Aalborg Universitet AALBORG

UNIVERSITY

Model-based decision framework for autonomous application migration

Nickelsen, Anders; Olsen, Rasmus Lgvenstein; Schwefel, Hans-Peter

Published in:
Lecture Notes in Computer Science

DOl (link to publication from Publisher):
10.1007/978-3-642-21713-5_5

Publication date:
2011

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Nickelsen, A., Olsen, R. L., & Schwefel, H.-P. (2011). Model-based decision framework for autonomous
application migration. Lecture Notes in Computer Science, 6751. https://doi.org/10.1007/978-3-642-21713-5 5

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025


https://doi.org/10.1007/978-3-642-21713-5_5
https://vbn.aau.dk/en/publications/07eed696-b8b4-41a8-9983-298d6a2f4689
https://doi.org/10.1007/978-3-642-21713-5_5

Model-based decision framework for autonomous
application migration

Anders Nickelsen!, Rasmus L. Olsen!, and Hans-Peter Schwefel!2

! Dept. of Electronic Systems, Aalborg University, Denmark,
{an|rlo|hps}@es.aau.dk
2 FTW, Vienna, Austria, schuefel@ftw.at

Abstract. The state of the run-time environment impacts the perfor-
mance of networked applications and furthermore influences the quality
of the user experience of the applications. By migrating the application
between the user’s devices that give different experiences, a good over-
all user experience can be maintained, without loosing the application
session. It is non-trivial for a system to automatically choose the best
device for migration. The choice must maximize the experience quality
and take into account that a migration delays the user’s work-flow and
even may fail. Moreover, the environment state is not directly observ-
able, and needs to be estimated which leads to inaccuracy. We model
the automatic migration trigger as a stochastic optimization problem
and we propose to use a hidden Markov model combined with a Markov
Decision Process (MDP) to solve the problem. The solution generates
policies to choose target device for migration that gives the optimal user
experience when enforced in simulated scenarios. We derive conclusions
on which scenarios the model-based approach performs better than a
greedy approach, also when considering inaccurate state estimation.

Keywords-migratory applications; configuration choice; Markov deci-
ston processes; quality-of-experience

1 Introduction

The state of the run-time environment impacts the performance of networked
applications and furthermore influences the quality of the user experience of the
applications. For example, if excessive packet loss on a wireless connection or in
a network router reduces the end-to-end throughput, a video streaming applica-
tion may experience glitches or outage periods. In addition, users have access to
many different types of devices with network access that can run the same appli-
cations. Therefore, we investigate methods to move active application instances
between devices to maintain a good user experience in scenarios with dynamic
networks. The process of moving the application is called migration [1]. We con-
sider migratory applications that can be moved between the user’s devices. The
combination of an application running on a device and the settings of the device
(CPU, network interface, display resolution, etc.) is called a configuration. A



configuration gives the user a certain experience quality, influenced by the state
of the environment. A migratory application has several available configurations
and the objective of the migration is to change the active configuration. Migra-
tion is performed without restart of the application session, allowing the user to
continue the work-flow after migration.

Migratory applications run on top of a migration middleware (such as de-
scribed in [2]). The purpose of the middleware is to trigger migration automati-
cally and orchestrate the migration procedure. The orchestration procedure takes
time which interrupts the user’s work-flow and degrades the experience quality.
The duration of the migration procedure depends on the migration strength.
In a strong migration both application code and state is transferred, where in
a weak migration only parts of the application stack are transferred [1]. We
consider the migration procedure as atomic and our models are independent of
migration strength. Different strengths only produce different model parameters
values in terms of migration delay distribution and failure probability. The auto-
matic migration trigger must balance the trade-off between configurations with
high experience quality and the reduced experience quality caused by the orches-
tration procedure. The triggers are based on the environment state. However,
the true state is not always observable and must be estimated from observable
parameters. If state estimation is inaccurate, wrong migrations are triggered,
which interrupt the user and may end up in worse configurations.

To balance the trade-off, we treat the automatic trigger as a stochastic opti-
mization problem. We model the environment behavior, the state estimation, the
application experience behavior and the migration procedure as stochastic pro-
cesses. The stochastic models are used to generate policies that specify in which
state to trigger migration and which configuration to migrate to. We evaluate
two different policy generation approaches: 1) a greedy approach that optimizes
the user experience in the next evaluation step and 2) a Markov Decision Pro-
cess (MDP) approach which can account for the effect of future decisions and
optimizes for the long-term user experience. We design an enforcement frame-
work around the policies with functions to observe the environment, estimate
the environment state and trigger and perform migration. Based on a simulated
migration scenario, we evaluate the effect on the experience quality of: 1) the
estimation approach, 2) the policy generation approach and 3) the environment
behavior. Through result analysis we illustrate the usefulness of including future
decisions and the impact of inaccurate environment state estimation.

The concept of migration upon environment state changes is increasingly
important. With the rise of dynamic adaptive systems (component-based sys-
tems which are able to change their composition, [3,4,5,6,7]), applications may
be deployed in environments for which they were not originally designed. The
application domain can be expanded if they have underlying support to choose
the optimal configuration for such unknown environments. The optimal con-
figuration is also relevant in dynamic applications that interact with users [§]
since the success of these applications depends on the user’s experience. Previ-
ous research has shown that model-based policy generation approaches allow for



robust decisions; video stream application stream decoding [9], placement policy
of processing tasks in virtual environments [10] and QoS management policies
[11]. The quality of the user’s experience is modeled by reward functions that
map physical properties into experience quality. Methods to derive reward func-
tions are covered in detail in existing literature. For instance mapping network
properties into quality of multi-media applications can be studied in [12,13,14]
and is not treated further here.

The rest of the paper is structured as follows. In section 2, we present back-
ground details of the migration process. In section 3, we describe a model of the
migratory system to base the decision framework design on, which is presented
in section 4. Then, in section 5, we describe the analysis of the dependencies be-
tween the framework parameters and the performance of the policy generation
approaches. The paper is concluded in section 6.

2 Background on the migration process

The events of a migration process between two devices are illustrated in Fig-
ure 1. The migration framework is realized as a middleware that contains a
decision framework that monitors the state of the environment and automati-
cally determines the best configuration to use (see [2] for more details). If the
chosen configuration is not equal to the one currently applied, a migration is
triggered. The application instance on the source device is paused and a state
object, with sufficient information to resume the application elsewhere, is ex-
tracted and downloaded onto a central migration server. As the download may
be performed over any available network connection, the performance of the net-
work connection affects the duration of the download, and hence, the duration
of the migration. Also, any faults that can occur on the network connection may
cause the download or migration signaling to fail. After the state is downloaded,
a new application instance is initialized on the target device. The state object
is then uploaded to the target device and inserted into the new application in-
stance. To complete migration, the new instance is resumed in the original state.

3 Model of the migratory framework

A model of the migratory framework is illustrated in Figure 2. We specify the
environment as a set of N states, S = {s1, ..., sx}. The states are abstractions
of the environment parameters, which are considered relevant if they impact the
performance of the application or the migration process. We model the behav-
ior of the environment as a Markov model. P(s;, s;) denotes the probability of
a transition from state s; at time ¢ to state s; at time ¢ + 1. The next con-
figuration of the application is decided periodically by the migration middle-
ware. A set of M configurations, C = {cy, ..., car }, constitutes the set of possible
next configurations. The middleware has to decide which configuration ¢’ to



Migration trigger

Migration
Migration delay (D) /success
Configuration c service interrupted c
Application || Application Migration during migration c
User N )
Device 1 Device 2 framework
[ starta T I Failed migration N Migration failure
ppP reg‘lster application———»| delay (D) (probability py)
—use app#- ! .
monitor environment ’:
trigger migration to Device 2 ,: estimated state
l-¢———pause application = / St
c h & A +D
o download state———» |5 ) S Sto Seui
b o o = Environment ® St O St+i
3 r-initialise application— S state
3 t—upload state——| St < true state
£ («#-resume application— T T >
use app———| t to tHi o t+D
Fig. 1. Migration process events. Fig. 2. Time-line migration process.

change to from the current configuration c. If ¢ # ¢/, a migration ¢ — ¢/, is at-
tempted. The migration duration in time-units, D, is random and characterized
by a distribution fp ... (7) that depends on the size of the state object that
needs to be transferred and the environment state. If the migration is successful,
the application is in configuration ¢’ after time D. If the migration fails, with
probability ps, the duration until the system returns to configuration ¢ may be
characterized by a different distribution ffqis,c—e (7). For simplicity, we assume
ID,c—e (T) = ftait,e—e (T) in this paper. Furthermore, the delay may be depen-
dent on the environment state, however we consider them independent in this
work.

4 Design of the decision framework

The decision framework consists of several components required to generate and
enforce decisions. Figure 3 shows the components of the framework. The compo-
nents are active at different times in the migration process. Decision policies are
generated offline in the policy generation component. A decision policy, 7(c, s),
specifies which configuration to choose when in configuration ¢ and in state s.
Two approaches for policy generation are evaluated in this work. The first ap-
proach is greedy and generates policies that optimize for the best immediate
experience. We call this approach instantaneous. The second approach is based
on a Markov Decision process which generated policies that optimize for the
best long-term average experience. Both approaches assume that the state of
the environment is known when the decision is made. However, this is not al-
ways possible since states that are not directly observable may affect application
performance. In such cases the true environment state is hidden to the enforce-
ment component, and in order to enforce decisions from a policy, the true state
must be estimated based on parameters that can be observed. When the sys-
tem is online, the environment state, §(¢), is estimated in the state estimation
component based on observations made by the observation component. The es-



timated state is used to enforce decisions from policies in the policy enforcement
component.

Reward model

Environment Policy generation
model m
offline
online Yy

State estimation

Observations ||| Threshold Policy enforcement

HMM

Fig. 3. Overview of the decision framework in the migration middleware.

4.1 State estimation and prediction

To enforce a policy online, the current application configuration ¢ and the es-
timated environment state §(¢) must be known. The observable parameters are
sampled at periodic intervals during run-time and the most likely environment
state is estimated. We investigate how two different estimation methods per-
form in the decision framework, namely a threshold approach (TH) and a hid-
den Markov Model (HMM) approach [15]. The two methods estimate the most
likely environment state § based on observable parameters. The TH method as-
sumes a direct mapping between observations and environment state. The HMM
method models the environment Markov model and assumes a stochastic rela-
tion between the true state and the observed parameters. During run-time, the
Forward-Backward algorithm is used to calculate the probability distribution
over the set of states given the sequence of previous and current observations.
By using a Marginal Posterior Mode (MPM) estimate [16] (without look-ahead
window), the most likely state of the environment can be calculated. Transition
probabilities of the HMM are the same as the environment model P. Observa-
tion probability distributions, P(0bs|S), depend on how the environment affects
the observable parameters. Concrete values for both matrices are specified later
in the evaluation examples.

To predict the most likely estimated state at time ¢t + D (after migration),
the behavior of the Markov model is used, such that the predicted state §(¢+ D)
is set equal to the most likely state D steps in the future. This is calculated from
argmax e; - PP where ¢; is an 1xN vector, where element i is equal to one if s;
is the most likely system state and the other elements equal zero.



4.2 Reward model

Reward is defined as a combination of the satisfaction of experiencing a certain
application quality and the dissatisfaction of the interruption from migration.
Reward of an application configuration in a certain system state is characterized
by R(c,s). The dissatisfaction is characterized by two parameters of the migra-
tion process; the probability of migration failure, p;y and the migration delay, D.
These two parameters influence the user experience negatively and can there-
fore be used to characterize how performing a migration should be penalized. We
represent the penalty of waiting during migration, 7, as a function of the waiting
time n(D). The penalty function can have different shapes (linear, logarithmic,
quadratic, exponential) representing different user dissatisfaction patterns. In
our work, we define the function linearly as n(D) = —a - D, where « is a con-
stant and represents the reduction in reward per time-step experienced by the
user while waiting on the migration to finish. The linear function is chosen for
simplicity, and can easily be changed to other shapes.

4.3 Instantaneous policy generation

The instantaneous (INS) approach chooses the configuration ¢’ that generates
the highest expected reward for the predicted state estimate after the migration
¢ — ¢, such that

mins(c, 8(t + D)) = argmax E[r(c, , §(t + D))]. (1)
ceC
The reward expression r(-) represents the reward of migrating from ¢ to ¢ when

the predicted state after migration is §(t + D). The expression includes the fail-
ure probability and random migration duration as follows.

Er(e,d,3(t+ D)) =
(1=pp) Y [R(,3(t+ 7)) = 0(7)] fDemer (T) +

=0

Py Y [R(e,3(t + 7)) = 0(7)] fraite—e (7)
7=0

The INS approach is greedy. It is also conservative, in the sense that it maximizes
the reward for the immediate state after migration (positive), but accounts for
all migration penalty during migration (negative).

4.4 Markov Decision Process policy generation

The Markov Decision Process (MDP) approach can consider the effect of fu-
ture decisions on the long-term average reward and generate a policy with the
decisions that optimize that. An optimal policy, mypp(c, s), can be calculated
offline using the MDP before running the application. We use value iteration



with a finite window of 1000 future decisions to find the optimal policy by use
of the Bellman equation for dynamic programming. The values of the window
size was found through experiments and is large enough for the policies to con-
verge, meaning that a larger window will only affect computation time, but not
change the policy. See [17] for more details on the MDP framework, dynamic
programming and value iteration.

The general form of the Markov model used in our decision framework is de-
picted in Figure 4.a. For each available configuration we assign a reward function
R(c, s) that maps a reward value to each environment state for a given configu-
ration. There exist different reward functions for the different configurations. In
Figure 4.b the scenario of migrating between configurations ¢ — ¢ is depicted.
The actions of the MDP map directly to the available configurations, which can
be chosen at each time-step. To model the migration process, an intermediate
delay state is introduced between the configurations. When the migration is trig-
gered, the system enters the delay state with probability 1. The reward model
of the delay state is defined according to n(D), which means that in the linear
case of this framework, the reward of the delay state is simply a. In the delay
state the migration may be further delayed with probability pg, fail back to ¢
with probability py - (1 — pg) or succeed to ¢ with probability (1 —py) - (1 —pa).
The definition of py is based on the migration delay D. When D is geometrically

distributed then pg =1 — DL—H’ where D is the mean migration delay.
< Sj1 S; Si+1 — < S )
Ci-1 () () R, 9) - )
w3 X \/X\73 C
G L . _Rcis) delay, pq fail, pr
P ~ success, (1-py)
STk e S L~ -==<
Ci+1 L /) L /) R(Ci+1, S) c’
v W N 7
(a) (b)

Fig. 4. Model of the migratory system. (a) is the general evolution where the reward
(R) only depends on the environment if the configuration is fixed. (b) shows how a
migration ¢ — ¢’ may change the active configuration and thereby the reward function
if successful.

5 Case study and numerical results

We evaluate and compare the performance of the different estimation methods
and generation approaches by simulating the migration framework. First, we
systematically analyse the differences between two policy generation methods to
learn where they are different, and how the difference impacts the application



quality. Next, we evaluate the accuracy of the two state estimations methods,
including the ideal estimator as reference. Finally, we analyse two example sce-
narios of the entire framework to learn how the different parameters of the full
framework impact the application quality. We evaluate three state estimation
methods combined with the two policy generation methods in two different sce-
narios, which reflect two different network conditions.

5.1 Simulation model

The environment is modeled as a network with two states, representing a normal
and a congested network, S = {N,C}. P, the transition behavior within S, is
specified by p, the probability of a transition from N to N, and ¢, the probability
of the transition from C to C, as specified in Table 1. The application is a
video streaming application with two available configurations on two difference
devices; D1) high definition on large display device, and D2) standard definition
on mobile device with smaller screen), C = {D1, D2}. The reward values of the
two configurations, R, are listed in Table 1. These values express that the user
gets a higher perceived quality with increasing resolution on the large display
device (i.e. R=4 for (c,s)=(1,1) compared to R=3 for (¢,s)=(2,1)). Moreover, the
impact of packet loss is larger when ¢ = D1 than ¢ = D2 because the higher
resolution requires more available bandwidth on the large display. As migration
penalty values, we use py = 0.1 and use a geometrically distributed delay D with
parameter pg; = 0.95. This characterizes a mean migration delay of 2 seconds,
when time-unit per time-step is 100ms (equal to D = 20). The failure probability
and delay mean are sampled from experimental work on migration prototypes,
described in detail in [18]. For the dissatisfaction function (D) = —a- D, we use
a = 0.01, which has been determined a reasonable value through experiments,
as it depends on a combination of the scale of the rewards and the mean delay.
The parameter values are summarized in Table 1.

For network observations we use packet loss ratio in both scenarios with two
possible states (low, high), representing measurable packet loss in a congestion-
prone network, obs = {L, H }. The probability distributions of the observations in
each network states, b, are listed in Table 1. The distributions reflect the situation
where high packet loss is primarily observed when the network is congested. This
would be the case when buffers in a bottleneck router overload and packets are
dropped consequently, but the network otherwise is stable. We simulated 30 runs
of the network model in 10000 steps and obtained sequences of true network
states s(t), observations from the threshold estimator and estimated network
states §(¢) from the HMM estimator.

5.2 Generation approach impact on generated policies

To understand the differences between the INS and the MDP generation ap-
proaches, we analyse which policies they generate under equal conditions. We
use the full parameter spectrum of the environment states, defined by p and ¢
in P (cf. Table 1), since it represents the scope of environment parameters of



block description name value
environment [transition probabilities| p,q |{0.01, ..., 0.99}
o . . [0.90.1]
estimation observation matrix b 0.3 0.7
41
reward R(c,s) {3 2}
migration model waiting penalty o 0.01
mean delay D 20
failure probability D 0.1
MDP window size w 1000

Table 1. Model parameters of the different components used in the evaluation.

the example that characterize external, uncontrollable network state behavior.
These properties are relevant to investigate as they cannot be tuned for bet-
ter performance. We use a forward prediction step in the INS approach for the
comparison, to be able to use p and ¢ in both approaches. Figure 5 shows the gen-
erated policies (z-values) over the full spectrum of p and ¢ for both approaches
in the case of ideal migration (D = 0,p; = 0). There exist many regions in the
parameter space where the policies are not equal.

For the INS (Figure 5, top), the regions are divided into four quadrants at p = 0.5
and ¢ = 0.5. At the upper left (z=16) and lower right (z=1) quadrants, the poli-
cies specify to go and stay in D2 or D1 configurations, respectively, indifferent
of the system state. To the lower left (z=11), the policy specifies to choose D1
configuration when in congested network state and D2 when in normal network
state. The upper right region (z—6) chooses opposite to the lower left.

For the MDP (Figure 5, lower), the regions are separated by the line p = g.
Below this line (p > ¢), the policy specifies to either to change to D1 always
(z=1) or in some cases (z=2) to stay in D2 when in congested network state.
Above the line (p < q), several different policies are used that will eventually all
change to D2 always (z—8&,12,16). In the small region (p > 0.9 and ¢ > 0.9) the
MDP behaves similar to the INS by choosing D1 in normal network state and
D2 in congested network state (z=6).

The differences in the overall policy distributions are due to the way the
two policy generation methods optimize their policies. Even though they both
optimize for utility, the INS method only regards 1 future decision, whereas the
MDP regards 1000. The different distributions show that it has an impact on
the policy whether the future decisions are considered.

Figure 6 shows the policies over the full spectrum of p and ¢ for both ap-
proaches in the case of non-ideal migration (D = 20,py = 0.1). The INS policy
distribution clearly changes compared to ideal migration. Instead of 4 regions, 9
regions exist, with the original 4 regions still existing though smaller. In a square-
formed region in the center, a new policy is seen (z—4), which is the policy that
chooses to stay in the current/initial configuration at all times. The additional
4 new policies between each pair of former quadrants are combinations of the
original policy pairs. For example, this means that the policy in the middle low-



INS (with prediction), a=0, u, =0, pf=0 INS (with prediction), a=0.01, u,,,, =20, pf=0.1

1 16
09
14 09 . "
08 X:0.13
. 12 08 Y:089
07 X021 z:16 12
Y:0.77 07
06 Z:16 10
06 X:0.13 10
05 X 0.21 8 - 045
. 0.21 505 :
0.4 w . 8
0s - 6 04
. 03 e
02 4 ’ X:0.13
02 Y:011 4
01 2 z:11
o 0.1 L]
0 02 04 2
0
0 0.2

MDP, =001, =20, pf=0.1

Fig.5. Policies generated by INS and Fig.6. Policies generated by INS and
MDP approaches for different parameter = MDP approaches for different parameter
settings, ideal migration. settings,, non-ideal migration.

est square (z=3) combines choosing D1 always (the policy to the right, z=1) and
choosing D2 in normal network state (the policy to the left, z=11) in the way
that it chooses D1 always except if in D2 and normal network state. The MDP
policy distribution is very similar to the non-ideal case, except that the small
region upper right is gone and there is a new region around p = ¢, that contains
the same policy as the center square (z=4) in the INS figure, namely not to
change configuration when network state changes. The no-change policy (z=6)
is found in both INS and MDP distributions when the migration is non-ideal
which can be explained by the added probability of failure and long migration
delay, which decreases the expected average utility that both methods optimize
for. In the border-line regions of both approaches, a higher penalty means a
higher probability of decreased utility when migrating, and as a consequence,
migration is not chosen in the specific cases.

5.3 Generation approach impact on application quality

To understand the impact on the quality of the different policies, we simulated
runs of the decision framework using all policies from both approaches in the



entire parameter space, for ideal and non-ideal migration respectively. For each
approach we calculated the average utility in each simulation with a specific pol-
icy, and calculated means over the repetitions. We repeated simulations to obtain
significant differences within 95% confidence intervals. In these simulations we
used an ideal state estimator. The differences in mean average quality between
the approaches at each point (p, q) are shown in Figure 7 for ideal migration and
in Figure 8 for non-ideal migration. Black means no difference (because INS and
MDP policies are the same) and the brighter the tone, the larger the difference.
The range of average utility varies between 1.6 and 4 for the different points
(p,q), so a difference of 3 is relatively large.

In the ideal migration case of Figure 7, we see that in two regions (p < 0.5
and ¢ < 0.5) and (p > 0.5 and ¢ > 0.5) the policies of the MDP approach
generate higher average utility values than the policies of the INS approach. In
the non-ideal migration case, as shown in Figure 8, differences are detected in the
lower left and upper right regions. The corner regions are similar to those in ideal
migration, but smaller in area and with larger average utility differences. The
evaluation results from the example show that in some cases the use of the MDP
gives an advantage. The advantage depends on the penalty of the migration,
which is a key property of the MDP approach.

u u . D, oan=0: PO u -u g @001, D =20, p=0.1

mean

) . 3 c : 3
gzt |
25 25
E 2 ’ 2
15 . 15
1 1
05 0.5
0 ] 0
6 0.8 1

0 0.2 0.4 0.6 0.8 1
P

mean, s’ @~

‘meanMDP

0,
T 05
0

0 0.2 0.4
p

Fig. 7. Average utility difference between Fig. 8. Average utility difference between
INS and MDP approaches for different set- INS and MDP approaches for different set-
tings of p and ¢, with ideal migration. tings of p and ¢, with non-ideal migration.

5.4 State estimation accuracy

The above performance evaluation is performed with ideal state estimation. In
the following we describe properties of a non-ideal state estimator and the impact
on the performance of the generation approach. Instead of using the entire (p,q)-
spectrum, we limit the analysis to two scenarios. In scenario 1, we simulate



a network that has a low rate of state changes. In scenario 2, we simulate a
fast-changing network with a high rate of changes. The differences between the
two networks are expressed in the state transition probabilities. In scenario 1,
the probability of changing state is very low (0.1-0.5 changes per second on
average), which is seen in Table 2. In scenario 2, it is opposite, such that the
probability of changing state is very high (9.5-10 changes per second on average),
as seen in Table 3. Since the instantaneous approach assumes a slowly changing

s; —sj| N C s; —sj| N C
N |p=0.99] 0.01 N |p=0.01| 0.99
C 0.05 |q=0.95 C 0.95 |q=0.05
Table 2. Transition probabilities Table 3. Transition probabilities
Pi(ss,5;5)) (scenario 1) P> (s;,5) (scenario 2)

environment, it is expected to perform well with in the first scenario and poorly
in the second. As the MDP generates the optimal policies, it should perform
best in both scenarios.

We measured the estimator accuracy as the ratio between the number of
correctly estimated states and the number of true states. The results are shown
in Figure 9. From the figure we see that overall the HMM has a better accuracy,
and that the increased state change rate in scenario 2 impacts the estimation
accuracy of both approaches. The ideal state estimator is shown for reference.

100

80 1
>

60 b
g I Scenario 1
3 [ ]Scenario 2
& 4of g

20 1

0 i i
HMM Ideal

Estimator

Fig. 9. Accuracy of the estimators, including the theoretical ideal estimator.

5.5 Inaccurate state estimation impact on performance

We evaluate the performance of the combined state estimation methods and
generation approaches by calculating the average quality achieved during a sim-
ulation run.We use both scenarios for evaluation to illustrate the robustness of



the MDP approach. To get a clear understanding of the impact of state esti-
mation inaccuracy, we used the INS approach without state prediction, INS’, in
this evaluation. The policy of the INS’ approach is the same in both scenarios as
it only depends on the reward distribution and not the transition probabilities.
The policy is defined as

12
7T[NS/(67S) = 19 .

The interpretation of the policy is that if normal network state is observed
(column 1) then ¢ = D1 is decided. If high packet loss is observed (column 2)
then ¢/ = D2 is decided. The optimal policy generated by the MDP in scenario 1
is equal to the INS’-policy. For scenario 2, the MDP generates a policy opposite
to the previously used

21
7T]V[DP,S2(Ca 8) = 211"

Based on the sequences of chosen configurations and true states, we calcu-
lated the average utility achieved during the simulation runs. The mean average
utilities in both scenarios are shown in Figure 10, where also results from using
the theoretical ideal estimator are shown. The differences are significant in all
cases within a 95% confidence interval. In scenario 1, only the state estimation
method makes a difference since the policies are equal. In scenario 2, the policies
are opposite. Since the MDP policy is optimal, the average quality increases
with increasing estimation accuracy. However, the instantaneous policy is oppo-
site the optimal and always makes the worst decision. This explains the decrease
in average quality with the increasing estimator accuracy. The fact, that the
INS’ approach produces the lowest average utility with the ideal estimator in
scenario 2 is due to the behavior of the INS policy. Since they are opposite of
the optimal policy, INS’ performance benefits from any inaccuracy in the state
estimation.

6 Conclusion and future work

We have proposed a decision framework for service migration which uses a
model-based policy generation approach based on a Markov Decision Process
(MDP). The MDP approach generates an optimal decision policy and considers
the penalty of performing the migration (failure probability and delay) when im-
plemented in the migratory system. One key property of the MDP approach is
the ability to consider the effect of future decisions into the current choice. With
the MDP approach, policies are enforced based on the state of the environment.
As the state is not always observable, we introduce a hidden Markov model
(HMM) for estimating the environment state based on observable parameters.
An example system was simulated to evaluate the MDP approach by comparing
to a simpler instantaneous approach. The average user experience quality of the
generation approach was compared to a simple instantaneous approach that does
not consider future decisions. The comparison used a model of a slowly changing



Scenario 1
4 T

Average utility
N
T
i

1 — S
C__Imop

i i
TH HMM Ideal

o

Estimator
Scenario 2
3 T —
2
g2 1
(o)
j=2)
o
g1 1
< I NS
[ JMDP
0 i i T
TH HMM Ideal
Estimator

Fig. 10. Average utility comparison between the three estimation methods and the two
policy generation methods in both network scenarios.

network and showed that the introduction of the HMM alone gives benefits, as
the achieved average quality was slightly higher for the MDP approach than the
instantaneous approach. When the network model was changed to include more
rapid changes, the MDP approach produced the highest quality and followed
the dynamics of the environment more precisely. With our results we are able to
quantify the gain in performance of considering future decisions.

Future work should extend the capabilities of the framework to enable online
generation of policies to support changing environment models, and ultimately
learn environment parameters online to change policies during run-time.

Acknowledgments

This work was partially supported by the EU ICT FP7 project ’Open Pervasive
Environments for iNteractive migratory services — OPEN’, see www.ict-open.eu.
The Telecommunications Research Center Vienna (FTW) is supported by the
Austrian Government and by the City of Vienna within the competence center
program COMET.

References

1. T. Ilmann, F. Kargl, M. Weber, and T. Kruger, “Migration of mobile agents in
java: Problems, classification and solutions,” in Proc. of the Int. ICSC Symposium
on Multi-Agents and Mobile Agents in Virtual Organizations and E-Commerce
(MAMAQ0), Citeseer, 2000.



10.

11.

12.

13.

14.

15.

16.

17.

18.

A. Nickelsen, F. Paterno, A. Grasselli, K.-U. Schmidt, M. Martin, B. Schindler,
and F. Mureddu, “OPEN: Open pervasive environments for migratory interactive
services,” in 12th international conference on Information Integration and Web-
based Applications and Systems (1iWAS), ACM, 2010.

. H. Klus, D. Niebuhr, and A. Rausch, “A component model for dynamic adap-

tive systems,” in International workshop on Engineering of software services for
pervasive environments, p. 28, ACM, 2007.

. J. Fox and S. Clarke, “Exploring approaches to dynamic adaptation,” in Proceedings

of the 3rd International DiscCoTec Workshop on Middleware-Application Interac-
tion, pp. 19-24, ACM, 2009.

. C. Hofmeister and J. Purtilo, “Dynamic reconfiguration in distributed systems:

Adapting software modules for replacement,” in Distributed Computing Systems,

1993., Proceedings the 13th International Conference on, pp. 101-110, IEEE, 2002.

. J. Hillman and I. Warren, “An open framework for dynamic reconfiguration,” in

Proceedings of the 26th International Conference on Software Engineering, pp. 594—
603, IEEE Computer Society, 2004.

. S. Kalasapur, M. Kumar, and B. Shirazi, “Dynamic service composition in perva-

sive computing,” IEEE Transactions on Parallel and Distributed Systems, pp. 907—
918, 2007.

. F. Paterno, C. Santoro, and A. Scorcia, “User interface migration between mobile

devices and digital tv,” in HCSE’08, p. 292, Springer-Verlag, 2008.

. C. Wiist and W. Verhaegh, “Quality control for scalable media processing appli-

cations,” Journal of Scheduling, vol. 7, no. 2, pp. 105-117, 2004.

D. Vengerov, “Dynamic adaptation of user migration policies in distributed virtual
environments,” 2009.

R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tamburrelli,
“Dynamic qos management and optimisation in service-based systems,” Software
Engineering, IEEE Transactions on, 2010.

H. Schwefel, S. Praestholm, and S. Andersen, “Packet Voice Rate Adaptation
Through Perceptual Frame Discarding,” in IEEE Global Telecommunications Con-
ference, 2007. GLOBECOM’07, pp. 2497-2502, 2007.

C. Luna, L. Kondi, and A. Katsaggelos, “Maximizing user utility in video streaming
applications,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 13, no. 2, pp. 141-148, 2003.

S. Shenker, “Fundamental design issues for the future Internet,” IEEE Journal on
Selected Areas in Communications, vol. 13, no. 7, pp. 1176-1188, 1995.

L. Rabiner and B. Juang, “Introduction to hidden Markov models.,” IEEE ASSP
MAG., vol. 3, no. 1, pp. 4-16, 1986.

K. Salamatian and S. Vaton, “Hidden markov modeling for network communication
channels,” in Proceedings of the 2001 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems, p. 101, ACM, 2001.

M. Puterman, “Markov decision processes: Discrete stochastic dynamic program-
ming,” IMA Journal of Management Mathematics, 1994.

K. Hojgaard-Hansen, H. C. Ngyuen, and H.-P. Schwefel, “Session mobility solution
for client-based application migration scenarios,” in Wireless On-demand Network
Systems and Services (WONS), 2011.



