., {2, at

the degree of sp is given as:
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[ [min(¢F1,.72,)
1,f2) =t
up(f1,12) Hf2f

(22)

in which f1 and f2 are indeed the fitness values of the two selected solutions. The amount of domination
ranges from O to 1. If it is equal to 1, f2 completely dominates f1. The solutions are non-dominated if

up(f1,f2) and pup(f 1,/ 2)are both smaller than 1.

After identifying the non-dominant solutions, selecting one of the solutions is required. To accomplish so,

the list of solutions is normalized into ranges between zero and one as shown.

1 4
fitness, W) < fitness ™"
fitness ™ —fitness, W) :

i T —— fitness;"" <fitness, (W ) < fitness;™" (23)
itness ™" —fitness, ] ] o
0 fitness, W) = fitness,

/uf[(W):

The ith function's minimum and maximum fitness are indicated by fitness/™™" and fitness{"**,

respectively. Using the following criteria, the final solution is chosen from among the normalized solutions:

ici X (x,)
() = (24)
chi X M (‘xn)

m=li=1

In the above equation, N, denotes the number of solutions in the repository, and pf; means the normalized

fitness function for the nth solution. Furthermore, the weighting coefficient is represented by the parameter

C..

The procedure of mentioned optimization approach is illustrated in Fig.3.
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Generating scenarios Input data:
associated with demands Distribution system
EVCS, PV
Forecasted demand
Algorithm parameters

solution

£

Extracting non-
dominated solutions

( Find the compromised)

Fig.3 the flowchart of the proposed optimization procedure

6. Simulation results
A modified 37-bus unbalanced distribution network shown in Fig. 4 is used as a test system to verify the

applicability of the proposed method [27]. This is a real test system corresponding to an underground
network in California. Bus 1 is selected as the slack bus and base voltage is 4.8kV. Comparing to the
original 37-bus network, some voltage regulators were removed and replaced by lines. The data of test
system is provided in Appendix. It is assumed that a three-phase EVCS which the capacity of each phase
is 100kW and 100kV Ar is candidate to be allocated into the network. Despite those, three three-phase SPIs
are also considered to be assigned to the system. Also, the uncertainty of loads have direct effect on planning
and operation schemes. Accordingly, the uncertainty of load should be modeled for making a robust
decision under such circumstances. To this end, some errors are added into the forecasted values (see Table
1 in appendix) to generate the load scenarios based on the procedure discussed in section 4. The generated
load scenarios are illustrated in Fig. 5. The proposed approach is then evaluated under the following cases.

e Case 1: base case without any resources

e (Case 2: merely EVCSs allocation

e (Case 3: merely SPIs allocation

e Case 4: both EVCSs and SPIs allocations
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Fig.5 the generated scenarios for the loads of 37-bus test network.
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As can be seen from Fig. 6, the power loss of the system varies from 300 to 350 kW in case 1 depended on
load scenarios. However, it is increased if EVCS is integrated in case 2, where the power loss is between
400 to 480. This trend decreases effectively when SPIs are installed in the system in case3. On the other
hand, in case 4 where EVCS and SPIs co-exist, the power loss has a slightly different pattern, meaning that
SPIs contribute in the power loss minimization while EVCS impose additional power loss into the system.

From this comparison, it is clear that SPIs can compensate for the power loss imposed into the system.

Casel Case2

260 280 300 320 340 360 380 360 380 400 420 440 460 480 500
Power Loss (kW) Power Loss (kW)
Case3 Case4
8 r : T 6 : . T

30 40 50 60 70 80 60 68 76 84
Power Loss (kW) Power Loss

Fig.6 the power loss of the network

Fig. 7 illustrates the voltage deviation of system under 4 cases. The total voltage deviation (Obj 2) in case
1 is approximately between 7.4 p.u and 8.2 p.u. However, it accounts for between 8.6 p.u and 9.4 p.u in
case 2, which is higher than case 1. Surprisingly, it varies from 1.5 p.u to 2.2 p.u, when SPIs were allocated
to network. Consequently, in case 4 where EVCS and SPIs are installed, there is also a significant decrease
in voltage deviation, even compared to case 1. Accordingly, simultaneous integration of EVCS and SPIs

can be an excellent remedy to support the system and decrease voltage violations.
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Voltage Deviation (p.u) Voltage Deviation (p.u)

Lo

Fig.7 the voltage deviation of the network

Unbalanced voltage compensation is also an essential factor when planning EVCSs. The VUF for all cases
is depicted in Fig. 8. It should be noted that these values are the summation of VUF across the network
(0bj 3). As clearly seen, the VUF is the highest in case 2, where EVCS is integrated to the network.
However, a significant decrease is witnessed in Case 3 due to the allocation of SPIs. In other words, this
reaches the least VUF in case 3. Finally, in case 4, the amount of VUF is more minor than case 1 and 2,
although there is a slight increase compared with case 3. This comparison shows that the amount of VUF

decreases, if SPIs cooperate in supporting system.

Casel Case2
8 T 8 T T
6 6
z =
24 24 /
a 2
i \ | il / \ 1
51 57 63 69 45 50 55 60 65 70 75 80
Voltage Unbalance (%) Voltage Unbalance(%)

6 Case3 Cased4

o N
/

24 1 4r /

=Py \ 1 L ]

/ . ‘ N o / ‘

15 20 25 30 35 40 23 27 31 35
Voltage Unbalance(%) Voltage Unbalance(%)

[

Density

N

Fig.8 the voltage unbalance factor of the network
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The PDFs of active power generated by PVs in cases 3 and 4 are revealed in Fig. 9. In more detail, as
mentioned above, the three three-phase SPIs are allocated into network. For example, active power of PV1
is the amount of generated power by PV1 which is injected to phase A, B, and C. As can be seen, the active
power generated by PVs in case 3 is less than in case 4. This is because a significant consumption is
supported by PVs. However, the consumption of network has a little increased by EVCS, so the generation

of PVs increases slightly.

Fig. 10 depicts the PDFs for reactive power generation of PVs for cases 3 and 4. Similarly, the reactive
powers in case 4 which PVs must generate are higher than case 3. As explained above, there is reactive
power penetration in networks via EVCS in case 4. PVs, on the other hand, could participate in supporting

reactive power by smart inverters.

15 Case3 Case3 Case3
10 10
210 = =
z z z
) s 5 s 5
o ) -\\ ° 74\\
\ 0 0
439457475493 460 480 500 520 540 450 500 550
Active Power of PV1 (kW) Active Power of PV2(kW) Active Power of PV3(kW)
Cased4 Case4 Case4
10 15
10
z z 2"
Q \ a M\\ B
0 \ 0 0
480 490 500 510 520 490 495 500 505 510 460 480 500 520 540
Active Power of PV1(kW) Active Power of PV2(kW) Active Power of PV3(kW)

Fig.9 the active power generation of PVs in cases 3 and 4
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Case3 Case3 Case3
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()
4 54 2 M
= = =
D 3 D
e, a, /gy
0 0 0
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Fig.10 the reactive power generation of PVs for cases 3 and 4

In the Fig.11, there are possible locations for different resources in all cases. In other words, a set of
locations are obtained after solving the problem for various scenarios. A number of scenarios lead to
different loacations. To find optimal locations to allocate resources, the most repeated locations should be
selected. According this, the optimal location can be recognized. The optimal location and capacities for

resources are finally shown in Table 1, which are extracted based on Fig.11.

The voltage profile of the network per each phase is depicted in Fig. 12. It is clear that, when EVCS is

integrated in the system, voltage at all phases decreases. However, it can be enhanced by PV inverters as
shown in case 3 and 4.

At each bus, the VUF is illustrated in Fig.13. The amount of VUF decrees significantly in case 3, where
just PVs are allocated. However, it reaches the summit in case 2, where EVCS is allocated into the network.
On the other hand, simultaneous integration of EVCS and SPIs, case4, helps to keep this factor under

expected value.
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Table 1. The results obtained based on the different scenarios

Objl Obj2 Obj3
Case No. EVCS location EVCS Capacity SPIs location SPIs Capacity
(kW) (p-w) (%)
Casel 196.87 5.80 43.11 . . . .
Case2 220.62 621 44.74 Phase ABC: 3 Phase ABC: 100kW, 100kVAr - -
PV1: PhaseABC:14 PV1: Phase ABC:500 kW, 195 kVAr
Case3 53.87 1.82 20.86 - - PV2: PhaseABC: 4 PV2: Phase ABC:500 kW, 325 kVAr
PV3: PhaseABC:9 PV3: Phase ABC: 500kW, 250 kVAr
PV1: PhaseABC:10 PV1: Phase ABC:500 kW, 195 kVAr
Cased 49.56 1.71 22.57 Phase ABC: 3 Phase ABC: 100kW, 100kVAr | PV2: PhaseABC:4 PV2: Phase ABC:500 kW, 275 kVAr
PV3: PhaseABC:15 PV3: Phase ABC:500 kW, 265 kVAr
Case2
15
>
=10 —
w
£ .l ]
(=]
0 | ! | | | l | | l L
2.5 2.6 2.7 2.8 29 3 3.1 3.2 3.3 3.4 3.5
Location of EVCS
Case3 Case3 Case3
4 4 4
& z &
22 g2 22
5} ) 7}
a [=] a
0 0 0
5 10 15 20 25 5 10 15 20 25 30 5 10 15 20 25
Location of PV1 Location of PV2 Location of PV3
Case4
10 T T
£
Z s .
D
(=]
0 | | [ TT11 | [l | |
5 10 15 20 25 30 35
Location of EVCS
Case4 Case4 Cased
4 4 3
£ £ £2
Z2 Z2 =
L Q 3 1
[= a =]
0 0 0
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7. Conclusion
In this paper, smart photovoltaic inverters have been deployed as means of ancillary service to

support extra demand imposed to the network via allocating EVCSs. The proposed planning of
EVCSs was formulated as a stochastic multi-objective framework based on a hybrid fuzzy
dominance concept with a differential evolution algorithm. The performance of planning approach
was studied on an unbalanced network under four different cases, including base case, just EVCS
allocation, merely SPIs sizing and placement, and simultaneous EVCS and SPIs integration.
Simulations results demonstrated that EVCS could impose various challenges into the network
such as the increase in power loss, voltage deviation, and voltage unbalance. However, it could be
seen that, such problems can be tackled if SPIs are appropriately designated into the system.
Accordingly, SPIs were deemed as a promising remedy to compensate the voltage imbalance,
voltage profile enhancement, and power loss reduction. In sequel investigations, power quality

issues would be considered when EVCSs are integrated into the unbalanced networks.
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Appendix

Table A. the data of modified 37-bus unbalanced distribution network

e [ Senting | Rssing | Contuctr [ gt | PEgupieine [ Demmrd st [ Depnt i
(kVA) (kVA) (kVA)
1 1 2 1 1850 210 + 105 210 + 105 525 +262.5]
2 2 3 2 960 0.00 +0.00j 189 +93.0j 0.00 +0.00j
3 3 4 2 1320 0.00 +0.00j 0.00 +0.00] 0.00 +0.00j
4 4 5 3 600 0.00 +0.00j 0.00 +0.00j 127.5 + 60.0j
5 5 6 3 200 0.00 +0.00j 0.00 +0.00] 0.00 +0.00j
6 6 7 3 320 0.00 + 0.00; 0.00 +0.00] 0.00 +0.00j
7 7 8 3 320 127.5+ 60.0j 0.00 +0.00j 0.00 +0.00j
8 8 9 3 560 0.00 +0.00; 0.00 +0.00j 63.0 +31.5)
9 9 10 3 640 210 + 105 0.00 +0.00j 0.00 +0.00j
10 10 11 3 400 189 +93.0j 0.00 +0.00j 0.00 +0.00j
11 11 12 3 400 0.00 +0.00; 0.00 +0.00j 315 +15.0)
12 12 13 3 400 0.00 +0.00; 63.0 +31.5) 63.0 +31.5)
13 3 14 3 360 0.00 +0.00; 0.00 +0.00j 127.5+ 60.0j
14 14 15 3 520 0.00 +0.00; 0.00 +0.00j 315 +15.0)
15 15 16 3 800 0.00 +0.00; 0.00 +0.00j 127.5+ 60.0j
16 16 17 3 600 0.00 +0.00j 0.00 +0.00 0.00 +0.00j
17 17 18 4 280 0.00 +0.00j 63.0 +31.5) 0.00 +0.00j
18 16 19 4 920 0.00 +0.00j 0.00 +0.00 0.00 +0.00j
19 19 20 4 760 0.00 +0.00j 63.0 +31.5) 0.00 +0.00j
20 19 21 4 120 0.00 +0.00j 210 +105] 315 + 15.0]
21 15 22 4 80 255 +12.0j 315 +15.0f 0.00 +0.00j
22 22 23 4 520 127.5+ 60.0j 0.00 +0.00 0.00 +0.00j
23 3 24 4 400 0.00 +0.00j 0.00 +0.00 0.00 +0.00j
24 24 25 4 320 12.0 + 6.00j 127.5 + 60.0j 0.00 +0.00j
25 24 26 4 240 0.00 +0.00j 0.00 +0.00j 127.5 + 60.0j
26 4 27 4 240 0.00 +0.00j 0.00 +0.00j 63.0 +31.5]
27 27 28 3 280 63.0 +31.5] 0.00 +0.00j 0.00 +0.00j
28 28 29 4 280 63.0 +31.5] 0.00 +0.00j 0.00 +0.00j
29 28 30 4 200 63.0 +31.5] 63.0 +31.5) 63.0 +31.5]
30 6 31 3 0 0.00 +0.00j 0.00 +0.00j 0.00 + 0.00j
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31 6 32 600 0.00 +0.00; 127.5+ 60.0j 0.00 +0.00j
32 7 33 320 0.00 +0.00; 0.00 +0.00j 63.0 +31.5)
33 9 34 520 0.00 +0.00; 0.00 +0.00j 0.00 +0.00j
34 34 35 200 0.00 +0.00; 0.00 +0.00j 127.5 +60.0j
35 34 36 1280 0.00 +0.00j 63.0 +31.5) 0.00 +0.00j
36 12 37 200 0.00 +0.00; 0.00 +0.00j 127.0 + 60.0j

Table B. the self and mutual impedances of lines (see Fig. A for more information)

Impedance in ohms/mile
Conductor Type
phase a b c

a 0.2926+0.1973j 0.0673-0.0368j 0.0337-0.0417j
1 b 0.0673-0.0368j 0.2646+0.1900j 0.0673-0.0368j
c 0.0337-0.0417j 0.0673-0.0368; 0.2926+0.1973j
a 0.4751+0.2973j 0.1629-0.0326j 0.1234-0.0607j
2 b 0.1629-0.0326j 0.4488+0.2678j 0.1629-0.0326j
c 0.1234-0.0607j 0.1629-0.0326j 0.4751+0.2973j
a 1.2936+0.6713j 0.4871+0.2111j 0.4585+0.1521j
3 b 0.4871+0.2111j 1.3022+0.6326j 0.4871+0.2111j
c 0.4585+0.1521j 0.4871+0.2111j 1.2936+0.6713j
a 2.0952+0.7758j 0.5204+0.2738;j 0.4926+0.2123j
4 b 0.5204+0.2738;j 2.1068+0.7398j 0.5204+0.2738;j
c 0.4926+0.2123j 0.5204+0.2738;j 2.0952+0.7758j

. Zaa(ij) .

¥ AN — v

.. Zab(ij
| ) Zbbii) ab(t) |
O [ g e g0
NS >
Zcc(ij) Zbe(ij)
V(i) e '\\ V()
° ( /\/\/\/_(Ym Py
NS

Fig. A. a three-phase feeder model
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