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Preface

The technical report “Experimental modal analysis” is divided into four numbered sec-
tions, and a list of references is situated after the last section. Tables, equations and
figures are indicated with consecutive numbers. Cited references are marked as e.g.
Bendat and Piersol (1986), with author specification and year of publication in the text.

The work within this report has only been possible with the financial support from
the Energy Research Programme (ERP)1 administered by the Danish Energy Author-
ity. The project is associated with the ERP programme “Soil–Structure interaction of
Foundations for Offshore Wind Turbines”. The funding is sincerely acknowledged.

Aalborg, December 6, 2006 Lars Bo Ibsen & Morten Liingaard

1In danish: “Energiforskningsprogrammet (EFP)”

— i —



ii

Ibsen & Liingaard



Contents

1 Experimental modal analysis 1

1.1 Output-only Modal Analysis Software . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Output-only Modal Identification . . . . . . . . . . . . . . . . . . . 1
1.1.2 ARTeMIS Testor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 ARTeMIS Extractor . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 General digital data analysis . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Data Sampling and aliasing . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Structure of measured data . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Nyquist frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.4 Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.5 Signal processing (digital data analysis) . . . . . . . . . . . . . . . 14

1.3 Basics of structural dynamics and modal analysis . . . . . . . . . . . . . . 20
1.3.1 Dynamic model of second-order structural system . . . . . . . . . 20
1.3.2 Modal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.3 Spectral analysis of dynamic excited system . . . . . . . . . . . . . 23

1.4 System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4.1 ID by Frequency Domain Decomposition (FDD) . . . . . . . . . . 25
1.4.2 ID by Stochastic Subspace Iteration (SSI) . . . . . . . . . . . . . . 26

References 29

— iii —



iv Contents

Ibsen & Liingaard



List of Figures

1.1 Principles of output-only modal analysis. . . . . . . . . . . . . . . . . . . . 2
1.2 Geometry of wind turbine tower and foundation. Left, with opaque sur-

faces and right, without surfaces. . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Test Planning. Each of the transducers (green arrows) is placed at the

master nodes of the geometry. The arrows at the transducers nodes indi-
cate the orientation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Modal analysis with ARTeMIS Extractor. . . . . . . . . . . . . . . . . . . 6
1.5 Main steps of the Frequency Domain Decomposition (FDD) technique. . 7
1.6 Top: main screen image for the FDD modal identification technique. Bot-

tom: screen image of the first mode shape of the wind turbine. . . . . . . 9
1.7 Filtering and A/D conversion of analog input signal prior to digital signal

processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 Digital representation of a continuous signal. The time series x and y are

digitized signals with equally spaced time intervals ∆t. . . . . . . . . . . . 11
1.9 Aliased power spectrum due to folding. . . . . . . . . . . . . . . . . . . . . 13
1.10 Example of spectral analysis of a signal. (a) shows 1024 samples taken from

a transducer with a sample frequency of 200 Hz. The signal is multiplied by
a Hamming window (b), resulting in the windowed signal in (c). The Power
Spectral Density (PSD) of the windowed signal is calculated by means of
the Discrete Fourier Transform (DFT) and followed by multiplication in
frequency domain, as displayed in (d). When averaging e.g. 200 of these
spectra the random noise is reduced, resulting in the averaged spectrum
shown in (e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.11 Plot of singular values of the power spectral density matrix as a function
of frequency. The singular values around the kth mode of the system
(structure) belong to the SDOF power spectral density function. . . . . . 26

— v —



vi List of Figures

Ibsen & Liingaard



Chapter 1

Experimental modal analysis

This technical report concerns the basic theory and principles for experimental
modal analysis. The sections within the report are: Output-only modal analysis soft-
ware (section 1.1), general digital analysis (section 1.2), basics of structural dynamics
and modal analysis (section 1.3) and system identification (section 1.4).

1.1 Output-only Modal Analysis Software

The experimental modal analysis of the wind turbine prototype is performed by means
of the software package ARTeMIS (Ambient Response Testing and Modal Identification
Software). The ARTeMIS software is fully compatible with the hardware of the moni-
toring system. The software package consists of two tools, the ARTeMIS Testor and the
ARTeMIS Extractor (SVS 2006).

1.1.1 Output-only Modal Identification

The experimental modal analysis of the wind turbine makes use of "Output-only modal
identification" which is utilized when the modal properties are identified from measured
responses only. "Output-only modal identification" is also known by the terms "ambient
identification" or "ambient response analysis" within the field of civil engineering. The
following description is based on SVS (2006).

Modal Identification

The basic principle in Modal identification is the determination of modal parameters from
experimental data. The usual modal parameters are natural frequencies (the resonance
frequencies), damping ratios (the degree to which the structure itself is able of damping
out vibrations) and mode shapes (the way the structure moves at a certain resonance
frequency). The common way is to use input-output modal identification where the
modal parameters are found by fitting a model to a Frequency Response Function, a
function relating excitation and response. The traditional techniques in input-output
modal identification is described frequently in the literature, see for instance (Ewins
1995; Maia and Silva 1997).

— 1 —



2 Experimental modal analysis

Loading system
 Structural system
White noise
 Responses


Unknown loads


"modes"

heavily damped


f


G(f)


f


G(f)


Identified system


modes

lightly damped


Figure 1.1: Principles of output-only modal analysis.

Output-only modal Identification

When modal identification is based on the measured response (output) only, things be-
come more complicated for several reasons, the excitation (input) is unknown and the
measured response (output) is often noisy.

Output-only modal identification is used for analyzing large civil engineering struc-
tures, operating machinery or other structures that are not easily excited artificially.
Large civil engineering structures are often excited by natural loads that cannot easily
be controlled, for instance wave loads (offshore structures), wind loads (Buildings) or
traffic loads (bridges). For operating machinery the problems are the same. They are
also excited by natural sources like noise from bearings or vibrations from the environ-
ment around the structure. In these cases, it is an advantage to use output-only modal
identification. Instead of exciting the structure artificially and dealing with the natural
excitation as an unwanted noise source, the natural excitation is used as the excitation
source. The idea of output-only modal identification is illustrated in Figure 1.1.

The unknown loading conditions of the structure are assumed to be produced by
a virtual system loaded by white noise. The white noise is assumed to drive both the
real structural system and the virtual loading system as a total system and not only the
structural system.

For that reason the user is identifying two types of modes, one type of modes that
belongs to the real structural system and another type of "modes" that belong to the
virtual loading system. The real structural modes are characterized by light damping,

Ibsen & Liingaard



1.1 Output-only Modal Analysis Software 3

Figure 1.2: Geometry of wind turbine tower and foundation. Left, with opaque surfaces
and right, without surfaces.

whereas the "modes" of the virtual loading system usually are heavily damped, see
Figure 1.1. Furthermore, the user might also identify computational modes that appear
because the signals are contaminated with noise. This means, that it is of outmost
importance that the real structural modes are separated from noise modes and excitation
modes during the modal identification process.

1.1.2 ARTeMIS Testor

The ARTeMIS Testor is a test planning tool where the geometry of the structure and
the sensor settings and locations are defined. There are three main tasks to be carried
out: Geometry generation, hardware definition and test planning. The tasks are briefly
described in the following.

Geometry generation

The geometry of the system consists of two subsets. The first subset of the geometrical
model is the active master system defined by the coordinates of the actual sensors. In
this case it is the xyz-coordinates of the 15 accelerometers (the positions are given in
the main paper). The second subset is the slave system of nodes. The slave system
represents the physical appearance of the structure. The displacements of the nodes of
the slave system are coupled to the master system by means of slave equations. The
slave equations are influence relations that states how much a slave node moves if the
corresponding master node is displaced by 1 unit. Lines and opaque surfaces can be
added into the geometry in order to make a realistic and uncomplicated representation
of the structure in the subsequent analyses, see Figure 1.2.
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4 Experimental modal analysis

Hardware Definition

The hardware is defined by one or more a virtual data acquisition units (a front-end) that
each represents a measurement session. Each front-end unit holds as many transducer
objects as there are measurement channels in the session. The front-end unit contains
information about the number of data points, sampling frequency and the Nyquist fre-
quency of the particular session. The Transducer object is a virtual measurement chan-
nel. This object contains the actual measurements of a single channel as well as the
parameters necessary to describe them.

Test Planning

The Test Planning task is used to assign each of the transducer objects to the geometry.
Each transducer object must be linked to one of the master nodes and the orientation of
the transducer must be set as well, i.e. the degree of freedom (DOF). The location and
orientation of the transducer objects are shown in Figure 1.3

1.1.3 ARTeMIS Extractor

The ARTeMIS Extractor is the key application of the ARTeMIS software package. The
software allows the user to perform accurate modal identification under operational con-
ditions and in situations where the structure is impossible or difficult to excite by exter-
nally applied forces. The typical outputs of the analyses are modal information about
the natural frequencies, mode shapes and damping ratios.

Analysis assumptions

The modal analysis within this software is based on the assumptions that the underlying
physical system of the structure is linear and time-invariant. The linearity imply that
the physical system comply with the rules of linear superposition. The time-invariance
implies that the underlying mechanical or structural system does not change in time.
Within this frame the program is based on two different estimation techniques, one in
time domain and one in frequency domain, see Figure 1.4.

Stochastic Subspace Identification

The time domain estimation is based on Stochastic Subspace Identification (SSI) tech-
nique. In the SSI techniques a parametric model is fitted directly to the raw time series
data obtained from the accelerometers. The parametric models are characterized by the
assumption of a mathematical model constructed from a set of parameters, where the
mathematical model is a linear and time-invariant system of differential equations. The
task of the SSI technique is to adjust the parameters in order to change the way the model
fits to the data. In general the objective is to estimate a set of parameters that will min-
imize the deviation between the predicted system response (predicted transducer signal)
of the model and measured system response (transducer signal). The parametric models
and Stochastic Subspace Identification are described in Section 1.4. For references, see
(Andersen 1997; Brincker and Andersen 1999).
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Figure 1.3: Test Planning. Each of the transducers (green arrows) is placed at the master
nodes of the geometry. The arrows at the transducers nodes indicate the orientation.

Frequency Domain Decomposition

The frequency domain estimation is a non-parametric model (also known as spectral
models) based on a Frequency Domain Decomposition (FDD) method. The FDD method
is an extension of the well-known frequency domain approach that is based on mode
estimations directly from the Power Spectral Density (PSD) matrix, i.e. well separated
modes can be identified at the peaks of the PSD matrix.

The basic principle of the Frequency Domain Decomposition (FDD) technique is to
perform an approximate decomposition of the system response into a set of independent
single degree of freedom (SDOF) systems; each corresponding to an individual mode.
In the FDD the Spectral Density matrix is decomposed by means of the Singular Value
Decomposition (SVD) into a set of auto spectral density functions, each corresponding
to a single degree of freedom system. The steps of the FDD technique are illustrated in
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6 Experimental modal analysis
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Figure 1.4: Modal analysis with ARTeMIS Extractor.

Figure 1.5.
The key feature is that the singular values are estimates of the Auto Spectral density

of the SDOF systems, and the singular vectors are estimates of the mode shapes. The
basic theory concerning identification by FDD is given in Section 1.4. For references, see
(Brincker, Andersen, and Zhang 2000; Brincker, Zhang, and Andersen 2000).
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Figure 1.5: Main steps of the Frequency Domain Decomposition (FDD) technique.
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8 Experimental modal analysis

Example—Peak picking by FDD

The following example shows the main output of peak picking by FDD. The FDD peak
pricking is based on measured data recorded February 15, 2005. The data set consists
of a 1 hour measurement in 15 channels. The sampling frequency was 200 Hz and the
data was decimated by an order of 20. The main screen image for the FDD modal
identification technique is shown in Figure 1.6. Note that four modes are identified. The
second screen image shows the first mode shape of the wind turbine.
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Figure 1.6: Top: main screen image for the FDD modal identification technique. Bottom:
screen image of the first mode shape of the wind turbine.
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10 Experimental modal analysis

1.2 General digital data analysis

This section explains the basic digital operations that are required prior to the main
estimation of the modal parameters by the two identification procedures. Before the
measured data is useful as input data to the modal identification estimation routines
several pre-processing procedures are required. The typical pre-processing steps are de-
scribed in the following.

1.2.1 Data Sampling and aliasing

The analog input signals from the transducers are continuous and processed by means
of a analog filter and a analog-to-digital conversion in order to manage the information
on a digital computer. The process prior to the digital signal processing is shown in
Figure 1.7.

Analog

Filter


A/D

converter


Digital Signal

Processing


Analog input

Filtered Analog


input

Digitized input


Anti-aliasing Filter


Figure 1.7: Filtering and A/D conversion of analog input signal prior to digital signal
processing.

1.2.2 Structure of measured data

The measured data from the accelerometers are considered as sample records of a random
process, i.e. the data are physical realizations of a random process. It is assumed that
the random process is stationary, which means that the loading and structural system is
assumed to be time invariant.

The measured data are digital representations of a continuous signal from the trans-
ducers. Two data time series x, y are illustrated in Figure 1.8. The time series are
sampled with a fixed sample frequency fs. The equally spaced time interval between the
data points is denoted the sampling interval ∆t. ∆t is equal to 1/fs. It is assumed that
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1.2 General digital data analysis 11

the recorded time series can be separated into data segments xn and yn of the length T
containing N numbers of data points. By this segmentation of the time series the data
are assumed to be periodic with a return period of T .

Period 
T


data segment 
x
n


data segment 
y
n


D
t


x


y


N
 numbers of point


Figure 1.8: Digital representation of a continuous signal. The time series x and y are
digitized signals with equally spaced time intervals ∆t.

1.2.3 Nyquist frequency

To present the frequency content of the data the Fourier Transform X(f) of x(t) is
imposed. Each frequency component (or cycle) of the original data requires at least two
samples, which means that the highest frequency that can be defined by a sampling rate
of fs = 1/∆t is fs/2. This particular band-limiting frequency is denoted the Nyquist
frequency (or folding frequency):

fnyq =
fs

2
=

1

2∆t
(1.1)

1.2.4 Aliasing

Frequencies or vibration cycles above fnyq in the original data will appear below fnyq

in the frequency domain and could be misinterpreted as low frequency content, see Fig-
ure 1.9. This phenomenon is known as aliasing. To avoid aliasing the frequency content
of the original data above fnyq should be removed prior to the subsequent signal process-
ing procedures. The high frequency information can be removed by "anti-aliasing filters"
by applying a low pass filter that cuts off frequency content higher than fnyq. Real
filters does not have an infinitely sharp cut-off shape, so the anti-aliasing filter cut-off
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12 Experimental modal analysis

frequency is set to approx. 80 % of fnyq to assure that any data at frequencies above
fnyq are strongly suppressed (Bendat and Piersol 1986).
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Figure 1.9: Aliased power spectrum due to folding.
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14 Experimental modal analysis

1.2.5 Signal processing (digital data analysis)

The traditional non-parametric models for system identification are primarily based of
spectral analysis that makes use of Fourier Transform techniques. The spectral analysis
is employed for analysing stochastically excited systems and in this case the excitation
and the system response can be characterized by spectral densities in frequency domain.
The basic signal processing steps in the non-parametric methods are described in the
following.

Spectral Analysis—example

When operating with spectral analysis techniques the shape of the time domain waveform
of the vibrating structure is not dealt with; the key information is the frequency, phase
and amplitude of the component sinusoids. The Discrete Fourier Transform (DFT) tech-
nique is used to extract this information. This general concept is shown by an example,
based on a description from Smith (1997).

The measuring device is a transducer (here an accelerometer) where the data is
sampled by a rate of 200 Hz and thereby a Nyquist frequency of 100 Hz. An analog
low-pass filter (anti-aliasing filter) is used to remove all frequencies above 100 Hz, and
the cut-off frequency is set to 80 % of the Nyquist frequency. A sample of 1024 data point
of a measured signal is shown in Figure 1.10(a). This corresponds to a data segment of
a time series, as shown in Figure 1.8. The DFT technique makes use of the Fast Fourier
transform (FFT) algorithm. When the FFT is applied for transforming a sample of
1024 data points, this result in a 513 point frequency spectrum in the frequency domain,
i.e. the frequency range from 0 to 100 Hz is divided into 513 frequency points. By
using the FFT algorithm it is assumed that the signal to be transformed is periodic
within the transformation window (here corresponding to the 1024 samples). Many
types of signals, such as random signals are non-periodic in the transformation window,
which may lead to distortion of the frequency spectrum. This distortion is referred to as
"spectral leakage" and results in inaccurate spectral information of the measured signal.
To suppress the spectral leakage the measured signal is tapered before applying the FFT,
so the discontinuities at the edges of the transformation window are reduced. This time
history tapering is done by multiplying the measured signal in Figure 1.10(a) by a suitable
time window as shown in Figure 1.10(b). This specific window is denoted a Hamming
Window but other time windows are available, see e.g. Bendat and Piersol (1986). The
resulting signal is shown in Figure 1.10(c), where the samples near the ends have been
reduced in amplitude. The windowed signal in Figure 1.10(c) is transformed by means
of DFT into a 513 point frequency spectrum (here a Power Spectral Density spectrum)
as shown in Figure 1.10(d). This plot is filled with noise because there is not enough
information in the original 1024 points to obtain a well defined spectrum. The noise
is not reduced by refining the FFT to 2048 points (=1025 point frequency spectrum),
because using a longer FFT provides better frequency resolution, but the same noise
level.

In order to reduce the noise more data is needed. This is carried out by separating
the data into multiple 1024 data point segments. Each segment is multiplied by the
Hamming Window, processed by the 1024 FFT algorithm and converted into a frequency
spectrum. The resulting spectrum is constructed by averaging all the frequency spectra,
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1.2 General digital data analysis 15

as shown in Figure 1.10(e). Here the spectrum is an average of 200 spectra. The noise
level has been reduced and the relevant features of the signal can be investigated. It
should be noted that the number of segments should be sufficiently large, e.g. 100 or
more.
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Figure 1.10: Example of spectral analysis of a signal. (a) shows 1024 samples taken from
a transducer with a sample frequency of 200 Hz. The signal is multiplied by a Hamming
window (b), resulting in the windowed signal in (c). The Power Spectral Density (PSD)
of the windowed signal is calculated by means of the Discrete Fourier Transform (DFT)
and followed by multiplication in frequency domain, as displayed in (d). When averaging
e.g. 200 of these spectra the random noise is reduced, resulting in the averaged spectrum
shown in (e).
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1.2 General digital data analysis 17

Spectral analysis—General concepts

The spectral analysis is used for identifying the frequency composition of random signals
in the frequency domain. In the following some basic descriptive properties used for
describing random signals are presented. These are:

� Autocorrelation functions

� Cross-correlation functions

� Spectral density functions

Autocorrelation Function
The definition of an autocorrelation function is: The expected value of the product of
a random variable or signal realization with a time-shifted version of itself. The auto-
correlation function contains information about how quickly random signals or processes
changes with respect to time, and whether the process has a periodic component and
what the expected frequency might be.

A pair of random variables from the same process x(t) is considered, that is x1 =
x(t1) and x2 = x(t2). Then the autocorrelation Πxx(t1, t2) of x1 and x2 can be written
as:

Πxx(t1, t2) = E[x1x2] =

∫

∞

−∞

∫

∞

−∞

x1x2p(x1, x2)dx1dx2 (1.2)

where p(x1, x2) is the joint probability density function of x1 = x(t1) and x2 = x(t2).
The above equation is valid for stationary and non-stationary random processes. For
a stationary process the expression can be generalized, and it can be proven that the
expected values of the random process will be constant and independent of time. There-
fore, the autocorrelation function will depend only on the time difference and not the
absolute time. The time difference is introduced as τ = t1 − t2 and the autocorrelation
Πxx(τ) can be expressed as:

Πxx(t, t + τ) = Πxx(τ) = E[x(t)x(t + τ)] (1.3)

Usually the whole random process is not available or described properly. In these cases,
the autocorrelation can be estimated for a given interval, 0 to T seconds, of the sample
function of the random process. The estimation of the autocorrelation Π̂xx(τ) is given
as:

Π̂xx(t, t + τ) =
1

T − τ

∫ T−τ

0

x(t)x(t + τ)dt (1.4)

This is given for the continuous case. It is usually not possible to describe the complete
continuous-time function for the random signals, so the equation is modified in order
to treat the information in a discrete-time formula. The discrete-time formulation for
estimating the autocorrelation is as follows:

Π̂xx[m] =
1

N − m

N−m−1
∑

n=0

x[n]x[n + m] (1.5)
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18 Experimental modal analysis

where N is the number of data points in the sample, m is the data point corresponding
to τ and n the data point corresponding to t.

Cross-correlation Function
When dealing with multiple random processes, it is important to describe the relationship
between the processes. This may for example occur if more than one random signal is
applied to a system. The cross correlation function is defined as the expected value of
the product of a random variable from one random process with a time-shifted, random
variable from a different random process.

For a stationary process the expression for the cross-correlation can be written in
terms of τ = t1 − t2 since the expected values of the random process will be constant
and independent of time, as described for the autocorrelation. Consider two random
processes x(t) and y(t). Then the cross correlation function is defined as:

Πxy(t, t + τ) = Πxy(τ) = E[x(t)y(t + τ)] (1.6)

The cross-correlation can be estimated for a given interval, 0 to T seconds, of the sample
functions of the random processes. The estimation of the cross-correlation Π̂xy(τ) is
given as:

Π̂xy(τ) =
1

T − τ

∫ T−τ

0

x(t)y(t + τ)dt (1.7)

The discrete-time formulation for estimating the cross-correlation is as follows:

Π̂xy[m] =
1

N − m

N−m−1
∑

n=0

x[n]y[n + m] (1.8)

where N is the number of data points in the sample, m is the data point corresponding
to τ and n the data point corresponding to t.

Spectral density Function
The spectral density functions can be defined in several ways. These are:

� Definition via correlation functions

� Definition via finite Fourier transforms

� Definition via filtering-squaring-averaging operations

Only the first two definitions will be mentioned here, for further details, see Bendat
and Piersol (1986). The most common way to define the spectral density function is by
means of the correlation function described in the previous section. The spectral density
function is defined by taking a single Fourier Transform of the correlation function. The
auto-spectral density function Sxx(f) is thus defined as:

Sxx(f) =

∫

∞

−∞

Πxx(τ)e−i2πfτdτ (1.9)

Where i (=
√
−1) is the imaginary unit and f is the frequency. This approach gives

a two-sided spectral density function Sxx(f), which is defined for f ∈ [−∞,∞]. It
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1.2 General digital data analysis 19

should be noted that the auto-spectral density function Sxx(f) also is denoted the "power
spectral density function". As well as the auto-spectral density function is defined for a
autocorrelation function there exists a cross-spectral density function Sxy(f), defined as:

Sxy(f) =

∫

∞

−∞

Πxy(τ)e−i2πfτdτ (1.10)

The second way of defining the spectral density function is based on finite Fourier Trans-
forms of the original data series. Two random processes x(t) and y(t) are considered.
For a finite time interval 0 ≤ t ≤ T the spectral density function can be defined as:

Sxx(f, T ) =
1

T
X∗(f, T )X(f, T ) (1.11a)

Sxy(f, T ) =
1

T
X∗(f, T )Y (f, T ) (1.11b)

where

X(f, T ) =

∫ T

0

x(t)e−i2πftdt (1.12a)

Y (f, T ) =

∫ T

0

y(t)e−i2πftdt (1.12b)

X(f, T ) and Y (f, T ) represent finite Fourier transforms of x(t) and y(t), respectively,
and X∗(f, T ) is the complex conjugate of X(f, T ). The estimate of Sxx(f) or Sxy(f)
when T tends toward infinity is given by:

Sxx(f) = lim
T→∞

E[Sxx(f, T )] (1.13a)

Sxy(f) = lim
T→∞

E[Sxy(f, T )] (1.13b)

It can be shown that (1.13) is equal to (1.9) and (1.10) (Bendat and Piersol 1986).
It is not convenient to describe the frequency composition in the frequency range

from −∞ to ∞. Hence, the spectral density function S(f) is converted into a one-
sided spectral density function G(f) where f ∈ [0,∞]. The one-sided auto-spectral and
cross-spectral density functions Gxx(f) and Gxy(f) are defined as:

Gxx(f) = 2Sxx(f) 0 ≤ f ≤ ∞ otherwise zero (1.14a)

Gxy(f) = 2Sxy(f) 0 ≤ f ≤ ∞ otherwise zero (1.14b)
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20 Experimental modal analysis

1.3 Basics of structural dynamics and modal analysis

In this section the basic equations for structural dynamics and modal analysis are pre-
sented. The section is based on Bendat and Piersol (1986) and Andersen (1997).

1.3.1 Dynamic model of second-order structural system

Dynamic structural systems subjected to external loading are often modelled as a lumped
mass-spring-dashpot parameter model given by:

Mz̈(t) + Cż(t) + Kz(t) = f(t) (1.15)

M, C and K are the mass, damping and stiffness matrices with the dimensions p×p. z(t)
and f(t) are p× 1 displacement and force vectors at the mass points, respectively. Equa-
tion (1.15) is a second-order differential equation that represents the force equilibrium
of the structural system. The inertial forces Mz̈ are balanced by a set of linear-elastic
restoring forces Kz, viscous damping forces Cż and the external forces f(t).

The general solution of the linear constant-parameter can be described by a weighting
function h(τ), also known as the unit impulse response function, which is defined as the
output of the system at any time to a unit impulse input applied a time before (Bendat
and Piersol 1986). h(τ) has the dimension p×p. If it is assumed that the initial conditions
are zero, i.e. z(0) = 0 and ż(0) = 0, then the solution can be written in terms of the
following convolution integral:

z(t) =

∫ t

0

h(τ)f(t − τ)dτ,

{

z(0) = 0

ż(0) = 0
(1.16)

The expression in (1.16) states that the output z(t) is given as a weighted linear sum
over the entire history of the input f(t).

The unit impulse response function h(τ) describes the system in time domain. The
system can also be described in the frequency domain by means of a frequency response
function H(f). If the system parameters are constant and the system is linear then H(f)
is defined as the Fourier Transform of h(τ):

H(f) =

∫

∞

0

h(τ)e−i2πfτdτ, or H(ω) =

∫

∞

0

h(τ)e−iωτdτ (1.17)

where f is frequency, ω is angular frequency and i is the imaginary unit.

1.3.2 Modal Analysis

Within the field of system identification is assumed that the estimated models can serve
as a basis for a subsequent modal analysis of the structure. In the following it is shown
how the modal information can be extracted from the second-order structural system
in (1.15). For a particular mode, the j th mode, can be represented by various modal
parameters. These are (Andersen 1997):

� Modal frequency:
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1.3 Basics of structural dynamics and modal analysis 21

– Eigenvalue λj

– Angular eigenfrequency ωj

– Natural eigenfrequency fj

� Modal damping:

– Damping ratio ζj

� Modal vector:

– eigenvector Ψj

– Mode shape Φj

� Modal scaling:

– Modal mass mj

– Residues Rj

The different parameters will be introduced and explained as they appear in the descrip-
tion.

State space representation of the dynamic system

The vibrations of the system in (1.15) are assumed to be viscously damped, and for
that reason it is necessary to evaluate the eigenvalue problem of the system as complex
in order to determine the modal parameters. The solution of the complex eigenvalue
problem requires the construction of a 2p × 2p system matrix and a 2p response vector.
The response vector is denoted as the state vector of the system in (1.15). The state
vector is defined in term of displacements and velocities of the system:

x(t) =

[

z(t)
ż(t)

]

(1.18)

By means of the state vector in (1.18) the second-order system in (1.15) can be reduced
to a first-order differential equation system:

Aż(t) + Bz(t) = u(t)

A =

[

C M

M 0

]

, B =

[

K 0

0 −M

]

, u(t) =

[

f(t)
0

]

(1.19)

The differential equation in (1.19) is denoted as the "state space representation" of the
dynamic system.
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Free vibrations of the dynamic system

The free vibration of the system in (1.19) is given by:

Aż(t) + Bz(t) = 0 (1.20)

The solution for (1.20) is assumed to be on the following form:

x(t) = Ψeλt (1.21)

Where Ψ is a complex vector with dimensions 2p×1 and λ is a complex constant. When
(1.21) is inserted into (1.20) it shows that (1.21) is a solution if and only if Ψ is a solution
to the first-order eigenvalue problem given as:

(λA + B)Ψ = 0 (1.22)

This leads to the characteristic polynomial of the eigenvalue problem:

det (λA + B) = 0 (1.23)

The order of the polynomial is 2p and has 2p roots λj , j = 1, . . . , 2p. For each of the
roots λj a non-trivial solution Ψj to (1.23) exists. The solution vector Ψj is denoted
an eigenvector. The system is assumed to be underdamped (typical for a broad range of
civil engineering structures) and this means that the eigenvalues λj can be represented
by complex conjugated pairs, given by:

λj , λj+1 = − 2πfjζj ± i2πfj

√

1 − ζ2
j = −ωjζj ± iωj

√

1 − ζ2
j (1.24)

ζj < 1, j = 1, 3, . . . , 2p − 1

Where fj is the natural eigenfrequency, ωj is the angular eigenfrequency and ζj the
damping ratio of the j th underdamped mode. Note that both λj and λj+1 is given in
(1.24). From (1.18) and (1.19) it follows that the eigenvector has the form:

Ψj =

[

Φj

λjΦj

]

, j = 1, 2, . . . , 2p (1.25)

The standard eigenvalue problem of the second-order system can be formulated if A and
B and (1.25) is inserted into (1.22). This gives the following equation:

(

λ2
jM + λjC + K

)

Φj = 0, j = 1, 2, . . . , 2p (1.26)

The vector Φj is the non-trivial solution for the standard eigenvalue problem of the
second-order system, and is denoted as the "mode shape". The eigenvectors Ψj for all
the modes from j = 1 to 2p can be assembled in one matrix Ψ which defines the complex
modal matrix for the system. Ψ is given as:

Ψ =

[

Φ1 Φ2 · · · Φ2p

λ1Φ1 λ2Φ2 · · · λ2pΦ2p

]

(1.27)
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The matrix in (1.28) has important orthogonal properties with respect to the matrix A.
The special properties are as follows:

ΨTAΨ = Md, ΨTBΨ = ΛMd,

{

Λ = diag{λj}
Md = diag{mj}

(1.28)

where Λ and Md are diagonal matrices containing 2p eigenvalues λj and damped modal
masses mj , respectively.

The solution to the system in (1.15) is given by the convolution integral in (1.16).
This function can conveniently be expressed in terms of the modal decomposed system
as:

h(τ) =

2p
∑

j=1

ΦjΦ
T
j

mj

eλjτ =

2p
∑

j=1

Rje
λjτ (1.29)

mj is the j th diagonal element of Md and Rj is the residue matrix that corresponds to
the j th eigenvalue.

The mode shapes are called "shapes" because they are unique in shape but not in
value. That is, the mode shape vector for Φj each mode j does not have unique values.
The mode shape vector can be arbitrary scaled to any set of values, but relationship of one
shape component to another is unique. In the system masses are known it is possible to
scale the mode shapes so that the modal masses are unity. However, when the modal data
is obtained from experimental spectral analyses (from experimental frequency transfer
function measurements), no mass matrix is available for scaling. Without the mass
matrix the experimental mode shapes can still be scaled to unit modal masses by using
the relationship between residues and mode shapes:

Rj = αjΦjΦ
T
j , αj =

1

mjωj

(1.30)

where αj is a scaling constant for the j th mode. The relation between αj and mj is also
shown in (1.30).

1.3.3 Spectral analysis of dynamic excited system

Stochastically excited system can be analysed in the frequency domain, if certain charac-
teristics are satisfied. It is assumed that the system is linear and the applied excitation
f(t) is a stationary zero mean Gaussian distributed stochastic process. In this case the
response z(t) of the system is also a Gaussian distributed stochastic process. Since f(t)
is assumed zero mean, it can be fully described by its correlation function Πff (τ). The
system is assumed linear so the response z(t) of the system is also described by its
correlation function Πzz(τ).

By using (1.9) the auto spectral density functions Sff (ω) and Szz(ω) for f(t) and
z(t) can be established. Note that ω is an arbitrary angular frequency. By introducing
the frequency response function H(ω) from (1.17) it is possible to describe Szz(ω) by
means of Sff (ω) in the following way:

Szz(ω) = H(ω)Sff (ω)HH(ω) (1.31)
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where the superscript H is the Hermitian conjugate (equal to complex conjugate and
transpose). In (1.17) it is shown that the frequency response function H(ω) is the Fourier
transform of the unit impulse response function h(τ). Using this relation means that
(1.29) can be transformed into frequency domain and the frequency response function
H(ω) can be given as a partial fraction expansion:

H(ω) =

2p
∑

j=1

Rj

iω − λj

(1.32)

where λj and Rj are the poles and residues of the partial fraction expansion, respectively.
Suppose that the input f(t) is Gaussian white noise, then the auto spectral density
function Sff (ω) is constant intensity matrix denoted by F. The spectral density function
Szz(ω) of the response z(t) of a Gaussian white noise excited second-order system is then
given by:

Szz(ω) = H(ω)FHH(ω) =

2p
∑

j=1

2p
∑

k=1

RjFRH
j

(iω − λj)(iω − λk)
(1.33)
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1.4 System Identification

The system identification by ARTeMIS (SVS 2006) operates with two different identifi-
cation techniques, one in time domain and one in frequency domain. The two models
are:

� Frequency Domain Decomposition (FDD)

� Stochastic Subspace Iteration (SSI)

The models are described briefly in the following.

1.4.1 ID by Frequency Domain Decomposition (FDD)

The frequency domain estimation is a non-parametric model (also known as spectral
models) based on a Frequency Domain Decomposition (FDD) method. The FDD method
is an extension of the well-known frequency domain approach that is based on mode
estimations directly from the Power Spectral Density (PSD) matrix, i.e. well separated
modes can be identified at the peaks of the PSD matrix.

The basics of the identification algorithm are as follows. The estimate of power spec-
tral density matrix Ĝyy(f) is determined by means of signal processing of the measured

accelerations. Ĝyy(f) is a N × N matrix where N is the number of channels, known at

discrete frequencies f = fi. The estimate of power spectral density matrix Ĝyy(fi) is
then decomposed by means of a Singular Value Decomposition (SVD) into a matrix of
the form:

Ĝyy(fi) = UiΣiU
H
i (1.34)

where Ui = [ui1,ui2, . . . ,uiN ] is unitary matrix containing N singular vectors uij . Σi is
a diagonal matrix containing N scalar singular values σ2

ij :

Σi =







σ2
i1 · · · 0
...

. . .
...

0 · · · σ2
iN






(1.35)

According to the theory of Frequency Domain Decomposition the first singular vector
ui1 is an estimate of the mode shape Φ̂ (Brincker et al. 2000; Brincker et al. 2000):

Φ̂ = ui1 (1.36)

The corresponding singular value σ2
iN is then part of a power spectral density function of

an equivalent single degree of freedom (SDOF) system. The relation in (1.36) may not
seem obvious, but it becomes clear when (1.34) is compared to (1.33). Remember that
Ĝyy(fi) is a one-sided spectrum equal to 2Ŝyy(fi). In (1.33) the spectrum is given in
terms of residues, and these residues are again given by mode shapes. This means that
the modes shapes are related to the singular vectors in (1.34).

The power spectral density function of the SDOF system is identified around a peak
(mode k in Figure 1.11) by comparing the mode shape estimate Φ̂ with singular vectors
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for the frequencies around the mode. The comparison is done by means of a Modal
Assurance Criterion (MAC):

MAC(Φr,Φs) =
|ΦH

r Φs|2
|ΦH

r Φr||ΦH
s Φs|

(1.37)

The MAC value is the square of correlation between two modal vectors Φr and Φs. If
the MAC value is unity the two vectors are identical within a modal scale factor. Further
information about modal indicators is given in Zhang et al. (2001).

Singular value


f


SVD-1

SVD-2


SVD-N


mode 
k


SDOF density function


Figure 1.11: Plot of singular values of the power spectral density matrix as a function of
frequency. The singular values around the kth mode of the system (structure) belong to
the SDOF power spectral density function.

If the singular vectors for the frequencies around the peak have a high MAC value
with respect to the mode shape estimate Φ̂, the corresponding singular values belong to
the SDOF density function. This is illustrated in Figure 1.11 where the red part of the
power spectral density function is a SDOF density function.

When the SDOF power spectral density function has been estimated for a mode, the
corresponding singular vectors are averaged together to obtain an improved estimate of
the mode shape. The natural frequency and the damping ratio of the mode is estimated
by transforming the SDOF Spectral Bell to time domain by inverse FFT. This results in
a SDOF Correlation Function, and by simple regression analysis the estimates of both
the natural frequency as well as the damping ratio can be obtained.

1.4.2 ID by Stochastic Subspace Iteration (SSI)

In the SSI techniques a parametric model is fitted directly to the raw time series data
obtained from the accelerometers. The parametric models are characterized by the as-
sumption of a mathematical model constructed from a set of parameters, where the
mathematical model is a linear and time-invariant system of differential equations.
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A dynamic structural model can be described by a set of linear second-order differ-
ential equations with constant coefficients as stated in the previous section. The model
is reproduced here:

Mz̈(t) + Cż(t) + Kz(t) = f(t) (1.38)

M, C and K are the mass, damping and stiffness matrices, and z(t) and f(t) displace-
ment and force vectors, respectively. (1.38) can be rewritten as a first-order system
(rearrangement of (1.19)), given by:

ẋ(t) = Acx(t) + Bcu(t) x(t) =

[

z(t)
ż(t)

]

Ac =

[

0 I

−M−1K −M−1C

]

, Bc =

[

0

−M−1B2

]

, f(t) = B2u(t) (1.39)

Where Ac is the state matrix and Bc the system control influence coefficient matrix.
Note that the excitation force f(t) is factorized into a matrix B2 describing the inputs
in space and a vector u(t) describing the inputs in time.

In practice, not all the degrees of freedom are monitored. The measurements (accel-
erations, velocity or displacement) are evaluated at a subsystem of nodes (or locations).
The observation equation for the measurements is given by:

y(t) = Caz̈(t) + Cv ż(t) + Cdz(t) (1.40)

where y(t) corresponds to the output in the monitored subsystem. Ca, Cv and Cd are
the output matrices for acceleration, velocity and displacement, respectively. The output
vector y(t) can be transformed into:

y(t) = Ωx(t) + Du(t)

Ω =
[

Cd − CaM
−1K Cv − CaM

−1C
]

, D = CaM
−1B2 (1.41)

where Ω the output matrix and D is a direct transmission matrix. (1.39) and (1.41)
constitute a continuous-time state-space model of a dynamic system. Since experimental
data are discrete in nature the continuous system is reformulated into a discrete system.
The measurements are then available at discrete time instances k∆t. The discrete state
space model is then given by:

xk+1 = Axk + Buk

yk = Ωxk + Duk (1.42)

where x(k∆t) is the discrete time state vector, A = exp(Ac∆t) is the discrete state
matrix and B = [A−I]A−1

c Bc is the discrete input matrix. The equation in (1.42) forms
the discrete-time state space model of a dynamic system. The model in (1.42) does
not contain any uncertainties, such as process and measurement noise. There is always
noise in practice, so the model in (1.42) is extended by including stochastic components.
The noise is included by two components, wk and vk, where wk is process noise due
to disturbances and modeling inaccuracies and vk is measurement noise due to sensor
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inaccuracy. When the stochastic components are included the following discrete-time
state space model is obtained:

xk+1 = Axk + Buk + wk

yk = Ωxk + Duk + vk (1.43)

In (1.43) it is assumed that the input uk is known. This is not the case when the
input is an unmeasurable stochastic process. In the case of such ambient vibrations it is
impossible to distinguish the input term uk from the noise terms wk and vk. Modeling
the input term uk by the noise terms wk and vk results in a purely stochastic system:

xk+1 = Axk + wk

yk = Ωxk + vk (1.44)

The equation in (1.44) constitutes the basis for the time-domain system identification
technique, based on output only. The Stochastic Subspace Identification (SSI) technique
is a class of techniques that are formulated and solved using the state space formulation
in (1.44).

Principle of SSI solution
In order to solve (1.44), the system is reformulated. This includes three steps. First step
is to determine xk. xk is denoted as Kalman sequences that in SSI are found by means of
a so-called orthogonal projection technique, see e.g. Van Overschee and De Moor (1996).
Second step is to solve the regression problem for the matrices A and Ω and for the
residual noise components wk and vk. The third step is to estimate a so-called Kalman
gain matrix Kk so that the system can be written as a full covariance equivalent model:

x̂k+1 = Ax̂k + Kkek

yk = Ωx̂k + ek (1.45)

where Kk is the Kalman gain matrix, ek is called the innovation and is a zero-mean
Gaussian white noise process and x̂k is the predicted state vector. It can be shown that
by performing a modal decomposition of the A matrix as A = V[µj ]V

−1 and introducing
a new state vector zk the equation in (1.45) can also be written as:

zk+1 = [µj ]zk + Ψek

yk = Φzk + ek (1.46)

where [µj ] is a diagonal matrix containing the discrete eigenvalues. The natural frequen-
cies fj and damping ratios ζj are extracted using the following definition:

µj = exp
(

−2πfj

(

ζj ±
√

1 − ζ2
j

)

∆t
)

(1.47)

where ∆t is the sampling interval. The mode shape that are associated with the j th
mode is given by the j th column of the matrix Φ. The last matrix Ψ that completes the
modal decomposition contains a set of row vectors. The j th row vector corresponds to
the j th mode. This vector distributes the white noise excitation ek in modal domain to
all the degrees of freedom.
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