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Preface

The technical report “Lumped-parameter models” is divided into three numbered sec-
tions, and a list of references is situated after the last section. Tables, equations and
figures are indicated with consecutive numbers. Cited references are marked as e.g.
Houlsby and Cassidy (2002), with author specification and year of publication in the
text.

The work within this report has only been possible with the financial support from
the Energy Research Programme (ERP)1 administered by the Danish Energy Author-
ity. The project is associated with the ERP programme “Soil–Structure interaction of
Foundations for Offshore Wind Turbines”. The funding is sincerely acknowledged.

Aalborg, December 11, 2006 Lars Bo Ibsen & Morten Liingaard

1In danish: “Energiforskningsprogrammet (EFP)”
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Chapter 1

Lumped-parameter models

A lumped-parameter model represents the frequency dependent soil-structure in-
teraction of a massless foundation placed on or embedded into an unbounded soil
domain. The lumped-parameter model development have been reported by (Wolf
1991b; Wolf 1991a; Wolf and Paronesso 1991; Wolf and Paronesso 1992; Wolf 1994;
Wolf 1997; Wu and Lee 2002; Wu and Lee 2004).

In this technical report the the steps of establishing a lumped-parameter model
are presented. Following sections are included in this report: Static and dynamic for-
mulation (Section 1.1), Simple lumped-parameter models (Section 1.2) and Advanced
lumped-parameter models (Section 1.3).

1.1 Static and Dynamic Stiffness Formulation

The elastic behaviour of foundations is relevant in several situations. The elastic response
of footings is used to evaluate of deformations during working loads (in serviceability con-
ditions) and may be used as the "elastic zone" for advanced elasto-plastic macro-models
of foundations, see e.g. Martin and Houlsby (2001) and Houlsby and Cassidy (2002).
The dynamic response of the wind turbine structure (e.g. eigen frequencies/modes) are
affected by the properties of the foundation. The purpose of this research is to provide
accurate means of evaluation of the dynamic properties of the foundation, so that it
can be properly included in a composite structure-foundation system. The typical ap-
proach is that each analysis of the composite system should employ a complete analysis
(using for instance finite-element method) of both the structure and foundation. Such
an approach is, however, inefficient and time consuming, as for practical purposes the
foundation system can be treated as a substructure with predetermined properties. The
interactions between the foundation and structure are then expressed purely in terms
of force and moment resultants, and their conjugate displacements and rotations, see
Figure 1.1.

1.1.1 Static stiffness

The elastic static stiffness of the foundation can be expressed by dimensionless elastic
stiffness coefficients corresponding to vertical (K0

V V ), horizontal (K0
HH), moment (K0

MM )
and torsional (K0

TT ) degrees of freedom. Cross-coupling between horizontal and moment

— 1 —
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x1 x1

x2 x2

x3 x3

θM1

θM2 θT

U1

U2 W
M1

M2 T

H1

H2 V

(a) (b)

Figure 1.1: Degrees of freedom for a rigid surface footing: (a) displacements and rota-
tions, and (b) forces and moments.

loads exists so an additional cross-coupling term (K0
MH) is necessary. Under general

(combined) static loading (see Figure 1.1) the elastic stiffness of the foundation system
can be expressed as
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,

(1.1)

where R is the radius of the foundation and Gs is the shear modulus of the soil. The
shear modulus Gs is given by

Gs =
Es

2 (1 + νs)
(1.2)

where Es is Young’s modulus and νs is Poisson’s ratio. Note that the foundation is
assumed to be rigid and the soil is linear elastic, i.e. the properties are given by Gs and
νs. This means that the stiffness components K0

ij (i, j = H, M, T, V ) in 1.1 are functions
of Poisson’s ratio.

1.1.2 Dynamic stiffness

It is assumed that the foundation is excited with a harmonic vibrating force with the
circular frequency ω. The dynamic system for a vertical vibrating surface footing with
no mass is shown in Figure 1.2(a). For each degree of freedom the dynamic stiffness of
the system can be represented by a frequency dependent spring and dashpot, as shown
in Figure 1.2(b).

A generalized massless axisymmetric rigid foundation has six degrees of freedom: one
vertical, two horizontal, two rocking and one torsional. The six degrees of freedom and
the corresponding forces and moments are shown in Figure 1.1. The dynamic stiffness
matrix S is related to the vector of forces and moments R and the vector of displacements
and rotations U as follows:

R = SU (1.3)

Ibsen & Liingaard



1.1 Static and Dynamic Stiffness Formulation 3

Figure 1.2: (a) Vertical vibrating surface footing resting on a homogeneous elastic half-
space. (b) Analogy for dynamic soil response.

The component form of Equation (1.3) can be written as:
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(1.4)

where R is the radius of the foundation and Gs is the shear modulus of the soil. The
components in S are functions of the cyclic frequency ω, and S reflects the dynamic
stiffness of the soil for a given shape of the foundation. The components of S can be
written as:

Sij (ω) = Kij (ω) + iωCij (ω) , (i, j = H, M, T, V ) , (1.5)

where Kij and Cij are the dynamic stiffness and damping coefficients with respect to ω,
respectively, and i is the imaginary unit, i =

√
−1. It is convenient to use dimensionless

frequency a0 = ωR/cS that is normalized by the ratio of the foundation radius R and
the shear wave velocity of the soil cS . The dynamic stiffness components can then be
written as

Sij (a0) = K0
ij [kij (a0) + ia0cij (a0)] , (i, j = H, M, T, V ) , (1.6)

where K0
ij is the static value of ij th stiffness component, kij and cij are the dynamic

stiffness and damping coefficients with respect to a0, respectively. The non-dimensional
dynamic stiffness and damping coefficients, kij and cij , are both real. Both geomet-
rical damping, i.e. the radiation of waves into the subsoil, and possibly also material
dissipation contribute to cij .

In some situations it is useful to examine the magnitude and phase angle of Equa-
tion (1.6) in addition to the real and imaginary parts of the dynamic stiffness. The
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4 Lumped-parameter models

magnitude (complex modulus) of Sij is given by

|Sij | = |K0
ij |

√

(kij)
2
+ (a0cij)

2
, (1.7)

and the phase angle φij of Sij is given as

φij = arctan

(
a0cij

kij

)

. (1.8)

Note that the above-mentioned stiffness formulations are based on the fact that the
foundation is rigid. This means that components in S are functions of Poisson’s ratio νs

and the circular frequency ω (if dynamic) for a given shape of the foundation.

1.2 Simple lumped-parameter models

The frequency dependency of the foundation stiffness is taken into account, by applying
lumped-parameter models. Two types of models are categorized as simple models: The
standard lumped-parameter model and the fundamental lumped-parameter model. The
presentation of the models is based on Wolf (1994).

1.2.1 Standard lumped-parameter model

The standard lumped-parameter model contains three coefficients, K, C and M , for each
degree of freedom, see Figure 1.3. The spring stiffness K is equal to the static stiffness
coefficient for the elastic half-space, thus K is given by the expressions in section 1.1.1.
The dashpot and mass coefficients, C and M , do not have physical meaning but are solely
curve fitting parameters, used to reproduce the dynamic stiffness of the foundation. The
parameters C and M are given by two non-dimensional coefficients γ and µ by

C =
R

cS

γK (1.9a)

M =
R2

c2
S

µK. (1.9b)

The values of K, γ and µ for a circular disk with mass on a elastic half-space are given
in Table 1.1 (Reproduced from Wolf (1994)).

Note that the inertia of the disk m (mass moment of inertia for rocking vibrations)
enters the expressions for γ with respect to rocking and torsional vibrations in the ex-
pressions given by Wolf (1994). However, it is possible to construct the parameters for a
massless foundation.

Based on the three coefficients, K, C and M , the dynamic stiffness for a each degree
of freedom can be formulated as

S(ω) = K − ω2M + iωC. (1.10)

The dynamic stiffness in Equation (1.10) can be rewritten in terms of the non-dimensional
frequency a0 as

S(a0) = K [k(a0) + ia0c(a0)] . (1.11)

Ibsen & Liingaard



1.2 Simple lumped-parameter models 5

Table 1.1: Non-dimensional coefficients for the standard lumped-parameter model. The
coefficients corresponds to a disk with mass on an elastic half-space.

Static stiffness K Dashpot coeff. γ Mass coeff. µ

Horizontal
8GsR
2−νs

0.58 0.095

Vertical
4GsR
1−νs

0.85 0.27

Rocking
8GsR3

3(1−νs)
0.3

1+
3(1−νs)m

8R5ρs

0.24

Torsional
16GsR3

3
0.433

1+ 2m

R5ρs

√
m

R5ρs
0.045

By comparing Equations (1.9) and (1.10) with Equation (1.11) it becomes evident that
the spring and damping coefficients k(a0) and c(a0) can be written as

k(a0) = 1 − µa2
0 (1.12a)

c(a0) = γ. (1.12b)

It turns out that the damping term c(a0) of the standard lumped-parameter model is
constant. This behaviour is not well suited to represent the damping of a footing, in
particular with respect to the torsional and rocking vibrations. Further, the normalized
real part of Equation (1.11) given by k(a0) in Equation (1.12) describes a parabolic shape
of the dynamic stiffness. The parabolic shape may represent the actual dynamic stiffness
of a given foundation at low frequencies, but is inadequate for modelling the dynamic
stiffness at intermediate and high frequencies. The standard lumped-parameter approxi-
mation of the vertical dynamic stiffness of a massless circular rigid footing is illustrated in
Figure 1.4. The approximation is compared with a rigorous solution provided by Veletsos
and Tang (1987).

The main advantage of the standard lumped-parameter is that no additional degrees
of freedom are introduced. However, the frequency dependent representation of the
dynamic stiffness is very simple. Thus, the model is restricted to be used in the low-

M

CK

Figure 1.3: Standard lumped-parameter model for translation motion.
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6 Lumped-parameter models

frequency range.

1.2.2 Fundamental lumped-parameter models

The fundamental lumped-parameter model consists of one static stiffness parameter
and four free parameters, found by curve fitting. As opposed to the standard lumped-
parameter model, this type of model contains one additional internal degree of freedom.
The fundamental lumped-parameter model can assembled in several ways by combining
spring, dashpots and masses. Two examples are shown in Figure 1.5. The spring stiffness
K is equal to the static stiffness coefficient for the elastic half-space, given by the expres-
sions in section 1.1.1. The remaining four free parameters are obtained by curve fitting.
The spring-dashpot model in Figure 1.5a is represented by the parameters M0, C0, K1

and C1, whereas the monkey-tail model in Figure 1.5b is represented by the parameters
M0, C0, M1 and C1. Consider the monkey-tail model. The four free parameters M0, C0,
M1 and C1 can be formulated by means of the non-dimensional coefficients µ0, γ0, µ1

and γ1 as

M0 =
R2

c2
S

µ0K (1.13a)

C0 =
R

cS

γ0K (1.13b)

M1 =
R2

c2
S

µ1K (1.13c)

C1 =
R

cS

γ1K (1.13d)
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c V
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(a
0
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Veletsos and Tang (1987)

Standard lpm.

Figure 1.4: Vertical dynamic stiffness of a massless circular footing on an elastic half-
space. The rigorous solution is compared with the approximation of a standard lumped-
parameter model.
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1.2 Simple lumped-parameter models 7

Table 1.2: Non-dimensional coefficients for the fundamental lumped-parameter model.
The coefficients correspond to a disk on an elastic half-space.

Static stiffness Dashpots Masses

K γ0 γ1 µ0 µ1

Horizontal
8GsR
2−νs

0.78-0.4νs — — —

Vertical
4GsR
1−νs

0.8 0.34-4.3ν4
s νs < 1

3
0 0.4-4ν4

s

νs > 1
3

0.9(νs − 1
3
)

Rocking
8GsR3

3(1−νs)
— 0.42-0.3ν2

s νs < 1
3

0 0.34-0.2ν2
s

νs > 1
3

0.16(νs − 1
3
)

Torsional
16GsR3

3
0.017 0.291 — 0.171

The values of K, µ0, γ0, µ1 and γ1 for a circular disk on a elastic half-space are given in
Table 1.2 (Reproduced from Wolf (1994)). Most of the coefficients, except for torsional
vibrations, depend on νs. Note that some of the non-dimensional coefficients may be
missing for some of the vibration modes.

The dynamic stiffness S(ω) of the fundamental lumped-parameter model (for har-
monic loading) can be established by formulating the equilibrium equation for each of the
two degrees of freedom, u0(ω) and u1(ω) in Figure 1.5b. The two equilibrium equations
are

−ω2M1u1(ω) + iωC1 [u1(ω) − u0(ω)] = 0, (1.14a)

−ω2M0u0(ω) + iω (C0 + C1)u0(ω) − iωC1u1(ω) + Ku0(ω) = P0(ω), (1.14b)

where u0(ω) is the displacement amplitude related to the applied load amplitude P0(ω).
By eliminating u1(ω) in Equations (1.14a) and (1.14b) the relation between P0(ω) and

P0 P0u0 u0

u1 u1K KC0 C0

M0 M0

K1

C1

C1

M1

(a) (b)

Figure 1.5: Fundamental lumped-parameter models. (a) Spring-dashpot model, and (b)
monkey-tail model.

December 11, 2006



8 Lumped-parameter models

0 1 2 3 4 5 6
0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Non-dimensional frequency a0 Non-dimensional frequency a0

N
o
rm

a
li
ze

d
st

iff
n
es

s
co

eff
.

k
V

V
(a

0
)

N
o
rm

a
li
ze

d
d
a
m

p
in

g
co

eff
.

c V
V

(a
0
)

Veletsos and Tang (1987)

Fundamental lpm.

Figure 1.6: Vertical dynamic stiffness of a massless circular footing on an elastic half-
space. The rigorous solution is compared with the approximation of a fundamental
lumped-parameter model.

u0(ω) is given as

P0(ω) = K



1 −
ω2M1

K

1 +
ω2M2

1

C2

1

− ω2M0

K
+ iω




M1

C1

ω2M1

K

1 +
ω2M2

1

C2

1

+
C0

K









︸ ︷︷ ︸

S(ω)

u0(ω). (1.15)

The dynamic stiffness in Equation (1.15) can be rewritten in terms of the non-dimensional
frequency a0 as stated in Equation (1.11). By substituting Equation (1.13) into Equa-
tion (1.15), the spring and damping coefficients k(a0) and c(a0) of the fundamental
lumped-parameter model (monkey-tail version) can determined as

k(a0) = 1 − µ1a
2
0

1 +
µ2

1

γ2

1

a2
0

− µ0a
2
0 (1.16a)

c(a0) =
µ1

γ1

µ1a
2
0

1 +
µ2

1

γ2

1

a2
0

+ γ0. (1.16b)

As opposed to the standard lumped-parameter model, the fundamental lumped-parameter
model is double-asymptotic, meaning that the approximation of S(a0) is exact for the
static limit, a0 → 0, and for the high-frequency limit, for a0 → ∞. The fundamental
lumped-parameter approximation of the vertical dynamic stiffness of a massless circular
rigid footing is illustrated in Figure 1.6. The approximation is compared with a rigorous
solution provided by Veletsos and Tang (1987). By including an additional degree of
freedom this approximation has approved when comparing with the standard lumped-
parameter model in the previous section. Note that the procedure for establishing the
formulation for spring-dashpot model is similar to that of the monkey-tail model. The
only difference is the characteristics of the non-dimensional coefficients.
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Figure 1.7: Vertical dynamic stiffness of a massless circular footing on an elastic half-
space. The rigorous solution is compared with the approximation of both the standard
and the fundamental lumped-parameter model.

The approximation of the fundamental lumped-parameter model is compared with
that of the standard lumped-parameter model in Figure 1.7. The approximations are
shown for the real and imaginary part of the dynamic stiffness, as well as for the magni-
tude and phase angle.
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1.3 Advanced lumped-parameter models

The investigations of frequency dependent behaviour of massless foundations often in-
volves complicated three-dimensional elastodynamic analyses using rigorous methods,
such as the finite element method or the boundary element method. The employed
models typically consist of several thousand degrees of freedom, and the frequency de-
pendent dynamic stiffness of the foundations are evaluated in the frequency domain.
The requirement for real-time computations in the time domain in aero-elastic codes do
not conform with the use of e.g. a three-dimensional coupled Boundary Element/Finite
Element Method, where the foundation stiffness is evaluated in the frequency domain.

In order to meet the requirements of real-time calculations and analysis in time
domain, lumped-parameter models are particularly useful. A lumped-parameter model
represents a unbounded soil domain, and the soil-structure interaction of a massless
foundation can be modelled by relatively few springs, dashpots and masses, all with
real frequency-independent coefficients. Each degree of freedom at the foundation node
of the structural model is coupled to a lumped-parameter model that may consist of
additional internal degrees of freedom. A systematic procedure to obtain consistent
lumped-parameter models with real coefficients has been suggested by Wolf (1991b).
The procedure is as follows:

� Determine the frequency dependent impedance or dynamic stiffness S(a0) by means
of the finite element method or the boundary element method.

� Decompose the dynamic stiffness S(a0) into a singular part Ss(a0) and a regular part
Sr(a0). The singular part Ss(a0) represents the asymptotic value of the dynamic
stiffness for a0 → ∞. The difference between S(a0) and Ss(a0) is the regular part
Sr(a0).

� Approximate the regular part Sr(a0) by the ratio of two polynomials P and Q. The
degree of the polynomial in the denominator is M and one less (M − 1) in the the
numerator. The approximation of the regular part Sr(a0) now contains 2M − 1
unknown real coefficients, which are determined by a curve-fitting technique based
on the least-squares method.

� Establish the lumped-parameter model from the 2M − 1 real coefficients. The
lumped-parameter model may contain several constant/linear, first-order and second-
order discrete-element models. Finally, the lumped-parameter model is formulated
into stiffness, damping and mass matrices, which can be incorporated into standard
dynamic programs.

The four steps in the procedure are explained in the following sections. It should be
noted that the lumped-parameter models do not provide any information of the stresses
or strains in the embedded foundations or in the surrounding subsoil. The models are
macro-models of the entire soil-structure interface.

1.3.1 Dynamic stiffness obtained from rigorous methods

The classical methods for analysing vibrations of foundations are based on analytical
solutions for massless circular foundations resting on an elastic half-space. The classical
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solutions by Reissner, Quinlan and Sung were obtained by integration of Lamb’s solution
for a vibrating point load on a half-space (Richart et al. 1970; Das 1993). The mixed
boundary value problems with prescribed conditions under the foundation and zero trac-
tion at the remaining free surface were investigated by Veletsos and Wei (1971) and Luco
and Westmann (1971). The integral equations of the mixed boundary value problems
were evaluated and tabulated for a number of excitation frequencies. A closed-form
solution has been presented by Krenk and Schmidt (1981).

Whereas analytical and semi-analytical solutions may be formulated for surface foot-
ings with a simple geometries, numerical analysis is required in the case of flexible em-
bedded foundations with complex geometry. The Finite Element Method (FEM) is very
useful for the analysis of structure with local inhomogeneities and complex geometries.
However, only a finite region can be discretized. Hence, at the artificial boundaries of
the unbounded domain, e.g. soil, transmitting boundary conditions must be applied as
suggested by Higdon (1990), Higdon (1992) and Krenk (2002). Numerous concepts, in-
cluding the Scaled Boundary Finite Element Method are presented by Wolf and Song
(1996), and Andersen (2002) gave a brief overview of different solutions techniques. In
the case of analyses by coupled boundary element/finite element models, wave radiation
into the subsoil is ensured by a coupling with the boundary element method. If the full-
space fundamental solution is utilized, both the soil–foundation interface and the free soil
surface must be discretized. A smaller numerical model, i.e. a model with fewer degrees
of freedom, may be obtained with the use of other types of solutions, e.g. half-space
solutions. However, this comes at the cost that the fundamental solution can be very
complicated, and often a closed-form solution cannot be found. The work within the
boundary element formulation of dynamic soil–structure interaction has been reported
by, for example, Domínguez (1993), Beskos (1987) and Beskos (1997).

1.3.2 Decomposition of the dynamic stiffness

The complex frequency dependent dynamic stiffness coefficient for each degree of freedom
is denoted by S(a0). In the following the indices are omitted for simplicity. S(a0) are
then decomposed into a singular part Ss(a0), and a regular part Sr(a0), given by

S (a0) = Ss (a0) + Sr (a0) , (1.17)

where

Ss (a0) = K0 [k∞ + ia0c
∞] . (1.18)

For the limit a0 → ∞, the second term on the right-hand side dominates, leading to a
high-frequency limit

Ss (a0) ≈ K0 [ia0c
∞] . (1.19)

The high-frequency behaviour of a surface footing is characterized by a phase angle
approaching π/2 for a0 → ∞ and a linear relation that passes through origo in a frequency
vs. magnitude diagram. The slope of the curve is equal to a limiting damping parameter
c∞ that describes the impedance for a0 → ∞. For example, the vertical limiting damping
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parameter in terms of ω of a circular surface footing is given by

C∞

V V = ρscP Ab, (1.20)

where Ab is the area of the base of the foundation. The vertical limiting damping parame-
ter in terms of a0 can be found by multiplying by the right-hand side in Equation (1.20)
by cS

K0R
(Recall that a0 = ωR/cS). The vertical limiting damping parameter c∞V V is then

given as

c∞V V = [ρscP Ab]
cS

K0R
. (1.21)

It should be noted that C∞

V V or c∞V V are highly sensitive to νs due to the fact that cP

enters the equation. For that reason cP may be inappropriate, and Gazetas and Dobry
(1984) suggest the use of Lysmer’s analog ‘wave velocity’ cLa=3.4cS/π(1 − νs). Wolf
(1994) suggests another approach where cP for νs ∈ [1/3;0.5] is constant, and equal to
cP at νs = 1/3.

Note that the singular part Ss(a0) is relatively simple to determine. Ss(a0) is a
function of the mass density of the soil, the wave velocity of the soil, and the base area or
moment of inertia of the foundation. The base area enters the equation for translational
degrees of freedom, whereas the moment of inertia and the polar moment of inertia enters
for the rocking and the torsional degree of freedom, respectively.

The remaining part Sr(a0) is found by subtracting Ss(a0) from S(a0). The regular
part is used as input for the curve-fitting procedure described in the next section.

1.3.3 Polynomial-fraction approximation

The regular part Sr(a0) of the dynamic stiffness is approximated by the ratio of two
polynomials P and Q. Furthermore, it is assumed that the polynomial-fraction approx-
imation can be established in terms of ia0. The approximation of Sr(a0) in terms of P
and Q is then

Sr(a0) ≈ Sr(ia0) =
P (ia0)

Q(ia0)
= K0

K0
−k∞

K0 + p1(ia0) + p2(ia0)
2 + · · · + pM−1(ia0)

M−1

1 + q1(ia0) + q2(ia0)2 + · · · + qM (ia0)M
,

(1.22)

where pi, qi are the 2M − 1 unknown real coefficients to be determined by curve-fitting.
Note that the degree of the polynomial in the denominator is M , and M − 1 in the the
numerator.

The total approximation of S(a0) is found by adding Equations (1.18) and (1.22) as
stated in Equation (1.17). The approximation has two important characteristics: The
approximation of S(a0) is exact for the static limit, where S(a0) → K0 for a0 → 0, and
for the high-frequency limit, where S(a0) → Ss(a0) for a0 → ∞, since Sr(a0) → 0 for
a0 → ∞. This means that the approximation is double-asymptotic.

The 2M − 1 unknown real coefficients in Equation (1.22) are computed by a MAT-
LAB routine. The inputs are: the complex values of Sr(a0), the corresponding fre-
quencies, and the degrees of the polynomials in the denominator and the numerator of
Equation (1.22). The routine returns the real coefficients pi, qi of Sr(a0).
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1.3.4 Discrete models for partial-fraction expansions

The polynomial-fraction approximation in Equation (1.22) can be formulated by a partial-
fraction expansion, given by

Sr(ia0)

K0
=

M∑

l=1

Al

ia0 − sl

, (1.23)

where sl are the poles of Sr(ia0), and Al are the residues at the poles. In order to
obtain a stable system, the real part of the all the poles must be negative, otherwise
the approximation may become unstable. This criterium can be handled by using an
iterative algorithm to find a stable approximation to the system.

The polynomial coefficients pi, qi of Equation (1.22) can be converted into a partial-
fraction expansion by routines in e.g. MATLAB (use the function residue that converts
between partial-fraction expansion and polynomial coefficients). Some of the poles sl may
be complex, resulting in complex conjugate pairs of sl. Consequently, the corresponding
residues Al also appear as complex conjugate pairs. When two complex conjugate pairs
are added, a second-order term with real coefficients appears. For J conjugate pairs,
Equation (1.23) can be rewritten as

Sr(ia0)

K0
=

J∑

l=1

β1lia0 + β0l

(ia0)2 + α1lia0 + α0l

+

M−2J∑

l=1

Al

ia0 − sl

. (1.24)

The coefficients α0l, α1l, β0l and β1l are given by

α0l = s2
1l + s2

2l (1.25a)

α1l = −2s1l (1.25b)

β0l = −2(A1ls1l + A2ls2l) (1.25c)

β1l = 2A1l, (1.25d)

where the real and imaginary parts of the complex conjugate poles are denoted by s1l

and s2l, respectively. Similar, real and imaginary parts of the complex conjugate residues
are denoted by A1l and A2l, respectively.

By adding the singular term in Equation (1.18) to the expression in Equation (1.23),
the total approximation of the dynamic stiffness can be written as

S(ia0)

K0
= k∞ + ia0c

∞ +

J∑

l=1

β1lia0 + β0l

(ia0)2 + α1lia0 + α0l

+

M−2J∑

l=1

Al

ia0 − sl

. (1.26)

The total approximation of the dynamic stiffness in Equation (1.26) consists three charac-
teristic types of terms: a constant/linear term, first-order terms and second-order terms.
These terms are given as

Constant/linear term k∞ + ia0c
∞ (1.27a)

First-order term
A

ia0 − s
(1.27b)

Second-order term
β1ia0 + β0

(ia0)2 + α1ia0 + α0
. (1.27c)
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P0 u0

κK γ R
cS

K

0

Figure 1.8: The discrete-element model for the constant/linear term.

The number of first- or second-order terms in the approximation depends on the choice
of polynomial degree M . Each term can be represented by a discrete-element model,
similar to those in Figures 1.3 and 1.5. The discrete-element models for the three types
of terms in equation (1.27) are introduced in the next subsections.

Constant/linear term

The constant/linear term given by Equation (1.27a) consists of two known parameters,
k∞ and c∞, that represents the singular part of the dynamic stiffness. The discrete-
element model for the constant/linear term is shown in Figure 1.8. The equilibrium
formulation of node 0 (for harmonic loading) is as follows

[κK] u0(ω) + iω

[

γ
R

cS

K

]

u0(ω) = P0(ω) (1.28)

Recalling that a0 = ωR/cS the equilibrium formulation in Equation (1.28) results in a
force-displacement relation given by

P0(a0)

K
= (κ + ia0γ)u0(a0). (1.29)

By comparing Equation (1.27a) and Equation (1.29) it is evident that the non-dimensional
coefficients, κ and γ, are equal to k∞ and c∞, respectively.

First-order term

The first-order term given by Equation (1.27b). The model has two known parameters, A
and s. The layout of the discrete-element model is shown in Figure 1.9(a). The model is
constructed by a spring (−κK) in parallel with another spring (κK) and dashpot (γ R

cS
K)

in series. The serial connection between the spring (κK) and the dashpot (γ R
cS

K) results
in an internal node 1 (internal degree of freedom). The equilibrium formulations for node
0 and 1 (for harmonic loading) are as follows

node 0 : [κK]
(
u0(ω) − u1(ω)

)
+ [−κK]u0(ω) = P0(ω) (1.30a)

node 1 : [κK]
(
u1(ω) − u0(ω)

)
+ iω

[

γ
R

cS

K

]

u1(ω) = 0. (1.30b)
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Figure 1.9: The discrete-element model for the first-order term. (a) Spring-dashpot
model, and (b) monkey-tail model.

By eliminating u1(ω) in Equations (1.30a) and (1.30b) the force-displacement relation of
the first-order model is given by

P0(a0)

K
=

−κ2

γ

ia0 + κ
γ

u0(a0). (1.31)

By comparing Equations (1.27b) and (1.31) κ and γ are identified as

κ =
A

s
(1.32a)

γ = − A

s2
. (1.32b)

It should be noted that the first-order term also could be represented by a monkey-tail
model. This turns out to be advantageous in situations where κ and γ in Equation (1.32)
are negative, which may be the case when A is positive (s is negative). To avoid negative
coefficients of springs and dashpots, the monkey-tail model is applied, and the resulting
coefficients are positive. By inspecting the equilibrium formulations for node 0 and 1,
see Figure 1.9(b), the coefficients can be identified as

γ =
A

s2
(1.33a)

µ = − A

s3
. (1.33b)

Second-order term

The second-order term given by Equation (1.27c). The model has four known parameters,
α0, α1, β0 and β1. An example of a second-order discrete-element model is shown in Fig-
ure 1.10(a). This particular model has two internal nodes. The equilibrium formulations
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for nodes 0, 1 and 2 (for harmonic loading) are as follows

node 0 : [κ1K]
(
u0(ω) − u1(ω)

)
+ [−κ1K]u0(ω) = P0(ω) (1.34a)

node 1 : [κ1K]
(
u1(ω) − u0(ω)

)
+ iω

[

γ1
R

cS

K

]
(
u1(ω) − u2(ω)

)
= 0 (1.34b)

node 2 : [κ2K]u2(ω) + iω

[

γ2
R

cS

K

]

u2(ω) + iω

[

γ1
R

cS

K

]
(
u2(ω) − u1(ω)

)
= 0.

(1.34c)

After some rearrangement and elimination the internal degrees of freedom, the force-
displacement relation of the second-order model is given by

P0(a0)

K
=

−κ2
1

γ1+γ2

γ1γ2

ia0 − κ2

1
κ2

γ1γ2

(ia0)2 +
(

κ1
γ1+γ2

γ1γ2

+ κ2

γ2

)

ia0 + κ1κ2

γ1γ2

u0(a0). (1.35)

The four coefficients in Equation (1.35) can be identified as

κ1 = −β0

α0
(1.36a)

γ1 = −α0β1 − α1β0

α2
0

(1.36b)

κ2 =
β0

α2
0

(−α0β1 + α1β0)
2

α0β2
1 − α1β0β1 + β2

0

(1.36c)

γ2 =
β2

0

α2
0

−α0β1 + α1β0

α0β2
1 − α1β0β1 + β2

0

, (1.36d)

by comparison of Equations (1.27c) and (1.35).

By introducing a second-order model with springs, dampers and a mass, it is possible
to construct a second-order model with only one internal degree of freedom. The model

P0 P0u0 u0

u1

u1

u2

−κ1K (−κ1 + γ2

µ
)K

κ1K κ1K

γ R
cS

K

γ R
cS

K

−γ R
cS

Kγ1
R
cS

K

κ2K
κ2K

γ2
R
cS

K
µR2

c2
S

K

0 0

1 1

2

(a) (b)

Figure 1.10: The discrete-element model for the second-order term. (a) Spring-dashpot
model with two internal degrees of freedom, and (b) Spring-dashpot-mass model with
one internal degree of freedom.
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is sketched in Figure 1.10(b). The force-displacement relation of the alternative second-
order model is given by

P0(a0)

K
=

2
(

κ1γ
µ

+ γ3

µ2

)

ia0 − κ2

1

µ
+ (κ1+κ2)γ

2

µ2

(ia0)2 + 2 γ
µ
ia0 + κ1+κ2

µ

u0(a0). (1.37)

By equating the coefficients in Equation (1.37) to the terms of the second-order model
in Equation (1.27c), the four parameters κ1, κ2, γ and µ can be determined. In order
to calculate µ, a quadratic equation has to be solved. The quadratic equation for µ is

aµ2 + bµ + c = 0 where (1.38a)

a = α4
1 − 4α0α

2
1 (1.38b)

b = −8α1β1 + 16β0 (1.38c)

c = 16
β2

1

α2
1

. (1.38d)

Equation (1.38a) results in two solutions for µ. To ensure real values of µ, b2−4ac ≥ 0 or
α0β

2
1 − α1β0β1 + β2

0 ≥ 0. When µ has been determined, the three remaining coefficients
can be calculated by

κ1 =
µα2

1

4
− β1

α1
(1.39a)

κ2 = µα0 − κ1 (1.39b)

γ =
µα1

2
. (1.39c)
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Figure 1.11: Total, regular and singular terms of the vertical dynamic stiffness of a
suction caisson. Gs = 1.0 MPa, νs=1/3.

1.3.5 Example — vertical dynamic stiffness of a suction caisson

Consider a suction caisson with a diameter, D = 2R, and the skirt length, H . The vertical
dynamic stiffness of the suction caisson has been determined by a three-dimensional
coupled boundary element/finite element model, see Section ?? for details. The real and
imaginary part of the dynamic stiffness for a suction caisson with H/D = 1 is shown in
Figure 1.11. The total dynamic stiffness SV V (a0) is obtained by numerical analysis, and
the singular part Ss,V V (a0) is represented by a limiting damping parameter C∞

V V that
describes the impedance for a0 → ∞, which in the case of the suction caisson is given by

C∞

V V = ρscP Alid + 2ρscSAskirt, (1.40)

where Alid and Askirt are the vibrating surface areas of the lid and the skirt, respectively.
cP , cS and ρs are the primary (dilatation) wave velocity, shear wave velocity and mass
density of the soil, respectively. Finally, the regular part Sr(a0) is found by subtract-
ing Ss(a0) from S(a0), according to Equation (1.17). The real and imaginary part of
SV V (a0), Ss,V V (a0) and Sr(a0) are illustrated in Figure 1.11

Next, the polynomial-fraction approximation of the regular part Sr(a0) is applied
(Equation 1.22). The polynomial degree of the denominator and the numerator is set to
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Table 1.3: Coefficients for the partial-fraction expansion

Poles sl Residues Al

l = 1 −1.8459 + 6.0094i −5.6330 − 19.031i
l = 2 −1.8459 − 6.0094i −5.6330 + 19.031i
l = 3 −0.2544 + 5.7003i +0.3581 + 8.1874i
l = 4 −0.2544 − 5.7003i +0.3581 − 8.1874i
l = 5 −0.5547 + 2.4330i −2.1611 + 1.4585i
l = 6 −0.5547 − 2.4330i −2.1611 − 1.4585i

6 and 5, respectively. Thus, 2 × 6 − 1 = 11 coefficients are to be determined by curve-
fitting. The polynomial-fraction approximation is applied for a0 ∈ ]0;6]. The polynomial
degree is simply too low to fit the data well for a0 ∈ ]0;20].

The 11 polynomial coefficients have been determined by curve-fitting (based on
least squares method) and converted into a partial-fraction expansion. The results of the
curve-fitting are given in table 1.3. It turns out that the partial-fraction expansion of
Sr(ia0) for this particular foundation is given by three second-order terms, in addition to
the singular (const/linear) term. This is due to the fact that the poles and residues of the
partial-fraction expansion all are complex. Note that Table 1.3 contains three complex
conjugate pairs of poles and residues.

The poles and residues in Table 1.3 are then converted into the appropriate coef-
ficients, according to the expressions in Equation (1.35). The coefficients of the three
second-order discrete-elements are shown in Table 1.4.

Table 1.4: Coefficients of the three second-order discrete-elements

κ1l γ1l κ2l γ2l

l = 1, 2 −5.3860 −0.7766 +3.4420 +0.5901
l = 3, 4 +2.8613 +0.0667 −0.0503 −0.0663
l = 5, 6 +1.5247 −0.4224 −0.4082 +0.2366

The total approximation of the dynamic stiffness can then be formulated by means
of Equation (1.26). The coefficients for the three second-order elements are given in
Table 1.4, and the last coefficient to be determined is c∞ of the singular part (if k∞

vanishes, see Equation (1.19)). c∞ is found by multiplying Equation (1.40) with cS

K0R
.

In the case c∞ is equal to 2.8935. All the components have now been determined. The
complete lumped-parameter model is shown in Figure 1.12, and the approximation of the
total dynamic stiffness SV V (a0) is shown in Figure 1.13. Note that the approximation
fits very well for a0 ∈ ]0;6], and tends towards the high-frequency limit for a0 > 6. The
high-frequency limit corresponds to Ss,V V (a0) in Figure 1.11.
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Figure 1.12: Complete lumped-parameter model. The parameters K and R
cS

K are omit-
ted on the κ and γ terms, respectively.
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Figure 1.13: Lumped-parameter model approximation of the vertical dynamic stiffness
of a suction caisson. The approximation is based on data for a0 ∈ ]0;6]. Gs = 1.0 MPa,
νs=1/3.
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Finally, the frequency-independent stiffness and damping matrices of the lumped-
parameter model are assembled. There is no mass matrix, since the lumped-parameter
model only consists of springs and dampers. The matrices are constructed from the
equilibrium equations for each node (0, a, b, c, d, e, f) of the model. The equilibrium
formulations (for harmonic loading) are as follows

node 0 : [κ11K]
(
u0 − ua

)
+ [−κ11K]u0 + [κ13K]

(
u0 − uc

)
+ [−κ13K] u0+

[κ15K]
(
u0 − ue

)
+ [−κ15K]u0 + iω

[

c∞
R

cS

K

]

u0 = P0 (1.41a)

node a : [κ11K]
(
ua − u0

)
+ iω

[

γ11
R

cS

K

]
(
ua − ub

)
= 0 (1.41b)

node b : [κ21K] ub + iω

[

γ21
R

cS

K

]

ub + iω

[

γ11
R

cS

K

]
(
ub − ua

)
= 0 (1.41c)

node c : [κ13K]
(
uc − u0

)
+ iω

[

γ13
R

cS

K

]
(
uc − ud

)
= 0 (1.41d)

node d : [κ23K] ud + iω

[

γ23
R

cS

K

]

ud + iω

[

γ13
R

cS

K

]
(
ud − uc

)
= 0 (1.41e)

node e : [κ15K]
(
ue − u0

)
+ iω

[

γ15
R

cS

K

]
(
ue − uf

)
= 0 (1.41f)

node f : [κ25K] uf + iω

[

γ25
R

cS

K

]

uf + iω

[

γ15
R

cS

K

]
(
uf − ue

)
= 0 (1.41g)
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By rearranging the the equations with respect to the degrees of freedom, the force-
displacement relation for harmonic loading is given by

(K + iωC)U = P, (1.42)

where K, C, U and P are given as

K = K













0 −κ11 0 −κ13 0 −κ15 0
−κ11 κ11 0 0 0 0 0

0 0 κ21 0 0 0 0
−κ13 0 0 κ13 0 0 0

0 0 0 0 κ23 0 0
−κ15 0 0 0 0 κ15 0

0 0 0 0 0 0 κ25













(1.43a)

C =
R

cS

K













c∞ 0 0 0 0 0 0
0 γ11 −γ11 0 0 0 0
0 −γ11 γ11 + γ21 0 0 0 0
0 0 0 γ13 −γ13 0 0
0 0 0 −γ13 γ13 + γ23 0 0
0 0 0 0 0 γ15 −γ15

0 0 0 0 0 −γ15 γ15 + γ25













(1.43b)

U =













u0

ua

ub

uc

ud

ue

uf













, P =













P0

0
0
0
0
0
0













(1.43c)
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