

Aalborg Universitet

Timed I/O Automata

It is never too late to complete your timed specification theory

Goorden, Martijn A.; Larsen, Kim G.; Legay, Axel; Lorber, Florian; Nyman, Ulrik; Wasowski,
Andrzej
DOI (link to publication from Publisher):
10.48550/ARXIV.2302.04529

Creative Commons License
CC BY 4.0

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Goorden, M. A., Larsen, K. G., Legay, A., Lorber, F., Nyman, U., & Wasowski, A. (2023). Timed I/O Automata: It
is never too late to complete your timed specification theory. arXiv. https://doi.org/10.48550/ARXIV.2302.04529

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: February 08, 2025

https://doi.org/10.48550/ARXIV.2302.04529
https://vbn.aau.dk/en/publications/e506413a-43d7-4b1f-bb7b-1dbe8b6b1bcf
https://doi.org/10.48550/ARXIV.2302.04529

Springer Nature 2021 LATEX template

Timed I/O Automata: It is never too late to
complete your timed specification theory

Martijn A. Goorden1*, Kim G. Larsen1, Axel Legay2, Florian
Lorber1, Ulrik Nyman1 and Andrzej Wąsowski3

1*Department of Computer Science, Aalborg University, Selma
Lagerlöfs Vej 300, Aalborg Öst, 9220, Danmark.

2Department of Computer Science Engineering, UC Louvain,
Place Sainte Barbe 2, Louvain-la-Neuve, 1348, Belgium.

3Department of Computer Science, IT University, Langgaards Vej
7, Copenhagen S, 2300, Denmark.

*Corresponding author(s). E-mail(s): mgoorden@cs.aau.dk;
Contributing authors: kgl@cs.aau.dk; axel.legay@uclouvain.be;

florber@cs.aau.dk; ulrik@cs.aau.dk; wasowski@itu.dk;

Abstract
A specification theory combines notions of specifications and imple-
mentations with a satisfaction relation, a refinement relation and
a set of operators supporting stepwise design. We develop a com-
plete specification framework for real-time systems using Timed I/O
Automata as the specification formalism, with the semantics expressed
in terms of Timed I/O Transition Systems. We provide constructs
for refinement, consistency checking, logical and structural compo-
sition, and quotient of specifications – all indispensable ingredients
of a compositional design methodology. The theory is backed by
rigorous proofs and implemented in the open-source tool ECDAR.

Keywords: Specification theory, timed input-output automata, timed
input-output transition systems

1

ar
X

iv
:2

30
2.

04
52

9v
1

 [
cs

.F
L

]
 9

 F
eb

 2
02

3

Springer Nature 2021 LATEX template

2 Timed I/O Automata

1 Introduction
Software systems are decomposed into components, often designed by inde-
pendent teams, working under a common agreement on what the interface
of each component should be. Consequently, compositional reasoning [1], the
mathematical foundations of reasoning about interfaces, is an active research
area. Besides supporting compositional development, it enables compositional
reasoning about the system (verification) and allows well-grounded reuse.

In a logical interpretation, interfaces are specifications, while components
that implement an interface are understood as models/implementations. Spec-
ification theories should support various features including (1) a refinement
that allows to compare specifications and to replace a specification by another
one in a design, (2) a logical conjunction that expresses combining the require-
ments of two or more specifications, (3) a structural composition, which allows
to combine specifications, and (4) a quotient operator that, being a dual to
structural composition, allows decomposing the design by groups of require-
ments. The latter is crucial to perform incremental design. Also, the operations
have to be related by compositional reasoning theorems, guaranteeing both
incremental design and independent implementability [2].

Building good specification theories is the subject of intensive studies [3, 4].
Interface automata are one such successful direction [2, 4–6]. In this framework,
an interface is represented by an input/output automaton [7], i.e., an automa-
ton whose transitions are typed with input and output. The semantics of such
an automaton is given by a two-player game: the input player represents the
environment, and the output player represents the component itself. Contrary
to the input/output model proposed by Lynch [7], this semantic offers an opti-
mistic treatment of composition: two interfaces can be composed if there exists
at least one environment in which they can interact together in a safe way.
A timed extension of the theory of interface automata has been motivated
by the fact that real time can be a crucial parameter in practice, for exam-
ple in embedded systems [8]. While the theory of timed interface automata
focuses on structural composition, in this paper we go further and build the
first game-based specification theory for timed systems with all four operators
(refinement, conjunction, composition, and quotient).

Component interface specification and consistency We represent specifi-
cations by timed input/output transition systems [9], i.e., timed transitions
systems whose sets of discrete transitions are split into input and output tran-
sitions. Contrary to [8] and [9] we distinguish between implementations and
specifications by adding conditions on the models. This is done by assum-
ing that the former have fixed timing behaviour and they can always advance
either by producing an output or delaying. We also provide a game-based
methodology to decide whether a specification is consistent, i.e., whether it
has at least one implementation. The latter reduces to deciding existence of a
strategy that despite the behaviour of the environment will avoid states that
cannot possibly satisfy the implementation requirements.

Springer Nature 2021 LATEX template

Timed I/O Automata 3

Refinement and logical conjunction A specification S1 refines a specification
S2 iff it is possible to replace S2 with S1 in every environment and obtain an
equivalent system. In the input/output setting, checking refinement reduces to
deciding an alternating timed simulation between the two specifications [4]. In
our timed extension, checking such simulation can be done with a slight mod-
ification of the theory proposed in [10]. As implementations are specifications,
refinement coincides with the satisfaction relation. Our refinement operator
has the model inclusion property, i.e., S1 refines S2 iff the set of implementa-
tions satisfied by S1 is included in the set of implementations satisfied by S2.
We also propose a logical conjunction operator between specifications. Given
two specifications, the operator will compute a specification whose implemen-
tations are satisfied by both operands. The operation may introduce error
states that do not satisfy the implementation requirement. Those states are
pruned by synthesizing a strategy for the component to avoid reaching them.
Here we assume that we want to avoid reaching error states with any possible
environment, hence this pruning is called adversarial pruning . We also show
that conjunction coincides with shared refinement, i.e., it corresponds to the
greatest specification that refines both S1 and S2.

Structural composition Following [8], specifications interact by synchroniz-
ing on inputs and outputs. However, like in [7, 9], we restrict ourselves to
input-enabled systems. This makes it impossible to reach an immediate dead-
lock state, where a component proposes an output that cannot be captured by
the other component. Unlike in [7, 9], input-enabledness shall not be seen as
a way to avoid error states. Indeed, such error states can still be designated
by the designer as states which do not warrant desirable temporal properties.
When composing specifications together, one would like to simplify the com-
position as much as possible before continuing the compositional analysis. We
show that adversarial pruning does not distribute over the parallel composition
operator. Therefore, we introduce the notion of cooperative pruning. Finally,
we show that our composition operator is associative and that refinement is a
precongruence with respect to it.

Quotient We propose a quotient operator dual to composition. Intuitively,
given a global specification T of a composite system as well as the specification
of an already realized component S, the quotient will return the most liberal
specification X for the missing component, i.e., X is the largest specification
such that S in parallel with X refines T .

Implementation Our methodology is being implemented in the open-source
tool ECDAR1. It builds on timed input/output automata, a symbolic represen-
tation for timed input/output transition systems. We show that conjunction,
composition, and quotienting are simple product constructions allowing for
consistency checking to be solved using the zone-based algorithms for synthe-
sizing winning strategies in timed games [11, 12]. Finally, refinement between
specifications is checked using a variant of the recent efficient game-based
algorithm of [10].

1http://ecdar.net

http://ecdar.net

Springer Nature 2021 LATEX template

4 Timed I/O Automata

Paper extensions. This journal paper is an extended and revised version
of the conference papers [13, 14]. In this journal paper, we clarify the notion and
effect of pruning by introducing adversarial pruning and cooperative pruning,
we show that adversarial pruning (in [13, 14] just called pruning) does not
distribute over the parallel composition so we no longer require pruning after
each composition, we corrected several definitions, including the one of the
quotient, we removed the notion of strictly undesirable states, and lastly all
theorems are now actually proven.

Structure of the paper. The paper is organized as follows. Section 2
introduces the general framework of timed input/output transition systems
and timed input/output automata, the notions of specification and implemen-
tation, and the concept of refinement. Section 3 continuous by introducing
consistency, the conjunction operator, and adversarial pruning. Then, in
Section 4 we introduce and discuss parallel composition and in Section 5 the
quotient operator. Section 6 briefly mentions the current state of the imple-
mentation of the theory in ECDAR. Finally, Section 7 concludes the paper.

Example. Universities operate under increasing pressure and competition.
One of the popular factors used in determining the level of national funding
is that of societal impact, which is approximated by the number of news arti-
cles published based on research outcomes. Clearly one would expect that the
number (and size) of grants given to a university has a (positive) influence on
the number of news articles.

Figure 1 gives the insight as to the organisation of a very small Univer-
sity comprising three components Administration, Machine and Researcher. The
Administration is responsible for interaction with society in terms of acquiring
grants (grant) and writing news articles (news). However, the other components
are necessary for news articles to be obtained. The Researcher will produce the
crucial publications (pub) within given time intervals, provided timely stimuli
in terms of coffee (cof) or tea (tea). Here coffee is clearly preferred over tea.
The beverage is provided by a Machine, which given a coin (coin) will provide
either coffee or tea within some time interval, or even the possibility of free
tea after some time.

In Figure 1 the three components are specifications, each allowing for a
multitude of incomparable, actual implementations differing with respect to
exact timing behavior (e.g., at what time are publications actually produced
by the Researcher given a coffee) and exact output produced (e.g., does the
Machine offer tea or coffee given a coin).

As a first property, we may want to check that the composition of the
three components comprising our University is compatible: we notice that the
specification of the Researcher contains an Err state, essentially not providing
any guarantees as to what behaviour to expect if tea is offered at a late stage.
Now, compatibility checking amounts simply to deciding whether the user
of the University (i.e., the society) has such a strategy for using it that the
Researcher will avoid ever entering this error state.

Springer Nature 2021 LATEX template

Timed I/O Automata 5

z ≤ 2

z ≤ 2

grant?, z := 0

coin!

pub?, z := 0

news!
pub?

z := 0

grant?, pub?

grant?

grant?, pub?

Administration

y ≤ 6

coin?
y := 0

cof!
y ≥ 4

tea!

tea!
y ≥ 2

coin?

Machine

x ≤ 4 x ≤ 8

Err

cof?
x := 0

x ≤ 15

tea?
x := 0

tea?, x > 15

pub!

x ≥ 2

x := 0

pub!

x ≥ 4

x := 0

cof?, tea? cof?, tea?

cof?, tea?

pub!

Researcher

coin

cof teapubnewsgrant

Fig. 1: Specifications for and interconnections between the three main
components of a modern University: Administration, Machine and Researcher.

u ≤ 2
grant?

u > 2

grant?, u ≤ 2
u := 0

news!, u := 0

grant?grant?

news!

Specification

newsgrant

Fig. 2: Overall specification for a University.

As a second property, we may want to show that the composition of arbi-
trary implementations conforming to respective component specification is
guaranteed to satisfy some overall specification. Here Figure 2 provides an
overall specification (essentially saying that whenever grants are given to the
University sufficiently often then news articles are also guaranteed within a
certain upper time-bound). Checking this property amounts to establishing a
refinement between the composition of the three component specifications and
the overall specification. We leave the reader in suspense until the concluding
section before we reveal whether the refinement actually holds or not!

Springer Nature 2021 LATEX template

6 Timed I/O Automata

2 Specifications and refinements
Throughout the presentation of our specification theory, we continuously
switch the mode of discussion between the semantic and syntactic levels. In
general, the formal framework is developed for the semantic objects, Timed
I/O Transition Systems (TIOTSs in short) [15], and lifted to the syntactic
constructions for Timed I/O Automata (TIOAs), which act as a symbolic and
finite representation for TIOTSs. However, it is important to emphasize that
the theory for TIOTSs does not rely in any way on the TIOAs representation
– one can build TIOTSs that cannot be represented by TIOAs, and the theory
remains sound for them (although we do not know how to manipulate them
automatically).

Definition 1 A Timed Input Output Transition System (TIOTS) is a tuple S =
(QS , qS0 ,Act

S ,→S), where QS is usually an infinite set of states, q0 ∈ Q the initial
state, ActS = ActSi]ActSo a finite set of actions partitioned into inputs (ActSi) and
outputs (ActSo), and →S⊆ QS × (ActS ∪ R≥0)×QS a transition relation satisfying
the following conditions:

[time determinism] whenever q d−−→Sq′ and q d−−→Sq′′, then q′ = q′′

[time reflexivity] q 0−−→Sq for all q ∈ QS

[time additivity] for all q, q′′ ∈ QS and all d1, d2 ∈ R≥0 we have q d1+d2−−−−−→Sq′′ iff

q
d1−−→Sq′ and q′ d2−−→Sq′′ for some q′ ∈ QS .

We write q a−−→Sq′ instead of (q, a, q′) ∈→S and use i?, o!, and d to range
over inputs, outputs, and R≥0, respectively. When no confusion can arise, for
example when only a single specification is given in a definition, we might
drop the superscript for readability, like Q instead of QS if S is the only given
TIOTS. We write q a−−→ to indicate that there exists a q′ ∈ Q s.t. q a−−→ q′,
and q X a−−→ to indicate that there does not exist q′ ∈ Q s.t. q a−−→ q′. In the
interest of simplicity, we work with deterministic TIOTSs: for all a ∈ Act∪R≥0

whenever q a−−→Sq′ and q
a−−→Sq′′, we have q′ = q′′ (determinism is required

not only for timed transitions but also for discrete transitions). In the rest of
the paper, we often drop the adjective ‘deterministic.’

For a TIOTS S and a set of states X, we write

predSa (X) = {q ∈ QS | ∃q′ ∈ X : q
a−−→Sq′}

for the set of all a-predecessors of states in X. We write ipredS(X) for the set
of all input predecessors and opredS(X) for all output predecessors of X:

ipredS(X) =
⋃

a∈ActSi

predSa (X)

Springer Nature 2021 LATEX template

Timed I/O Automata 7

opredS(X) =
⋃

a∈ActSo

predSa (X).

Furthermore, postSd (q) is the set of all time successors of a state q that can be
reached by delays smaller than d:

postSd (q) = {q′ ∈ QS | ∃d′ ∈ [0, d〉 : q
d′−−→Sq′}.

We shall now introduce a symbolic representation for TIOTSs in terms
of Timed I/O Automata (TIOAs). Let Clk be a finite set of clocks. A clock
valuation over Clk is a mapping v ∈ [Clk 7→ R≥0]. We write v + d to denote
a valuation such that for any clock r we have (v + d)(r) = v(r) + d. Given
d ∈ R≥0 and a set of clocks c, we write v[r 7→ 0]r∈c for a valuation which
agrees with v on all values for clocks not in c, and returns 0 for all clocks in
c. So this notation resets the clocks in c. For example, {x 7→ 3, y 7→ 4.5}[r 7→
0]r∈{x} ≡ {x 7→ 0, y 7→ 4.5}. A guard over Clk is a finite Boolean formula with
the usual propositional connectives where clauses are expressions of the form
x ≺ n, where x ∈ Clk , ≺∈ {<,≤, >,≥,=}, and n ∈ N. We write B(Clk) for
the set of all guards over Clk . The notation T is used for the logical true and F
for the logical false. The reset of a guard q ∈ B(Clk), denoted by g[r 7→ 0]r∈c,
is again a guard where each occurrence of clock x ∈ c is replaced by 0. For
example (x < 4 ∧ y > 2)[x 7→ 0] ≡ 0 < 4 ∧ y > 2 ≡ y > 2.

Definition 2 A Timed Input Output Automaton (TIOA) is a tuple A =
(Loc, l0,Act ,Clk , E, Inv) where Loc is a finite set of locations, l0 ∈ Loc the initial
location, Act = Acti] Acto is a finite set of actions partitioned into inputs (Acti)
and outputs (Acto), Clk a finite set of clocks, E ⊆ Loc ×Act ×B(Clk)× 2Clk × Loc
a set of edges, and Inv : Loc 7→ B(Clk) a location invariant function.

If (l, a, ϕ, c, l′) ∈ E is an edge, then l is a source location, a is an action
label, ϕ is a guard over clocks that must be satisfied when the edge is executed,
c is a set of clocks to be reset, and l′ is a target location. Examples of TIOAs
have been shown in the introduction.

Definition 3 The semantic of a TIOA A = (Loc, l0,Act ,Clk , E, Inv) is the TIOTS
JAKsem = (Loc × [Clk 7→ R≥0], (l0,0),Act ,→), where 0 is a constant function map-
ping all clocks to zero, 0 |= Inv(l0), and → is the largest transition relation generated
by the following rules:

• Each (l, a, ϕ, c, l′) ∈ E gives rise to (l, v)
a−−→ (l′, v′) for each clock valuation

v ∈ [Clk 7→ R≥0] such that v |= ϕ and v′ = v[r 7→ 0]r∈c and v′ |= Inv(l′).
• Each location l ∈ Loc with a valuation v ∈ [Clk 7→ R≥0] gives rise to a transition

(l, v)
d−−→ (l, v + d) for each delay d ∈ R≥0 such that v + d |= Inv(l) and

∀d′ ∈ R≥0, d
′ < d : v + d′ |= Inv(l).

Springer Nature 2021 LATEX template

8 Timed I/O Automata

Note that the TIOTSs induced by TIOAs satisfy the axioms 1–3 of Defini-
tion 1. In order to guarantee determinism, the TIOA has to be deterministic:
for each action–location pair, if more than one edge is enabled at the same
time, the resets and target locations need to be the same. This is a standard
check. We assume that all TIOAs below are deterministic.

Having introduced a syntactic representation for TIOTSs, we now turn back
to the semantic level in order to define the basic concepts of implementation
and specification.

Definition 4 A TIOTS S is a specification if each of its states q ∈ Q is input-
enabled: ∀i? ∈ Acti : ∃q′ ∈ Q s.t. q i?−−→ q′. A TIOA A is a specification automaton
if its semantic JAKsem is a specification.

The assumption of input-enabledness, also seen in many interface theo-
ries [16–20], reflects our belief that an input cannot be prevented from being
sent to a system, but it might be unpredictable how the system behaves
after receiving it. Input-enbledness encourages explicit modeling of this unpre-
dictability, and compositional reasoning about it; for example, deciding if an
unpredictable behaviour of one component induces unpredictability of the
entire system.

In practice tools can interpret absent input transitions in at least two rea-
sonable ways. First, they can be interpreted as ignored inputs, corresponding
to location loops in the automaton. Second, they may be seen as unavailable
(‘blocking’) inputs, which can be achieved by assuming implicit transitions to
a designated error state.

The role of specifications in a specification theory is to abstract, or
underspecify, sets of possible implementations. Implementations are concrete
executable realizations of systems. We will assume that implementations of
timed systems have fixed timing behaviour (outputs occur at predictable times)
and systems can always advance either by producing an output or delaying.
This is formalized using axioms of output-urgency and independent-progress
below.

Definition 5 A specification P = (Q, q0,Act ,→) is an implementation if for each
state q ∈ Q we have

[output urgency] ∀q′, q′′ ∈ Q, if q o!−−→P q′ and q
d−−→P q′′ for some o! ∈ Acto and

d ∈ R≥0, then d = 0.

[independent progress] either ∀d ∈ R≥0 : q
d−−→ P or ∃d ∈ R≥0, ∃o! ∈ Acto s.t.

q
d−−→P q′ and q′ o!−−→P .

A specification automaton A is an implementation automaton if its semantic JAKsem

is an implementation.

Springer Nature 2021 LATEX template

Timed I/O Automata 9

d−−→

o!−−→

i?←−−

≤

S T

Fig. 3: Visual representation of the simulation relation defined by refinement.

Independent progress is one of the central properties in our theory: it states
that an implementation cannot ever get stuck in a state where it is up to the
environment to induce progress. So in every state there either exists an ability
to delay until an output is possible or the state can delay indefinitely. An
implementation cannot wait for an input from the environment without letting
time pass. Unfortunately, implementations might contain zeno behavior, for
example, a state having an output action as a self-loop might stop time by firing
this transition infinitely often. So time should be able to diverge, see [21]. Yet,
to verify whether an implementation has time divergence, we need to analyze
it in the context of an environment to form a closed-system. Environments
could both ensure or prevent time to diverge, so one cannot determine time
divergence by analyzing the system without an environment. In this paper, we
focus on specifying components as part of a system. Therefore, we ignore the
problem of time divergence for now and postpone it to future work.

A notion of refinement allows to compare two specifications as well as
to relate an implementation to a specification. Refinement should be a pre-
congruence when we compose several specifications of a system together. This
is formalized with Theorem 8 in Section 4.

We study these kind of properties in later sections. It is well known from the
literature [2, 4, 10] that in order to give these kind of guarantees a refinement
should have the flavour of alternating (timed) simulation [22]. Figure 3 shows
a visual representation of the direction of the simulation relation captures by
refinement. While it is typical to define simulation relations on transitions sys-
tems that have equal alphabet, we relaxed that in our definition of refinement
below. Then it fits the main theorem of quotient in Section 5 and it matches
the usage in practical examples, see for example the university example in this
paper.

Definition 6 Given specifications S = (QS , qS0 ,Act
S ,→S) and T =

(QT , qT0 ,Act
T ,→T) where ActSi ∩ ActTo = ∅, ActSo ∩ ActTi = ∅, ActSi ⊆ ActTi , and

ActTo ⊆ ActSo . S refines T , denoted by S ≤ T , iff there exists a binary relation
R ⊆ QS × QT such that (qS0 , q

T
0) ∈ R and for each pair of states (s, t) ∈ R it holds

that

Springer Nature 2021 LATEX template

10 Timed I/O Automata

1. Whenever t i?−−→T t′ for some t′ ∈ QT and i? ∈ ActTi ∩Act
S
i , then s

i?−−→Ss′ and
(s′, t′) ∈ R for some s′ ∈ QS

2. Whenever t i?−−→T t′ for some t′ ∈ QT and i? ∈ ActTi \Act
S
i , then (s, t′) ∈ R

3. Whenever s o!−−→Ss′ for some s′ ∈ QS and o! ∈ ActSo ∩ActTo , then t
o!−−→T t′ and

(s′, t′) ∈ R for some t′ ∈ QT

4. Whenever s o!−−→Ss′ for some s′ ∈ QS and o! ∈ ActSo \ActTo , then (s′, t) ∈ R

5. Whenever s d−−→Ss′ for some s′ ∈ QS and d ∈ R≥0, then t
d−−→T t′ and (s′, t′) ∈

R for some t′ ∈ QT

A specification automaton A refines another specification automaton B, denoted by
A ≤ B, iff JAKsem ≤ JBKsem.

It is easy to see that the refinement is reflexive. Refinement is only transitive
under specific conditions. These conditions are captured in Lemma 1. A special
case satisfying these conditions is when the action sets of all specifications are
the same. Refinement can be checked for specification automata by reducing
the problem to a specific refinement game, and using a symbolic representation
to reason about it. We discuss details of this process in Section 6. Figure 4
shows a coffee machine that is a refinement of the one in Figure 1. It has been
refined in two ways: one output transition has been completely dropped and
one state invariant has been tightened.

Lemma 1 Given specifications Si = (Qi, qi0,Act
i,→i) with i ∈ {1, 2, 3}. If S1 ≤ S2,

S2 ≤ S3, Act1i ∩Act3o = ∅, and Act1o ∩Act3i = ∅, then S1 ≤ S3.

Proof (⇒) We first show that the action sets of S1 and S3 satisfy the conditions of
refinement. From S1 ≤ S2 it follows that Act1i ⊆ Act2i , and Act2o ⊆ Act1o; similarly,
from S2 ≤ S3 it follows that Act2i ⊆ Act3i , and Act3o ⊆ Act2o. Combining this results
in Act1i ⊆ Act3i , and Act3o ⊆ Act1o. Together with the antecedent and Definition 6 of
refinement we can conclude that action sets of S1 and S3 satisfy the conditions of
refinement.

It remains to show that there exists a relation R13 witnessing S1 ≤ S3. Let
R12 and R23 the relations witnessing S1 ≤ S2 and S2 ≤ S3, respectively. Using a
standard co-inductive argument it can be shown that

R13 =
{

(q1, q3) ∈ R13 | ∃q2 ∈ Q2 : (q1, q2) ∈ R12 ∧ (q2, q3) ∈ R23
}

witnesses S1 ≤ S3.
�

Since our implementations are a subclass of specifications, we simply use
refinement as an implementation relation.

Definition 7 An implementation P satisfies a specification S, denoted P sat S, iff
P ≤ S. We write JSKmod for the set of all implementations of S, so JSKmod = {P |
P sat S}.

Springer Nature 2021 LATEX template

Timed I/O Automata 11

y ≤ 5

coin?
y := 0

cof!
y ≥ 4

tea!
y ≥ 2

coin?

Machine

cof teacoin

Fig. 4: A coffee machine specification that refines the coffee machine in
Figure 1.

x ≤ 4coin?

cof!, x ≥ 5
coin?

Inconsistent

cof teacoin

Fig. 5: An inconsistent specification.

From a logical perspective, specifications are like formulae, and imple-
mentations are their models. This analogy leads us to a classical notion of
consistency, as existence of models.

Definition 8 A specification S is consistent iff there exists an implementation P
such that P ≤ S. A specification automaton A is consistent iff its semantic JAKsem

is consistent.

All specification automata in Figure 1 are consistent. An example of an
inconsistent specification can be found in Figure 5. Notice that the invariant
in the second state (x ≤ 4) is stronger than the guard (x ≥ 5) on the cof edge.
This location violates the independent progress property.

We also define a stricter, more syntactic, notion of consistency, which
requires that all states are consistent.

Definition 9 A specification S is locally consistent iff every state s ∈ Q allows inde-
pendent progress. A specification automaton A is locally consistent iff its semantic
JAKsem is locally consistent.

Theorem 1 Every locally consistent specification is consistent in the sense of
Definition 8.

Springer Nature 2021 LATEX template

12 Timed I/O Automata

Proof Let us begin with defining an auxiliary function δ which chooses a delay for
every state s in a locally consistent specification S:

δ(s) =

{
d the infimum d such that s d−−→Ss′ and ∃o! : s′

o!−−→S

+∞ otherwise

Note that since s allows independent progress, it always hold that s
δ(s)−−−→S . δ is time

additive in the following sense: if s d−−→Ss′ and d ≤ δ(s) then δ(s′) + d = δ(s), which
is due to time additivity of →S , and local consistency of S.

We want to show for an arbitrary locally consistent specifications S that it has
an implementation. This can be shown by synthesizing an implementation P =
(QS , s0,Act

S ,→P), where →P is the largest transition relation generated by the
following rules:

s
i?−−→P s′ if s i?−−→Ss′ ∧ i? ∈ ActSi

s
o!−−→P s′ if s o!−−→Ss′ ∧ o! ∈ ActSo ∧ δ(s) = 0

s
d−−→P s′ if s d−−→Ss′ ∧ d ∈ R≥0 ∧ d ≤ δ(s)

Since P only takes a subset of transitions of S, the determinism of S implies
determinism of P . The transition relation of P is time-additive due to time additivity
of →S and of δ. It is also time-reflexive due to the last rule (0 ≤ δ(s) for every state
s and →S was time reflexive). So P is a TIOTS.

The new transition relation is also input enabled as it inherits of input transitions
from S, which was input enabled. So P is a specification. The second rule guarantees
that outputs are urgent (by construction P only outputs when no further delays are
possible). Moreover P observes independent progress. Consider a state s in P . Then
if δ(s) = +∞ clearly s can delay indefinitely. If δ(s) is finite, then by definition
of δ and of P , the state s can delay and hence produce an output. Thus P is an
implementation in the sense of Definition 5.

Now an unsurprising coinductive argument shows that the following relation R ⊆
QS ×QS witnesses P sat S:

R =
{

(s, s) | s ∈ QS
}
.

�

The opposite implication in the theorem does not hold as we shall see
later. Local consistency, or independent progress, can be checked for specifica-
tion automata establishing local consistency for the syntactic representation.
Technically it suffices to check for each location that if the supremum of all
solutions of every location invariant exists then it satisfies the invariant itself
and allows at least one enabled output transition.

Prior specification theories for discrete time [5] and probabilistic [23] sys-
tems reveal two main requirements for a definition of implementation. These
are the same requirements that are typically imposed on a definition of a
model as a special case of a logical formula. First, implementations should be
consistent specifications (logically, models correspond to some consistent for-
mulae). Second, implementations should be most specified (models cannot be
refined by non-models), as opposed to proper specifications, which should be

Springer Nature 2021 LATEX template

Timed I/O Automata 13

underspecified. For example, in propositional logics, a model is represented as
a complete consistent term. Any implicant of such a term is also a model (in
propositional logics, it is actually equivalent to it).

Our definition of implementation satisfies both requirements, and to the
best of our knowledge, it is the first example of a proper notion of implemen-
tation for timed specifications. As the refinement is reflexive we get P satP for
any implementation and thus each implementation is consistent as per Defini-
tion 8. Furthermore, each implementation cannot be refined anymore by any
underspecified specifications.

Theorem 2 Any locally consistent specification S refining an implementation P is
an implementation as per Definition 5.

Proof Observe first that S is already locally consistent, so all its states warrant inde-
pendent progress. We only need to argue that it satisfies output urgency. Without loss
of generality, assume that S only contains states which are reachable by (sequences
of) discrete or timed transitions.

If S only contains reachable states, every state of S has to be related to some
state of P in a relation R witnessing S ≤ P (output and delay transitions need
to be matched in the refinement; input transitions also need to be matched as P
is input enabled and S is deterministic). This can be argued for using a standard,
though slightly lengthy argument, by formalizing reachable states as a fixpoint of a
monotonic operator.

Now that we know that every state of S is related to some state of P consider
an arbitrary s ∈ QS and let p ∈ QP be such that (s, p) ∈ R. Then if s o!−−→Ss′ for

some state s′ ∈ QS and an output o! ∈ ActSo , it must be that also p o!−−→P p′ for
some state p′ ∈ QP (and (s′, p′) ∈ R). But since P is an implementation, its outputs

must be urgent, so p X d−−→P for all d > 0, and consequently s X d−−→S for all d > 0.
We have shown that all states of S have urgent outputs (if any) and thus S is an
implementation. �

We conclude the section with the first major theorem. Observe that every
preorder � is intrinsically complete in the following sense: S � T iff for every
smaller element P � S also P � T . This means that a refinement of two spec-
ifications coincides with inclusion of sets of all the specifications refining each
of them. However, since out of all specifications only the implementations cor-
respond to real world objects, another completeness question is more relevant:
does the refinement coincide with the inclusion of implementation sets? This
property, which does not hold for any preorder in general, turns out to hold
for our refinement.

Theorem 3 For any two locally consistent specifications S, T having the same action
set we have that S ≤ T iff JSKmod ⊆ JT Kmod.

Springer Nature 2021 LATEX template

14 Timed I/O Automata

Proof (⇒) Assume existence of relations R1 and R2 witnessing satisfaction of S
by the implementation P and refinement of T by S, respectively. Use a standard
co-inductive argument and Lemma 1 to show that

R =
{

(p, t) ∈ QP ×QT | ∃s ∈ QS : (p, s) ∈ R1 ∧ (s, t) ∈ R2

}
is a relation witnessing satisfaction of T by P . Also observe that (p0, t0) ∈ R.

(⇐) In the following we write p sat s for states p and s meaning that there exists
a relation R′ witnessing P sat S that contains (p, s).

We construct a binary relation R ⊆ QS ×QT :

R = {(s, t) | ∀P : p0 sat s =⇒ p0 sat t} ,

where p0 is the initial state of P . We shall argue that R witnesses S ≤ T . Consider
a pair (s, t) ∈ R. There are two cases to be considered.

• Consider any input i?. Due to input-enabledness, there exists t′ ∈ QT such that
t
i?−−→T t′. We need to show existence of a state s′ ∈ QS such that s i?−−→Ss′ and

(s′, t′) ∈ R, so ∀P : p0 sat s′ =⇒ p0 sat t′.
Due to input-enabledness, for the same i? there exists a state s′ ∈ QS such
that s i?−−→Ss′. We need to show that (s′, t′) ∈ R. By Theorem 1 applied to
QS we have that there exists an implementation P and its state p0 ∈ QP such
that p0 sat s′ (technically speaking s may not be an initial state of S, but we
can consider a version of S with initial state changed to s to apply Theorem 1,
concluding existence of an implementation).
Consider an arbitrary implementation Q sat S and its state q0 ∈ QQ such
that q0 sat s′. We need to show that also q0 sat t′. We do this by extending Q
deterministically to a model of s, showing that this is also a model of t, and then
arguing that the only i? successor state models t′. Create an implementation Q′

by merging Q and P above and adding a fresh state q with transition q i?−−→Q′q0

and transitions q
j?−−→Q′p0 for all j? 6= i?, j? ∈ Act i

2. Now q sat s as q i?−−→Q′q0

with q0 sat s′ and q
j?−−→Q′p0 with p0 sat s′ for j? 6= i?. By assumption, every

implementation of S is also an implementation of T , so q sat t and consequently
q0satt′ as q is deterministic on i?. Summarizing, for any implementation q0sats′

we are able to argue that q0 sat t′, thus necessarily (s′, t′) ∈ R.
• Consider any action a (which is an output or a delay) for which there exists
s′ such that s a−−→Ss′. Using a construction similar to the one above it is not
hard to see that one can actually construct (and thus postulate existence of)
an implementation P containing p ∈ QP such that p sat s that has a transition
p

a−−→P p′. Since also psatt, we have that there exists t′ ∈ QT such that t a−−→T t′.
It remains to argue that (s′, t′) ∈ R. This is done in the same way as with the
first case, by considering any model of s′, then by extending it deterministically
to a model of s, concluding that it is now a model of t and the only a-derivative,
which is p′, must be a model of t′. Consequently (s′, t′) ∈ R.

It follows directly from the definition of R with JSKsem ⊆ JT Ksem that (s0, t0) ∈ R.
�

2State q allows independent progress if you combine the construction of q with the second case
for action a.

Springer Nature 2021 LATEX template

Timed I/O Automata 15

The restriction of the theorem to locally consistent specifications is not
a serious one. As we shall see in Theorem 5, any consistent specifica-
tion can be transformed into a locally consistent one preserving the set of
implementations.

3 Consistency and conjunction
An immediate error occurs in a state of a specification if the specification
disallows progress of time and output transitions in a given state – such a speci-
fication will break if the environment does not send an input. For a specification
S we define the set of immediate error states imerr as follows.

Definition 10 Given a specification S = (Q, q0,Act ,→), the set of immediate error
states, denoted by err, is defined as

imerr =
{
q ∈ Q | (∃d ∈ R≥0 : q X d−−→) ∧

∀d ∈ R≥0∀o! ∈ Acto∀q′ ∈ Q : q
d−−→ q′ ⇒ q′ X o!−−→

}
.

It follows that no immediate error states can occur in implementations, or in
locally consistent specifications. Error states can also be created when output
actions are disabled, for example by pruning away immediate error states, see
Definition 12 below. Therefore, we extend the definition of immediate error
states into error states err as follows.

Definition 11 Given a specification S = (Q, q0,Act ,→) and a set of states X ⊆ Q,
the set of error states, denoted by err, is defined as

err(X) =
{
q ∈ Q | (∃d ∈ R≥0 : q X d−−→) ∧ ∀d ∈ R≥0∀o! ∈ Acto∀q′ ∈ Q :

q
d−−→ q′ ⇒ (q′ X o!−−→ ∨∀q′′ ∈ Q : q′

o!−−→ q′′ ⇒ q′′ ∈ X)
}
.

Note that err(∅) = imerr, thus for any X we have that imerr ⊆ err(X).
In general, error states in a specification do not necessarily mean that a

specification cannot be implemented. Figure 6 shows a partially inconsistent
specification, a version of the coffee machine that becomes inconsistent if it
ever outputs tea. The inconsistency can be possibly avoided by some imple-
mentations, who would not implement delay or output transitions leading to
it. More precisely an implementation will exist if there is a strategy for the
output player in a safety game to avoid err. In order to be able to build on
existing formalizations [12] we will consider a dual reachability game, asking
for a strategy of the input player to reach err. We first define a timed prede-
cessor operator [11, 12, 24], which gives all the states that can delay into X

Springer Nature 2021 LATEX template

16 Timed I/O Automata

y ≤ 6

y ≤ 0

coin?
y := 0

cof!
y ≥ 4

tea!

y := 0

coin?

coin?

Partially Inconsistent

cof teacoin

Fig. 6: A partially inconsistent specification.

while avoiding Y :

cPredSt (X,Y) =
{
q ∈ QS | ∃d ∈ R≥0 ∧ ∃q′ ∈ X s.t. q d−−→Sq′ ∧ postSd (q) ⊆ Y

}
.

Since postSd (q) is defined on an open interval, we have that X ∩ Y ⊆
cPredSt (X,Y). This means that the input player has priority over the output
player when both could do an action from a state. The controllable prede-
cessors operator, denoted by πS(X), which extends the set of states that can
reach an error state uncontrollably, is defined by

πS(X) = errS(X) ∪ cPredSt (X ∪ ipredS(X), opredS(X)).

The set of all inconsistent states inconsS ⊆ QS of specification S (i.e. the
states for which the environment has a winning strategy for reaching an error
state) is defined as the least fixpoint of πS : inconsS = πS(inconsS), which is
guaranteed to exist by monotonicity of πS and completeness of the powerset
lattice due to the theorem of Knaster and Tarski [25]. For transitions systems
enjoying finite symbolic representations, automata specifications included, the
fixpoint computation converges after a finite number of iterations [12].

Now we define the set of consistent states, consS , simply as the complement
of inconsS , i.e. consS = inconsS . We obtain it by complementing the result
of the above fixpoint computation for inconsS . For the purpose of proofs it
is more convenient to formalize the dual operator, say ΘS , whose greatest
fixpoint directly and equivalently characterizes consS . While least fixpoints are
convenient for implementation of on-the-fly algorithms, characterizations with
greatest fixpoint are useful in proofs as they allow use of coinduction. Unlike
induction on the number of iterations, coinduction is a sound proof principle
without assuming finite symbolic representation for the transition system (and

Springer Nature 2021 LATEX template

Timed I/O Automata 17

thus finite convergence of the fixpoint computation). We define ΘS as

ΘS(X) = errS(X) ∩
{
q ∈ QS | ∀d ≥ 0 : [∀q′ ∈ QS : q

d−−→Sq′ ⇒ q′ ∈ X ∧

∀i? ∈ ActSi : ∃q′′ ∈ X : q′
i?−−→Sq′′] ∨

[∃d′ ≤ d ∧ ∃q′, q′′ ∈ X ∧ ∃o! ∈ ActSo :

q
d′−−→Sq′ ∧ q′ o!−−→Sq′′∧

∀i? ∈ ActSi : ∃q′′′ ∈ X : q′
i?−−→Sq′′′]

}
,

so the greatest fixpoint becomes consS = ΘS(consS).

Theorem 4 A specification S = (Q, s0,Act ,→) is consistent iff s0 ∈ cons.

Proof First, assume that s0 ∈ consS . Show that S is consistent in the sense of
Definition 8. In a similar fashion to the proof of Theorem 1 we first postulate existence
of a function δ, which chooses a delay and an output for every consistent state s:

δ(s) =

d if ∃s′, s′′ ∈ consS : the infimum d such that s d−−→Ss′

and ∃o! : s′
o!−−→Ss′′

+∞ otherwise

Note that δ is time additive in the following sense: if s d−−→Ss′ and d ≤ δ(s) then
δ(s′) + d = δ(s), which is due to time additivity of →S and the fact that consS is a
fixpoint of ΘS .

We show this by constructing an implementation P = (QS , s0,Act
S ,→P) where

the transition relation is the largest relation generated by the following rules:

1. s o!−−→P s′ iff s o!−−→Ss′ and s′ ∈ consS and δs = 0,

2. s i?−−→P s′ iff s i?−−→Ss′,

3. s d−−→P s′ iff s d−−→Ss′ and d ≤ δs.
Observe that the construction of P is essentially identical to the one in the proof

of Theorem 1 above. It can be argued in almost the same way as in the above proof,
that P satisfies the axioms of TIOTSs and is an implementation. Here one has to
use the definition of ΘS in order to see that the side condition in the first rule, that
is s′ ∈ consS , does not introduce a violation of independent progress.

It remains to argue that P sat S. This is done by arguing that the following
relation R

R =
{

(p, s) ∈ QS ×QS | p = s
}

witnesses the refinement of S by P .
Consider now the other direction. Assume that S is consistent and show that

s0 ∈ consS . In the following we write that a state s is consistent meaning that a
specification would be consistent if s was the initial state. Let X = {s ∈ QS |

Springer Nature 2021 LATEX template

18 Timed I/O Automata

s is consistent}. It suffices to show that X is a post-fixed point of ΘS , thus X ⊆
ΘS(X) (then s0 ∈ X = consS).

Since s is consistent, let us consider an implementation P and a state p such
that p sat s. We will show that s ∈ ΘS(X). Consider an arbitrary d ≥ 0 and the first

disjunct in the definition of ΘS . If p d−−→P pd then also s d−−→Ssd and pd sat sd, so
sd ∈ X. Consider an arbitrary input i? such that sd i?−−→Ss′. Then also pd i?−−→P p′

and p′ sat s′ (by satisfaction). But then s′ ∈ X. So by the first disjunct of definition
of ΘS we have that s ∈ ΘS(X).

If p X d−−→P for our fixed value of d, then by independent progress of p there exists
a dmax < d such that p dmax−−−−→P p′ for some p′ and p′ o!−−→P p′′ for some p′′ and some
output o!. By p sat s there also exist s′ and s′′ such that s dmax−−−−→Ss′ and s′ o!−−→Ss′′.
Moreover p′′ sat s′′, so s′′ ∈ X, which by the second disjunct in the definition of ΘS

implies that s ∈ ΘS(X).
So we conclude that X is a fixpoint of ΘS . Since s0 is consistent by assumption,

then s0 ∈ X ⊆ consS . �

The set of (in)consistent states can be computed for timed games, and
thus for specification automata, using controller synthesis algorithms [12]. We
discuss it briefly in Section 6.

The inconsistent states can be pruned from a consistent S leading to a
locally consistent specification. Adversarial pruning is applied in practice to
decrease the size of specifications.

Definition 12 Given a specification S = (Q, q0,Act ,→), the result of adversarial
pruning, denoted by S∆, is specification (cons, q0,Act ,→∆) where →∆=→ ∩(cons×
(Act ∪ R≥0)× cons).

For specification automata adversarial pruning is realized by applying a
controller synthesis algorithm, obtaining a maximum winning strategy, which
is then presented as a specification automaton itself. Theorem 5 captures the
main result of adversarial pruning. It also explains the reason of the name of
adversarial pruning: the pruned specification contains all winning strategies
independently of an environment, including those that are adversarial. This
contrasts with cooperative pruning, which we define in Section 4 later in the
paper.

Theorem 5 For a consistent specification S, S∆ is locally consistent and JSKmod =
JS∆Kmod.

Proof We first proof that S∆ is locally consistent. From Definitions 9 and 5 of local
consistency and implementation, respectively, it follows that we have to show that
∀q ∈ QS

∆

: either ∀d ∈ R≥0 : q
d−−→P or ∃d ∈ R≥0,∃o! ∈ Acto s.t. q d−−→P q′ and

q′
o!−−→P . From Definition 12 of adversarial pruning it follows that QS

∆

= cons.

Springer Nature 2021 LATEX template

Timed I/O Automata 19

Consider a state q ∈ cons. From the definition of Θ, it follows that q ∈ err(cons)

and q ∈ {q1 ∈ Q | ∀d ≥ 0 : [∀q2 ∈ Q : q1
d−−→ q2 ⇒ q2 ∈ cons ∧ ∀i? ∈ Acti : ∃q3 ∈

cons : q2
i?−−→ q3] ∨[∃d′ ≤ d∧∃q2, q3 ∈ cons∧∃o! ∈ Acto : q1

d′−−→ q2∧q2
o!−−→ q3∧∀i? ∈

Act i : ∃q4 ∈ cons : q2
i?−−→ q4]}. In case that the condition [∃d′ ≤ d ∧ ∃q2, q3 ∈

cons ∧ ∃o! ∈ Acto : q1
d′−−→ q2 ∧ q2

o!−−→ q3 ∧ ∀i? ∈ Acti : ∃q4 ∈ cons : q2
i?−−→ q4] holds

for some d, then it follows immediately that q allows independent progress. In the
other case, i.e., there does not exists a d such that [∃d′ ≤ d ∧ ∃q2, q3 ∈ cons ∧ ∃o! ∈
Acto : q1

d′−−→ q2 ∧ q2
o!−−→ q3 ∧ ∀i? ∈ Acti : ∃q4 ∈ cons : q2

i?−−→ q4] holds, it follows

from the fact that q ∈ err(cons) and Definition 11 that ∀d ∈ R≥0 : q
d−−→P , thus

allowing independent progress.
We now show that JSKmod = JS∆Kmod. From Definition 7 it follows that

JSKmod = JS∆Kmod iff for all implementations P it holds that P ≤ S ⇔ P ≤ S∆.
(P ≤ S ⇒ P ≤ S∆) Consider an implementation P such that P ≤ S. This

implies from Definition 6 of refinement that there exists a relation R ⊆ QP × QS
witnessing the refinement. We will arguing that for any pair (p, s) ∈ R it holds that
s ∈ cons.

For this, consider the controllable predecessor operator π and π(imerr) to under-
stand what it exactly calculates with respect to the definition of a consistent
specification. A state q ∈ π(imerr) is either directly an error state or it can first delay
followed by an input action to reach an error state without encountering an output
action preventing it reaching an error state. With other words, no implementation
can prevent state q from reaching an error state.

Now, denote πn(err) the n-th iteration of the fixed-point calculation, i.e.,
π1(imerr) = π(imerr), π2(imerr) = π(π(imerr)), etc. Following the above reason-
ing about the effect of π on the reachability of error states, we can formulate the
following fixed-point invariant: for each n and q ∈ πn(err), there does not exists
an implementation preventing q from reaching an error state. Once the fixed-point
incons = π(incons) = πN (imerr) for some N is reached, we know for all q ∈ incons
that it cannot reach the fixed-point incons because either incons is just simply
unreachable by any means or an implementation can prevent it from reaching it.

Consider a pair (p, s) ∈ R where s ∈ incons. This means that specification S
cannot be prevented from reaching an error state s′. If we follow this path, we end
up with pair (p′, s′) ∈ R. Now, s′ is an error state, which either cannot progress
time indefinitely and do an output. But since p′ is a state from an implementation
P , it has the independent progress property. Therefore, once the specification wants
to do an output or (indefinite) delay, the second or third property from Definition 6
is violated. Therefore, we can conclude that for pair (p, s) ∈ R, s /∈ incons, i.e.,
s ∈ cons. As the argument above does not rely on a specific state s in S, it holds for
all states s ∈ QS .

Now, we effectively have that R ⊆ QP × cons, thus it follows from Defini-
tion 12 of adversarial pruning that R is also a relation witnessing the refinement
P ≤ S∆. As we considered an arbitrarily implementation P refining S, it holds for
all implementations P refining S. Therefore, we conclude that P ≤ S ⇐ P ≤ S∆.

(P ≤ S ⇐ P ≤ S∆) This case follows directly from the construction of S∆ and
the fact that cons ⊆ QS , i.e., for all implementations P that refine S∆, the binary
relation R ⊆ QP × cons also witnesses the refinement of P and S. �

Springer Nature 2021 LATEX template

20 Timed I/O Automata

Consistency guarantees realizability of a single specification. It is of further
interest whether several specifications can be simultaneously met by the same
component, without reaching error states of any of them. We formalize this
notion by defining a logical conjunction for specifications.

Definition 13 Given two TIOTSs Si = (Qi, qi0,Act
i,→i), i = 1, 2 where Act1i ∩

Act2o = ∅ ∧ Act1o ∩ Act2i = ∅, the conjunction of S1 and S2, denoted by S1 ∧ S2, is
TIOTS (Q1×Q2, (q1

0 , q
2
0),Act ,→) where Act = Acti]Acto with Acti = Act1i ∪Act

2
i

and Acto = Act1o ∪Act2o, and → is defined as
• (q1

1 , q
2
1)

a−−→ (q1
2 , q

2
2) if a ∈ Act1 ∩Act2, q1

1
a−−→1q1

2, and q
2
1

a−−→2q2
2

• (q1
1 , q

2)
a−−→ (q1

2 , q
2) if a ∈ Act1 \Act2, q1

1
a−−→1q1

2, and q
2 ∈ Q2

• (q1, q2
1)

a−−→ (q1, q2
2) if a ∈ Act2 \Act1, q2

1
a−−→2q2

2, and q
1 ∈ Q1

• (q1
1 , q

2)
d−−→ (q1

2 , q
2) if d ∈ R≥0, q1

1
d−−→1q1

2, and q
2
1

d−−→2q2
2

In general, a result of the conjunction may be locally inconsistent, or even
inconsistent. To guarantee consistency, one could apply a consistency check to
the result, checking if (s0, t0) ∈ consS×T and, possibly, adversarially pruning
the inconsistent parts. Clearly conjunction is commutative and associative.

Lemma 2 For two specifications S, T , and their states s and t, respectively, if there
exists an implementation P and its state p such that simultaneously p sats and p sat t
then (s, t) ∈ consS∧T .

Proof This is shown by arguing that the following set X of states of S ∧ T is a
postfixed point of Θ (then (s, t) ∈ X ⊆ Θ(X) ⊆ consS∧T):

X = {(s, t) | ∃P : ∃p ∈ QP : p sat s ∧ p sat t}.
This is done by checking that X ⊆ Θ(X). Take (s, t) ∈ X, show that (s, t) ∈

Θ(X). So consider an arbitrary d0 ≥ 0. We know that there exists state p such that
p sat s and p sat t. Since p is a state of an implementation it guarantees independent
progress, so there exists a delay dp such that p dp−−→P p′ for some state p′. Now the
proof is split in two cases, proceeding by coinduction.

• dp ≤ d0 is used to show that (s, t) ∈ Θ(X) using a standard argument with the
second disjunct in definition of Θ (namely that p can delay and output leading
to a refinement of successors of s and t, which again will be in X).

• dp > d0 is used to show that (s, t) ∈ Θ(X) using the same kind of argument
with the first disjunct in the definition of Θ (namely that then p can delay
d0 time and by refinement for any input transition it can advanced to a state
refining successors of s and t, which are in X).

�

Theorem 6 For any locally consistent specifications S, T and U over the same
alphabet:

Springer Nature 2021 LATEX template

Timed I/O Automata 21

1. S ∧ T ≤ S and S ∧ T ≤ T
2. (U ≤ S) and (U ≤ T) implies U ≤ (S ∧ T)

3. JS ∧ T Kmod = JSKmod ∩ JT Kmod

Proof We will prove the four items separately.

1. We will prove that S ∧T refines S (the other refinement is entirely symmetric).
Let S ∧T = (QS ×QT , (s0, t0),Act ,→) constructed according to the definition
of conjunction. We abbreviate the set of states of S ∧ T as QS∧T . It is easy
to see that the following relation on states of S ∧ T and states of T witnesses
refinement of S by S ∧ T :

R =
{

((s1, t), s2) ∈ QS∧T ×QS | s1 = s2

}
The argument is standard, and it takes into account that QS∧T = consS∧T is
a fixpoint of Θ. How Θ is taken into account is demonstrated in more detail in
the proof for the next item.

2. Assume that U ≤ S and U ≤ T . Then U ≤ S ∧ T . The first refinement is
witnessed by some relation R1, the second refinement by R2. Then the third
refinement is witnessed by the following relation R ⊆ QU ×QS∧T :

R =
{

(u, (s, t)) ∈ QU × consS∧T | (u, s) ∈ R1 ∧ (u, t) ∈ R2

}
.

The argument that R is a refinement is standard again, relying on the fact that
consS∧T is a fixed point of Θ.

Consider an output case when u o!−−→Uu′ for some output o! and the target state
u′. Then s o!−−→Ss′ and t o!−−→T t′ for some states s′ and t′ and (u′, s′) ∈ R1 and

(u′, t′) ∈ R2. This means that (s, t)
o!−−→S∧T (s′, t′). In order to finish the case we

need to argue that (s′, t′) ∈ QS∧T = consS∧T . This follows from Lemma 2 since
U , and thus u′, is locally consistent, and by transitivity any implementation
satisfying u′ would be a common implementation of s′ and t′.
The case for delay is identical, while the case for inputs is unsurprising (since
adversarial pruning in the computation of conjunction never removes input
transitions from consistent to inconsistent states – there are no such transitions).

3. The 3rd statement follows from the above facts. First assume that U is an
implementation (and thus also a specification) such that U ∈ JS ∧ T Kmod. This
means that U ≤ S ∧ T . Using statement 1 and Lemma 1 we can extend this to
U ≤ S ∧ T ≤ S. Therefore, U ∈ JSKmod. With the same argument we can also
show U ∈ JT Kmod, thus U ∈ JSKmod ∩ JT Kmod.
The reverse of the 3rd statement can be shown by assuming that U ∈ JSKmod∩
JT Kmod. This implies that U ≤ S and U ≤ T . Now, using statement 2 we have
U ≤ S ∧ T , which concludes that U ∈ JS ∧ T Kmod.

�

We turn our attention to syntactic representations again.

Springer Nature 2021 LATEX template

22 Timed I/O Automata

x ≤ 2

grant?

x := 0
coin!

grant?

HalfAdm1

y ≤ 2

pub?

y := 0
news!

pub?

HalfAdm2

y ≤ 2

x ≤ 2

x ≤ 2 ∧ y ≤ 2

pub?

y := 0
news!

pub?

y := 0
news!

grant?, x := 0

coin!

grant?, x := 0

coin!
pub?

grant?

pub?, grant?

HalfAdm2 ∧ HalfAdm2

coin news coinnewsgrant pub grant pub

Fig. 7: Example of two specifications each handling one aspect of the
administration and their conjunction.

Definition 14 Given two TIOAs Ai = (Loci, li0,Act
i,Clk i, Ei, Inv i), i = 1, 2 where

Act1i ∩Act
2
o = ∅∧Act1o∩Act2i = ∅3, the conjunction of A1 and A2, denoted by A1∧A2,

is TIOA (Loc1×Loc2, (l10, l
2
0),Act ,Clk1]Clk2, E, Inv) where Act = Acti]Acto with

Acti = Act1i ∪Act
2
i and Acto = Act1o ∪Act2o, Inv((l1, l2)) = Inv1(l1)∧ Inv2(l2), and

E is defined as
• ((l11, l

2
1), a, ϕ1∧ϕ2, c1∪c2, (l12, l22)) ∈ E if a ∈ Act1∩Act2, (l11, a, ϕ

1, c1, l12) ∈ E1,
and (l21, a, ϕ

2, c2, l22) ∈ E2

• ((l11, l
2), a, ϕ1, c1, (l12, l

2)) ∈ E if a ∈ Act1 \ Act2, (l11, a, ϕ
1, c1, l12) ∈ E1, and

l2 ∈ Loc2

• ((l1, l21), a, ϕ2, c2, (l1, l22)) ∈ E if a ∈ Act2 \ Act1, (l21, a, ϕ
2, c2, l22) ∈ E2, and

l1 ∈ Loc1

It might appear as if two systems can only advance on an input if both are
ready to receive an input, but because of input enableness this is always the
case. An example of a conjunction is shown in Figure 7. The two aspects of the
administration, handing out coins and writing news articles, is split into two
specifications. HalfAdm1 describes the alternation between grant? and coin!,
while HalfAdm2 describes the alternation between pub? and news!. Together
they form HalfAdm1 ∧ HalfAdm2. Observe that this is an alternative and
slightly more loose specification of the administration than the one in Figure 1.
Yet it is the case that Administration refines HalfAdm1 ∧ HalfAdm2, while the
opposite is not true.

The following theorem lifts all the results from the TIOTSs level to the
symbolic representation level:

Theorem 7 Given two TIOAs Ai = (Loci, li0,Act
i,Clk i, Ei, Inv i), i = 1, 2 where

Act1i ∩Act
2
o = ∅∧Act1o ∩Act2i = ∅. Then (JA1 ∧A2Ksem)∆ = (JA1Ksem ∧ JA2Ksem)∆.

3Formulated differently, @a ∈
⋃
i∈I Acti s.t. a ∈ Actii ∧ a ∈ Actjo, i, j ∈ I, i 6= j and I = {1, 2}.

This is a more direct formulation of the desired property and can be extended easily for the
conjunction of more than two TIOAs.

Springer Nature 2021 LATEX template

Timed I/O Automata 23

Before we can prove this theorem, we have to introduce several lemmas.
The first lemma shows that the state set of JA1∧A2Ksem and JA1Ksem∧JA2Ksem

are the same, including the initial state.

Lemma 3 Given two TIOAs Ai = (Loci, li0,Act
i,Clk i, Ei, Inv i), i = 1, 2 where

Act1i ∩ Act2o = ∅ ∧ Act1o ∩ Act2i = ∅. Then QJA1∧A2Ksem = QJA1Ksem∧JA2Ksem and

q
JA1∧A2Ksem

0 = q
JA1Ksem∧JA2Ksem

0 .

Proof For brevity, we write X = JA1 ∧ A2Ksem, Y = JA1Ksem ∧ JA2Ksem, and Clk =
Clk1] Clk2 in the rest of this proof. Following Definition 3 of semantic of a TIOA,
Definition 12 of adversarial pruning, Definition 13 of the conjunction for TIOTS,
and Definition 14 of the conjunction for TIOA, the set of states of X is QX =
(Loc1×Loc2)×[Clk 7→ R≥0] = Loc1×Loc2×[Clk 7→ R≥0] and the set of states of Y is
QY = (Loc1× [Clk1 7→ R≥0])×(Loc2× [Clk2 7→ R≥0]) = Loc1×Loc2× [Clk 7→ R≥0].
Therefore, QX = QY . Furthermore, it now also follows immediately from the same
definitions that qX0 = qY0 , as none of these definitions alter the initial location of a
TIOA or initial state of a TIOTS. �

Lemmas 4 and 5 show that JA1∧A2Ksem and JA1Ksem∧JA2Ksem mimic each
other with delays and shared actions.

Lemma 4 Given two TIOAs Ai = (Loci, li0,Act
i,Clk i, Ei, Inv i), i = 1, 2 where

Act1i ∩ Act2o = ∅ ∧ Act1o ∩ Act2i = ∅. Denote X = JA1 ∧ A2Ksem and Y =

JA1Ksem ∧ JA2Ksem, and let d ∈ R≥0 and q1, q2 ∈ QX ∩QY . Then q1
d−−→Xq2 if and

only if q1
d−−→Y q2.

Proof First, from Lemma 3 it follows that QX = QY . Consider a delay d ∈ R≥0.
For brevity, in the rest of this proof we write Clk = Clk1] Clk2, and u1 and u2 to
indicate the part of a valuation u of only the clocks of A1 and A2, respectively.

(⇒) Assume that ∃q1, q2 ∈ QX such that q1
d−−→ Xq2. From Definition 3 of

the semantic of a TIOA it follows that q1 = (l, v), q2 = (l, v + d), l ∈ LocA
1∧A2

,
v ∈ [Clk 7→ R≥0], v+d |= InvA

1∧A2

(l), and ∀d′ ∈ R≥0, d
′ < d : v+d′ |= InvA

1∧A2

(l).
From Definition 14 of the conjunction for TIOA it follows that l = (l1, l2), l1 ∈ Loc1,
l2 ∈ Loc2, and InvA

1∧A2

(l) = Inv1(l1) ∧ Inv2(l2). Therefore, v + d |= Inv1(l1) ∧
Inv2(l2), and thus v + d |= Inv1(l1) and v + d |= Inv2(l2). Similarly, v + d′ |=
Inv1(l1) ∧ Inv2(l2), and thus v + d′ |= Inv1(l1) and v + d′ |= Inv2(l2). Because
Clk1 ∩ Clk2 = ∅, it follows that v1 + d |= Inv1(l1), v2 + d |= Inv2(l2), v1 + d′ |=
Inv1(l1), and v2+d′ |= Inv2(l2). Now, from Definition 3 of the semantic of a TIOA, it

follows that (l1, v1)
d−−→JA1Ksem(l1, v1 +d) and (l2, v2)

d−−→JA2Ksem(l2, v2 +d). Finally,

from Definition 13 of the conjunction for TIOTS, if follows that (l1, v1, l2, v2)
d−−→

Y (l1, v1 + d, l2, v2 + d). Again by using that Clk1 ∩ Clk2 = ∅, we can rewrite the

Springer Nature 2021 LATEX template

24 Timed I/O Automata

states: (l1, v1, l2, v2) = (l1, l2, v) = q1 and (l1, v1 +d, l2, v2 +d) = (l1, l2, v+d) = q2.

Thus q1
d−−→Y q2.

(⇐) Assume that ∃q1, q2 ∈ QY such that q1
d−−→Y q2. From Definition 13 of the

conjunction for TIOTS it follows that q1 = (q1
1 , q

2
1), q2 = (q1

2 , q
2
2), q1

1 , q
1
2 ∈ QJA1Ksem ,

q2
1 , q

2
2 ∈ QJA2Ksem , q1

1
d−−→JA1Ksemq1

2 , and q
2
1

d−−→JA2Ksemq2
2 . From Definition 3 of the

semantic of a TIOA it follows that for i = 1, 2: qi1 = (li, vi), qi2 = (li, vi + d),
li ∈ Loci, vi ∈ [Clk i 7→ R≥0], vi + d |= Inv i(li), and ∀d′ ∈ R≥0, d

′ < d : v + d′ |=
Inv i(li). Because Clk1 ∩ Clk2 = ∅, it follows that for i = 1, 2: v + d |= Inv i(li)

and v + d′ |= Inv i(li). Now, from Definition 14 it follows that InvA
1∧A2

(l1, l2) =

Inv1(l1) ∧ Inv2(l2). Thus we know that v + d |= InvA
1∧A2

((l1, l2)) and v + d′ |=
InvA

1∧A2

((l1, l2)). Therefore, using Definition 3 of the semantic of a TIOA, it follows

that (l1, l2, v)
d−−→X(l1, l2, v+d). Again by using that Clk1∩Clk2 = ∅, we can rewrite

the states: (l1, l2, v) = (l1, v1, l2, v2) = q1 and (l1, l2, v+d) = (l1, v1 +d, l2, v2 +d) =

q2. Thus q1
d−−→Xq2.

As the analysis above holds for any chosen d ∈ R≥0, it holds for all d. This
concludes the proof. �

Lemma 5 Given two TIOAs Ai = (Loci, li0,Act
i,Clk i, Ei, Inv i), i = 1, 2 where

Act1i ∩ Act2o = ∅ ∧ Act1o ∩ Act2i = ∅. Denote X = JA1 ∧ A2Ksem and Y =

JA1Ksem ∧ JA2Ksem, and let a ∈ Act1 ∩Act2 and q1, q2 ∈ QX ∩QY . Then q1
a−−→Xq2

if and only if q1
a−−→Y q2.

Proof First, from Lemma 3 it follows that QX = QY . For brevity, in the rest of this
proof we write Clk = Clk1]Clk2, and v1 and v2 to indicate the part of a valuation
v of only the clocks of A1 and A2, respectively.

(⇒) Assume a transition qX1
a−→ qX2 in X. Following Definition 3 of the semantic,

it follows that there exists an edge (l1, a, ϕ, c, l2) ∈ EA
1∧A2

with qX1 = (l1, v1),
qX2 = (l2, v2), l1, l2 ∈ LocA

1∧A2

, v1, v2 ∈ [Clk 7→ R≥0], v1 |= ϕ, v2 = v1[r 7→ 0]r∈c,
and v2 |= Inv(l2).

From Definition 14 of the conjunction for TIOA it follows that (l11, a, ϕ
1, c1, l12)

is an edge in A1 and (l21, a, ϕ
2, c2, l22) in A2, l1 = (l11, l

2
1), l2 = (l12, l

2
2), ϕ = ϕ1 ∧ ϕ2,

c = c1∪c2. Since v1 |= ϕ, it holds that v1 |= ϕ1 and v1 |= ϕ2. Because Clk1∩Clk2 = ∅,
it holds that v1

1 |= ϕ1 and v2
1 |= ϕ2. Also, since v2 = v1[r 7→ 0]r∈c, it holds that

v1
2 = v1

1 [r 7→ 0]r∈c1 and v2
2 = v2

1 [r 7→ 0]r∈c2 . Finally, because InvA
1∧A2

(l2) =

Inv1(l12) ∧ Inv2(l22) (see Definition 14) and v2 |= InvA
1∧A2

(l2), it follows that v2 |=
Inv1(l12) and v2 |= Inv2(l22). Since Clk1 ∩Clk2 = ∅, it follows that v1

2 |= Inv1(l12) and
v2
2 |= Inv2(l22).

Combining all the information about A1, we have that (l11, a, ϕ
1, c1, l12) is an

edge in A1, v1
1 |= ϕ1, v1

2 = v1
1 [r 7→ 0]r∈c1 , and v1

2 |= Inv1(l12). Therefore, from
Definition 3 it follows that (l11, v

1
1)

a−→ (l12, v
1
2) is a transition in JA1Ksem. Combining

all the information about A2, we have that (l21, a, ϕ
2, c2, l22) is an edge in A2, v2

1 |= ϕ2,
v2
2 = v2

1 [r 7→ 0]r∈c2 , and v
2
2 |= Inv2(l22). Therefore, from Definition 3 it follows that

(l21, v
2
1)

a−→ (l22, v
2
2) is a transition in JA2Ksem.

Springer Nature 2021 LATEX template

Timed I/O Automata 25

Now, from Definition 13 of the conjunction for TIOTS it follows that
((l11, v

1
1), (l21, v

2
1))

a−→ ((l12, v
1
2), (l22, v

2
2)) is a transition in JA1Ksem ∧ JA2Ksem. Because

Clk1 ∩ Clk2 = ∅, we can rearrange the states into ((l11, v
1
1), (l21, v

2
1)) = ((l11, l

2
1), v1) =

qX1 and ((l12, v
1
2), (l22, v

2
2)) = ((l12, l

2
2), v2) = qX2 . Thus, qX1

a−→ qX2 is a transition in
JA1Ksem ∧ JA2Ksem = Y .

(⇐) Assume a transition qY1
a−→ qY2 in Y . From Definition 13 of the conjunction for

TIOTS it follows that qJA1Ksem

1
a−→ q

JA1Ksem

2 is a transition in JA1Ksem and qJA2Ksem

1
a−→

q
JA2Ksem

2 in JA2Ksem, qY1 = (q
JA1Ksem

1 , q
JA2Ksem

1), and qY2 = (q
JA1Ksem

2 , q
JA2Ksem

2). From
Definition 3 of semantic it follows that there exists an edge (l11, a, ϕ

1, c1, l12) ∈ E1

with q
JA1Ksem

1 = (l11, v
1
1), qJA1Ksem

2 = (l12, v
1
2), l11, l

1
2 ∈ Loc1, v1

1 , v
1
2 ∈ [Clk1 7→ R≥0],

v1
1 |= ϕ1, v1

2 = v1
1 [r 7→ 0]r∈c1 , and v

1
2 |= Inv1(l12). Similarly, it follows from the same

definition that there exists an edge (l21, a, ϕ
2, c2, l22) ∈ E2 with q

JA2Ksem

1 = (l21, v
2
1),

q
JA2Ksem

2 = (l22, v
2
2), l21, l

2
2 ∈ Loc2, v2

1 , v
2
2 ∈ [Clk2 7→ R≥0], v2

1 |= ϕ2, v2
2 = v2

1 [r 7→
0]r∈c2 , and v

2
2 |= Inv2(l22).

Now, from Definition 14 of the conjunction for TIOA, it follows that there exists
an edge ((l11, l

2
1), a, ϕ1∧ϕ2, c1∪c2, (l12, l22)) in A1∧A2. Let vi, i = 1, 2 be the valuations

that combines the one from A1 with the one from A2, i.e. ∀r ∈ Clk1 : vi(r) = v1
i (r)

and ∀r ∈ Clk2 : vi(r) = v2
i (r). Because Clk1 ∩ Clk2 = ∅, it holds that v1 |= ϕ1

and v1 |= ϕ2, thus v1 |= ϕ1 ∧ ϕ2; v2 = v1[r 7→ 0]r∈c1∪c2 ; and v2 |= Inv1(l12) and
v2 |= Inv2(l22), thus v2 |= Inv1(l12) ∧ Inv2(l22).

From Definition 3 it now follows that ((l11, l
2
1), v1)

a−→ ((l12, l
2
2), v2) is a transition in

JA1∧A2Ksem. Because Clk1∩Clk2 = ∅, we can rearrange the states into ((l11, l
2
1), v1) =

((l11, v
1
1), (l21, v

2
1)) = qY1 and ((l12, l

2
2), v2) = ((l12, v

1
2), (l22, v

2
2)) = qY2 . Thus, qY1

a−→ qY2
is a transition in JA1 ∧A2Ksem = Y . �

Lemma 6 considers transitions in JA1 ∧ A2Ksem and JA1Ksem ∧ JA2Ksem

labeled by non-shared actions. A special case of this lemma is captured with
Corollary 1. Compared to Lemma 5, we can see that we need the additional
condition v2 |= Inv2(l2) in order to show that transitions can be mimicked.
A simple example demonstrating the necessity of this condition is shown in
Figure 8. From two TIOA A1 and A2, the TIOTSs JA1 ∧ A2Ksem in (c) and
JA1Ksem ∧ JA2Ksem in (e) are calculated. As can be seen, JA1Ksem ∧ JA2Ksem has
an additional transition (1, 4)

a!−→ (2, 4), which is not present in JA1 ∧A2Ksem.
The reason for this is that the location invariant Inv(4) = F is processed by the
semantic operator before JA2Ksem is combined with JA1Ksem by the conjunc-
tion operator. Therefore, it is suddenly possible to reach location (2, 4) with
a! in JA1Ksem ∧ JA2Ksem. Looking at Lemma 6, we can see that the condition
v2 |= Inv2(l2) is not satisfied for q2 = (l12, l

2
2, v2) = (2, 4), as Inv2(4) = F and

no valuation v2 can satisfy a false invariant. So, the additional condition in the
lemma ‘remembers’ the original invariant in case we first go to the semantic
representation before we perform the conjunction operation.

Lemma 6 Given two TIOAs Ai = (Loci, li0,Act
i,Clk i, Ei, Inv i), i = 1, 2 where

Act1i ∩ Act2o = ∅ ∧ Act1o ∩ Act2i = ∅. Denote X = JA1 ∧ A2Ksem and Y = JA1Ksem ∧

Springer Nature 2021 LATEX template

26 Timed I/O Automata

A1

1 2a!

c!

A2

3 4

F

b!

c!

(a)

(1, 3) (2, 3)

(1, 4)

F

(2, 4)

F

a!

a!

b! b!c!

(b)

(1, 3) (2, 3)

(1, 4) (2, 4)

a!

c!

(c)

JA1Ksem

1 2a!

c!

JA2Ksem

3 4

c!

(d)

(1, 3) (2, 3)

(1, 4) (2, 4)

a!

a!

c!

(e)

Fig. 8: Example demonstrating additional condition in Lemma 6. In (a) two
TIOA A1 and A2 are shown, where location 4 has a F invariant. In (b) the
conjunction A1∧A2 is shown. In (c) the semantic representation JA1∧A2Ksem is
shown (ignoring the delays for simplicity). In (d) the semantic representations
JA1Ksem and JA2Ksem are shown. And finally, in (e) the conjunction JA1Ksem ∧
JA2Ksem is shown.

JA2Ksem, and let a ∈ Act1 \ Act2 and q1, q2 ∈ QX ∩ QY , where q2 = (l12, l
2
2, v2). If

v2 |= Inv2(l2), then q1
a−−→Xq2 if and only if q1

a−−→Y q2.

Proof First, from Lemma 3 it follows that QX = QY . For brevity, in the rest of this
proof we write Clk = Clk1]Clk2, and v1 and v2 to indicate the part of a valuation
v of only the clocks of A1 and A2, respectively.

(⇒) Assume a transition qX1
a−→ qX2 in X. Following Definition 3 of the semantic,

it follows that there exists an edge (l1, a, ϕ, c, l2) ∈ EA
1∧A2

with qX1 = (l1, v1),
qX2 = (l2, v2), l1, l2 ∈ LocA

1∧A2

, v1, v2 ∈ [Clk 7→ R≥0], v1 |= ϕ, v2 = v1[r 7→ 0]r∈c,
and v2 |= Inv(l2).

From Definition 14 of the conjunction for TIOA it follows that (l11, a, ϕ
1, c1, l12)

is an edge in A1, l1 = (l11, l
2
1), l2 = (l12, l

2
2), l21 = l22 = l2, ϕ = ϕ1, c = c1. Since

v1 |= ϕ and Clk1 ∩ Clk2 = ∅, it holds that v1
1 |= ϕ1. Also, since v2 = v1[r 7→

0]r∈c and c = c1, it holds that v1
2 = v1

1 [r 7→ 0]r∈c1 and v2
2 = v2

1 . Finally, because
InvA

1∧A2

(l2) = Inv1(l12) ∧ Inv2(l2) (see Definition 14) and v2 |= InvA
1∧A2

(l2), it

Springer Nature 2021 LATEX template

Timed I/O Automata 27

follows that v2 |= Inv1(l12) and v2 |= Inv2(l2)4. Since Clk1∩Clk2 = ∅, it follows that
v1
2 |= Inv1(l12) and v2

2 |= Inv2(l2).
Combining all the information about A1, we have that (l11, a, ϕ

1, c1, l12) is an
edge in A1, v1

1 |= ϕ1, v1
2 = v1

1 [r 7→ 0]r∈c1 , and v1
2 |= Inv1(l12). Therefore, from

Definition 3 it follows that (l11, v
1
1)

a−→ (l12, v
1
2) is a transition in JA1Ksem. Combining

all the information about A2, we have that v2
1 = v2

2 and v2
2 |= Inv2(l2).

Now, from Definition 13 of the conjunction for TIOTS it follows that
((l11, v

1
1), (l2, v2

1))
a−→ ((l12, v

1
2), (l2, v2

1)) is a transition in JA1Ksem ∧ JA2Ksem. Because
Clk1 ∩ Clk2 = ∅, we can rearrange the states into ((l11, v

1
1), (l2, v2

1)) = ((l11, l
2), v1) =

qX1 and ((l12, v
1
2), (l2, v2

2)) = ((l12, l
2), v2) = qX2 . Thus, qX1

a−→ qX2 is a transition in
JA1Ksem ∧ JA2Ksem = Y .

(⇐) Assume a transition qY1
a−→ qY2 in Y . From Definition 13 of the conjunc-

tion for TIOTS it follows that qJA1Ksem

1
a−→ q

JA1Ksem

2 is a transition in JA1Ksem,

qJA2Ksem ∈ QJA2Ksem , qY1 = (q
JA1Ksem

1 , qJA2Ksem), and qY2 = (q
JA1Ksem

2 , qJA2Ksem). From
Definition 3 of semantic it follows that there exists an edge (l11, a, ϕ

1, c1, l12) ∈ E1

with q
JA1Ksem

1 = (l11, v
1
1), qJA1Ksem

2 = (l12, v
1
2), l11, l

1
2 ∈ Loc1, v1

1 , v
1
2 ∈ [Clk1 7→ R≥0],

v1
1 |= ϕ1, v1

2 = v1
1 [r 7→ 0]r∈c1 , and v

1
2 |= Inv1(l12). Similarly, it follows from the same

definition that qJA2Ksem = (l2, v2), l2 ∈ Loc2, and v2 ∈ [Clk2 7→ R≥0].
Now, from Definition 14 of the conjunction for TIOA, it follows that there exists

an edge ((l11, l
2), a, ϕ1, c1, (l12, l

2)) in A1 ∧ A2. Let vi, i = 1, 2 be a valuation that
combines the one from A1 with the one from A2, i.e. ∀r ∈ Clk1 : vi(r) = v1

i (r)
and ∀r ∈ Clk2 : vi(r) = v2

i (r). Because Clk1 ∩ Clk2 = ∅, it holds that v1 |= ϕ1;
v2 = v1[r 7→ 0]r∈c1 with v2

1 = v2
2 ; and v2 |= Inv1(l12). As the antecedent states that

v2 |= Inv2(l2), it follows that v2 |= Inv(l12) ∧ Inv(l2).
From Definition 3 it now follows that ((l11, l

2), v1)
a−→ ((l12, l

2), v2) is a transition in
JA1∧A2Ksem. Because Clk1∩Clk2 = ∅, we can rearrange the states into ((l11, l

2), v1) =

((l11, v
1
1), (l2, v2

1)) = qY1 and ((l12, l
2), v2) = ((l12, v

1
2), (l2, v2

2)) = qY2 . Thus, qY1
a−→ qY2

is a transition in JA1 ∧A2Ksem = Y . �

Corollary 1 Given two TIOAs Ai = (Loci, li0,Act
i,Clk i, Ei, Inv i), i = 1, 2 where

Act1i ∩ Act2o = ∅ ∧ Act1o ∩ Act2i = ∅. Denote X = JA1 ∧ A2Ksem and Y = JA1Ksem ∧
JA2Ksem, and let a ∈ Act1\Act2 and q1, q2 ∈ QX∩QY . If q1

a−−→Xq2, then q1
a−−→Y q2.

Proof First, from Lemma 3 it follows that QX = QY . For brevity, in the rest of this
proof we write Clk = Clk1]Clk2, and v1 and v2 to indicate the part of a valuation
v of only the clocks of A1 and A2, respectively.

Following Definition 3 of the semantic, it follows that there exists an edge
(l1, a, ϕ, c, l2) ∈ EA

1∧A2

with qX1 = (l1, v1), qX2 = (l2, v2), l1, l2 ∈ LocA
1∧A2

,
v1, v2 ∈ [Clk 7→ R≥0], v1 |= ϕ, v2 = v1[r 7→ 0]r∈c, and v2 |= Inv(l2). From Def-
inition 14 of the conjunction for TIOA it follows that l1 = (l11, l

2
1), l2 = (l12, l

2
2),

l21 = l22 = l2, and InvA
1∧A2

(l2) = Inv1(l12) ∧ Inv2(l2). Since v2 |= InvA
1∧A2

(l2), it
follows that v2 |= Inv1(l12) and v2 |= Inv2(l2).

It now follows directly from Lemma 6 that q1
a−−→Y q2. �

4So the if condition in the lemma is always satisfied once we know that q1
a−−→Xq2 is a transition

in X. We formalize this in Corollary 1.

Springer Nature 2021 LATEX template

28 Timed I/O Automata

The following two lemmas consider the error states and consistent states,
respectively, in JA1 ∧ A2Ksem and JA1Ksem ∧ JA2Ksem. We can show that both
sets are the same for JA1 ∧A2Ksem and JA1Ksem ∧ JA2Ksem.

Lemma 7 Given two TIOAs Ai = (Loci, li0,Act
i,Clk i, Ei, Inv i), i = 1, 2 where

Act1i ∩ Act2o = ∅ ∧ Act1o ∩ Act2i = ∅. Let Q ⊆ Loc1 × Loc2 × [(Clk1 ∪ Clk2) 7→ R≥0].
Then errJA1∧A2Ksem(Q) = errJA1Ksem∧JA2Ksem(Q).

Proof It follows from Lemma 3 that JA1 ∧ A2Ksem and JA1Ksem ∧ JA2Ksem have the
same state set. We will show that errJA1∧A2Ksem(Q) ⊆ errJA1Ksem∧JA2Ksem(Q) and
errJA1Ksem∧JA2Ksem(Q) ⊆ errJA1∧A2Ksem(Q). For brevity, we write X = JA1 ∧A2Ksem,
Y = JA1Ksem ∧ JA2Ksem, and Clk = Clk1] Clk2 in the rest of this proof. Also, we
will use v1 and v2 to indicate the part of a valuation v of only the clocks of A1 and
A2, respectively.

(errX(Q) ⊆ errY (Q)) Consider a state qX ∈ errX(Q). From Definition 11 of

error states we know that ∃d ∈ R≥0 s.t. qX X d−−→X and ∀d′ ∈ R≥0∀o! ∈ Acto∀q2 ∈

QX : qX
d′−−→ q2 ⇒ (q2 X o!−−→X ∨ ∀q3 ∈ QX : q2

o!−−→Xq3 ⇒ q3 ∈ Q). From Definition 3
of the semantic of a TIOA it follows that qX = (l1, v) for some l1 ∈ LocA

1∧A2

and v ∈ [Clk 7→ R≥0], v + d 6|= InvA
1∧A2

(l1), and v + d′ |= InvA
1∧A2

(l1) =⇒
[@(l1, o!, ϕ, c, l3) ∈ EA

1∧A2

∨ ∀(l1, o!, ϕ, c, l3) ∈ EA
1∧A2

: v + d′ 6|= ϕ ∨ v + d′[r 7→
0]r∈c 6|= InvA

1∧A2

(l3) ∨ (l3, v + d′[r 7→ 0]r∈c) ∈ Q].

From Lemma 4 it follows immediately that qX X d−−→X implies that qX X d−−→Y . So
the first condition in the definition of error states holds for qX in Y .

Now, pick any d′, q2, and o! such that v + d′ |= InvA
1∧A2

(l1) =⇒
[@(l1, o!, ϕ, c, l3) ∈ EA

1∧A2

∨ ∀(l1, o!, ϕ, c, l3) ∈ EA
1∧A2

: v + d′ 6|= ϕ ∨ v + d′[r 7→
0]r∈c 6|= InvA

1∧A2

(l3) ∨ (l3, v + d′[r 7→ 0]r∈c) ∈ Q]. The implication holds if
v + d′ 6|= InvA

1∧A2

(l1) or v + d′ |= InvA
1∧A2

(l1) ∧ [@(l1, o!, ϕ, c, l3) ∈ EA
1∧A2

∨
∀(l1, o!, ϕ, c, l3) ∈ EA

1∧A2

: v + d′ 6|= ϕ ∨ v + d′[r 7→ 0]r∈c 6|= InvA
1∧A2

(l3) ∨ (l3, v +
d′[r 7→ 0]r∈c) ∈ Q]. The first case follows directly from Lemma 4 that shows that

qX X d
′
−−→Y , which ensures that the second condition in the definition of error states

holds for qX in Y . For the second case we again use Lemma 4, thus qX d′−−→Y q2,
where q2 = (l1, v + d′). Now consider the two cases in the right-hand side of the
implication.

• @(l1, o!, ϕ, c, l3) ∈ EA
1∧A2

. We have to consider the three cases from Defini-
tion 14 of the conjunction for TIOA.
– o! ∈ Act1 ∩ Act2. In this case, we know that @(l11, o!, ϕ

1, c1, l13) ∈ E1 or
@(l21, o!, ϕ

2, c2, l23) ∈ E2 (or both). Therefore, it follows from Definition 3

of the semantic of a TIOA that (l11, v
1 + d′) X o!−−→JA1Ksem or (l21, v

2 + d′) X o!−−→
JA2Ksem (or both). Now, from Definition 13 of the conjunction for TIOTS it

follows that ((l11, v
1 + d′), (l21, v

2 + d′)) X o!−−→Y 5.

5Alternatively, we could use Lemma 5 to come to the same conclusion. This also holds for the
other two cases, where we have to use Corollary 1 instead.

Springer Nature 2021 LATEX template

Timed I/O Automata 29

– o! ∈ Act1 \ Act2. In this case, we know that @(l11, o!, ϕ
1, c1, l13) ∈ E1.

Therefore, it follows from Definition 3 of the semantic of a TIOA that
(l11, v

1 + d′) X o!−−→ JA1Ksem . Now, from Definition 13 of the conjunction for

TIOTS it follows that ((l11, v
1 + d′), (l21, v

2 + d′)) X o!−−→Y .
– o! ∈ Act2 \ Act1. In this case, we know that @(l21, o!, ϕ

2, c2, l23) ∈ E2.
Therefore, it follows from Definition 3 of the semantic of a TIOA that
(l21, v

2 + d′) X o!−−→ JA2Ksem . Now, from Definition 13 of the conjunction for

TIOTS it follows that ((l11, v
1 + d′), (l21, v

2 + d′)) X o!−−→Y .

So, in all three cases we can show that ((l11, v
1 + d′), (l21, v

2 + d′)) X o!−−→Y . And
note that ((l11, v

1 + d′), (l21, v
2 + d′)) = q2.

• ∀(l1, o!, ϕ, c, l3) ∈ EA
1∧A2

: v + d′ 6|= ϕ ∨ v + d′[r 7→ 0]r∈c 6|= InvA
1∧A2

(l3) ∨
(l3, v + d′[r 7→ 0]r∈c) ∈ Q. For each edge (l1, o!, ϕ, c, l3) ∈ EA

1∧A2

, we have to
consider the three cases from Definition 14 of the conjunction for TIOA.
– o! ∈ Act1 ∩ Act2. In this case, we know that (l11, o!, ϕ

1, c1, l13) ∈ E1,
(l21, o!, ϕ

2, c2, l23) ∈ E2, ϕ = ϕ1 ∧ ϕ2, and c = c1 ∪ c2. Now consider the
three cases that should hold for each edge (l1, o!, ϕ, c, l3) ∈ EA

1∧A2

.
∗ v + d′ 6|= ϕ. In this case, we know that v + d′ 6|= ϕ implies that
v+d′ 6|= ϕ1 or v+d′ 6|= ϕ2 (or both). Because Clk1∩Clk2 = ∅, it holds
that v1 +d′ 6|= ϕ1 or v2 +d′ 6|= ϕ2 (or both). Therefore, it follows from

Definition 3 of the semantic of a TIOA that (l11, v
1 + d′) X o!−−→JA1Ksem

or (l21, v
2 + d′) X o!−−→JA2Ksem (or both). Now, from Definition 13 of the

conjunction for TIOTS it follows that ((l11, v
1+d′), (l21, v

2+d′)) X o!−−→Y .
∗ v+d′[r 7→ 0]r∈c 6|= InvA

1∧A2

(l3). In this case, we know that v+d′[r 7→
0]r∈c 6|= InvA

1∧A2

(l3) implies that v+d′[r 7→ 0]r∈c 6|= Inv1(l13) or v+
d′[r 7→ 0]r∈c 6|= Inv2(l23) (or both). Because Clk1 ∩ Clk2 = ∅, it holds
that v1 + d′[r 7→ 0]r∈c1 6|= Inv1(l13) or v2 + d′[r 7→ 0]r∈c2 6|= Inv2(l23)
(or both). Therefore, it follows from Definition 3 of the semantic of a

TIOA that (l11, v
1+d′) X o!−−→JA1Ksem or (l21, v

2+d′) X o!−−→JA2Ksem (or both).
Now, from Definition 13 of the conjunction for TIOTS it follows that
((l11, v

1 + d′), (l21, v
2 + d′)) X o!−−→Y .

∗ (l3, v + d′[r 7→ 0]r∈c) ∈ Q. In this case, assume that v + d′ |= ϕ

and v + d[r 7→ 0]r∈c |= InvA
1∧A2

(l3) (otherwise, one of the above
cases can be used instead). Because Clk1 ∩ Clk2 = ∅, it follows that
v1 + d′ |= ϕ1, v2 + d′ |= ϕ2, v1 + d′[r 7→ 0]r∈c1 |= Inv1(l13), and
v2 + d′[r 7→ 0]r∈c2 |= Inv2(l23). Therefore, it follows from Definition 3

of the semantic of a TIOA that (l11, v
1 +d′)

o!−−→JA1Ksem(l13, v
1 +d′[r 7→

0]r∈c1) and (l21, v
2 +d′)

o!−−→JA2Ksem(l23, v
2 +d′[r 7→ 0]r∈c2). Now, from

Definition 13 of the conjunction for TIOTS it follows that ((l11, v
1 +

d′), (l21, v
2+d′))

o!−−→Y ((l13, v
1+d′[r 7→ 0]r∈c1), (l23, v

2+d′[r 7→ 0]r∈c2)).
And note that ((l13, v

1 + d′[r 7→ 0]r∈c1), (l23, v
2 + d′[r 7→ 0]r∈c2)) =

(l13, l
2
3, v + d′[r 7→ 0]r∈c) = (l3, v + d′[r 7→ 0]r∈c).

Springer Nature 2021 LATEX template

30 Timed I/O Automata

So, in the first two cases we have shown that ((l11, v
1 +d′), (l21, v

2 +d′)) X o!−−→
Y 6 and in the third case that ((l11, v

1 +d′), (l21, v
2 +d′))

o!−−→Y (l3, v+d′[r 7→
0]r∈c).

– o! ∈ Act1 \Act2. In this case, we know that (l11, o!, ϕ
1, c1, l13) ∈ E1, ϕ = ϕ1,

and c = c1. Now consider the three cases that should hold for each edge
(l1, o!, ϕ, c, l3) ∈ EA

1∧A2

.
∗ v + d′ 6|= ϕ. In this case, we know that v + d′ 6|= ϕ implies that
v + d′ 6|= ϕ1. Because Clk1 ∩ Clk2 = ∅, it holds that v1 + d′ 6|= ϕ1.
Therefore, it follows from Definition 3 of the semantic of a TIOA that
(l11, v

1 + d′) X o!−−→JA1Ksem . Now, from Definition 13 of the conjunction

for TIOTS it follows that ((l11, v
1 + d′), (l21, v

2 + d′)) X o!−−→Y .
∗ v + d[r 7→ 0]r∈c 6|= InvA

1∧A2

(l3). In this case, we know that v +

d[r 7→ 0]r∈c 6|= InvA
1∧A2

(l3) implies that v+d[r 7→ 0]r∈c 6|= Inv1(l13).
Because Clk1 ∩Clk2 = ∅, it holds that v1 + d[r 7→ 0]r∈c1 6|= Inv1(l13).
Therefore, it follows from Definition 3 of the semantic of a TIOA that
(l11, v

1 + d′) X o!−−→JA1Ksem . Now, from Definition 13 of the conjunction

for TIOTS it follows that ((l11, v
1 + d′), (l21, v

2 + d′)) X o!−−→Y .
∗ (l3, v + d′[r 7→ 0]r∈c) ∈ Q. In this case, assume that v + d′ |= ϕ

and v + d[r 7→ 0]r∈c |= InvA
1∧A2

(l3) (otherwise, one of the above
cases can be used instead). Because Clk1 ∩ Clk2 = ∅, it follows that
v1 + d′ |= ϕ1 and v1 + d′[r 7→ 0]r∈c1 |= Inv1(l13). Therefore, it follows

from Definition 3 of the semantic of a TIOA that (l11, v
1 + d′)

o!−−→
JA1Ksem(l13, v

1 + d′[r 7→ 0]r∈c1). Now, from Definition 13 of the con-

junction for TIOTS it follows that ((l11, v
1 + d′), (l21, v

2 + d′))
o!−−→

Y ((l13, v
1 +d′[r 7→ 0]r∈c1), (l21, v

2 +d′)). And note that ((l13, v
1 +d′[r 7→

0]r∈c1), (l21, v
2+d′)) = (l13, l

2
1, v+d′[r 7→ 0]r∈c) = (l3, v+d′[r 7→ 0]r∈c).

So, in the first two cases we have shown that ((l11, v
1+d′), (l21, v

2+d′)) X o!−−→Y

and in the third case that ((l11, v
1 + d′), (l21, v

2 + d′))
o!−−→Y (l3, v + d′[r 7→

0]r∈c).
– o! ∈ Act2 \Act1. In this case, we know that (l21, o!, ϕ

2, c2, l23) ∈ E2, ϕ = ϕ2,
and c = c2. Now consider the three cases that should hold for each edge
(l1, o!, ϕ, c, l3) ∈ EA

1∧A2

.
∗ v + d′ 6|= ϕ. In this case, we know that v + d 6|= ϕ implies that
v + d′ 6|= ϕ2. Because Clk1 ∩ Clk2 = ∅, it holds that v2 + d′ 6|= ϕ2.
Therefore, it follows from Definition 3 of the semantic of a TIOA that
(l21, v

2 + d′) X o!−−→JA2Ksem . Now, from Definition 13 of the conjunction

for TIOTS it follows that ((l11, v
1 + d′), (l21, v

2 + d′)) X o!−−→Y .
∗ v + d[r 7→ 0]r∈c 6|= InvA

1∧A2

(l3). In this case, we know that v +

d[r 7→ 0]r∈c 6|= InvA
1∧A2

(l3) implies that v+d[r 7→ 0]r∈c 6|= Inv2(l23).
Because Clk1 ∩Clk2 = ∅, it holds that v2 + d[r 7→ 0]r∈c2 6|= Inv2(l23).
Therefore, it follows from Definition 3 of the semantic of a TIOA that

6Alternatively, we could use Lemma 5 to come to the same conclusion. This also holds for the
other two cases, where we have to use Corollary 1 instead.

Springer Nature 2021 LATEX template

Timed I/O Automata 31

(l21, v
2 + d′) X o!−−→JA2Ksem . Now, from Definition 13 of the conjunction

for TIOTS it follows that ((l11, v
1 + d′), (l21, v

2 + d′)) X o!−−→Y .
∗ (l3, v + d′[r 7→ 0]r∈c) ∈ Q. In this case, assume that v + d′ |= ϕ

and v + d[r 7→ 0]r∈c |= InvA
1∧A2

(l3) (otherwise, one of the above
cases can be used instead). Because Clk1 ∩ Clk2 = ∅, it follows that
v2 + d′ |= ϕ2 and v2 + d′[r 7→ 0]r∈c2 |= Inv2(l23). Therefore, it follows

from Definition 3 of the semantic of a TIOA that (l21, v
2 + d′)

o!−−→
JA2Ksem(l23, v

2 + d′[r 7→ 0]r∈c2). Now, from Definition 13 of the con-

junction for TIOTS it follows that ((l11, v
1 + d′), (l21, v

2 + d′))
o!−−→

Y ((l11, v
1 + d′[r 7→ 0]r∈c1), (l23, v

2 + d′[r 7→ 0]r∈c2)). And note that
((l11, v

1 + d′), (l23, v
2 + d′[r 7→ 0]r∈c2)) = (l11, l

2
3, v + d′[r 7→ 0]r∈c) =

(l3, v + d′[r 7→ 0]r∈c).

So, in the first two cases we have shown that ((l11, v
1+d′), (l21, v

2+d′)) X o!−−→Y

and in the third case that ((l11, v
1 + d′), (l21, v

2 + d′))
o!−−→Y (l3, v + d′[r 7→

0]r∈c).

So, in all three cases we have shown that ((l11, v
1 + d′), (l21, v

2 + d′)) X o!−−→Y or

((l11, v
1 + d′), (l21, v

2 + d′))
o!−−→Y (l3, v + d′[r 7→ 0]r∈c). And note that ((l11, v

1 +
d′), (l21, v

2 + d′)) = q2 and (l3, v + d′[r 7→ 0]r∈c) = q3.

So we have shown that ((l11, v
1 + d′), (l21, v

2 + d′)) X o!−−→Y or ((l11, v
1 + d′), (l21, v

2 +

d′))
o!−−→Y (l3, v + d′[r 7→ 0]r∈c) with (l3, v + d′[r 7→ 0]r∈c) ∈ Q. We can rewrite this

into qX d′−−→Y q2 X o!−−→Y or qX d′−−→Y q2
o!−−→Y q3. Since we have chosen d′, q2, q3, and

o! arbitrarily, the conclusion holds for all d′, q2, q3, and o!. Therefore, the second
condition in the definition of error states hold for qX .

Now, since both conditions in the definition of the error states hold for qX , we
know that qX ∈ errY (Q). Since we have chosen qX arbitrarily from errX(Q), it holds
for all qX ∈ errX(Q). Therefore, it holds that errX(Q) ⊆ errY (Q).

(errY ⊆ errX) Consider a state qY ∈ errY . From Definition 11 of error states we

know that ∃d ∈ R≥0 s.t. qY X d
′
−−→Y and ∀d′ ∈ R≥0∀o! ∈ Acto∀q2 ∈ QY : qY

d−−→ q2 ⇒
(q2 X o!−−→Y ∨ ∀q3 ∈ QY : q2

o!−−→Y q3 ⇒ q3 ∈ Q). From Definition 13 of the conjunction

for TIOTS it follows that qY = (qJA1Ksem , qJA2Ksem) and q2 = (q
JA1Ksem

2 , q
JA2Ksem

2).
First, consider the first condition in the definition of error states. From Lemma 4

it follows immediately that qY X d−−→Y implies that qY X d−−→X . So the first condition in
the definition of error states holds for qY in X.

Now, consider the second condition in the definition of error states. Pick any d′,

q2, and o! such that qY d′−−→ q2 ⇒ (q2 X o!−−→Y ∨ ∀q3 ∈ QY : q2
o!−−→Y q3 ⇒ q3 ∈ Q). The

implication holds if qY X d
′
−−→Y or qY d′−−→ q2 ∧ (q2 X o!−−→Y ∨ ∀q3 ∈ QY : q2

o!−−→Y q3 ⇒
q3 ∈ Q). The first case follows directly from Lemma 4 that shows that qY X d−−→Y

implies that qY X d−−→X , which ensures that the second condition in the definition of
error states holds for qY in X. For the second case we again use Lemma 4, thus

qY
d′−−→Xq2, where qY = (l11, l

2
1, v) and q2 = (l11, l

2
1, v + d).

Springer Nature 2021 LATEX template

32 Timed I/O Automata

It remains to be shown that q2 X o!−−→Y ∨ ∀q3 ∈ QY : q2
o!−−→Y q3 ⇒ q3 ∈ Q in Y

implies that q2 X o!−−→X ∨ ∀q3 ∈ QX : q2
o!−−→Xq3 ⇒ q3 ∈ Q in X. We have to consider

the three cases from Definition 13 of the conjunction for TIOTS.

• o! ∈ Act1 ∩Act2. It follows directly from Lemma 5 that q2 X o!−−→X ∨ ∀q3 ∈ QX :

q2
o!−−→Xq3 ⇒ q3 ∈ Q.

• o! ∈ Act1\Act2. Using Definition 3 of the semantic of a TIOA, we now know that
@(l11, o!, ϕ

1, c1, l13) ∈ E1 or ∀(l11, o!, ϕ1, c1, l13) ∈ E1 : v1 + d′ 6|= ϕ1 ∨ v1 + d′[r 7→
0]r∈c1 6|= Inv1(l13) ∨ (l13, l

2
1, v + d′[r 7→ 0]r∈c1) ∈ Q.

In case that @(l11, o!, ϕ
1, c1, l13) ∈ E1, it follows directly from Definition 14 of the

conjunction for TIOA that @((l11, l
2
1), o!, ϕ1, c1, (l13, l

2
3)) ∈ EA

1∧A2

. Then, with

Definition 3 of the semantic of a TIOA, it follows that (l11, l
2
1, v + d′) X o!−−→X .

In case that ∀(l11, o!, ϕ1, c1, l13) ∈ E1 : v1 + d′ 6|= ϕ1 ∨ v1 + d′[r 7→ 0]r∈c1 6|=
Inv1(l13), it follows from Definition 14 that for each edge (l11, o!, ϕ

1, c1, l13) ∈ E1,
∃((l11, l21), o!, ϕ1, c1, (l13, l

2
3)) ∈ EA

1∧A2

. Because Clk1 ∩ Clk2 = ∅, it holds that
v + d′ 6|= ϕ1 ∨ v + d′[r 7→ 0]r∈c 6|= Inv1(l13). Therefore, it also holds that
v+d′ 6|= ϕ1∨v+d′[r 7→ 0]r∈c 6|= Inv1(l13)∧Inv2(l21). Note that from Definition 14
we know that InvA

1∧A2

((l13, l
2
1)) = Inv1(l13)∧ Inv2(l21). As we have shown that

v + d′ 6|= ϕ1 ∨ v + d′[r 7→ 0]r∈c 6|= Inv1(l13) ∧ Inv2(l21) for all edges labeled with
o! from (l11, l

2
1), it follows from Definition 3 of the semantic of a TIOA that

(l11, l
2
1, v + d′) X o!−−→X .

In case that ∀(l11, o!, ϕ1, c1, l13) ∈ E1 : (l13, l
2
1, v + d′[r 7→ 0]r∈c1) ∈ Q,

it follows from Definition 14 that for each edge (l11, o!, ϕ
1, c1, l13) ∈ E1,

∃((l11, l21), o!, ϕ1, c1, (l13, l
2
3)) ∈ EA

1∧A2

. Because Clk1 ∩ Clk2 = ∅, it holds
that v + d′ |= ϕ1 ∧ v + d′[r 7→ 0]r∈c |= Inv1(l13) (in case one of them
does not hold, we can use the argument above). Therefore, it also holds that
v + d′ |= ϕ1 ∧ v + d′[r 7→ 0]r∈c |= Inv1(l13) ∧ Inv2(l21). Note that from Defi-
nition 14 we know that InvA

1∧A2

((l13, l
2
1)) = Inv1(l13) ∧ Inv2(l21). As we have

shown that v + d′ |= ϕ1 ∧ v + d′[r 7→ 0]r∈c |= Inv1(l13) ∧ Inv2(l21) for all edges
labeled with o! from (l11, l

2
1), it follows from Definition 3 of the semantic of

a TIOA that (l11, l
2
1, v + d′)

o!−−→X(l13, l
2
1, v + d′[r 7→ 0]r∈c). Now notice that

(l13, l
2
1, v + d′[r 7→ 0]r∈c) ∈ Q.

• o! ∈ Act2\Act1. Using Definition 3 of the semantic of a TIOA, we now know that
@(l21, o!, ϕ

2, c2, l23) ∈ E2 or ∀(l21, o!, ϕ2, c2, l23) ∈ E2 : v2 + d′ 6|= ϕ2 ∨ v2 + d′[r 7→
0]r∈c2 6|= Inv2(l23) ∨ (l11, l

2
3, v + d′[r 7→ 0]r∈c1) ∈ Q.

In case that @(l21, o!, ϕ
2, c2, l23) ∈ E2, it follows directly from Definition 14 of the

conjunction for TIOA that @((l11, l
2
1), o!, ϕ2, c2, (l13, l

2
3)) ∈ EA

1∧A2

. Then, with

Definition 3 of the semantic of a TIOA, it follows that (l11, l
2
1, v + d′) X o!−−→X .

In case that ∀(l21, o!, ϕ2, c2, l23) ∈ E2 : v2 + d′ 6|= ϕ2 ∨ v2 + d′[r 7→ 0]r∈c2 6|=
Inv2(l23), it follows from Definition 14 that for each edge (l21, o!, ϕ

2, c2, l23) ∈ E2,
∃((l11, l21), o!, ϕ2, c2, (l13, l

2
3)) ∈ EA

1∧A2

. Because Clk1 ∩ Clk2 = ∅, it holds that
v + d′ 6|= ϕ2 ∨ v + d′[r 7→ 0]r∈c 6|= Inv2(l23). Therefore, it also holds that
v+d′ 6|= ϕ2∨v+d′[r 7→ 0]r∈c 6|= Inv2(l23)∧Inv2(l23). Note that from Definition 14
we know that InvA

1∧A2

((l13, l
2
1)) = Inv1(l13)∧ Inv2(l21). As we have shown that

v + d′ 6|= ϕ2 ∨ v + d′[r 7→ 0]r∈c 6|= Inv1(l11) ∧ Inv2(l23) for all edges labeled with

Springer Nature 2021 LATEX template

Timed I/O Automata 33

o! from (l11, l
2
1), it follows from Definition 3 of the semantic of a TIOA that

(l11, l
2
1, v + d′) X o!−−→X .

In case that ∀(l21, o!, ϕ2, c2, l23) ∈ E2 : (l11, l
2
3, v + d′[r 7→ 0]r∈c2) ∈ Q,

it follows from Definition 14 that for each edge (l21, o!, ϕ
2, c2, l23) ∈ E2,

∃((l11, l21), o!, ϕ2, c2, (l13, l
2
2)) ∈ EA

1∧A2

. Because Clk1 ∩ Clk2 = ∅, it holds
that v + d′ |= ϕ2 ∧ v + d′[r 7→ 0]r∈c |= Inv2(l23) (in case one of them
does not hold, we can use the argument above). Therefore, it also holds that
v + d′ |= ϕ2 ∧ v + d′[r 7→ 0]r∈c |= Inv1(l11) ∧ Inv2(l23). Note that from Defi-
nition 14 we know that InvA

1∧A2

((l11, l
2
3)) = Inv1(l11) ∧ Inv2(l23). As we have

shown that v + d′ |= ϕ2 ∧ v + d′[r 7→ 0]r∈c |= Inv1(l11) ∧ Inv2(l23) for all edges
labeled with o! from (l11, l

2
1), it follows from Definition 3 of the semantic of

a TIOA that (l11, l
2
1, v + d′)

o!−−→X(l11, l
2
3, v + d′[r 7→ 0]r∈c). Now notice that

(l11, l
2
3, v + d′[r 7→ 0]r∈c) ∈ Q.

So, in all three cases, we have shown that (l11, l
2
1, v+d′) X o!−−→X or ((l11, v

1+d′), (l21, v
2+

d′))
o!−−→X(l3, v + d′[r 7→ 0]r∈c) with (l3, v + d′[r 7→ 0]r∈c) ∈ Q. We can rewrite this

into qY d′−−→Xq2 X o!−−→X or qX d′−−→Y q2
o!−−→Y q3. Since we have chosen d′, q2, q)3, and

o! arbitrarily, the conclusion holds for all d′, q2, q3, and o!. Therefore, the second
condition in the definition of error states hold for qY .

Now, since both conditions in the definition of the error states hold for qY , we
know that qY ∈ errX . Since we have chosen qY arbitrarily, it holds for all qY ∈ errY .
Therefore, it holds that errY ⊆ errX . �

Lemma 8 Given two TIOAs Ai = (Loci, li0,Act
i,Clk i, Ei, Inv i), i = 1, 2 where

Act1i ∩Act2o = ∅ ∧Act1o ∩Act2i = ∅. Then consJA1∧A2Ksem = consJA1Ksem∧JA2Ksem .

Proof We will proof this by using the Θ operator. It follows from Lemma 3 that
JA1 ∧A2Ksem and JA1Ksem ∧ JA2Ksem have the same state set. Also, observe that the
semantic of a TIOA, conjunction, and adversarial pruning do not alter the action set.
Therefore, it follows that JA1∧A2Ksem and JA1Ksem∧JA2Ksem have the same action set
and partitioning into input and output actions. We will show for any postfixed point
P of Θ that ΘJA1∧A2Ksem(P) ⊆ ΘJA1Ksem∧JA2Ksem(P) and ΘJA1Ksem∧JA2Ksem(P) ⊆
ΘJA1∧A2Ksem(P). For brevity, we write X = JA1 ∧ A2Ksem, Y = JA1Ksem ∧ JA2Ksem,
and Clk = Clk1]Clk2 in the rest of this proof. Also, we will use v1 and v2 to indicate
the part of a valuation v of only the clocks of A1 and A2, respectively.

(ΘX(P) ⊆ ΘY (P)) Consider a state qX ∈ P . Because P is a postfixed point of
ΘX , it follows that qX ∈ ΘX(P). From the definition of Θ, it follows that qX ∈
errX(P) and qX ∈ {q1 ∈ QX | ∀d ≥ 0 : [∀q2 ∈ QX : q1

d−−→Xq2 ⇒ q2 ∈ P ∧ ∀i? ∈
ActXi : ∃q3 ∈ P : q2

i?−−→Xq3] ∨ [∃d′ ≤ d ∧ ∃q2, q3 ∈ P ∧ ∃o! ∈ ActXo : q1
d′−−→

Xq2 ∧ q2
o!−−→Xq3 ∧ ∀i? ∈ ActXi : ∃q4 ∈ P : q2

i?−−→Xq4]}. From Lemma 7 it follows
directly that qX ∈ errY (P). Now we only focus on the second part of the definition
of Θ.

Consider a d ∈ R≥0. Then the left-hand side or the right-hand side of the
disjunction is true (or both).

Springer Nature 2021 LATEX template

34 Timed I/O Automata

• Assume the left-hand side is true, i.e., ∀q2 ∈ QX : qX
d−−→Xq2 ⇒ q2 ∈ P ∧∀i? ∈

ActXi : ∃q3 ∈ P : q2
i?−−→Xq3. Pick a q2 ∈ QX . The implication is true when

qX X d−−→Xq2 or qX d−−→Xq2 ∧ q2 ∈ P ∧ ∀i? ∈ ActXi : ∃q3 ∈ P : q2
i?−−→Xq3.

– Consider the first case. From Lemma 4 it follows that qX X d−−→Y . Note that
qX = (l11, v

1
1 , l

2
1, v

2
1). Thus the implication also holds for q2 in Y .

– Consider the second case. From Lemma 4, we have that qX d−−→Xq2 implies
that qX d−−→Y q2, and from Definition 3 of the semantic of a TIOA it follows
that v1 + d |= InvA

1∧A2

(l1) for qX = (l1, v1), q2 = (l1, v1 + d), l1 ∈
LocA

1∧A2

, and v1 ∈ [Clk 7→ R≥0]. Now, pick i? ∈ ActXi and q3 ∈ QX such

that q2
i?−−→Xq3 and q3 ∈ P . From Definition 3 of the semantic of a TIOA it

follows that (l1, i?, ϕ, c, l3) ∈ EA
1∧A2

, q3 = (l3, v3), v1 + d |= ϕ, v3 = v1 +

d[r 7→ 0]r∈c, and v3 |= InvA
1∧A2

(l3). From Definition 14 of the conjunction
of TIOA it follows that l1 = (l11, l

2
1), l3 = (l13, l

2
3), InvA

1∧A2

(l1) = Inv1(l11)∧
Inv2(l21), and InvA

1∧A2

(l3) = Inv1(l13)∧ Inv2(l23). We have to consider the
three cases of Definition 14 in relation to i?.

∗ i? ∈ Act1i ∩ Act2i . It follows directly from Lemma 5 that q2
i?−→ q3 is

a transition in Y .
∗ i? ∈ Act1i \Act

2
i . It follows directly from Corollary 1 that q2

i?−→ q3 is
a transition in Y .

∗ i? ∈ Act2i \ Act
1
i . It follows directly from Corollary 1 (where we

switched A1 and A2) that q2
i?−→ q3 is a transition in Y .

So, in all three cases we have that q2
i?−→ q3 is a transition in Y . As the

analysis above is independent of the particular i?, q2
i?−→ q3 is a transition

in Y for all i?. Because both q2, q3 ∈ P and qX d−−→Y q2, we have that the
implication also holds for q2 ∈ Y .

So, in both cases we have that for qX d−−→Y q2 ⇒ q2 ∈ P ∧ ∀i? ∈ ActYi : ∃q3 ∈
P : q2

i?−−→Y q3. As q2 is chosen arbitrarily, it holds for all q2 ∈ QX = QY .
Therefore, the left-hand side is true.

• Assume the right-hand side is true, i.e., ∃d′ ≤ d ∧ ∃q2, q3 ∈ P ∧ ∃o! ∈ ActXo :

qX
d′−−→Xq2 ∧ q2

o!−−→Xq3 ∧ ∀i? ∈ ActXi : ∃q4 ∈ P : q2
i?−−→Xq4.

First, following Definition 3 of the semantic of a TIOA, we have that qX =

(l1, v1), q2 = (l1, v1 + d′), q3 = (l3, v3), q4 = (l4, v4), l1, l3, l4 ∈ LocA
1∧A2

,
v1, v3, v4 ∈ [Clk 7→ R≥0], v1 + d′ |= InvA

1∧A2

(l1), ∃(l1, o!, ϕ, c, l3) ∈ EA
1∧A2

,
v1 +d′ |= ϕ, v3 = v1 +d′[r 7→ 0]r∈c, and v3 |= InvA

1∧A2

(l3). First, focus on the

delay transition. From Lemma 4 it follows that qX d′−−→Y q2 in Y , with qX =
(l11, v

1
1 , l

2
1, v

2
1) = (l11, l

2
1, v1) and q2 = (l11, v

1
1 + d′, l21, v

2
1 + d′) = (l11, l

2
1, v1 + d′).

Now consider the output transition labeled with o!. We have to consider the
three cases from Definition 14.
– o! ∈ Act1o ∩ Act2o. It follows directly from Lemma 5 that q2

o!−→ q3 is a
transition in Y .

– o! ∈ Act1o \ Act2o. It follows directly from Corollary 1 that q2
o!−→ q3 is a

transition in Y .

Springer Nature 2021 LATEX template

Timed I/O Automata 35

– o! ∈ Act2o \ Act1o. It follows directly from Corollary 1 (where we switched

A1 and A2) that q2
o!−→ q3 is a transition in Y .

Thus, in all three cases we have that q2
o!−→ q3 is a transition in Y . Therefore,

we can conclude that qX d′−−→Y q2 ∧ q2
o!−−→Y q3 with q2, q3 ∈ P .

Finally, consider the input transitions labeled with i?. Using the same argument
as before, we can show that q2

i?−→ q4 in X is also a transition in Y , and q4 ∈ P .
Therefore, we can conclude that qX d′−−→Y q2 ∧ q2

o!−−→Y q3 ∧ ∀i? ∈ ActYi : ∃q4 ∈
P : q2

i?−−→Y q4 with q2, q3, q4 ∈ P . Thus, the right-hand side is true.
Thus, we have shown that when the left-hand side is true for qX in X, it is also
true for qX in Y ; and that when the right-hand side is true for qX in X, it is also
true for qX in Y . Thus, qX ∈ ΘY (P). Since qX ∈ P was chosen arbitrarily, it holds
for all states in P . Once we choose P to be the fixed-point of ΘX , we have that
ΘX(P) ⊆ ΘY (P).

(ΘY (P) ⊆ ΘX(P)) Consider a state qY ∈ P . Because P is a postfixed point of
ΘY , it follows that p ∈ ΘX(Y). From the definition of Θ, it follows that qY ∈ errY (P)

and qY ∈ {q ∈ QY | ∀d ≥ 0 : [∀q2 ∈ QY : q
d−−→Y q2 ⇒ q2 ∈ P ∧ ∀i? ∈ ActYi : ∃q3 ∈

P : q2
i?−−→Y q3] ∨ [∃d′ ≤ d∧∃q2, q3 ∈ P ∧∃o! ∈ ActYo : q

d′−−→Y q2 ∧ q2
o!−−→Y q3 ∧∀i? ∈

Acti : ∃q4 ∈ P : q2
i?−−→Y q4]}. From Lemma 7 it follows directly that qX ∈ errX(P).

Now we only focus on the second part of the definition of Θ.
Consider a d ∈ R≥0. Then the left-hand side or the right-hand side of the

disjunction is true (or both).

• Assume the left-hand side is true, i.e., ∀q2 ∈ QY : qY
d−−→Y q2 ⇒ q2 ∈ P ∧∀i? ∈

ActYi : ∃q3 ∈ P : q2
i?−−→Y q3. Pick a q2 ∈ QY . The implication is true when

qY X d−−→Y q2 or qY d−−→Y q2 ∧ q2 ∈ P ∧ ∀i? ∈ ActYi : ∃q3 ∈ P : q2
i?−−→Y q3.

– Consider the first case. From Lemma 4 it follows that qY X d−−→X . Note that
qY = (l1, v1, l2, v2). Thus the implication also holds for q2 in X.

– Consider the second case. From Lemma 4 we have that qY d−−→Y q2 implies
that qY d−−→Xq2, and from Definition 13 of the conjunction for TIOTS that
qY = (q1

1 , q
2
1) and q2 = (q1

2 , q
2
2). Also, using Definition 3 of the semantic of

a TIOA it follows for i = 1, 2 that qi1 = (li1, v
i
1), qi2 = (li1, v

i
1 +d), li1 ∈ Loci,

and vi1 ∈ [Clk i 7→ R≥0]. Now, pick an i? ∈ ActYi with its corresponding
q3 according to the implication. We have to consider the three cases from
Definition 13.

∗ i? ∈ Act1i ∩Act2i . It follows directly from Lemma 5 that q2
i?−−→Xq3.

∗ i? ∈ Act1i \Act
2
i . From the fact that qY d−−→Xq2

7, it follows from Def-
initions 3 and 13 that v2

1 + d |= Inv2(l21) (see also proof of Lemma 4).
Observe that v2

1 + d[r 7→ 0]r∈c1 = v2
1 + d, so v3 |= Inv2(l21). Now it

follows directly from Lemma 6 that q2
i?−−→Xq3.

∗ i? ∈ Act2i \Act
1
i . From the fact that qY d−−→Xq2, it follows from Defi-

nitions 3 and 13 that v1
1 + d |= Inv1(l11) (see also proof of Lemma 4).

7This fact is key for finalizing the proof of Theorem 7: without adversarial pruning in that
theorem, you cannot assume this, and you get stuck in proving that v3 |= Inv2(l21) and thus

v3 |= InvA
1∧A2

((l13, l
2
1)), i.e., you cannot prove that.

Springer Nature 2021 LATEX template

36 Timed I/O Automata

Observe that v1
1 + d[r 7→ 0]r∈c2 = v1

1 + d, so v3 |= Inv1(l11). Now it
follows directly from Lemma 6 (where we switched A2 and A2) that

q2
i?−−→Xq3.

Thus, in all three cases we can show that q2
i?−−→Y q3 implies q2

i?−−→Xq3.
Since we have chosen an arbitrarily i? ∈ ActYi , it holds for all i? ∈ ActYi .
Thus the implication also holds for q2 in X.

Thus, in both cases the implication holds. Therefore, we can conclude that
qY

d−−→Xq2 ⇒ q2 ∈ P ∧ ∀i? ∈ ActXi : ∃q3 ∈ P : q2
i?−−→Xq3. As q2 is chosen

arbitrarily, it holds for all q2 ∈ QX = QY . Therefore, the left-hand side is true.
• Assume the right-hand side is true, i.e., ∃d′ ≤ d ∧ ∃q2, q3 ∈ P ∧ ∃o! ∈ ActYo :

q
d′−−→Y q2 ∧ q2

o!−−→Y q3 ∧ ∀i? ∈ Acti : ∃q4 ∈ P : q2
i?−−→Y q4. First, focus on

the delay. From Lemma 4 it follows that q d′−−→Y q2 implies q d′−−→Xq2, and from
Definition 13 of the conjunction for TIOTS that qY = (q1

1 , q
2
1) and q2 = (q1

2 , q
2
2).

Also, using Definition 3 of the semantic of a TIOA it follows for i = 1, 2 that
qi1 = (li1, v

i
1), qi2 = (li1, v

i
1 +d′), li1 ∈ Loci, and vi1 ∈ [Clk i 7→ R≥0]. Now, consider

the output transition labeled with o!. We have to consider the three cases from
Definition 13 of the conjunction for TIOTS.

– o! ∈ Act1o ∩Act2o. It follows directly from Lemma 5 that q2
o!−−→Xq3.

– o! ∈ Act1o ⊂ Act2o. From the fact that qY d′−−→Xq2, it follows from Defini-
tions 3 and 13 that v2

1 +d′ |= Inv2(l21) (see also proof of Lemma 4). Observe
that v2

1 +d′[r 7→ 0]r∈c1 = v2
1 +d′, so v3 |= Inv2(l21). Now it follows directly

from Lemma 6 that q2
o!−−→Xq3.

– o! ∈ Act2o ⊂ Act1o. From the fact that qY d′−−→Xq2, it follows from Defini-
tions 3 and 13 that v1

1 +d′ |= Inv1(l11) (see also proof of Lemma 4). Observe
that v1

1 +d′[r 7→ 0]r∈c2 = v1
1 +d′, so v3 |= Inv1(l11). Now it follows directly

from Lemma 6 (where we switched A2 and A2) that q2
o!−−→Xq3.

Thus, in all three cases we have that q2
o!−→Xq3 is a transition in X. Therefore,

we can conclude that qY d′−−→Xq2 ∧ q2
o!−−→ Xq3 with q2, q3 ∈ P . Thus, the

right-hand side is true.
Finally, consider the input transitions labeled with i?. Using the same argument
as before, we can show that q2

i?−→ q4 in Y is also a transition in X, and q4 ∈ P .
Therefore, we can conclude that qY d′−−→Xq2 ∧ q2

o!−−→Xq3 ∧ ∀i? ∈ ActXi : ∃q4 ∈
P : q2

i?−−→Xq4 with q2, q3, q4 ∈ P . Thus, the right-hand side is true.
Thus, we have shown that when the left-hand side is true for qY in Y , it is also
true for qY in X; and that when the right-hand side is true for qY in Y , it is also
true for qY in X. Thus, qY ∈ ΘX(P). Since qY ∈ P was chosen arbitrarily, it holds
for all states in P . Once we choose P to be the fixed-point of ΘY , we have that
ΘY (P) ⊆ ΘX(P). �

Finally, we are ready to proof Theorem 7. The reason why adversarial
pruning is needed becomes apparent in the second half of the proof where
we consider non-shared events. To further illustrate this, consider again the
example in Figure 8, where we show that JA1Ksem ∧ JA2Ksem has an addi-
tional transition (1, 4)

a!−→ (2, 4), which is not present in JA1 ∧A2Ksem. We can

Springer Nature 2021 LATEX template

Timed I/O Automata 37

‘remove’ this transition with adversarial pruning by realizing that the target
state (2, 4) is an inconsistent state (you can see this by noticing that no time
delay, including a zero time delay, is possible).

Proof of Theorem 7 We will prove this theorem by showing that (JA1 ∧ A2Ksem)∆

and (JA1Ksem ∧ JA2Ksem)∆ have the same set of states, same initial state, same set
of actions, and same transition relation.

It follows from Lemma 3 that JA1∧A2Ksem and JA1Ksem∧JA2Ksem have the same
state set and initial state. As consJA1∧A2Ksem = consJA1Ksem∧JA2Ksem = cons from
Lemma 8, it follows that (JA1 ∧A2Ksem)∆ and (JA1Ksem ∧ JA2Ksem)∆ have the same
state set and initial state. Also, observe that the semantic of a TIOA and adversarial
pruning do not alter the action set. Therefore, it follows directly that (JA1∧A2Ksem)∆

and (JA1Ksem ∧ JA2Ksem)∆ have the same action set and partitioning into input and
output actions.

It remains to show that (JA1 ∧ A2Ksem)∆ and (JA1Ksem ∧ JA2Ksem)∆ have the
same transition relation. In the remainder of the proof, we will use v1 and v2 to
indicate the part of a valuation v of only the clocks of A1 and A2, respectively.
Also, for brevity we write X = (JA1 ∧ A2Ksem)∆, Y = (JA1Ksem ∧ JA2Ksem)∆, and
Clk = Clk1] Clk2 in the rest of this proof.

(⇒) Assume a transition qX1
a−→ qX2 in X. From Definition 12 it follows that

qX1
a−→ qX2 in JA1 ∧ A2Ksem and qX2 ∈ cons. Following Definition 3 of the semantic,

it follows that there exists an edge (l1, a, ϕ, c, l2) ∈ EA
1∧A2

with qX1 = (l1, v1),
qX2 = (l2, v2), l1, l2 ∈ LocA

1∧A2

, v1, v2 ∈ [Clk 7→ R≥0], v1 |= ϕ, v2 = v1[r 7→ 0]r∈c,
and v2 |= Inv(l2). Now we consider the three cases of Definition 14 of the conjunction
for TIOA.

• a ∈ Act1∩Act2. It follows directly from Lemma 5 that qX1
a−→ qX2 is a transition

in JA1Ksem ∧ JA2Ksem. Since qX2 ∈ cons, it holds that qX1
a−→ qX2 is a transition

in Y .
• a ∈ Act1\Act2. It follows directly from Corollary 1 that qX1

a−→ qX2 is a transition
in JA1Ksem ∧ JA2Ksem. Since qX2 ∈ cons, it holds that qX1

a−→ qX2 is a transition
in Y .

• a ∈ Act2 \Act1. It follows directly from Corollary 1 (where we switched A1 and
A2) that qX1

a−→ qX2 is a transition in JA1Ksem ∧ JA2Ksem. Since qX2 ∈ cons, it
holds that qX1

a−→ qX2 is a transition in Y .

Now consider that a is a delay d. It follows directly from Lemma 4 that qX1
d−→ qX2

is a transition in JA1Ksem ∧ JA2Ksem. Since qX2 ∈ cons, it holds that qX1
d−→ qX2 is a

transition in Y .
We have shown that when qX1

a−→ qX2 is a transition in X = (JA1 ∧ A2Ksem)∆,
it holds that qX1

a−→ qX2 is a transition in Y = (JA1Ksem ∧ JA2Ksem)∆. Since the
transition is arbitrarily chosen, it holds for all transitions in X.

(⇐) Assume a transition qY1
a−→ qY2 in Y . From Definition 12 it follows that

qY1
a−→ qY2 in JA1Ksem ∧ JA2Ksem and qY2 ∈ cons. Now we consider the three cases of

Definition 13 of the conjunction for TIOTS.
• a ∈ Act1∩Act2. It follows directly from Lemma 5 that qY1

a−→ qY2 is a transition
in JA1 ∧A2Ksem. Since qY2 ∈ cons, it holds that qY1

a−→ qY2 is a transition in X.

Springer Nature 2021 LATEX template

38 Timed I/O Automata

• a ∈ Act1 \Act2. From time reflexivity of Definition 1 we have that qY2
d−−→ with

d = 0. From Definitions 12 and 13 it follows that qJA1Ksem

2
d−−→ and qJA2Ksem d−−→.

Now, from Definition 3 it follows that v2 + d |= Inv2(l2), i.e., v2 |= Inv2(l2).

It now follows directly from Lemma 6 that qY1
a−→ qY2 is a transition in JA1 ∧

A2Ksem. Since qY2 ∈ cons, it holds that qY1
a−→ qY2 is a transition in X.

• a ∈ Act2 \Act1. From time reflexivity of Definition 1 we have that qY2
d−−→ with

d = 0. From Definitions 12 and 13 it follows that qJA1Ksem d−−→ and qJA2Ksem

2
d−−→.

Now, from Definition 3 it follows that v1 + d |= Inv1(l1), i.e., v1 |= Inv1(l1).
It now follows directly from Lemma 6 (where we switched A1 and A2) that
qY1

a−→ qY2 is a transition in JA1 ∧ A2Ksem. Since qY2 ∈ cons, it holds that
qY1

a−→ qY2 is a transition in X.

Now consider that a is a delay d. It follows directly from Lemma 4 that qY1
d−→ qY2 is

a transition in JA1 ∧A2Ksem. Since qY2 ∈ cons, it holds that qY1
d−→ qY2 is a transition

in X.
We have shown that when qY1

a−→ qY2 is a transition in Y = (JA1Ksem∧JA2Ksem)∆,
it holds that qY1

a−→ qY2 is a transition in X = (JA1 ∧A2Ksem)∆. Since the transition
is arbitrarily chosen, it holds for all transitions in Y . �

Corollary 2 Given two TIOAs Ai = (Loci, li0,Act
i,Clk i, Ei, Inv i), i = 1, 2 where

Act1i = Act2i ∧Act1o = Act2o. Then JA1 ∧A2Ksem = JA1Ksem ∧ JA2Ksem.

Proof This corollary follows directly as a special case from the proof of Theorem 7.
The special case only depends on Lemmas 3 and 5, which do not require adversarial
pruning to be applied. �

4 Parallel composition
We shall now define structural composition, also called parallel composition,
between specifications. We follow the optimistic approach of [8], i.e., two spec-
ifications can be composed if there exists at least one environment in which
they can work together. Before going further, we would like to contrast the
structural and logical composition.

The main use case for parallel composition is in fact dual to the one for
conjunction. Indeed, as observed in the previous section, conjunction is used
to reason about internal properties of an implementation set, so if a local
inconsistency arises in conjunction we limit the implementation set to avoid
it in implementations. A pruned specification can be given to a designer,
who chooses a particular implementation satisfying conjoined requirements.
A conjunction is consistent if the output player can avoid inconsistencies,
and its main theorem states that its set of implementation coincides with the
intersection of implementation sets of the conjuncts.

Springer Nature 2021 LATEX template

Timed I/O Automata 39

In contrast, parallel composition is used to reason about external use of
two (or more) components. We assume an independent implementation sce-
nario, where the two composed components are implemented by independent
designers. The designer of any of the components can only assume that the
other composed implementations will adhere to the original specifications being
composed. Consequently if an error occurs in parallel composition of the two
specifications, the independent designers receive additional information on how
to restrict their specifications to avoid reaching the error states in the composed
system.

We now propose our formal definition for parallel composition, which
roughly corresponds to the one defined on timed input/output automata [9].
We consider two TIOTSs S = (QS , qS0 ,Act

S ,→S) and T = (QT , qT0 ,Act
T ,→T)

and we say that they are composable iff their output alphabets are disjoint
ActSo ∩ActTo = ∅.

Definition 15 Given two specifications Si = (Qi, qi0,Act
i,→i), i = 1, 2 where Act1o∩

Act2o = ∅, the parallel composition of S1 and S2, denoted by S1 ‖ S2, is TIOTS
(Q1 × Q2, (q1

0 , q
2
0),Act ,→) where Act = Act1 ∪ Act2 = Acti] Acto with Act i =

(Act1i \Act
2
o) ∪ (Act2i \Act

1
o) and Acto = Act1o ∪Act2o, and → is defined as

• (q1
1 , q

2
1)

a−−→ (q1
2 , q

2
2) if a ∈ Act1 ∩Act2, q1

1
a−−→1q1

2, and q
2
1

a−−→2q2
2

• (q1
1 , q

2)
a−−→ (q1

2 , q
2) if a ∈ Act1 \Act2, q1

1
a−−→1q1

2, and q
2 ∈ Q2

• (q1, q2
1)

a−−→ (q1, q2
2) if a ∈ Act2 \Act1, q2

1
a−−→2q2

2, and q
1 ∈ Q1

• (q1
1 , q

2
1)

d−−→ (q1
2 , q

2
2) if d ∈ R≥0, q1

1
d−−→1q1

2, and q
2
1

d−−→2q2
2

Observe that if we compose two locally specifications using the above prod-
uct rules, then the resulting product is also locally consistent. This is formalized
in Lemma 9. Furthermore, observe that parallel composition is commutative,
and that two specifications composed give rise to well-formed specifications. It
is also associative in the following sense:

J(S ‖ T) ‖ UKmod = JS ‖ (T ‖ U)Kmod

Lemma 9 Given two locally consistent specifications Si = (Qi, qi0,Act
i,→i), i = 1, 2

where Act1o ∩Act2o = ∅. Then S1 ‖ S2 is locally consistent.

Proof Since, S1 and S2 are locally consistent, the only reason why S1 ‖ S2 could
be inconsistent is when a new error state is created by the parallel composition. We
show by contradiction that this is not possible.

Assume that state q1 ∈ S1 ‖ S2 is an error state. From Definition 11 of the error

state it follows that ∃d1 ∈ R≥0 : q1 X d1−−→ ∧∀d2 ∈ R≥0∀o! ∈ Acto∀q2 ∈ Q : q1
d2−−→

q2 ⇒ q2 X o!−−→. From Definition 15 of the parallel composition for TIOTS it follows
that (1) q1 = (q1

1 , q
2
1) with q1

1 ∈ Q1 and q2
1 ∈ Q2, and that either q1 X d1−−→1 or q2 X d2−−→2

Springer Nature 2021 LATEX template

40 Timed I/O Automata

(or both); (2) that q2 = (q1
2 , q

2
2) with q1

2 ∈ Q1 and q2
2 ∈ Q2, and that q1

1
d2−−→1q1

2 and

q2
1

d2−−→2q2
2 ; and (3) that o! ∈ Act1o and possibly o? ∈ Act2i , or o! ∈ Act2o and possibly

o? ∈ Act1i . In the next step we assume that o! ∈ Act1o and possibly o? ∈ Act2i , as the
other case is symmetrical. Consider two cases and Definition 15:

• o? ∈ Act2i . As S
2 is a specification, it is input-enabled. Therefore, q1

d2−−→ q2 ⇒
q2 X o!−−→ implies that q1

1
d2−−→ q1

2 ⇒ q1
2 X o!−−→.

• o? /∈ Act2i . This directly results in that q1
d2−−→ q2 ⇒ q2 X o!−−→ implies that

q1
1

d2−−→ q1
2 ⇒ q1

2 X o!−−→.

Applying the above reasoning for all output actions and knowing that Acto = Act1o∪
Act2o from Definition 15, it follows that ∀o! ∈ Act1o : q1

1
d2−−→1q1

2 =⇒ q1
2 X o!−−→ and

∀o! ∈ Act2o : q2
1

d2−−→2q2
2 =⇒ q2

2 X o!−−→. As this is independent of the actual value of
d2, it holds for all d2.

Finally, since either q1 X d1−−→1 or q2 X d2−−→2 (or both), it follows that either ∃d1 ∈
R≥0 : q1

1 X d1−−→ 1 ∧ ∀d2 ∈ R≥0∀o! ∈ Act1o∀q1
2 ∈ Q1 : q1

1
d2−−→ 1q1

2 ⇒ q1
2 X o!−−→ 1 or

∃d1 ∈ R≥0 : q2
1 X d1−−→2 ∧ ∀d2 ∈ R≥0∀o! ∈ Act2o∀q2

2 ∈ Q1 : q2
1

d2−−→2q2
2 ⇒ q2

2 X o!−−→2 (or
both). Therefore, either q1

1 or q2
1 (or both) is an error state, which contradicts with

the antecedent stating that S1 and S2 are consistent. �

Theorem 8 Refinement is a pre-congruence with respect to parallel composition: for
any specifications S1, S2, and T such that S1 ≤ S2 and S1 is composable with T ,
we have that S2 is composable with T and S1 ‖ T ≤ S2 ‖ T .

Proof S1 ≤ S2 implies that ActS
2

o ⊆ ActS
2

o (see Definition 6), and S1 is composable
with T implies that ActS

1

o ∩ ActTo = ∅. Combining this results immediately in that
ActS

2

o ∩ ActTo = ∅, thus S2 is composable with T . Furthermore, since S1 ≤ S2,
there exists a relation R ∈ Q1 × Q2 with the properties given in Definition 6 of
the refinement. Construct relation R′ = {((q1, qT), (q2, qT)) ∈ QS

1‖T × QS
2‖T |

(q1, q2) ∈ R}. We show that R′ witnesses S1 ‖ T ≤ S2 ‖ T . Consider the five cases
of refinement for a state pair ((q1

1 , q
T
1), (q2

1 , q
T
1)) ∈ R′.

1. (q2
1 , q

T
1)

i?−−→ S2‖T (q2
2 , q

T
2) for some (q2

2 , q
T
2) ∈ QS

2‖T and i? ∈ Act
S2‖T
i ∩

Act
S1‖T
i . Consider the five feasible combinations for input action i? using

Definition 15 such that i? ∈ Act
S2‖T
i ∩Act

S1‖T
i .

• i? ∈ ActS
1

i , i? ∈ ActS
2

i , and i? ∈ ActTi . In this case, it follows from Defini-

tion 15 that q2
1

i?−−→S2

q2
2 and qT1

i?−−→T qT2 . Now, using R and Definition 6,

it follows that q1
1

i?−−→S1

q1
2 and (q1

2 , q
2
2) ∈ R. Thus, following Definition 15

again, we have that (q1
1 , q

T
1)

i?−−→S1‖T (q1
2 , q

T
2). From the construction of R′

we confirm that ((q1
2 , q

T
2), (q2

2 , q
T
2)) ∈ R′.

• i? ∈ ActS
1

i , i? ∈ ActS
2

i , and i? /∈ ActT . In this case, it follows from

Definition 15 that q2
1

i?−−→S2

q2
2 and qT1 = qT2 . Now, using R and Definition 6,

Springer Nature 2021 LATEX template

Timed I/O Automata 41

it follows that q1
1

i?−−→S1

q1
2 and (q1

2 , q
2
2) ∈ R. Thus, following Definition 15

again, we have that (q1
1 , q

T
1)

i?−−→ S1‖T (q1
2 , q

T
2) with qT1 = qT2 . From the

construction of R′ we confirm that ((q1
2 , q

T
2), (q2

2 , q
T
2)) ∈ R′.

• i? ∈ ActS
1

i , i /∈ ActS
2

, and i? ∈ ActTi . This case is infeasible, as Definition 6
of refinement requires that ActS

1

i ⊆ ActS
2

i .
• i? /∈ ActS

1

, i? ∈ ActS
2

i , and i? ∈ ActTi . In this case, it follows from Defini-

tion 15 that q2
1

i?−−→S2

q2
2 and qT1

i?−−→T qT2 . Now, using R and Definition 6, it
follows that (q1

2 , q
2
2) ∈ R and q1

1 = q1
2 . Thus, following Definition 15 again,

we have that (q1
1 , q

T
1)

i?−−→S1‖T (q1
2 , q

T
2) and q1

1 = q1
2 . From the construction

of R′ we confirm that ((q1
2 , q

T
2), (q2

2 , q
T
2)) ∈ R′.

• i? /∈ ActS
1

, i? /∈ ActS
2

, and i? ∈ ActTi . In this case, it follows from

Definition 15 that qT1
i?−−→T qT2 and q2

1 = q2
2 . Following Definition 15 again,

we have that (q1
1 , q

T
1)

i?−−→S1‖T (q1
2 , q

T
2) and q1

1 = q1
2 . From the construction

of R′ we confirm that ((q1
2 , q

T
2), (q2

2 , q
T
2)) ∈ R′.

So, in all feasible cases we can show that (q1
1 , q

T
1)

i?−−→ S1‖T (q1
2 , q

T
2) and

((q1
2 , q

T
2), (q2

2 , q
T
2)) ∈ R′.

2. (q2
1 , q

T
1)

i?−−→ S2‖T (q2
2 , q

T
2) for some (q2

2 , q
T
2) ∈ QS

2‖T and i? ∈ Act
S2‖T
i \

Act
S1‖T
i . In this case it follows from Definition 6 and 15 that i? ∈ ActS

2

i ,
i? /∈ ActS

1

i , and i? /∈ ActTi . Therefore, from the same definitions, we have

that q2
1

i?−−→ S2

q2
2 and qT1 = qT2 . Now, using R and Definition 6, it follows

that (q1
2 , q

2
2) ∈ R and q1

1 = q1
2 . From the construction of R′ we confirm that

((q1
2 , q

T
2), (q2

2 , q
T
2)) ∈ R′.

3. (q1
1 , q

T
1)

o!−−→ S1‖T (q1
2 , q

T
2) for some (q1

2 , q
T
2) ∈ QS

1‖T and o! ∈ Act
S1‖T
o ∩

Act
S2‖T
o . Consider the eight feasible combinations for output action o! using

Definition 15 such that o! ∈ Act
S2‖T
o ∩ Act

S1‖T
o , already taking into account

that if o ∈ ActS
1

and o ∈ ActS
2

then o! ∈ ActS
1

o and o! ∈ ActS
2

o or o? ∈ ActS
1

i

and o? ∈ ActS
2

i (see Definition 6).
• o! ∈ ActS

1

o , o! ∈ ActS
2

o , and o ∈ ActT 8. In this case, it follows from Defini-
tion 15 that q1

1
o!−−→S1

q1
2 and qT1

o−−→T qT2 . Now, using R and Definition 6,

it follows that q2
1

o!−−→S2

q2
2 and (q1

2 , q
2
2) ∈ R. Thus, following Definition 15

again, we have that (q2
1 , q

T
1)

o!−−→S2‖T (q2
2 , q

T
2). From the construction of R′

we confirm that ((q1
2 , q

T
2), (q2

2 , q
T
2)) ∈ R′.

• o? ∈ ActS
1

i , o? ∈ ActS
2

i , and o! ∈ ActTo . In this case, it follows from

Definition 15 that q1
1

o?−−→S1

q1
2 and qT1

o!−−→T qT2 . As S2 is input-enabled, it

follows that q2
1

o?−−→S2

q2
2 for some q2

2 ∈ Q2. Now, using R and Definition 6,
it follows that (q1

2 , q
2
2) ∈ R. Thus, following Definition 15 again, we have

that (q2
1 , q

T
1)

o!−−→S2‖T (q2
2 , q

T
2). From the construction of R′ we confirm that

((q1
2 , q

T
2), (q2

2 , q
T
2)) ∈ R′.

• o! ∈ ActS
1

o , o! ∈ ActS
2

o , and o! /∈ ActT . In this case, it follows from Defi-
nition 15 that q1

1
o!−−→S1

q1
2 and qT1 = qT2 . Now, using R and Definition 6,

8With this notation, we indicate that it does not matter whether o! ∈ ActTo or o? ∈ ActTi .

Springer Nature 2021 LATEX template

42 Timed I/O Automata

it follows that q2
1

o!−−→S2

q2
2 and (q1

2 , q
2
2) ∈ R. Thus, following Definition 15

again, we have that (q2
1 , q

T
1)

o!−−→ S2‖T (q2
2 , q

T
2) with qT1 = qT2 . From the

construction of R′ we confirm that ((q1
2 , q

T
2), (q2

2 , q
T
2)) ∈ R′.

• o! ∈ ActS
1

o , o! /∈ ActS
2

, and o! ∈ ActTo . In this case, it follows from Defini-
tion 15 that q1

1
o!−−→S1

q1
2 and qT1

o!−−→T qT2 . Now, using R and Definition 6, it
follows that (q1

2 , q
2
2) ∈ R and q2

1 = q2
2 . Thus, following Definition 15 again,

we have that (q2
1 , q

T
1)

o!−−→S2‖T (q2
2 , q

T
2) and q2

1 = q2
2 . From the construction

of R′ we confirm that ((q1
2 , q

T
2), (q2

2 , q
T
2)) ∈ R′.

• o? ∈ ActS
1

i , o! /∈ ActS
2

, and o! ∈ ActTo . This case is infeasible, as
Definition 6 of refinement requires that ActS

1

i ⊆ ActS
2

i .
• o! /∈ ActS

1

, o! ∈ ActS
2

o , and o! ∈ ActTo . This case is infeasible, as
Definition 6 of refinement requires that ActS

2

o ⊆ ActS
1

o .
• o! /∈ ActS

1

, o? ∈ ActS
2

i , and o! ∈ ActTo . In this case, it follows from

Definition 15 that qT1
o!−−→ T qT2 and q1

1 = q1
2 . As S

2 is input-enabled, it

follows that q2
1

o?−−→S2

q2
2 for some q2

2 ∈ Q2. Now, using R and Definition 6,
it follows that (q1

2 , q
2
2) ∈ R. Thus, following Definition 15 again, we have

that (q2
1 , q

T
1)

o!−−→S2‖T (q2
2 , q

T
2). From the construction of R′ we confirm that

((q1
2 , q

T
2), (q2

2 , q
T
2)) ∈ R′.

• o! /∈ ActS
1

, o! /∈ ActS
2

, and o! ∈ ActTi . In this case, it follows from Defi-

nition 15 that qT1
o!−−→T qT2 and q1

1 = q1
2 . Following Definition 15 again, we

have that (q2
1 , q

T
1)

o!−−→S2‖T (q2
2 , q

T
2) and q2

1 = q2
2 . From the construction of

R′ we confirm that ((q1
2 , q

T
2), (q2

2 , q
T
2)) ∈ R′.

So, in all feasible cases we can show that (q2
1 , q

T
1)

o!−−→ S2‖T (q2
2 , q

T
2) and

((q1
2 , q

T
2), (q2

2 , q
T
2)) ∈ R′.

4. (q1
1 , q

T
1)

o!−−→ S1‖T (q1
2 , q

T
2) for some (q1

2 , q
T
2) ∈ QS

1‖T and o! ∈ Act
S1‖T
o \

Act
S2‖T
o . In this case it follows from Definitions 6 and 15 that o! ∈ ActS

1

o ,
o /∈ ActS

2

, and o /∈ ActT . Therefore, from the same definitions, we have
that q1

1
o!−−→ S1

q1
2 and qT1 = qT2 . Now, using R and Definition 6, it follows

that (q1
2 , q

2
2) ∈ R and q2

1 = q2
2 . From the construction of R′ we confirm that

((q1
2 , q

T
2), (q2

2 , q
T
2)) ∈ R′.

5. (q1
1 , q

T
1)

d−−→ S1‖T (q1
2 , q

T
2) for some (q1

2 , q
T
2) ∈ QS

1‖T and d ∈ R≥0. In this

case, it follows from Definition 15 that q2
1

d−−→ S1

q2
2 and qT1

d−−→ T qT2 . Now,

using R and Definition 6, it follows that q2
1

d−−→S2

q2
2 and (q1

2 , q
2
2) ∈ R. Thus,

following Definition 15 again, we have that (q2
1 , q

T
1)

d−−→S2‖T (q2
2 , q

T
2). From the

construction of R′ we confirm that ((q1
2 , q

T
2), (q2

2 , q
T
2)) ∈ R′.

�

Adversarial pruning does not distribute over the parallel composition oper-
ator. Consider two composable specifications S and T : S∆ ‖ T∆ 6= (S ‖ T)∆.
An example is shown in Figure 9. Observe that S∆ ‖ T∆ (Figure 9d) does
not allow any behavior from the initial state, while (S ‖ T)∆ (Figure 9f) still
allows action a to be performed. If we want specification S to never reach the

Springer Nature 2021 LATEX template

Timed I/O Automata 43

1 2 3
x ≤ 0

a! b?

b? b?

(a) S

4 5 6
a? b!

a? a?

(b) T = T∆

1

b?

(c) S∆

(1, 4)

(d)
S∆ ‖
T∆

(1, 4) (2, 5) (3, 6)

x ≤ 0
a! b!

(e) S ‖ T

(1, 4) (2, 5)
a!

(f) (S ‖ T)∆

Fig. 9: Example showing that adversarial pruning does not distribute over the
parallel composition operator. Observe that the result in (d) differs from the
one in (f).

error state for all possible environments, we have to disable output action a!
from location 1. Yet, in the example we are composing S with the specific envi-
ronment T , which can help S in avoiding the error state. Therefore, as long
as we are composing components of a system together, we should not apply
adversarial pruning on intermediate specifications.

We still would like to simplify intermediate specifications as much as
possible before and after performing parallel composition without any loss
of possible implementations. This is captured in the following definition of
cooperative pruning.

Definition 16 Given a specification S = (Q, s0,Act ,→), the result of cooperative
pruning of S, denoted by S∀, is a subspecification S∀ = (Q∀, s0,Act ,→∀) with S∀ ⊆
S and →∀⊆→ such that for all specifications T composable with S it holds that
JS ‖ T Kmod = JS∀ ‖ T Kmod

Unfortunately, the best we can do, in the sense of removing states, transi-
tions, or both, is to remove nothing, i.e., cooperative pruning is the identity
transformation. We prove this with the following lemma.

Lemma 10 Given a specification S = (QS , s0,Act
S ,→S) and its cooperatively

pruned subspecification S∀. It holds that S = S∀.

Proof The idea of pruning is to remove error states and related transitions from
a specification that violate the independent progress property, as all states of any

Springer Nature 2021 LATEX template

44 Timed I/O Automata

implementation of that specification need to have independent progress, see Def-
inition 5. So, for a state qimerr ∈ imerrS of S (see Definition 10), it holds that

(∃d ∈ R≥0 : qimerr X d−−→) ∧ ∀d ∈ R≥0∀o! ∈ ActSo ∀q′ ∈ QS : qimerr
d−−→ q′ ⇒ q′ X o!−−→.

Now, consider a specification T = (t, t,ActT ,→T) with a single state t, ActT =
ActTo = ActSi ∪ {τ} with τ /∈ ActS , and →T= {(t, a, t) | a ∈ ActT } ∪ {(t, d, t) | d ∈
R≥0}. The unique event τ is present to ensure that the following argument holds
in case S does not have any input actions. In the composition S ‖ T , it still holds

that (qimerr, t)
d−−→ (q′, t) (see Definition 15). Since a specification is input enabled,

Definition 4, we know that in the composition S ‖ T there exist an output action

o! ∈ ActT such that (q′, t)
o!−−→. Thus, in the composition S ‖ T , the state (qimerr, t) is

no longer an immediate error state. As this holds for all qimerr ∈ imerrS , we have that
imerrS‖T = ∅. And once imerrS‖T = ∅, we have that errS‖T (∅) = ∅ and therefore
inconsS‖T = ∅ (using the fixed-point operator π). Thus for this T we need to keep
all states of S in S∀ to ensure that JS ‖ T Kmod = JS∀ ‖ T Kmod. �

We now switch to the symbolic representation. Parallel composition of two
TIOA is defined in the following way.

Definition 17 Given two specification automata Ai = (Loci, qi0,Act
i,Clk i, Ei,

Inv i), i = 1, 2 where Act1o ∩ Act2o = ∅, the parallel composition of A1 and A2,
denoted by A1 ‖ A2, is TIOA (Loc1 × Loc2, (q1

0 , q
2
0),Act ,Clk1] Clk2, E, Inv) where

Act = Acti]Acto with Act i = (Act1i \Act
2
o)∪ (Act2i \Act

1
o) and Acto = Act1o∪Act2o,

Inv((q1, q2)) = Inv(q1) ∧ Inv(q2), and E is defined as
• ((q1

1 , q
2
1), a, ϕ1 ∧ϕ2, c1 ∪ c2, (q1

2 , q
2
2)) ∈ E if a ∈ Act1 ∩Act2, (q1

1 , a, ϕ
1, c1, q1

2) ∈
E1, and (q1

1 , a, ϕ
2, c2, q1

2) ∈ E1

• ((q1
1 , q

2), a, ϕ1, c1, (q1
2 , q

2)) ∈ E if a ∈ Act1 \ Act2, (q1
1 , a, ϕ

1, c1, q1
2) ∈ E1, and

q2 ∈ Loc2

• ((q1, q2
1), a, ϕ2, c2, (q1, q2

2)) ∈ E if a ∈ Act2 \ Act1, (q2
1 , a, ϕ

2, c2, q2
2) ∈ E2, and

q1 ∈ Loc1

Figure 10 shows the parallel composition Machine‖Researcher where
Machine and Researcher are from Figure 1. As typical for composing automata,
the parallel composition of Machine and Researcher looks much more compli-
cated that the two individual specifications. Furthermore, the actions cof and
tea, which were outputs in Machine and inputs in Researcher, have become
outputs in the combined specification.

Finally, the following theorem lifts all the results from timed input/output
transition systems to the symbolic representation level. Similarly to Theorem 7,
we need to take the special case from Figure 8 into account (but now consider
action c to be an input for A2). The transition in Figure 8 (e) from (1, 4)

a!−−→
(2, 4) can be ‘removed’ with adversarial pruning by realizing that the target
state (2, 4) is an inconsistent state (you can see this by noticing that no time
delay, including a zero time delay, is possible).

Springer Nature 2021 LATEX template

Timed I/O Automata 45

y ≤ 6

x ≤ 4 x ≤ 8

x ≤ 4
y ≤ 6

x ≤ 8
y ≤ 6

Err

Err

coin?
y := 0

cof!
y ≥ 4

x := 0

tea!
x ≤ 15

x := 0

coin?
y := 0

coin?
y := 0

tea!, x ≥ 15 ∧ y ≥ 2

tea!
x ≥ 15 ∧ y ≥ 2

coin?
y := 0

pub!

x ≥ 2

x := 0

pub!

x ≥ 4

x := 0

pub!

x ≥ 2

x := 0

pub!

x ≥ 4

x := 0

tea! tea!cof!

y ≥ 4

cof!

y ≥ 4

tea!
x ≤ 15 ∧ y ≥ 2

coin?

tea!
y ≥ 2

tea!
y ≥ 2

coin? coin?

cof!, tea!, pub!

cof!, tea!, pub!

coin?

Machine ‖ Researcher

cof tea pubcoin

Fig. 10: The parallel composition of the Machine and Researcher from Figure 1.

Theorem 9 Given two specification automata Ai = (Loci, li0,Act
i,Clk i, Ei,

Inv i), i = 1, 2 where Act1o ∩ Act2o = ∅. Then (JA1 ‖ A2Ksem)∆ = (JA1Ksem ‖
JA2Ksem)∆.

Before we can prove this theorem, we have to introduce several lemmas.
These lemmas are almost identical to the ones in Section 3 for the conjunction.
Therefore, we have omitted the proof.

Lemma 11 Given two TIOAs Ai = (Loci, li0,Act
i,Clk i, Ei, Inv i), i = 1, 2 where

Act1o ∩ Act2o = ∅. Then QJA1‖A2Ksem = QJA1Ksem‖JA2Ksem and q
JA1‖A2Ksem

0 =

q
JA1Ksem‖JA2Ksem

0 .

Proof The proof is exactly the same as the proof of Lemma 3 except replacing con-
junction by parallel composition. �

Lemma 12 Given two TIOAs Ai = (Loci, li0,Act
i,Clk i, Ei, Inv i), i = 1, 2 where

Act1o ∩ Act2o = ∅. Denote X = JA1 ‖ A2Ksem and Y = JA1Ksem ‖ JA2Ksem, and let

d ∈ R≥0 and q1, q2 ∈ QX ∩QY . Then q1
d−−→Xq2 if and only if q1

d−−→Y q2.

Springer Nature 2021 LATEX template

46 Timed I/O Automata

Proof The proof is exactly the same as the proof of Lemma 4 except replacing
conjunction by parallel composition.

�

Lemma 13 Given two TIOAs Ai = (Loci, li0,Act
i,Clk i, Ei, Inv i), i = 1, 2 where

Act1o ∩ Act2o = ∅. Denote X = JA1 ‖ A2Ksem and Y = JA1Ksem ‖ JA2Ksem, and let
a ∈ Act1 ∩Act2 and q1, q2 ∈ QX ∩QY . Then q1

a−−→Xq2 if and only if q1
a−−→Y q2.

Proof The proof is exactly the same as the proof of Lemma 5 except replacing
conjunction by parallel composition.

�

Lemma 14 Given two TIOAs Ai = (Loci, li0,Act
i,Clk i, Ei, Inv i), i = 1, 2 where

Act1o ∩ Act2o = ∅. Denote X = JA1 ‖ A2Ksem and Y = JA1Ksem ‖ JA2Ksem, and let
a ∈ Act1 \Act2 and q1, q2 ∈ QX ∩QY , where q2 = (l12, l

2
2, v2). If v2 |= Inv2(l2), then

q1
a−−→Xq2 if and only if q1

a−−→Y q2.

Proof The proof is exactly the same as the proof of Lemma 6 except replacing
conjunction by parallel composition.

�

Corollary 3 Given two TIOAs Ai = (Loci, li0,Act
i,Clk i, Ei, Inv i), i = 1, 2 where

Act1o ∩ Act2o = ∅. Denote X = JA1 ‖ A2Ksem and Y = JA1Ksem ‖ JA2Ksem, and let
a ∈ Act1 \Act2 and q1, q2 ∈ QX ∩QY . If q1

a−−→Xq2, then q1
a−−→Y q2.

Proof The proof is exactly the same as the proof of Corollary 1 except replacing
conjunction by parallel composition.

�

The following two lemmas consider the error states and consistent states,
respectively, in JA1 ‖ A2Ksem and JA1Ksem ‖ JA2Ksem. We can show that both
sets are the same for JA1 ‖ A2Ksem and JA1Ksem ‖ JA2Ksem.

Lemma 15 Given two TIOAs Ai = (Loci, li0,Act
i,Clk i, Ei, Inv i), i = 1, 2 where

Act1o ∩ Act2o = ∅. Let Q ⊆ Loc1 × Loc2 × [(Clk1 ∪ Clk2) 7→ R≥0]. Then
errJA1‖A2Ksem(Q) = errJA1Ksem‖JA2Ksem(Q).

Proof The proof is exactly the same as the proof of Lemma 7 except replacing con-
junction by parallel composition. �

Springer Nature 2021 LATEX template

Timed I/O Automata 47

Lemma 16 Given two TIOAs Ai = (Loci, li0,Act
i,Clk i, Ei, Inv i), i = 1, 2 where

Act1o ∩Act2o = ∅. Then consJA1‖A2Ksem = consJA1Ksem‖JA2Ksem .

Proof The proof is exactly the same as the proof of Lemma 8 except replacing con-
junction by parallel composition. �

Finally, we are ready to proof Theorem 9.

Proof of Theorem 9 We will prove this theorem by showing that (JA1 ‖ A2Ksem)∆

and (JA1Ksem ‖ JA2Ksem)∆ have the same set of states, same initial state, same set
of actions, and same transition relation.

It follows from Lemma 11 that JA1 ‖ A2Ksem and JA1Ksem ‖ JA2Ksem have the
same state set and initial state. As consJA1‖A2Ksem = consJA1Ksem‖JA2Ksem = cons
from Lemma 16, it follows that (JA1 ‖ A2Ksem)∆ and (JA1Ksem ‖ JA2Ksem)∆ have
the same state set and initial state. Also, observe that the semantic of a TIOA
and adversarial pruning do not alter the action set. Therefore, it follows directly
that (JA1 ‖ A2Ksem)∆ and (JA1Ksem ‖ JA2Ksem)∆ have the same action set and
partitioning into input and output actions.

It remains to show that (JA1 ‖ A2Ksem)∆ and (JA1Ksem ‖ JA2Ksem)∆ have the
same transition relation. In the remainder of the proof, we will use v1 and v2 to
indicate the part of a valuation v of only the clocks of A1 and A2, respectively.
Also, for brevity we write X = (JA1 ‖ A2Ksem)∆, Y = (JA1Ksem ‖ JA2Ksem)∆, and
Clk = Clk1] Clk2 in the rest of this proof.

(⇒) Assume a transition qX1
a−→ qX2 in X. From Definition 12 it follows that

qX1
a−→ qX2 in JA1 ‖ A2Ksem and qX2 ∈ cons. Following Definition 3 of the semantic,

it follows that there exists an edge (l1, a, ϕ, c, l2) ∈ EA
1‖A2

with qX1 = (l1, v1),
qX2 = (l2, v2), l1, l2 ∈ LocA

1‖A2

, v1, v2 ∈ [Clk 7→ R≥0], v1 |= ϕ, v2 = v1[r 7→ 0]r∈c,
and v2 |= Inv(l2). Now we consider the three cases of Definition 17 of the parallel
composition for TIOA.

• a ∈ Act1∩Act2. It follows directly from Lemma 13 that qX1
a−→ qX2 is a transition

in JA1Ksem ‖ JA2Ksem. Since qX2 ∈ cons, it holds that qX1
a−→ qX2 is a transition

in Y .
• a ∈ Act1\Act2. It follows directly from Corollary 3 that qX1

a−→ qX2 is a transition
in JA1Ksem ‖ JA2Ksem. Since qX2 ∈ cons, it holds that qX1

a−→ qX2 is a transition
in Y .

• a ∈ Act2 \Act1. It follows directly from Corollary 3 (where we switched A1 and
A2) that qX1

a−→ qX2 is a transition in JA1Ksem ‖ JA2Ksem. Since qX2 ∈ cons, it
holds that qX1

a−→ qX2 is a transition in Y .

Now consider that a is a delay d. It follows directly from Lemma 12 that qX1
d−→ qX2

is a transition in JA1Ksem ‖ JA2Ksem. Since qX2 ∈ cons, it holds that qX1
d−→ qX2 is a

transition in Y .
We have shown that when qX1

a−→ qX2 is a transition in X = (JA1 ‖ A2Ksem)∆,
it holds that qX1

a−→ qX2 is a transition in Y = (JA1Ksem ‖ JA2Ksem)∆. Since the
transition is arbitrarily chosen, it holds for all transitions in X.

Springer Nature 2021 LATEX template

48 Timed I/O Automata

(⇐) Assume a transition qY1
a−→ qY2 in Y . From Definition 12 it follows that

qY1
a−→ qY2 in JA1Ksem ∧ JA2Ksem and qY2 ∈ cons. Now we consider the three cases of

Definition 15 of the parallel composition for TIOTS.
• a ∈ Act1∩Act2. It follows directly from Lemma 13 that qY1

a−→ qY2 is a transition
in JA1 ‖ A2Ksem. Since qY2 ∈ cons, it holds that qY1

a−→ qY2 is a transition in X.

• a ∈ Act1 \Act2. From time reflexivity of Definition 1 we have that qY2
d−−→ with

d = 0. From Definitions 12 and 15 it follows that qJA1Ksem

2
d−−→ and qJA2Ksem d−−→.

Now, from Definition 3 it follows that v2 + d |= Inv2(l2), i.e., v2 |= Inv2(l2).

It now follows directly from Lemma 14 that qY1
a−→ qY2 is a transition in JA1 ‖

A2Ksem. Since qY2 ∈ cons, it holds that qY1
a−→ qY2 is a transition in X.

• a ∈ Act2 \Act1. From time reflexivity of Definition 1 we have that qY2
d−−→ with

d = 0. From Definitions 12 and 15 it follows that qJA1Ksem d−−→ and qJA2Ksem

2
d−−→.

Now, from Definition 3 it follows that v1 + d |= Inv1(l1), i.e., v1 |= Inv1(l1).
It now follows directly from Lemma 14 (where we switched A1 and A2) that
qY1

a−→ qY2 is a transition in JA1 ‖ A2Ksem. Since qY2 ∈ cons, it holds that
qY1

a−→ qY2 is a transition in X.

Now consider that a is a delay d. It follows directly from Lemma 12 that qY1
d−→ qY2 is

a transition in JA1 ‖ A2Ksem. Since qY2 ∈ cons, it holds that qY1
d−→ qY2 is a transition

in X.
We have shown that when qY1

a−→ qY2 is a transition in Y = JA1Ksem ‖ JA2Ksem,
it holds that qY1

a−→ qY2 is a transition in X = JA1 ‖ A2Ksem. Since the transition is
arbitrarily chosen, it holds for all transitions in Y . �

Corollary 4 Given two specification automata Ai = (Loci, li0,Act
i,Clk i, Ei,

Inv i), i = 1, 2 where Act1o ∩ Act2o = ∅ and Act1 = Act2. Then JA1 ‖ A2Ksem =
JA1Ksem ‖ JA2Ksem.

Proof This corollary follows directly as a special case from the proof of Theorem 9.
The special case only depends on Lemmas 11 and 13, which do not require adversarial
pruning to be applied. �

5 Quotient
An essential operator in a complete specification theory is the one of quotient-
ing. It allows for factoring out behavior from a larger component. If one has a
large component specification T and a small one S then T\\S is the specifica-
tion of exactly those components that when composed with S refine T . In other
words, T\\S specifies the work that still needs to be done, given availability
of an implementation of S, in order to provide an implementation of T .

We proceed like for structural and logical compositions and start with a
quotient that may introduce error states. Those errors can then pruned.

Springer Nature 2021 LATEX template

Timed I/O Automata 49

Definition 18 Given specifications S = (QS , qS0 ,Act
S ,→S) and T = (QT , qT0 ,

ActT ,→T) where ActSo ∩ ActTi = ∅. The quotient of T and S, denoted by T\\S,
is a specification (QT × QS ∪ {u, e}, (qT0 , qS0),Act ,→) where u is the universal
state, e the inconsistent state, Act = Acti] Acto with Acti = ActTi ∪ ActSo and
Acto = ActTo \ActSo ∪ActSi \Act

T
i , and → is defined as

1. (qT1 , q
S
1)

a−−→ (qT2 , q
S
2) if a ∈ ActS ∩ActT , qT1

a−−→T qT2 , and qS1
a−−→SqS2

2. (qT , qS1)
a−−→ (qT , qS2) if a ∈ ActS \ActT , qT ∈ QT , and qS1

a−−→SqS2

3. (qT1 , q
S)

a−−→ (qT2 , q
S) if a ∈ ActT \ActS , qS ∈ QS , and qT1

a−−→T qT2

4. (qT1 , q
S
1)

d−−→ (qT2 , q
S
2) if d ∈ R≥0, qT1

d−−→T qT2 , and qS1
d−−→SqS2

5. (qT , qS)
a−−→ u if a ∈ ActSo , qT ∈ QT , and qS X a−−→S

6. (qT , qS)
d−−→ u if d ∈ R≥0, qT ∈ QT , and qS X d−−→S

7. (qT , qS)
a−−→ e if a ∈ ActSo ∩ActTo , qT X a−−→T , and qS a−−→S

8. (qT , qS)
a−−→ (qT , qS) if a ∈ ActSo ∩ActTo , qT X a−−→T , and qS X a−−→S9

9. u a−−→ u if a ∈ Act ∪ R≥0

10. e a−−→ e if a ∈ Acti

In this definition, u and e are fresh states such that u is universal (allows
arbitrary behaviour) and e is inconsistent (no output-controllable behaviour
can satisfy it). State e disallows progress of time and has no output transitions.
The universal state guarantees nothing about the behaviour of its implemen-
tations (thus any refinement with a suitable alphabet is possible), and dually
the inconsistent state allows no implementations.

The first four rules are part of the standard rules of parallel composition,
see Definition 15. Rules 5 and 6 capture the situation where S does not allow
a particular output action or delay, respectively, so the parallel composition of
S and the quotient also does not allow this to happen. Therefore, it technically
does not matter what the quotient does after performing these transitions,
hence they go to the universal state u. Rule 7 captures the situation that an
output shared between S and T as causes a problem in the refinement S ≤ T
as T is blocking the output. Thus the quotient, representing the missing com-
ponent put into parallel composition with S, needs to block S from performing
this output action. But the output action has become an input action in the
quotient, so we redirect this output to the error state to ‘memorize’ this prob-
lem. Rule 8 complements rule 7 in the sense that it ensures that the quotient is
actually input enabled by construction. Finally, rules 9 and 10 simply express
what we mean by universal and error state, respectively.

Theorem 10 states that the proposed quotient operator has exactly the
property that it is dual of structural composition with regards to refinement.

9This ensures that the quotient is input enabled.

Springer Nature 2021 LATEX template

50 Timed I/O Automata

Lemma 17 For any two specifications S and T such that the quotient T\\S is
defined, and for any implementation X over the same alphabet as T\\S, we have that
S ‖ X is defined, ActS‖Xi = ActTi and Act

S‖X
0 = ActSo ∪ActTo ∪ActSi \Act

T
i .

Proof We will first show that S ‖ X is defined. This boils down to show that S and X
are composable., i.e., ActSo ∩ActXo = ∅. From Definition 18 and the assumption that
X has the same alphabet as T\\S, it follows that ActXo = ActTo \ActSo ∪ActSi \Act

T
i .

Thus it holds that ActSo ∩ActXo = ∅.
To show that ActS‖Xi = ActTi , we follow Definition 15 of the parallel composition

and Definition 18 of the quotient and use careful rewriting to get to this conclusion.

Act
S‖X
i = ActSi \Act

X
o ∪ActXi \Act

S
o

= ActSi \ (ActTo \ActSo ∪ActSi \Act
T
i) ∪ (ActTi ∪ActSo) \ActSo

= ActSi \ (ActTo \ActSo ∪ActSi \Act
T
i) ∪ActTi \Act

S
o ∪ActSo \ActSo

= ActSi \ (ActTo \ActSo ∪ActSi \Act
T
i) ∪ActTi

=
(
ActSi \ (ActTo \ActSo) ∩ActSi \ (ActSi \Act

T
i)
)
∪ActTi

=
(
ActSi \ (ActTo \ActSo) ∩ActSi ∩ActTi

)
∪ActTi

=
((

(ActSi ∩ActSo) ∪ (ActSi \Act
T
o)
)
∩ActSi ∩ActTi

)
∪ActTi

=
(
ActSi \Act

T
o ∩ActSi ∩ActTi

)
∪ActTi

=
(
ActSi ∩ActSi ∩ActTi

)
\ActTo ∪ActTi

=
(
ActSi ∩ActTi

)
\ActTo ∪ActTi

=
(
ActSi ∩ (ActTi \Act

T
o)
)
∪ActTi

=
(
ActSi ∩ActTi

)
∪ActTi

= ActTi

To show that ActS‖X0 = ActSo ∪ActTo ∪ActSi \Act
T
i , we follow again Definition 15

of the parallel composition and Definition 18 of the quotient and use careful rewriting
to get to this conclusion.

Act
S‖X
0 = ActSo ∪ActXo

= ActSo ∪ (ActTo \ActSo ∪ActSi \Act
T)

= ActSo ∪ActTo ∪ActSi \Act
T
i

�

Theorem 10 For any two specifications S and T such that the quotient T\\S is
defined, and for any implementation X over the same alphabet as T\\S, we have that
S ‖ X is defined and S ‖ X ≤ T iff X ≤ T\\S.

Springer Nature 2021 LATEX template

Timed I/O Automata 51

Proof It is shown in Lemma 17 that S ‖ X is defined. The alphabet pre-condition of
Definition 6 is satisfied for X ≤ T\\S by definition of X; using Lemma 17 we can see
that this is also the case for S ‖ X ≤ T . So we only have to show that S ‖ X ≤ T iff
X ≤ T\\S.

(S ‖ X ≤ T ⇒ X ≤ T\\S) Since S ‖ X ≤ T , it follows from Definition 6 of
refinement that there exists a relation R ∈ QS‖X ×QT that witness the refinement.
Note that QS‖X = QS × QX according to Definition 15. Construct relation R′ =
{(qX1 , (qT1 , qS1)) ∈ QX × QT\\S | ((qS1 , q

X
1), qT1) ∈ R} ∪ {(qX1 , u) ∈ QX × QT\\S |

qX1 ∈ QX}. We will show that R′ witnesses X ≤ T\\S. First consider the five cases
of Definition 6 for a state pair (qX1 , (q

T
1 , q

S
1)) ∈ R′.

1. (qT1 , q
S
1)

i?−−→T\\S(qT2 , q
S
2) for some (qT2 , q

S
2) ∈ QT\\S and i? ∈ Act

T\\S
i ∩ActXi .

By definition of X it follows that Act
T\\S
i = ActXi . Consider the following

five possible cases from Definition 18 of the quotient that might result in i? ∈
Act

T\\S
i (= ActTi ∪ActSo).

• i? ∈ ActTi and i! ∈ ActSo . This case is actually not feasible, since
Definition 18 also requires that ActSo ∩ActTi = ∅.

• i? ∈ ActTi and i? ∈ ActSi . In this case, it follows from Definition 18 that

qT1
i?−−→T qT2 and qS1

i?−−→SqS2 . Now, using R, the first case of Definition 6 of
refinement, and the fact that Act

S‖X
i = ActTi (Lemma 17) it follows that

(qS1 , q
X
1)

i?−−→S‖X(qS2 , q
X
2) and ((qS2 , q

X
2), qT2) ∈ R. From Definition 15 of

parallel composition it follows that qX1
i?−−→XqX2 . From the construction of

R′ we confirm that (qX2 , (q
T
2 , q

S
2)) ∈ R′.

• i? ∈ ActTi and i? /∈ ActS . In this case, it follows from Definition 18 that

qT1
i?−−→T qT2 and qS1 = qS2 . Now, using R, the first case of Definition 6 of

refinement, and the fact that Act
S‖X
i = ActTi (Lemma 17) it follows that

(qS1 , q
X
1)

i?−−→S‖X(qS2 , q
X
2) and ((qS2 , q

X
2), qT2) ∈ R. From Definition 15 of

parallel composition it follows that qX1
i?−−→XqX2 . From the construction of

R′ we confirm that (qX2 , (q
T
2 , q

S
2)) ∈ R′.

• i! ∈ ActTo and i! ∈ ActSo . In this case, it follows from Definition 18 that
qT1

i!−−→T qT2 and qS1
i!−−→SqS2 . Since X is an implementation and i? ∈ ActXi ,

it follows that qX1
i?−−→ XqX2 for some qX2 ∈ QX (any implementation

is a specification, see Definition 5, which is input-enabled, see Defini-
tion 4). Now, using Definition 15 of parallel composition it follows that

(qS1 , q
X
1)

i!−−→S‖X(qS2 , q
X
2). Using R and the third case of Definition 6 of

refinement, it follows that ((qS2 , q
X
2), qT2) ∈ R. Thus from the construction

of R′ we confirm that (qX2 , (q
T
2 , q

S
2)) ∈ R′.

• i! /∈ ActT and i! ∈ ActSo . In this case, it follows from Definition 18 that
qS1

i!−−→SqS2 and qT1 = qT2 . Since X is an implementation and i? ∈ ActXi ,

it follows that qX1
i?−−→ XqX2 for some qX2 ∈ QX (any implementation

is a specification, see Definition 5, which is input-enabled, see Defini-
tion 4). Now, using Definition 15 of parallel composition it follows that

(qS1 , q
X
1)

i!−−→S‖X(qS2 , q
X
2). Using R and the forth case of Definition 6 of

refinement, it follows that ((qS2 , q
X
2), qT2) ∈ R. Thus from the construction

of R′ we confirm that (qX2 , (q
T
2 , q

S
2)) ∈ R′.

Springer Nature 2021 LATEX template

52 Timed I/O Automata

So, in all feasible cases we can show that qX1
i?−−→XqX2 and (qX2 , (q

T
2 , q

S
2)) ∈ R′.

2. (qT1 , q
S
1)

i?−−→T\\S(qT2 , q
S
2) for some (qT2 , q

S
2) ∈ QT\\S and i? ∈ Act

T\\S
i \ ActXi .

By definition of X it follows that Act
T\\S
i \ ActXi = ∅, so this case can be

ignored.

3. qX1
o!−−→ XqX2 for some qX2 ∈ QX and o! ∈ ActXo ∩ Act

T\\S
o . By definition

of X it follows that ActXo = Act
T\\S
o . Consider the following five possible

cases from Definition 18 of the quotient that might result in o! ∈ Act
T\\S
o (=

ActTo \ActSo ∪ActSi \Act
T
i).

• o! ∈ ActTo \ ActSo and o? ∈ ActSi \ Act
T
i . It follows from Definition 4 of a

specification that S is input-enabled. Therefore, there is a transition qS1
o?−−→

SqS2 for some qS2 ∈ QS . Now, from Definition 15 of parallel composition it

follows that there is a transition (qS1 , q
X
1)

o!−−→S‖X(qS2 , q
X
2). Using R and

the third case of Definition 6 of refinement, it follows that qT1
o!−−→T qT2 and

((qS2 , q
X
2), qT2) ∈ R. Now, using Definition 18 of the quotient, it follows that

(qT1 , q
S
1)

o!−−→T\\S(qT2 , q
S
2). And from the construction of R′ we confirm that

(qX2 , (q
T
2 , q

S
2)) ∈ R′.

• o! ∈ ActTo \ ActSo and o? ∈ ActSi ∩ ActTi . This case is not feasible, as an
action cannot be both an output and input in T .

• o! ∈ ActTo \ActSo and o? /∈ ActSi . In this case, it follows that o /∈ ActS at all.

Then from Definition 15 it follows that there is a transition (qS1 , q
X
1)

i?−−→
S‖X(qS2 , q

X
2) and qS1 = qS2 . Using R and the third case of Definition 6 of

refinement, it follows that qT1
o!−−→T qT2 and ((qS2 , q

X
2), qT2) ∈ R. Now, using

Definition 18 of the quotient, it follows that (qT1 , q
S
1)

o!−−→T\\S(qT2 , q
S
2). And

from the construction of R′ we confirm that (qX2 , (q
T
2 , q

S
2)) ∈ R′.

• o! ∈ ActTo ∩ ActSo and o? ∈ ActSi \ Act
T
i . This case is not feasible, as an

action cannot be both an output and input in S.
• o! /∈ ActTo and o? ∈ ActSi \ Act

T
i . It follows from Definition 4 of a specifi-

cation that S is input-enabled. Therefore, there is a transition qS1
o?−−→SqS2

for some qS2 ∈ QS . Now, from Definition 15 of parallel composition it fol-

lows that there is a transition (qS1 , q
X
1)

i?−−→ S‖X(qS2 , q
X
2). Using R and

the forth case of Definition 6 of refinement, it follows that qT1 = qT2 and
((qS2 , q

X
2), qT2) ∈ R. Now, using Definition 18 of the quotient, it follows that

(qT1 , q
S
1)

o!−−→T\\S(qT2 , q
S
2). And from the construction of R′ we confirm that

(qX2 , (q
T
2 , q

S
2)) ∈ R′.

So, in all feasible cases we can show that (qT1 , q
S
1)

o!−−→ T\\S(qT2 , q
S
2) and

(qX2 , (q
T
2 , q

S
2)) ∈ R′.

4. qX1
o!−−→XqX2 for some qX2 ∈ QX and o! ∈ ActXo \Act

T\\S
o . By definition of X it

follows that ActXo \Act
T\\S
o = ∅, so this case can be ignored.

5. qX1
d−−→XqX2 for some qX2 ∈ QX and d ∈ R≥0. Consider two cases in S.

• qS1
d−−→ S . In this case, there exists some qS2 ∈ QS such that qS1

d−−→
SqS2 . Now, from Definition 15 of parallel composition it follows that

there is a transition (qS1 , q
X
1)

d−−→ S‖X(qS2 , q
X
2). Using R and the fifth

Springer Nature 2021 LATEX template

Timed I/O Automata 53

case of Definition 6 of refinement, it follows that qT1
d−−→ T qT2 and

((qS2 , q
X
2), qT2) ∈ R. Now, using Definition 18 of the quotient, it follows that

(qT1 , q
S
1)

d−−→T\\S(qT2 , q
S
2). And from the construction of R′ we confirm that

(qX2 , (q
T
2 , q

S
2)) ∈ R′.

• qS1 X d−−→S . In this case, it follows from Definition 15 of parallel composition

that there is no transition in S ‖ X, i.e., (qS1 , q
X
1) X d−−→ S‖X . Further-

more, from Definition 18 it follows that (qT1 , q
S
1)

d−−→T\\Su. And from the
construction of R′ we confirm that (qX2 , u) ∈ R′.

So, in both cases we can show that (qT1 , q
S
1)

d−−→ T\\S(qX2 , q
T\\S) and

(qX2 , q
T\\S) ∈ R′ with qT\\S = (qT2 , q

S
2) or qT\\S = u.

So for all state pairs (qX1 , (q
T
1 , q

S
1)) ∈ R′ we have shown that R′ witnesses the

refinement X ≤ T\\S. Now consider the five cases of Definition 6 for a state pair
(qX1 , u) ∈ R′.

1. u i?−−→T\\Su for some i? ∈ Act
T\\S
i ∩ ActXi . By definition of X it follows that

Act
T\\S
i = ActXi . Since X is an implementation and i? ∈ ActXi , it follows that

qX1
i?−−→XqX2 for some qX2 ∈ QX (any implementation is a specification, see

Definition 5, which is input-enabled, see Definition 4). By construction of R′ it
follows that (qX2 , u) ∈ R′.

2. u i?−−→T\\Su for some i? ∈ Act
T\\S
i \ ActXi . By definition of X it follows that

Act
T\\S
i \ActXi = ∅, so this case can be ignored.

3. qX1
o!−−→XqX2 for some qX2 ∈ QX and o! ∈ ActXo ∩ Act

T\\S
o . By definition of X

it follows that ActXo = Act
T\\S
o . From Definition 18 of the quotient it follows

that u o!−−→T\\Su. By construction of R′ it also follows that (qX2 , u) ∈ R′.

4. qX1
o!−−→XqX2 for some qX2 ∈ QX and o! ∈ ActXo \Act

T\\S
o . By definition of X it

follows that ActXo \Act
T\\S
o = ∅, so this case can be ignored.

5. qX1
d−−→ XqX2 for some qX2 ∈ QX and d ∈ R≥0. From Definition 18 of the

quotient it follows that u d−−→T\\Su. By construction of R′ it also follows that
(qX2 , u) ∈ R′.

So for all state pairs (qX1 , u) ∈ R′ we have shown that R′ witnesses the refinement
X ≤ T\\S. Finally, since R witnesses S ‖ X ≤ T it holds that ((qS0 , q

X
o), qT0) ∈ R

(see Definition 6). Thus by construction of R′ it holds that (qX0 , (q
T
0 , q

S
0)) ∈ R′.

Therefore, we can now conclude that R′ witnesses X ≤ T\\X.
(S ‖ X ≤ T ⇐ X ≤ T\\S) Since X ≤ T\\S, it follows from Definition 6 of

refinement that there exists a relation R ∈ QX × QT\\S that witness the refine-
ment. Note that QS‖X = QS × QX according to Definition 15. Construct relation
R′ = {((qS1 , qX1), qT1) ∈ QX × QT\\S | (qX1 , (q

T
1 , q

S
1)) ∈ R}. We will show that R′

witnesses S ‖ X ≤ T . First consider the five cases of Definition 6 for a state pair
((qS1 , q

X
1), qT1) ∈ R′.

1. qT1
i?−−→T qT2 for some qT2 ∈ QT and i? ∈ ActTi ∩ Act

S‖X
i . From Lemma 17 it

follows that ActTi = Act
S‖X
i . Consider the following five possible cases from

Definition 15 of the parallel composition that might result in i? ∈ Act
S‖X
i (=

ActSi \Act
X
o ∪ActXi \Act

S
o).

Springer Nature 2021 LATEX template

54 Timed I/O Automata

• i? ∈ ActSi \ Act
X
o and i? ∈ ActXi \ Act

S
o . Since S and X are specifications

and i? ∈ ActSi ∩ ActXi , it follows that qS1
i?−−→ SqS2 for some qS2 ∈ QS

and qX1
i?−−→XqX2 for some qX2 ∈ QX (any specification is input-enabled,

see Definition 4). Therefore, using Definition 15 of parallel composition,

it follows that (qS1 , q
X
1)

i?−−→S‖X(qS2 , q
X
2). Also, using Definition 18 of the

quotient it follows that (qT1 , q
S
1)

i?−−→T\\S(qT2 , q
S
2). Now, using R, the first

case of Definition 6 of refinement, and ActX = ActT\\S by construction,
it follows that (qX2 , (q

T
2 , q

S
2)) ∈ R. And from the construction of R′ we

confirm that ((qS2 , q
X
2), qT2) ∈ R′.

• i? ∈ ActSi \ Act
X
o and i? ∈ ActXi ∩ ActSo . This case is infeasible, as an

action cannot be both an output and input in S.
• i? ∈ ActSi \Act

X
o and i? /∈ ActXi . This case is infeasible, as i? ∈ ActSi \Act

X
o

and i? /∈ ActXi implies that i /∈ ActX , but from Definition 18 of the quotient
it follows that i? ∈ ActSi implies that i ∈ ActT\\S(= ActX).

• i? ∈ ActSi ∩ ActXo and i? ∈ ActXi \ Act
S
o . This case is infeasible, as an

action cannot be both an output and input in X.
• i? /∈ ActSi and i? ∈ ActXi \ Act

S
o . Since i? ∈ ActXi \ Act

S
o implies that

i! /∈ ActSo , it follows that i /∈ ActS . From Definition 18 of quotient if
follows that (qT1 , q

S
1)

i?−−→T\\S(qT2 , q
S
2) and qS1 = qS2 . Now, using R, the first

case of Definition 6 of refinement, and ActX = ActT\\S by construction,
it follows that qX1

i?−−→XqX2 and (qX2 , (q
T
2 , q

S
2)) ∈ R. Using Definition 15

of the parallel composition, it follows that (qS1 , q
X
1)

i?−−→S‖X(qS2 , q
X
2). And

from the construction of R′ we confirm that ((qS2 , q
X
2), qT2) ∈ R′.

So, in all feasible cases we can show that (qS1 , q
X
1)

i?−−→ S‖X(qS2 , q
X
2) and

((qS2 , q
X
2), qT2) ∈ R′.

2. qT1
i?−−→T qT2 for some qT2 ∈ QT and i? ∈ ActTi \ Act

S‖X
i . From Lemma 17 it

follows that ActTi \Act
S‖X
i = ∅, so this case can be ignored.

3. (qS1 , q
X
1)

o!−−→S‖X(qS2 , q
X
2) for some (qS2 , q

X
2) ∈ QS‖X and o! ∈ Act

S‖X
o ∩ ActTo .

From Lemma 17 we have that ActS‖Xo = ActSo ∪ActTo ∪ActSi \Act
T
i . Consider

the following three cases that might result in o! ∈ Act
S‖X
o and o! ∈ ActTo .

• o! ∈ ActSo and o! ∈ ActTo . In this case we have that o? ∈ Act
T\\S
i by

Definition 18, and thus by construction of X that o? ∈ ActXi . Now, using

Definition 15 of the parallel composition, it follows that qS1
o!−−→SqS2 and

qX1
o?−−→XqX2 . Consider the following two cases for T .

– qT1
o!−−→ T qT2 . In this case it follows that from Definition 18 of the

quotient that (qT1 , q
S
1)

o?−−→T\\S(qT2 , q
S
2). Using R, the first case of

Definition 6 of refinement, and ActX = ActT\\S by construction, it
follows that (qX2 , (q

T
2 , q

S
2)) ∈ R. And from the construction of R′ we

confirm that ((qS2 , q
X
2), qT2) ∈ R′.

– qT1 X o!−−→T . In this case it follows from Definition 18 of the quotient

that (qT1 , q
S
1)

o?−−→T\\Se. By construction of e, it does not allow inde-
pendent progress. But, since X is an implementation, all states in X

Springer Nature 2021 LATEX template

Timed I/O Automata 55

allow independent progress, see Definition 510. Therefore, either X
can delay indefinitely from state qX2 or there exists a delay after which
X can perform an output action. Neither of these options can be sim-
ulated by T\\S when in state e. Thus (qX2 , e) /∈ R, i.e., X � T\\S.
This contradicts with the assumption, thus this is not a feasible case.

• o? ∈ ActSi and o! ∈ ActTo . In this case we have that o! ∈ Act
T\\S
o by

Definition 18, and thus by construction of X that o! ∈ ActXo . Now, using
Definition 15 of the parallel composition, it follows that qS1

o?−−→SqS2 and

qX1
o!−−→XqX2 . Using R, the third case of Definition 6 of refinement, and

ActX = ActT\\S by construction, it follows that (qT1 , q
S
1)

o!−−→T\\S(qT2 , q
S
2)

and (qX2 , (q
T
2 , q

S
2)) ∈ R. Now, using Definition 18 of quotient again, it

follows that qT1
o!−−→T qT2 . And from the construction of R′ we confirm that

((qS2 , q
X
2), qT2) ∈ R′.

• o /∈ ActS and o! ∈ ActTo . In this case we have that o! ∈ Act
T\\S
o by Def-

inition 18, and thus by construction of X that o! ∈ ActXo . Now, using
Definition 15 of the parallel composition, it follows that qX1

o!−−→ XqX2
and qS1 = qS2 . Using R, the third case of Definition 6 of refinement, and

ActX = ActT\\S by construction, it follows that (qT1 , q
S
1)

o!−−→T\\S(qT2 , q
S
2)

and (qX2 , (q
T
2 , q

S
2)) ∈ R. Now, using Definition 18 of quotient again, it fol-

lows that qT1
o!−−→T qT2 . And from the construction of R′ we confirm that

((qS2 , q
X
2), qT2) ∈ R′.

So, in all feasible cases we can show that qT1
o!−−→T qT2 and ((qS2 , q

X
2), qT2) ∈ R′.

4. (qS1 , q
X
1)

o!−−→S‖X(qS2 , q
X
2) for some (qS2 , q

X
2) ∈ QS‖X and o! ∈ Act

S‖X
o \ ActTo .

From Lemma 17 we have that Act
S‖X
o = ActSo ∪ ActTo ∪ ActSi \ Act

T
i . So

Act
S‖X
o \ActTo = (ActSo ∪ActSi \Act

T
i) \ActTo = ActSo \ActTo ∪ (ActSi \Act

T
i) \

ActTo = ActSo \ActTo ∪ActSi \Act
T . Consider the following five cases that might

result in o! ∈ Act
S‖X
o \ActTo .

• o! ∈ ActSo \ActTo and o? ∈ ActSi \Act
T . This case is infeasible, as an action

cannot be both an output and input in S.
• o! ∈ ActSo \ActTo and o? ∈ ActSi ∩Act

T . This case is infeasible, as an action
cannot be both an output and input in S.

• o! ∈ ActSo \ ActTo and o? /∈ ActSi . In this case, we have that o? ∈ Act
T\\S
i

from Definition 18 of the quotient. Therefore, o? ∈ ActXi by construction
of X. Now, using Definition 15 of the parallel composition, it follows that
qS1

o!−−→SqS2 and qX1
o?−−→XqX2 . Since Definition 18 also requires that ActSo ∩

ActTi = ∅, it follows that in this case o /∈ ActT . Thus, from Definition 18

it follows that (qT1 , q
S
1)

o?−−→T\\S(qT2 , q
S
2) and qT1 = qT2 . Using R, the first

case of Definition 6 of refinement, and ActX = ActT\\S by construction,
it follows that (qX2 , (q

T
2 , q

S
2)) ∈ R. And from the construction of R′ we

confirm that ((qS2 , q
X
2), qT2) ∈ R′.

• o! ∈ ActSo ∩ActTo and o? ∈ ActSi \Act
T . This case is infeasible, as an action

cannot be both an output and input in S.

10This is the reason why X is assumed to be an implementation and not just a specification.

Springer Nature 2021 LATEX template

56 Timed I/O Automata

• o! /∈ ActSo and o? ∈ ActSi \ Act
T . In this case, we have that o! ∈ Act

T\\S
o

from Definition 18 of the quotient. Therefore, o! ∈ ActXo by construction
of X. Now, using Definition 15 of the parallel composition, it follows that
qS1

o!−−→ SqS2 and qX1
o?−−→XqX2 . Using R, the fourth case of Definition 6

of refinement, ActX = ActT\\S by construction, and o /∈ ActT , it follows
that (qX2 , (q

T
2 , q

S
2)) ∈ R and qT1 = qT2 . And from the construction of R′ we

confirm that ((qS2 , q
X
2), qT2) ∈ R′.

So, in all feasible cases we can show that o /∈ ActT , qT1 = qT2 , and
((qS2 , q

X
2), qT2) ∈ R′.

5. (qS1 , q
X
1)

d−−→S‖X(qS2 , q
X
2) for some (qS2 , q

X
2) ∈ QS‖X and d ∈ R≥0. It follows

from Definition 15 of the parallel composition that qS1
d−−→ SqS2 and qX1

d−−→
XqX2 . Using R and the fifth case of Definition 6 of refinement it follows that

(qT1 , q
S
1)

d−−→T\\Sq2 for some qT\\S2 ∈ QT\\S and (qX2 , q
T\\S
2)) ∈ R. Now, by

Definition 18 of the quotient it follows that qT1
d−−→T qT2 (and qS1

d−−→SqS2). And
from the construction of R′ we confirm that ((qS2 , q

X
2), qT2) ∈ R′.

So for all state pairs ((qS1 , q
X
1), qT1) ∈ R′ we have shown that R′ witnesses the

refinement S ‖ X ≤ T . Finally, since R witnesses X ≤ T\\S it holds that
(qX0 , (q

T
0 , q

S
0)) ∈ R (see Definition 6). Thus by construction of R′ it holds that

((qS0 , q
X
o), qT0) ∈ R′. Therefore, we can now conclude that R′ witnesses S ‖ X ≤ T .

�

Quotienting for TIOA is defined in the following way.

Definition 19 Given specification automata S = (LocS , lS0 ,Act
S ,ClkS , ES , InvS)

and T = (LocT , lT0 ,Act
T ,ClkT , ET , InvT) where ActSo ∩ ActTi = ∅. The quo-

tient of T and S, denoted by T\\S, is a specification automaton (LocT × LocS ∪
{lu, le}, (lT0 , lS0),Act ,ClkT] ClkS] {xnew}, E, Inv) where lu is the universal state,
le the inconsistent state, Act = Acti] Acto with Acti = ActTi ∪ ActSo ∪ {inew} and
Acto = ActTo \ActSo ∪ActSi \Act

T
i , Inv((lT , lS)) = Inv(lu) = T, Inv(le) = xnew ≤ 0

and E is defined as
1. ((lT1 , l

S
1), a, ϕT ∧ Inv(lT2)[r 7→ 0]r∈cT ∧ ϕS ∧ Inv(lS1) ∧ Inv(lS2)[r 7→ 0]r∈cS , c

T ∪
cS , (lT2 , l

S
2)) ∈ E if a ∈ ActS ∩ ActT , (lT1 , a, ϕ

T , cT , lT2) ∈ ET , and
(lS1 , a, ϕ

S , cS , lS2) ∈ ES11

2. ((lT , lS1), a, ϕS ∧ Inv(lS1) ∧ Inv(lS2)[r 7→ 0]r∈cS , c
S , (lT , lS2)) ∈ E if a ∈ ActS \

ActT , lT ∈ LocT , and (lS1 , a, ϕ
S , cS , lS2) ∈ ES

3. ((lT , lS1), a,¬GS , ∅, lu) ∈ E if a ∈ ActSo , lT ∈ LocT and GS =
∨
{ϕS ∧

Inv(lS2)[r 7→ 0]r∈cS | (lS1 , a, ϕS , cS , lS2) ∈ ES}
4. ((lT , lS), a,¬Inv(lS), ∅, lu) ∈ E if a ∈ Act, lT ∈ LocT , and lS ∈ LocS

5. ((lT1 , l
S
1), a, ϕS ∧ Inv(lS2)[r 7→ 0]r∈cS ∧ ¬GT , {xnew}, le) ∈ E if a ∈ ActSo ∩

ActTo , (lS , a, ϕS , cS , lS2) ∈ ES , and GT =
∨
{ϕT ∧ Inv(lT2)[r 7→ 0]r∈cT |

(lT1 , a, ϕ
T , cT , lT2) ∈ ET }

11Only the target invariant of T matters. Inv(lS1) is used to force the complementary edge to
the universal state (which depends on S, see rules 5 and 6 in Definition 18 of quotient for TIOTS),
Inv(lS2)[r 7→ 0]r∈cS is used to ensure the transition only appears in feasible states in the semantic
representation as the location invariants are removed.

Springer Nature 2021 LATEX template

Timed I/O Automata 57

6. ((lT! , l
S
1), a,¬GS ∧ ¬GT , ∅, (lT1 , lS1)) ∈ E if a ∈ ActSo ∩ ActTo , GS =

∨
{ϕS ∧

Inv(lS2)[r 7→ 0]r∈cS | (lS1 , a, ϕS , cS , lS2) ∈ ES}, and GT =
∨
{ϕT ∧ Inv(lT2)[r 7→

0]r∈cT | (lT1 , a, ϕT , cT , lT2) ∈ ET }
7. ((lT , lS), inew ,¬Inv(lT) ∧ Inv(lS), {xnew}, le) ∈ E if lT ∈ LocT and lS ∈ LocS

8. ((lT , lS), inew , Inv(lT) ∨ ¬Inv(lS), ∅, (lT , lS)) ∈ E if lT ∈ LocT and lS ∈ LocS

9. ((lT1 , l
S), a, ϕT ∧ Inv(lT2)[r 7→ 0]r∈cT ∧ Inv(lS), cT , (lT2 , l

S)) ∈ E if a ∈ ActT \
ActS , lS ∈ LocS , and (lT1 , a, ϕ

T , cT , lT2) ∈ ET 12

10. (lu, a,T, ∅, lu) ∈ E if a ∈ Act

11. (le, a, xnew = 0, ∅, le) ∈ E if a ∈ Acti

and the conjunction of an empty set equals false (
∨
∅ = F).

Definition 20 Given specifications S = (QS , qS0 ,Act
S ,→S) and T = (QT , qT0 ,

ActT ,→T). S and T are bisimular, denoted by S ' T , iff there exists a bisimulation
relation R ⊆ QS ×QT containing (qS0 , q

T
0) such that for each pair of states (s, t) ∈ R

it holds that
1. whenever s a−−→Ss′ for some s′ ∈ QS and a ∈ ActS ∩ ActT , then t a−−→T t′ and

(s′, t′) ∈ R for some t′ ∈ QT

2. whenever s a−−→Ss′ for some s′ ∈ QS and a ∈ ActS \ActT , then (s′, t) ∈ R
3. whenever t a−−→T t′ for some t′ ∈ QT and a ∈ ActT ∩ ActS , then s a−−→Ss′ and

(s′, t′) ∈ R for some s′ ∈ QS

4. whenever t a−−→T t′ for some t′ ∈ QT and a ∈ ActT \ActS , then (s, t′) ∈ R

5. whenever s d−−→Ss′ for some s′ ∈ QS and d ∈ R≥0, then t
d−−→T t′ and (s′, t′) ∈ R

for some t′ ∈ QT

6. whenever t d−−→T t′ for some t′ ∈ QT and d ∈ R≥0, then s
d−−→Ss′ and (s′, t′) ∈ R

for some s′ ∈ QS

Two specification automata A and B are bisimular, denoted by A ' B, iff JAKsem '
JBKsem.

Finally, the following theorem lifts all the results from timed input/output
transition systems to the symbolic representation level.

Theorem 11 Given specification automata S = (LocS , lS0 ,Act
S ,ClkS , ES , InvS)

and T = (LocT , lT0 ,Act
T ,ClkT , ET , InvT) where ActSo ∩ ActTi = ∅. Then

(JT\\SKsem)∆ ' (JT Ksem\\JSKsem)∆.

First observe that JT\\SKsem and JT Ksem\\JSKsem have different state and
action sets. For example, JT\\SKsem has a set of error states {(le, v) | v ∈

12Location invariant ¬Inv(lS) is added to this transition to avoid nondeterminism caused by
rule 4. This problem is not present in Definition 18 of the quotient for TIOTS, as there we can
directly refer to the delay action d in rule 5.

Springer Nature 2021 LATEX template

58 Timed I/O Automata

[ClkT\\S 7→ R≥0]}, while JT Ksem\\JSKsem only has a single error state e. Or
JT\\SKsem contains the input action inew which JT Ksem\\JSKsem lacks. This
makes the proof of Theorem 11 much more tedious that those of theorems in
previous sections. Therefore, we first introduce several definitions and lemmas
to show that, when considering bisimulation, we can simplify JT\\SKsem until
we have a bijective mapping of the states between the simplified JT\\SKsem

and JT Ksem\\JSKsem.

Definition 21 Given a TIOTS S = (Q, q0,Act ,→) and equivalence relation ∼
on the set of states Q. The ∼-quotient S, denoted by S/∼, is a specification
([Q]∼, [q0]∼,Act ,→/∼) where [Q]∼ is the set of all equivalence classes of Q13 and
→/∼ being defined as ([q1], a, [q2]) ∈ →/∼ if (q1, a, q2) ∈→ for some q1 ∈ [q1] and
q2 ∈ [q2].

Lemma 18 Given specification automata S = (LocS , lS0 ,Act
S ,ClkS , ES , InvS) and

T = (LocT , lT0 ,Act
T ,ClkT , ET , InvT) where ActSo ∩ ActTi = ∅. Let V0 = {v ∈

[ClkT\\S 7→ R≥0] | v(xnew) = 0}, V>0 = [ClkT\\S 7→ R≥0] \ V0, and ∼ = {(q1, q2) |
q1, q2 ∈ {le} × V0} ∪ {(q, q) | q ∈ {le} × V>0} ∪ {(q1, q2) | q1, q2 ∈ {lu} × [ClkT\\S 7→
R≥0]} ∪ {((l, v1), (l, v2)) | l ∈ LocT\\S \ {le, lu}, v1, v2 ∈ [ClkT\\S 7→ R≥0], ∀c ∈
ClkT\\S \ {xnew}, v1(c) = v2(c)}. Then JT\\SKsem ' JT\\SKsem/∼.

Proof It follows directly from the definition of ∼ that it is reflexive, symmetric, and
transitive, thus it is an equivalence relation. Now, observe from Definition 21 that an
equivalence quotient of a TIOTS does not alter the action set, i.e., ActJT\\SKsem =
ActJT\\SKsem/∼. Let R = {(q, [q]∼) | q ∈ QJT\\SKsem}. We will show that R is
a bisimulation relation. First, observe that (q0, [q0]∼) ∈ R. Consider a state pair
(q1, [r1]∼) ∈ R. We have to check whether the six cases from Definition 20 of
bisimulation hold.
1. q1

a−−→ JT\\SKsemq2, q2 ∈ QJT\\SKsem , and a ∈ ActJT\\SKsem ∩ ActJT\\SKsem/∼.
By the definition of an equivalence class and Definition 21 it follows imme-
diately that [q1]∼

a−−→ JT\\SKsem/∼[q2]∼. By construction of R it follows that
(q2, [q2]∼) ∈ R.

2. q1
a−−→ JT\\SKsemq2, q2 ∈ QJT\\SKsem , and a ∈ ActJT\\SKsem \ ActJT\\SKsem/∼.

This case is infeasible, since ActJT\\SKsem = ActJT\\SKsem/∼.
3. [r1]∼

a−−→ JT\\SKsem/∼[r2]∼, [r2]∼ ∈ QJT\\SKsem/∼, and a ∈ ActJT\\SKsem/∼ ∩
ActJT\\SKsem . By construction of R, we have to show that ∀q1 ∈ [r1]∼∃q2 ∈
QJT\\SKsem : q1

a−−→JT\\SKsemq2, q2 ∈ [r2]∼, and (q2, [r2]∼) ∈ R. Consider the
following four cases based on the construction of ∼:

• [r1]∼ = {q | q ∈ {le} × V0}. In this case, let q1 = (le, v1) ∈ [r1]∼ for
some v1 ∈ V0. From Definition 3 of the semantic of a TIOA it follows that
JT\\SKsem is in location le. From Definition 19 of the quotient it follows that
the only possible transition in T\\S is (le, a, xnew = 0, ∅, le). Furthermore,
since [r1]∼

a−−→JT\\SKsem/∼[r2]∼, it holds that ∃r1, r2 ∈ QJT\\SKsem : r1
a−−→

13Recall that an equivalent class is defined as [q]∼ = {r ∈ Q | q ∼ r}.

Springer Nature 2021 LATEX template

Timed I/O Automata 59

JT\\SKsemr2. Following Definition 3 and the above observation, it holds that
r1 = (le, v

′
1) and r2 = (le, v

′
2) for some v′1, v

′
2 ∈ [ClkT\\S 7→ R≥0], v′1 |=

xnew = 0, and v′1 = v′2. From v′1 |= xnew = 0 it follows that v′1(xnew) = 0
and v′1, v

′
2 ∈ V0, and from v′1 = v′2 that [r2]∼ = [r1]∼. Thus we can conclude

that q1
a−−→ JT\\SKsemq2 with q2 ∈ [r2]∼. By construction of R it follows

that (q2, [r2]∼) ∈ R.
• [r1]∼ = {q | q ∈ {le} × V>0}. This case is trivial, since [r1]∼ = {r1} =

{q1}. Therefore, if [r1]∼
a−−→JT\\SKsem/∼[r2]∼, ∃q2 ∈ [r2]∼ such that q1

a−−→
JT\\SKsemq2.

• [r1]∼ = {q | q ∈ {lu} × [ClkT\\S 7→ R≥0]}. In this case, let q1 = (lu, v1) ∈
[r1]∼ for some v1 ∈ [ClkT\\S 7→ R≥0]. From Definition 3 of the semantic
of a TIOA it follows that JT\\SKsem is in location lu. From Definition 19
of the quotient it follows that the only possible transition in T\\S is
(lu, a,T, ∅, lu). Furthermore, since [r1]∼

a−−→JT\\SKsem/∼[r2]∼, it holds that
∃r1, r2 ∈ QJT\\SKsem : r1

a−−→JT\\SKsemr2. Following Definition 3 and the
above observation, it holds that r1 = (lu, v

′
1) and r2 = (lu, v

′
2) for some

v′1, v
′
2 ∈ [ClkT\\S 7→ R≥0], v′1 |= T, and v′1 = v′2. From v′1 = v′2 it follows

that [r2]∼ = [r1]∼. Thus we can conclude that q1
a−−→ JT\\SKsemq2 with

q2 ∈ [r2]∼. By construction of R it follows that (q2, [r2]∼) ∈ R.
• In this case, since [r1]∼

a−−→ JT\\SKsem/∼[r2]∼, it holds that ∃r1, r2 ∈
QJT\\SKsem : r1

a−−→ JT\\SKsemr2. Following Definition 3 of the seman-
tic of a TIOA, it holds that (l1, a, ϕ, c, l2) ∈ ET\\S , r1 = (l1, v1),
r2 = (l2, v2), l1, l2 ∈ LocT\\S , v1, v2 ∈ [ClkT\\S 7→ R≥0], v1 |= ϕ,
v2 = v1[r 7→ 0]r∈c, and v2 |= Inv(l2). From the construction of ∼, it fol-
lows that for any state (l′1, v

′
1) ∈ [r1]∼ it holds that l′1 = l1, l1 6= le, and

∀c ∈ ClkT\\S \ {xnew} : v′1(c) = v1(c). Since xnew /∈ ClkT ∪ ClkS and
none of the possible rules for this location from Definition 19 of the quo-
tient for TIOA use xnew in its guard, it follows that v′1 |= ϕ. Furthermore,
no matter whether xnew ∈ c or not, we have for v′2 = v′1[r 7→ 0]r∈c that
∀c ∈ ClkT\\S \ {xnew} : v′2(c) = v2(c). Now consider the following three
options for the target location l2.

– If l2 = (lT , lS) with lT ∈ LocT and lS ∈ LocS , then Inv(l2) = T.
Thus v′2 |= Inv(l2).

– If l2 = lu, then Inv(l2) = T. Thus v′2 |= Inv(l2).
– If l2 = le, then Inv(l2) = xnew = 0. Also, c = {xnew}, thus
v2(xnew) = v′2(xnew) = 0. Thus v′2 |= Inv(l2).

Therefore, we can conclude that (l′1, v
′
1)

a−−→ JT\\SKsem(l2, v
′
2), (l2, v

′
2) ∈

[r2]∼, and by construction of R that ((l2, v
′
2), [r2]∼) ∈ R. Since we picked

any state (l′1, v
′
1) ∈ [r1]∼, the conclusion holds for all states q1 ∈ [r1]∼.

4. [r1]∼
a−−→ JT\\SKsem/∼[r2]∼, [r2]∼ ∈ QJT\\SKsem/∼, and a ∈ ActJT\\SKsem/∼ \

ActJT\\SKsem . This case is infeasible, since ActJT\\SKsem = ActJT\\SKsem/∼.

5. q1
d−−→ JT\\SKsemq2, q2 ∈ QJT\\SKsem , and d ∈ R≥0. By the definition of

an equivalence class and Definition 21 it follows immediately that [q1]∼
a−−→

JT\\SKsem/∼[q2]∼. By construction of R it follows that (q2, [q2]∼) ∈ R.

6. [r1]∼
d−−→ JT\\SKsem/∼[r2]∼, [r2]∼ ∈ QJT\\SKsem/∼, and d ∈ R≥0. By con-

struction of R, we have to show that ∀q1 ∈ [r1]∼∃q2 ∈ QJT\\SKsem : q1
a−−→

Springer Nature 2021 LATEX template

60 Timed I/O Automata

JT\\SKsemq2, q2 ∈ [r2]∼, and (q2, [r2]∼) ∈ R. Consider the following three cases
based on the construction of ∼:

• [r1]∼ = {q | q ∈ {le} × V0}. In this case, let q1 = (le, v1) ∈ [r1]∼ for
some v1 ∈ V0. From Definition 3 of the semantic of a TIOA it follows that
JT\\SKsem is in location le. From Definition 19 of the quotient it follows

that Inv(le) = xnew = 0. Furthermore, since [r1]∼
d−−→JT\\SKsem/∼[r2]∼, it

holds that ∃r1, r2 ∈ QJT\\SKsem : r1
d−−→JT\\SKsemr2. Following Definition 3

and the above observation, it holds that r1 = (le, v
′
1) and r2 = (le, v

′
2)

for some v′1, v
′
2 ∈ [ClkT\\S 7→ R≥0], v′2 = v′1 + d and v′2 |= Inv(le). From

v′2 |= Inv(le) it follows that v′2(xnew) = 0, thus d = 0, v′1 = v′2, v
′
1, v
′
2 ∈ V0,

and [r2]∼ = [r1]∼. Thus we can conclude that q1
d−−→ JT\\SKsemq2 with

q2 ∈ [r2]∼. By construction of R it follows that (q2, [r2]∼) ∈ R.
• [r1]∼ = {q | q ∈ {le}×V>0}. This case is trivial, since [r1]∼ = {r1} = {q1}.
Therefore, if [r1]∼

d−−→ JT\\SKsem/∼[r2]∼, ∃q2 ∈ [r2]∼ such that q1
d−−→

JT\\SKsemq2.
• [r1]∼ = {q | q ∈ {lu} × [ClkT\\S 7→ R≥0]}. In this case, let q1 = (lu, v1) ∈

[r1]∼ for some v1 ∈ V0. From Definition 3 of the semantic of a TIOA it fol-
lows that JT\\SKsem is in location lu. From Definition 19 of the quotient it

follows that Inv(lu) = T. Furthermore, since [r1]∼
d−−→JT\\SKsem/∼[r2]∼, it

holds that ∃r1, r2 ∈ QJT\\SKsem : r1
d−−→JT\\SKsemr2. Following Definition 3

and the above observation, it holds that r1 = (lu, v
′
1) and r2 = (lu, v

′
2) for

some v′1, v
′
2 ∈ [ClkT\\S 7→ R≥0], v′2 = v′1 + d and v′2 |= Inv(lu). Now it fol-

lows that (lu, v
′
2) ∈ [r1]∼, thus [r2]∼ = [r1]∼. Therefore, we can conclude

that q1
d−−→JT\\SKsemq2 with q2 ∈ [r2]∼ and by construction of R it follows

that (q2, [r2]∼) ∈ R.
• In this case, since [r1]∼

d−−→ JT\\SKsem/∼[r2]∼, it holds that ∃r1, r2 ∈
QJT\\SKsem : r1

d−−→ JT\\SKsemr2. Following Definition 3 of the seman-
tic of a TIOA, it holds that r1 = (l, v1), r2 = (l, v2), l ∈ LocT\\S ,
v1, v2 ∈ [ClkT\\S 7→ R≥0], v2 = v1 + d, v2 |= Inv(l), and ∀d′ ∈
R≥0, d

′ < d : v1 + d′ |= Inv(l). From the construction of ∼, it follows
that for any state (l′1, v

′
1) ∈ [r1]∼ it holds that l′1 = l1, l1 6= le, and

∀c ∈ ClkT\\S \ {xnew} : v′1(c) = v1(c). Therefore, we have for v′2 = v′1 + d

that ∀c ∈ ClkT\\S \ {xnew} : v′2(c) = v2(c); similarly, for v′1 + d′ we
have that ∀c ∈ ClkT\\S \ {xnew} : v′1 + d′(c) = v1 + d′(c). From Defini-
tion 19 of the quotient for TIOA it follows that Inv(l) = Inv(l′) = T. Thus
v′2 |= Inv(l′) and v′1 + d′ |= Inv(l′). Therefore, from Definition 3 again we

have that (l′1, v
′
1)

d−−→JT\\SKsem(l′1, v
′
2), (l2, v

′
2) ∈ [r2]∼, and by construction

of R that ((l2, v
′
2), [r2]∼) ∈ R. Since we picked any state (l′1, v

′
1) ∈ [r1]∼,

the conclusion holds for all states q1 ∈ [r1]∼.
�

The following definition defines the TIOTS of the ∼-quotient of JT\\SKsem

where all states consisting of the error location and a valuation where
u(xnew) > 0 are removed, as these states are never reachable.

Springer Nature 2021 LATEX template

Timed I/O Automata 61

Definition 22 Given specification automata S = (LocS , lS0 ,Act
S ,ClkS , ES , InvS)

and T = (LocT , lT0 ,Act
T ,ClkT , ET , InvT) where ActSo ∩ ActTi = ∅. Let V0 = {u ∈

[ClkT\\S 7→ R≥0] | u(xnew) = 0}, V>0 = [ClkT\\S 7→ R≥0] \ V0, and ∼ = {(q1, q2) |
q1, q2 ∈ {le} × V0} ∪ {(q, q) | q ∈ {le} × V>0} ∪ {(q1, q2) | q1, q2 ∈ {lu} × [ClkT\\S 7→
R≥0]} ∪ {((l, v1), (l, v2)) | l ∈ LocT\\S \ {le, lu}, v1, v2 ∈ [ClkT\\S 7→ R≥0], ∀c ∈
ClkT\\S \ {xnew}, v1(c) = v2(c)}. The reduced ∼-quotient of JT\\SKsem, denoted by
JT\\SKρsem, is defined as TIOTS (Qρ, qρ0 ,Act

T\\S ,→ρ) where Qρ = QJT\\SKsem/∼ \
{[q] | q ∈ {le} × V>0}, qρ0 = q

JT\\SKsem/∼
0 , and →ρ=→JT\\SKsem/∼ ∩{(q1, a, q2) |

q1, q2 ∈ Q, a ∈ ActT\\S}.

Lemma 19 Given specification automata S = (LocS , lS0 ,Act
S ,ClkS , ES , InvS) and

T = (LocT , lT0 ,Act
T ,ClkT , ET , InvT) where ActSo ∩ ActTi = ∅. Then JT\\SKsem '

JT\\SKρsem.

Proof Since bisimulation relation is an equivalence relation, it follows from Lemma 18
that it suffice to show that JT\\SKsem/∼ ' JT\\SKρsem. Let R = {(q, q) | q ∈
QJT\\SKρsem}. We will show that R is a bisimulation relation. First, observe that
(q0, q0) ∈ R by definition of JT\\SKρsem. Instead of checking all six cases of bisimula-
tion (Definition 20), we will show that q1 X a−−→JT\\SKsem/∼q2 for any a ∈ ActT\\S∪R≥0

where q1 ∈ QJT\\SKρsem and q2 ∈ {le} × V>0 (i.e., q2 /∈ QJT\\SKρsem). Only rules 5, 7,
and 11 of Definition 19 of the quotient for TIOA have target location le, and thus
could become q2 in the semantic of it. But notice that all three cases have clock reset
c = {xnew}. Therefore, any state (le, u) reached after taking a transition matching
one of these three rules has a valuation u(xnew) = 0. Thus (le, u) /∈ {le} × V>0 and
q1 X a−−→ JT\\SKsem/∼q2. Therefore, all reachable state pairs by bisimulation remains
within R. �

Lemma 20 Given specification automata S = (LocS , lS0 ,Act
S ,ClkS , ES , InvS) and

T = (LocT , lT0 ,Act
T ,ClkT , ET , InvT) where ActSo ∩ActTi = ∅. Let f : QJT\\SKρsem →

QJT Ksem\\JSKsem be defined as
• f([((lT , lS), v)]∼) = ((lT , vT), (lS , vS)) for any v ∈ (ClkJT\\SKsem ×R≥0), lT ∈

LocT , vT ∈ (ClkT × R≥0), lS ∈ LocS , and vS ∈ (ClkS × R≥0) such that
∀x ∈ ClkT : v(x) = vT (x) and ∀x ∈ ClkS : v(x) = vS(x).

• f([(lu, v)]∼) = u for any v ∈ (ClkJT\\SKsem × R≥0).
• f([(le, v)]∼) = e for any v ∈ V0.

Then f is a bijective function.

Proof It follows directly from the definition that f is injective. We only have to
show that f is surjective, where the last two cases are again trivial by definition
of f . Thus we only have to show that any state ((lT , vT), (lS , vS)) maps to only
a single state [((lT , lS), v)]∼ in JT\\SKρsem. For this, note that ∼ in Definition 22
contains {((l, v1), (l, v2)) | l ∈ LocT\\S \ {le, lu}, v1, v2 ∈ [ClkT\\S 7→ R≥0],∀c ∈

Springer Nature 2021 LATEX template

62 Timed I/O Automata

ClkT\\S \ {xnew}, v1(c) = v2(c)}. Now we will show that state ((lT , vT), (lS , vS))
maps to only a single state [((lT , lS), v)]∼ using contradiction. Assume that state
((lT , vT), (lS , vS)) maps to two (or more) states [((lT1 , l

S
1), v1)]∼ and [((lT2 , l

S
2), v1)]∼.

From ∼ it follows that either lT1 6= lT2 , lS1 6= lS2 , or ∃c ∈ ClkT\\S \ {xnew} : v1(c) 6=
v2(c). But since we only consider a single state ((lT , vT), (lS , vS)), none of these
options can hold. Thus our assumption does not hold, which concludes the proof.

�

Since we now have a bijective function f relating states in JT\\SKρsem and
JT Ksem\\JSKsem together, we can effectively relabel the states in JT\\SKρsem

from [((lT , lS), v)]∼ to ((lT , lS), vT,S) in all proofs below, where vT,S ∈ [ClkT ∪
ClkS 7→ R≥0] with ∀c ∈ ClkT ∪ ClkS : vT,S(c) = v(c). Notice that we remove
the clock xnew from the state label, as this clock is not present in the state
labels in JT Ksem\\JSKsem. Thus QJT\\SKρsem = {((lT , lS), v) | lT ∈ LocT , lS ∈
LocS , v ∈ [ClkT ∪ ClkS 7→ R≥0]} ∪ {u, e}.

Lemma 21 Given specification automata S = (LocS , lS0 ,Act
S ,ClkS , ES , InvS)

and T = (LocT , lT0 ,Act
T ,ClkT , ET , InvT) where ActSo ∩ ActTi = ∅. Then ∀[q] ∈

QJT\\SKρsem , ∀q ∈ [q]∼: q ∈ consJT\\SKsem iff [q] ∈ consJT\\SKρsem .

Proof From Lemmas 18 and 19 it follows that JT\\SKsem ' JT\\SKρsem. With
R1 = {(q, [q]∼) | q ∈ QJT\\SKsem} being the bisimulation relation for JT\\SKsem '
JT\\SKsem/∼ and R2 = {(q, q) | q ∈ QJT\\SKρsem} the bisimulation relation for
JT\\SKsem/∼ ' JT\\SKρsem, we have that R = {(q, [q]∼) | [q]∼ ∈ QJT\\SKρsem} is a
bisimulation relation for JT\\SKsem ' JT\\SKρsem. Using this bisimulation relation,
we can easily see that q is an error state iff [q]∼ is an error state.

We will now proof q ∈ consJT\\SKsem iff [q] ∈ consJT\\SKρsem by contradiction.
First, assume that [q] ∈ consJT\\SKρsem , but ∃q′ ∈ [q]∼ such that q′ /∈ consJT\\SKsem .
That means that there exists a path from q′ to an error state q′′. But since
JT\\SKsem ' JT\\SKρsem, it follows that JT\\SKρsem can simulate the same path from
[q]∼, and using R we have that JT\\SKρsem reaches state [q′′]∼. But since we assume
that [q] ∈ consJT\\SKρsem , it must hold that [q′′]∼ is not an error state. But this con-
tradicts with the previous observation on error states. Showing the contradiction
the other way around follows the same argument. Therefore, we can conclude that
q ∈ consJT\\SKsem iff [q] ∈ consJT\\SKρsem . �

Lemma 22 Given specification automata S = (LocS , lS0 ,Act
S ,ClkS , ES , InvS) and

T = (LocT , lT0 ,Act
T ,ClkT , ET , InvT) where ActSo ∩ActTi = ∅. Then (JT\\SKsem)∆ '

(JT\\SKρsem)∆.

Proof First, observe from Definition 12 that adversarial pruning does not alter the
action set. Therefore, together with Definition 22 of the reduced quotient it follows
that (JT\\SKsem)∆ and (JT\\SKρsem)∆ have the same action set. From the proof of
Lemma 21 it follows that R = {(q, [q]∼) | q ∈ Q(JT\\SKsem)∆

} is a bisimulation

Springer Nature 2021 LATEX template

Timed I/O Automata 63

relation showing JT\\SKsem ' JT\\SKρsem. Finally, using the result of Lemma 21 that
∀[q] ∈ QJT\\SKρsem ,∀q ∈ [q]∼: q ∈ consJT\\SKsem iff [q] ∈ consJT\\SKρsem together with
Definition 12, we can immediately conclude that R = {(q, [q]∼) | q ∈ Q(JT\\SKsem)∆

}
is also a bisimulation relation showing (JT\\SKsem)∆ ' (JT\\SKρsem)∆. �

Lemma 23 Given specification automata S = (LocS , lS0 ,Act
S ,ClkS , ES , InvS)

and T = (LocT , lT0 ,Act
T ,ClkT , ET , InvT) where ActSo ∩ ActTi = ∅. Then

imerrJT\\SKρsem ⊆ imerrJT Ksem\\JSKsem and imerrJT Ksem\\JSKsem ⊆ inconsJT\\SKρsem .

Proof First, observe that the semantic of a TIOA and the reduced quotient do not
alter the action set. Therefore, it follows directly that JT\\SKρsem and JT Ksem\\JSKsem

have the same action set and partitioning into input and output actions, except
that JT\\SKρsem has an additional input event inew , i.e., ActJT\\SKρsem ∪ {inew} =

ActJT Ksem\\JSKsem .
It follows from Lemma 20 that there is a bijective function f relating states from

JT\\SKρsem and JT Ksem\\JSKsem together. Therefore, we can effectively say that they
have the same state set (up to relabeling), i.e., QJT\\SKρsem = QJT\\SKsem . For brevity,
in the rest of this proof we write we write X = JT\\SKρsem, Y = JT Ksem\\JSKsem,
Clk = ClkT] ClkS , and vS and vT to indicate the part of a valuation v of only the
clocks of S and T , respectively. Note that xnew /∈ Clk , but xnew ∈ ClkX .

imerrJT\\SKρsem ⊆ imerrJT Ksem\\JSKsem . From Definition 19 of the quotient for
TIOA and Definition 22 of the reduced ∼-quotient of JT\\SKsem, it follows that
states in {(le, v) ∈ QJT\\SKρsem | v(xnew) = 0} = imerrJT\\SKρsem are immediate
error states, as only states with location le have an invariant other than T. From
Lemma 20, we have that ∀q ∈ f(q) = e with e ∈ QJT Ksem\\JSKsem . From Definition 18
of the quotient for TIOTS, it follows immediately that e is an error state, since only
d = 0 time delay is possible without any transition labeled with output actions. Thus
e ∈ imerrJT Ksem\\JSKsem . This shows that imerrJT\\SKρsem ⊆ imerrJT Ksem\\JSKsem .

imerrJT Ksem\\JSKsem ⊆ inconsJT\\SKρsem . From Definition 18 of the quotient for
TIOTS, it follows that state e is an immediate error state and that states in
{(qT , qS) ∈ QJT Ksem\\JSKsem | qT X d−−→ JT Ksem ∧ qS d−−→ JSKsem} are potentially

error states, as these states have no outgoing delay transition, i.e., (qT , qS) X d−−→
JT Ksem\\JSKsem . Some states of this set are actual immediate error states if 6 ∃o! ∈
Act

JT Ksem\\JSKsem
o s.t. (qT , qS) X o!−−→ JT Ksem\\JSKsem . By Definition 18 we have that

Act
JT Ksem\\JSKsem
o = ActTo \ActSo ∪ActSi \Act

T
i . Consider the following two cases.

• o! ∈ ActTo \ ActSo . Assume that (qT , qS) X o!−−→JT Ksem\\JSKsem , such that (qT , qS)
is actually an error state. It follows from Definition 3 of the semantic that
qJT Ksem = (lT , vT) and vT + d 6|= Inv(lT); similarly we have that qJSKsem =
(lS , vS) and vS+d |= Inv(lS). Since TIOTSs are time additive, see Definition 1,
we can assume that for ∀d′ < d : vT + d′ 6|= Inv(lT)14. Thus vT + 0 6|= Inv(lT),
which simplifies to vT 6|= Inv(lT). Again, using time additivity of TIOTS and
vS + d |= Inv(lS), we have that vS + 0 |= Inv(lS). Combining this information,
we have that v |= ¬Inv(lT)∧Inv(lS), where we used the fact that ClkT ∩ClkS =

14In case there would be a d′ < d such that vT + d′ |= Inv(lT), we can first delay d′ in
JT Ksem\\JSKsem such that the reached state can no longer delay.

Springer Nature 2021 LATEX template

64 Timed I/O Automata

∅. Now, using Definition 19 of the quotient for TIOA and Definition 3 of the
semantics, we have that (lT , lS , v)

inew−−−→JT\\SKsem(le, v). Since the target state
(le, v) is an immediate error state and inew is an input action, it follows the
controllable predecessor operator that (lT , lS , v) ∈ inconsJT\\SKρsem .

• o? ∈ ActSi \Act
T
i . Since S is a specification, it is input-enabled, see Definition 4.

Therefore, qS o?−−→JSKsem . From the second rule of Definition 18 of the quotient
for TIOTS, it follows that (qT , qS)

o!−−→JT Ksem\\JSKsem . Therefore, in this case
state (qT , qS) is not an error state in JT Ksem\\JSKsem.

�

Lemma 24 Given specification automata S = (LocS , lS0 ,Act
S ,ClkS , ES , InvS)

and T = (LocT , lT0 ,Act
T ,ClkT , ET , InvT) where ActSo ∩ ActTi = ∅. Denote X =

JT\\SKρsem and Y = JT Ksem\\JSKsem, and let d ∈ R≥0 and q1, q2 ∈ QX ∩ QY with
q1 = (lT , lS , v) for some v ∈ (ClkT]ClkS → R≥0). If v 6|= ¬Inv(lT)∧ Inv(lS), then

q1
d−−→Xq2 if and only if q1

d−−→Y q2.

Proof It follows from Lemma 20 that there is a bijective function f relating states
from JT\\SKρsem and JT Ksem\\JSKsem together. Therefore, we can effectively say that
they have the same state set (up to relabeling), i.e., QJT\\SKρsem = QJT\\SKsem . For
brevity, in the rest of this proof we write we write Clk = ClkT] ClkS , and vS and
vT to indicate the part of a valuation v of only the clocks of S and T , respectively.
Note that xnew /∈ Clk , but xnew ∈ ClkX .

From Definition 19 of the quotient for TIOA it follows that Inv((lT , lS)) = T.
Therefore, with Definition 3 of the semantic and Definition 22 of the ∼-reduced
quotient of JT\\SKsem it follows that q1

d−−→Xq2 is possible for any d ∈ R≥0 and any

valuation v. Thus q1
d−−→Y q2 implies q1

d−−→Xq2.
It remains to show the other way around. Observe from Definition 18 of the

quotient for TIOTS that there are two cases involving a delay (actually three, but we
do not consider the universal location in this lemma). So a delay is only possible from

q1 if either qJT Ksem

1
d−−→JT Ksemq

JT Ksem

2 ∧qJSKsem

1
d−−→JSKsemq

JSKsem

2 or qJSKsem

1 X d−−→JSKsem .

So a delay is not possible if qJT Ksem

1 X d−−→JT Ksem ∧ qJSKsem

1
d−−→JSKsemq

JSKsem

2 . It follows
from Definition 3 of the semantic that qJT Ksem

1 = (lT , vT) and vT + d 6|= Inv(lT) or
∃d′ ∈ R≥0, d

′ < d : vT + d′ 6|= Inv(lT); similarly we have that qJSKsem

1 = (lS , vS),
vS + d |= Inv(lS), and ∀d′ ∈ R≥0, d

′ < d : vS + d′ |= Inv(lS). Without loss of
generality, we can state that d′ = 015, so vT + 0 6|= Inv(lT), which simplifies to
vT 6|= Inv(lT). We have also that vS + 0 |= Inv(lS). Combining this information, we
have that v |= ¬Inv(lT) ∧ Inv(lS), where we used the fact that ClkT ∩ ClkS = ∅.
But this contradicts with the assumption in the lemma. Thus we can conclude that
if v 6|= ¬Inv(lT) ∧ Inv(lS), then q1

d−−→Xq2 implies q1
d−−→Y q2. �

15In case there would be a d′ > 0 such that vT + d′ |= Inv(lT), we can first delay d′ in
JT Ksem\\JSKsem such that the reached state can no longer delay.

Springer Nature 2021 LATEX template

Timed I/O Automata 65

Lemma 25 Given specification automata S = (LocS , lS0 ,Act
S ,ClkS , ES , InvS) and

T = (LocT , lT0 ,Act
T ,ClkT , ET , InvT) where ActSo ∩ActTi = ∅. Then consJT\\SKρsem =

consJT Ksem\\JSKsem .

Proof We will proof this by using the Θ operator. First, observe that the semantic
of a TIOA and the reduced quotient do not alter the action set. Therefore, it follows
directly that JT\\SKρsem and JT Ksem\\JSKsem have the same action set and partition-
ing into input and output actions, except that JT\\SKρsem has an additional input
event inew , i.e., ActJT\\SKρsem ∪ {inew} = ActJT Ksem\\JSKsem .

It follows from Lemma 20 that there is a bijective function f relating states from
JT\\SKρsem and JT Ksem\\JSKsem together. Therefore, we can effectively say that they
have the same state set (up to relabeling), i.e., QJT\\SKρsem = QJT\\SKsem . For brevity,
in the rest of this proof we write we write X = JT\\SKρsem, Y = JT Ksem\\JSKsem,
Clk = ClkT] ClkS , and vS and vT to indicate the part of a valuation v of only the
clocks of S and T , respectively. Note that xnew /∈ Clk , but xnew ∈ ClkX .

We will show for any postfixed point P of Θ that ΘJT\\SKρsem(P) ⊆
ΘJT Ksem\\JSKsem(P) and ΘJT Ksem\\JSKsem(P) ⊆ ΘJT\\SKρsem(P).

(ΘX(P) ⊆ ΘY (P)) Consider a state qX ∈ P . Because P is a postfixed point of
ΘX , it follows that qX ∈ ΘX(P). From the definition of Θ, it follows that qX ∈
errX(P) and qX ∈ {q1 ∈ QX | ∀d ≥ 0 : [∀q2 ∈ QX : q1

d−−→Xq2 ⇒ q2 ∈ P ∧ ∀i? ∈
ActXi : ∃q3 ∈ P : q2

i?−−→Xq3] ∨ [∃d′ ≤ d ∧ ∃q2, q3 ∈ P ∧ ∃o! ∈ ActXo : q1
d′−−→

Xq2 ∧ q2
o!−−→Xq3 ∧ ∀i? ∈ ActXi : ∃q4 ∈ P : q2

i?−−→Xq4]}. We will focus on the second
part of the definition of Θ.

Consider a d ∈ R≥0. Then the left-hand side or the right-hand side of the
disjunction is true (or both).

• Assume the left-hand side is true, i.e., ∀q2 ∈ QX : qX
d−−→Xq2 ⇒ q2 ∈ P ∧∀i? ∈

ActXi : ∃q3 ∈ P : q2
i?−−→Xq3. Pick a q2 ∈ QX . The implication is true when

qX X d−−→Xq2 or qX d−−→Xq2 ∧ q2 ∈ P ∧ ∀i? ∈ ActXi : ∃q3 ∈ P : q2
i?−−→Xq3.

– Consider the first case. This case is only applicable if qX = (le, v), since
in Definition 19 of the quotient for TIOA only location le has an invariant
other than T. But then qX ∈ imerrX . This contradicts with the fact that
qX ∈ Θ(P) implies that qX ∈ errX(P). Thus this case is infeasible.

– Consider the second case. From Definition 3 of the semantic of a TIOA
and Definition 22 of the ∼-reduced quotient of JT\\SKsem it follows that
v1 + d |= InvT\\S(l1) for qX = (l1, v1), q2 = (l1, v1 + d), l1 ∈ LocT\\S ,
and v1 ∈ [Clk 7→ R≥0]. Since qX ∈ errX(P), we have that l1 6= le, thus

InvT\\S(l1) = T. Now, pick i? ∈ ActXi and q3 ∈ QX such that q2
i?−−→Xq3

and q3 ∈ P . From Definition 3 of the semantic of a TIOA it follows that
(l1, i?, ϕ, c, l3) ∈ ET\\S , q3 = (l3, v3), v1 + d |= ϕ, v3 = v1 + d[r 7→ 0]r∈c,
and v3 |= InvT\\S(l3).

From Lemma 24 it follows that qX d−−→Y q2 if v 6|= ¬Inv(lT)∧ Inv(lS). In
case that v |= ¬Inv(lT) ∧ Inv(lS), we have from Definitions 19, 3, and 22

that qX inew−−−→Xe. But since e ∈ errX(P), it follows that e /∈ P . Therefore,
this case is infeasible. Thus we have that qX d−−→Y q2 in Y .

Springer Nature 2021 LATEX template

66 Timed I/O Automata

Now, consider the eleven cases from Definition 19 of quotient of TIOAs.
Remember that ActXi = Act

T\\S
i = ActTi ∪ActSo ∪ {inew}.

1. i? ∈ ActS ∩ ActT , l1 = (lT1 , l
S
1), l3 = (lT3 , l

S
3), ϕ = ϕT ∧

Inv(lT3)[r 7→ 0]r∈cT ∧ϕS ∧ Inv(lS1)∧ Inv(lS3)[r 7→ 0]r∈cS , c = cT ∪ cS ,
(lT1 , i, ϕ

T , cT , lT3) ∈ ET , and (lS1 , i, ϕ
S , cS , lS3) ∈ ES . Since v1+d |= ϕ,

it holds that v1 +d |= ϕT , v1 +d |= Inv(lT3)[r 7→ 0]r∈cT , v1 +d |= ϕS ,
v1 + d |= Inv(lS1), and v1 + d |= Inv(lS3)[r 7→ 0]r∈cS . Because ClkS ∩
ClkT = ∅, it holds that vT1 + d |= ϕT , vT1 + d |= Inv(lT3)[r 7→ 0]r∈cT ,
vS1 + d |= ϕS , vS1 + d |= Inv(lS1), and vS1 + d |= Inv(lS3)[r 7→ 0]r∈cS .
Since v3 = v1 + d[r 7→ 0]r∈c, it holds that vT3 = vT1 + d[r 7→ 0]r∈cT

and vS3 = vS1 + d[r 7→ 0]r∈cS . Therefore, vT3 + d |= Inv(lT3) and
vS3 + d |= Inv(lS3).
Combining all information about T , we have that

(lT1 , i, ϕ
T , cT , lT2) ∈ ET , vT1 + d |= ϕT , vT3 = vT1 + d[r 7→ 0]r∈cT ,

and vT3 |= Inv(lT3). Therefore, from Definition 3 it follows that
(lT1 , v

T
1 + d)

i−−→ (lT3 , v
T
3) in JT Ksem. Combining all information

about S, we have that (lS1 , i, ϕ
S , cS , lS2) ∈ ES , vS1 + d |= ϕS ,

vS3 = vS1 + d[r 7→ 0]r∈cS , and vS3 |= Inv(lS3). Therefore, from

Definition 3 it follows that (lS1 , v
S
1 + d)

i−−→ (lS3 , v
S
3) in JSKsem.

Now, from Definition 18 it follows that ((lT1 , v
T
1 +d), (lS1 , v

S
1 +d)) =

(lT1 , l
S
1 , v1 + d) = qY2

i?−−→Y ((lT3 , v
T
3), (lS3 , v

S
3)) = (lT3 , l

S
3 , v3) = qY3 in

Y . Thus, we can simulate a transition in Y . Also, observe now that
q2 = qY2 and q3 = qY3 .

2. i? ∈ ActS \ ActT , l1 = (lT , lS1), l3 = (lT , lS3), ϕ = ϕS ∧ Inv(lS1) ∧
Inv(lS3)[r 7→ 0]r∈cS , c = cS , lT ∈ LocT , and (lS1 , i!, ϕ

S , cS , lS3) ∈ ES .
Since v1 + d |= ϕ and ClkS ∩ ClkT = ∅, it holds that vS1 + d |= ϕS ,
vS1 + d |= Inv(lS1), and vS1 + d |= Inv(lS3)[r 7→ 0]r∈cS . Since v3 =

v1 + d[r 7→ 0]r∈c and c = cS , it holds that vS3 = vS1 + d[r 7→ 0]r∈cS ,
vT3 = vT1 + d, and vS3 |= Inv(lS3). Combining all information above

about S, it follows from Definition 3 that (lS1 , v
S
1 + d)

i!−−→ (lS3 , v
S
3) in

JSKsem. From Definition 3 it also follows that (lT , vT1 + d) ∈ QJT Ksem .
Therefore, following Definition 18 it follows that ((lT , vT1 +d), (lS1 , v

S
1 +

d)) = (lT , lS1 , v1+d) = qY2
i!−−→Y ((lT , vT1 +d), (lS3 , v

S
3)) = (lT , lS3 , v3) =

qY3 in Y . Thus, we can simulate a transition in Y . Also, observe now
that q2 = qY2 and q3 = qY3 .

3. i! ∈ ActSo , l1 = (lT , lS1), l3 = lu, ϕ = ¬GS , c = ∅, lT ∈ LocT and
GS =

∨
{ϕS ∧ Inv(lS3)[r 7→ 0]r∈cS | (lS1 , a, ϕ

S , cS , lS3) ∈ ES}. Since
v1 + d |= ϕ and ClkS ∩ ClkT = ∅, it holds that vS1 + d |= ¬GS .
Therefore, vS1 + d 6|= GS , which indicates that ∀(lS1 , a, ϕS , cS , lS3) ∈
ES : vS1 +d 6|= ϕS ∧ Inv(lS3)[r 7→ 0]r∈cS . This means that vS1 +d 6|= ϕS

or vS1 + d 6|= Inv(lS3)[r 7→ 0]r∈cS or both, where the second option is
equivalent to vS1 +d[r 7→ 0]r∈cS 6|= Inv(lS3). Following Definition 3, we
can conclude that (lS1 , v

S
1 +d) X a−−→ in JSKsem. From Definition 3 it also

follows that (lT , vT1 + d) ∈ QJT Ksem . Now, following Definition 18, we
have transition ((lT , vT1 + d), (lS1 , v

S
1 + d)) = (lT , lS1 , v1 + d) = qY2

a−−→

Springer Nature 2021 LATEX template

Timed I/O Automata 67

Y u = qY3 in Y . Thus we can simulate a transition in Y . Also, observe
now that q2 = qY2 and q3 = qY3 (where (lu, v3) is mapped into u by f
from Lemma 20).

4. i? ∈ ActS ∪ ActT , l1 = (lT , lS), l3 = lu, ϕ = ¬Inv(lS), c = ∅,
lT ∈ LocT , and lS ∈ LocS .(If i? = inew , this case is trivial, see item
8 and 10 below.) Since v1 +d |= ϕ and ClkS ∩ClkT = ∅, it holds that
vS1 + d |= ¬Inv(lS). Therefore, vS1 + d 6|= Inv(lS). Since we delayed
into state qY2 , it must hold that the delay was according to rule 6 of
Definition 18 of the quotient for TIOTS. Therefore, qY2 = u ∈ P . From
Definition 18 it also follows that u = qY2

i?−−→Y u = qY3 in Y . Thus
we can simulate a transition in Y . Also, observe now that q3 = qY3
(where (lu, v3) is mapped into u by f from Lemma 20).

5. i! ∈ ActSo ∩ ActTo , l1 = (lT1 , l
S
1), l3 = le, ϕ = ϕS ∧ Inv(lS3)[r 7→

0]r∈cS ∧ ¬GT , c = {xnew}, (lS1 , a, ϕ
S , cS , lS3) ∈ ES , and GT =∨

{ϕT ∧ Inv(lT3)[r 7→ 0]r∈cT | (lT1 , a, ϕT , cT , lT3) ∈ ET }. Since the tar-
get location is the error location, it holds that q3 /∈ P . Thus this case
is not feasible.

6. i! ∈ ActSo ∩ ActTo , l1 = l3 = (lT1 , l
S
1), ϕ = ¬GS ∧ ¬GT , c = ∅,

GS =
∨
{ϕS ∧ Inv(lS3)[r 7→ 0]r∈cS | (lS1 , a, ϕ

S , cS , lS3) ∈ ES}, and
GT =

∨
{ϕT ∧ Inv(lT3)[r 7→ 0]r∈cT | (lT1 , a, ϕ

T , cT , lT3) ∈ ET }. Since
v1 + d |= ϕ, it holds that v1 + d |= ¬GS and v1 + d |= ¬GT . Because
ClkS ∩ ClkT = ∅, it holds that vS1 + d |= ¬GS and vT1 + d |= ¬GT .
This indicates that vS1 + d 6|= GS and vT1 + d 6|= GT , which implies
that ∀(lS1 , a, ϕS , cS , lS3) ∈ ES : vS1 + d 6|= ϕS ∧ Inv(lS3)[r 7→ 0]r∈cS

and ∀(lT1 , a, ϕT , cT , lT3) ∈ ET : vT1 + d 6|= ϕT ∧ Inv(lT3)[r 7→ 0]r∈cT .
This means that vS1 + d 6|= ϕS or vS1 + d 6|= Inv(lS3)[r 7→ 0]r∈cS or
both for S, and vT1 + d 6|= ϕT or vT1 + d 6|= Inv(lT3)[r 7→ 0]r∈cT or
both for T , where the second option for both S and T is equivalent
to vS1 + d[r 7→ 0]r∈cS 6|= Inv(lS3) and vT1 + d[r 7→ 0]r∈cT 6|= Inv(lT3),

respectively. It follows from Definition 3 that (lS1 , v
S
1 + d) X i!−−→ in

JSKsem and (lT1 , v
T
1 +d) X i!−−→ in JT Ksem. Now, following Definition 18,

we have transition ((lT1 , v
T
1 + d), (lS1 , v

S
1 + d)) = (lT1 , l

S
1 , v1 + d) =

qY2
i?−−→Y (lT1 , l

S
1 , v1 +d) = qY3 in Y . Thus we can simulate a transition

in Y . Also, observe now that q2 = qY2 and q3 = qY3 .
7. a = inew , l1 = (lT , lS), l3 = le, ϕ = ¬Inv(lT) ∧ Inv(lS), c = {xnew},
lT ∈ LocT , and qS ∈ LocS . Since the target location is the error
location, it holds that q3 /∈ P . Thus this case is not feasible.

8. a = inew , l1 = l3 = (lT1 , l
S
1), ϕ = Inv(lT) ∨ ¬Inv(lS) and c = ∅. First

note that inew /∈ ActY . Now, since c = ∅, it follows that v3 = v1 + d.
Therefore, q2 = q3. Since q3 ∈ P , it follows q2 ∈ P . Since q2 = qY2 , it
follows that qY2 ∈ P .

9. i? ∈ ActT \ ActS , l1 = (lT1 , l
S), l3 = (lT3 , l

S), ϕ = ϕT ∧ Inv(lT3)[r 7→
0]r∈cT ∧ Inv(lS), c = cT , lS ∈ LocS , and (lT1 , i?, ϕ

T , cT , lT3) ∈ ET .
Since v1 + d |= ϕ and ClkS ∩ ClkT = ∅, it holds that vT1 + d |= ϕT

and vT1 + d |= Inv(lT3)[r 7→ 0]r∈cT . Since v3 = v1 + d[r 7→ 0]r∈c and
c = cT , it holds that vT3 = vT1 + d[r 7→ 0]r∈cT , v

S
3 = vS1 + d, and

vT3 |= Inv(lT3). Combining all information above about T , it follows

Springer Nature 2021 LATEX template

68 Timed I/O Automata

from Definition 3 that (lT1 , v
T
1 + d)

i?−−→ (lT3 , v
T
3) in JT Ksem. From

Definition 3 it also follows that (lS , vS1 + d) ∈ QJSKsem . Therefore,
following Definition 18 it follows that ((lT1 , v

T
1 + d), (lS , vS1 + d)) =

(lT1 , l
S , v1 + d) = qY2

i?−−→Y ((lT3 , v
T
3), (lS , vS1 + d)) = (lT3 , l

S , v3) = qY3
in Y . Thus, we can simulate a transition in Y . Also, observe now that
q2 = qY2 and q3 = qY3 .

10. i? ∈ ActS ∪ ActT , l1 = lu, l3 = lu, ϕ = T, c = ∅. Since qX = qY , it
follows from Definition 18 of the quotient for TIOTS that Y delayed
within state u as well, i.e., qX2 = qY2 . Therefore, using Definition 18

again, we have that there exists a transition qY2 = u
i?−−→Y u = qY3 in

Y . Thus, we can simulate a transition in Y . Also, observe now that
q2 = qY2 and q3 = qY3 .

11. a ∈ ActSi ∪ ActTi , l1 = le, l3 = le, ϕ = xnew = 0, c = ∅. Since the
target location is the error location, it holds that qX3 /∈ P . Thus this
case is not feasible.

So, in all feasible cases we have that qY2
i?−→ qY3 is a transition in Y if

i? 6= inew . When i? = inew , we have shown explicitly that qY2 ∈ P . As the
analysis above is independent of the particular i?, qY2

i?−→ qY3 is a transition
in Y for all i? ∈ ActYi . Furthermore, all feasible cases show that qY2 , q

Y
3 ∈ P

directly, or because qY2 = q2 or qY3 = q3.

So, in both cases we have that for qX d−−→Y qY2 ⇒ qY2 ∈ P ∧∀i? ∈ ActYi : ∃qY3 ∈
P : qY2

i?−−→Y qY3 . As q2 is chosen arbitrarily, it holds for all q2 ∈ QX = QY .
Therefore, the left-hand side is true.

• Assume the right-hand side is true, i.e., ∃d′ ≤ d ∧ ∃q2, q3 ∈ P ∧ ∃o! ∈ ActXo :

qX
d′−−→Xq2 ∧ q2

o!−−→Xq3 ∧ ∀i? ∈ ActXi : ∃q4 ∈ P : q2
i?−−→Xq4.

Following Definition 3 of the semantic of a TIOA and Definition 22 of the ∼-
reduced quotient of JT\\SKsem, we have that qX = (l1, v1), q2 = (l1, v1 + d′),
q3 = (l3, v3), q4 = (l4, v4), l1, l3, l4 ∈ LocT\\S , v1, v3, v4 ∈ [Clk 7→ R≥0],
v1 + d′ |= InvT\\S(l1), ∃(l1, o!, ϕ, c, l3) ∈ ET\\S , v1 + d′ |= ϕ, v3 = v1 + d′[r 7→
0]r∈c, and v3 |= InvT\\S(l3). First, focus on the delay transition.

From Lemma 24 it follows that qX d−−→ Y q2 if v 6|= ¬Inv(lT) ∧ Inv(lS). In
case that v |= ¬Inv(lT) ∧ Inv(lS), we have from Definitions 19, 3, and 22 that

qX
inew−−−→Xe. But since e ∈ errX(P), it follows that e /∈ P . Since inew is an input

action, it must hold that q2 /∈ P (see analysis above in the proof). Therefore,

this case is infeasible. Thus we have that qX d−−→Y q2 in Y .

Now consider the output transition labeled with o!. Remember that ActT\\So =
ActTo \ ActSo ∪ ActSi \ Act

T
i . We have to consider the eleven cases from Defini-

tion 19 of the quotient for TIOA. We can use the exact same argument as before
(where now rules 3, 5, and 6 have become infeasible) to show that q2

o!−→ q3
is a transition in Y for all feasible cases. As the analysis is independent of the

particular o!, we can conclude that qX d′−−→Y q2 ∧ q2
o!−−→Y q3 with q2, q3 ∈ P .

Finally, consider the input transitions labeled with i?. Using the same argument
as before, we can show that q2

i?−→ q4 in X is also a transition in Y , and q4 ∈ P .

Springer Nature 2021 LATEX template

Timed I/O Automata 69

Therefore, we can conclude that qX d′−−→Y q2 ∧ q2
o!−−→Y q3 ∧ ∀i? ∈ ActYi : ∃q4 ∈

P : q2
i?−−→Y q4 with q2, q3, q4 ∈ P . Thus, the right-hand side is true.

Thus, we have shown that when the left-hand side is true for qX in X, it is also
true for qX in Y ; and that when the right-hand side is true for qX in X, it is also
true for qX in Y . Thus, qX ∈ ΘY (P). Since qX ∈ P was chosen arbitrarily, it holds
for all states in P . Once we choose P to be the fixed-point of ΘX , we have that
ΘX(P) ⊆ ΘY (P).

(ΘY (P) ⊆ ΘX(P)) Consider a state qY ∈ P . Because P is a postfixed point of
ΘY , it follows that p ∈ ΘX(Y). From the definition of Θ, it follows that qY ∈ errY (P)

and qY ∈ {q ∈ QY | ∀d ≥ 0 : [∀q2 ∈ QY : q
d−−→Y q2 ⇒ q2 ∈ P ∧ ∀i? ∈ ActYi : ∃q3 ∈

P : q2
i?−−→Y q3] ∨ [∃d′ ≤ d∧∃q2, q3 ∈ P ∧∃o! ∈ ActYo : q

d′−−→Y q2 ∧ q2
o!−−→Y q3 ∧∀i? ∈

ActYi : ∃q4 ∈ P : q2
i?−−→Y q4]}. Now we focus on the second part of the definition of

Θ.
Consider a d ∈ R≥0. Then the left-hand side or the right-hand side of the

disjunction is true (or both).

• Assume the left-hand side is true, i.e., ∀q2 ∈ QY : qY
d−−→Y q2 ⇒ q2 ∈ P ∧∀i? ∈

ActYi : ∃q3 ∈ P : q2
i?−−→Y q3. Pick a q2 ∈ QY . The implication is true when

qY X d−−→Y q2 or qY d−−→Y q2 ∧ q2 ∈ P ∧ ∀i? ∈ ActYi : ∃q3 ∈ P : q2
i?−−→Y q3.

– Consider the first case. From Lemma 24 it follows that qY X d−−→Y if v |=
¬Inv(lT)∧ Inv(lS) with qY = (l1, v1). Now we have from Definitions 19, 3,

and 22 that qY inew−−−→Xe. But since e ∈ errY (P), it follows that e /∈ P . Since
inew is an input action, it must hold that (l1, v) /∈ P for any valuation v (see

analysis above in the proof). Therefore, qY X d−−→X . Thus the implication
also holds for q2 in X.

– Consider the second case. From Definition 19 of the quotient for TIOA it
follows that Inv((lT , lS)) = T. Therefore, with Definition 3 of the semantic
and Definition 22 of the ∼-reduced quotient of JT\\SKsem it follows that

qY
d−−→Xq2. Now, pick an i? ∈ ActYi with its corresponding q3 according to

the implication. Remember that ActYi = ActTi ∪Act
S
o . We have to consider

the ten cases from Definition 18.
1. i? ∈ ActS ∩ ActT , qY2 = (q

JT Ksem

2 , q
JSKsem

2), qY3 = (q
JT Ksem

3 , q
JSKsem

3),

q
JT Ksem

2
i−−→ JT Ksemq

JT Ksem

3 , and q
JSKsem

2
i−−→JSKsemq

JSKsem

3 . From
Definition 3 of semantic it follows that there exists an edge
(lT2 , i, ϕ

T , cT , lT3) ∈ ET with q
JT Ksem

2 = (lT2 , v
T
2), qJT Ksem

3 = (lT3 , v
T
3),

lT2 , l
T
3 ∈ LocT , vT2 , v

T
3 ∈ [ClkT 7→ R≥0], vT2 |= ϕT , vT3 = vT2 [r 7→

0]r∈cT , and v
T
3 |= InvT (lT3). Similarly, it follows from the same defi-

nition that there exists an edge (lS2 , i, ϕ
S , cS , lS3) ∈ ES with qJSKsem

2 =

(lS2 , v
S
2), qJSKsem

3 = (lS3 , v
S
3), lS2 , l

S
3 ∈ LocS , vS2 , v

S
3 ∈ [ClkS 7→ R≥0],

vS2 |= ϕS , vS3 = vS2 [r 7→ 0]r∈cS , and v
S
3 |= InvS(lS3). Based on Defi-

nition 19 of the quotient for TIOA, we need to consider the following
two cases.

∗ vS2 |= Inv(lS2). In this case, there exists an edge ((lT2 , l
S
2), i, ϕT ∧

Inv(lT3)[r 7→ 0]r∈cT ∧ ϕS ∧ Inv(lS2) ∧ Inv(lS3)[r 7→ 0]r∈cS , c
T ∪

Springer Nature 2021 LATEX template

70 Timed I/O Automata

cS , (lT3 , l
S
3)) in T\\S. Let vi, i = 1, 2 be the valuations that com-

bines the one from T with the one from S, i.e. ∀r ∈ ClkT :
vi(r) = vTi (r) and ∀r ∈ ClkS : vi(r) = vSi (r). Because ClkT ∩
ClkS = ∅, it holds that v2 |= ϕT , v2 |= ϕS , and vS2 |= Inv(lS2),
thus v2 |= ϕT ∧ϕS ∧ Inv(lS2); v3 = v2[r 7→ 0]r∈cT∪cS ; and v3 |=
InvT (lT3) and v3 |= InvS(lS3), thus v3 |= InvT (lT3) ∧ InvS(lS3).
From Definition 3 it now follows that ((lT2 , l

S
2), v2)

i−→
((lT3 , l

S
3), v3) is a transition in JT\\SKsem. Because

ClkT ∩ ClkS = ∅, we can rearrange the states into
((lT2 , l

S
2), v2) = ((lT2 , v

S
2), (lT2 , v

S
2)) = qY2 and ((lT3 , l

S
3), v3) =

((lT3 , v
T
3), (lS3 , v

S
3)) = qY3 . Thus, qY2

a−→ qY3 is a transition in
JT\\SKsem = Y . Also, observe now that qX2 = qY2 and qX3 = qY3 .

∗ vS2 6|= Inv(lS2). In this case, state q2 = (lT2 , v
T
2 , l

S
2 , v

S
2) cannot

be reached by delaying into it, since vS2 6|= Inv(lS2) implies with
Definition 3 of the semantic that ∀qJSKsem ∈ QJSKsem we have
qJSKsem X d−−→ JSKsemq

JSKsem

2 . From Definition 18 we have that in

this case qY d−−→Y u, and qY2 6= u. Thus this case is infeasible.
2. i! ∈ ActS \ ActT , qY2 = (qJT Ksem , q

JSKsem

2), qY3 = (qJT Ksem , q
JSKsem

3),

qJT Ksem ∈ QJT Ksem , and qJSKsem

2
i!−−→JSKsemq

JSKsem

3 . From Definition 3
of semantic it follows that there exists an edge (lS2 , i!, ϕ

S , cS , lS3) ∈ ES

with q
JSKsem

2 = (lS2 , v
S
2), qJSKsem

3 = (lS3 , v
S
3), lS2 , l

S
3 ∈ LocS , vS2 , v

S
3 ∈

[ClkS 7→ R≥0], vS2 |= ϕS , vS3 = vS2 [r 7→ 0]r∈cS , and v
S
3 |= InvS(lS3).

From the same definition, it follows that qJT Ksem = (lT , vT) for some
lT ∈ LocT and vT ∈ [ClkT 7→ R≥0]. Based on Definition 19 of the
quotient for TIOA, we need to consider the following two cases.

∗ vS2 |= Inv(lS2). In this case, there exists an edge ((lT , lS2), a, ϕS ∧
Inv(lS2) ∧ Inv(lS3)[r 7→ 0]r∈cS , c

S , (lT , lS3)) in T\\S. Let vi, i =
1, 2 be the valuations that combines the one from T with the
one from S, i.e. ∀r ∈ ClkT : vi(r) = vTi (r) and ∀r ∈ ClkS :
vi(r) = vSi (r). Because ClkT ∩ClkS = ∅, it holds that v2 |= ϕS ,
and v2 |= Inv(lS2), thus v2 |= ϕS ∧ Inv(lS2); v3 = v2[r 7→ 0]r∈cS ;
and v3 |= InvS(lS3).
Since Inv((lT , lS3)) = T by definition T\\S, we have

that v3 |= Inv((lT , lS3)). From Definition 3 it now fol-

lows that ((lT , lS2), v2)
i?−→ ((lT , lS3), v3) is a transition in

JT\\SKsem. Using Definition 22 of the reduced ∼-quotient of
JT\\SKsem and Lemma 20, we can rearrange the states into
((lT , lS2), v2) = ((lT , vT2), (lS2 , v

S
2)) = qY2 and ((lT , lS3), v3) =

((lT , vT3), (lS3 , v
S
3)) = qY3 , and we can show that qY2

i?−→ qY3 is a
transition in JT\\SKρsem = X. Also, observe now that qX2 = qY2
and qX3 = qY3 .

∗ vS2 6|= Inv(lS2). In this case, state q2 = (lT2 , v
T
2 , l

S
2 , v

S
2) cannot

be reached by delaying into it, since vS2 6|= Inv(lS2) implies with
Definition 3 of the semantic that ∀qJSKsem ∈ QJSKsem we have
qJSKsem X d−−→ JSKsemq

JSKsem

2 . From Definition 18 we have that in

this case qY d−−→Y u, and qY2 6= u. Thus this case is infeasible.

Springer Nature 2021 LATEX template

Timed I/O Automata 71

3. i? ∈ ActT \ ActS , qY2 = (q
JT Ksem

2 , qJSKsem), qY3 = (q
JT Ksem

3 , qJSKsem),

qJSKsem ∈ QJSKsem , and qJT Ksem

2
i?−−→JT Ksemq

JT Ksem

3 . From Definition 3 of
semantic it follows that there exists an edge (lT2 , i?, ϕ

T , cT , lT3) ∈ ET

with qJT Ksem

2 = (lT2 , v
T
2), qJT Ksem

3 = (lT3 , v
T
3), lT2 , l

T
3 ∈ LocT , vT2 , v

T
3 ∈

[ClkT 7→ R≥0], vT2 |= ϕT , vT3 = vT2 [r 7→ 0]r∈cT , and v
T
3 |= InvT (lT3).

From the same definition, it follows that qJSKsem = (lS , vS) for some
lS ∈ LocS and vS ∈ [ClkS 7→ R≥0]. Based on Definition 19 of the
quotient for TIOA, we need to consider the following two cases.

∗ vS2 |= Inv(lS2). In this case, there exists an edge ((lT2 , l
S), i?, ϕT ∧

Inv(lT3)[r 7→ 0]r∈cT ∧ Inv(lS), cT , (lT3 , l
S)) in T\\S. Let vi, i =

1, 2 be the valuations that combines the one from T with the
one from S, i.e. ∀r ∈ ClkT : vi(r) = vTi (r) and ∀r ∈ ClkS :
vi(r) = vSi (r). Because ClkT ∩ClkS = ∅, it holds that v2 |= ϕT ,
and v2 |= Inv(lS), thus v2 |= ϕT ∧ Inv(lS); v3 = v2[r 7→ 0]r∈cT ;
and v3 |= InvT (lT3).
Since Inv((lT3 , l

S)) = T by definition T\\S, we have
that v3 |= Inv((lT3 , l

S)). From Definition 3 it now fol-

lows that ((lT2 , l
S), v2)

i?−→ ((lT3 , l
S), v3) is a transition in

JT\\SKsem. Using Definition 22 of the reduced ∼-quotient of
JT\\SKsem and Lemma 20, we can rearrange the states into
((lT2 , l

S), v2) = ((lT2 , v
T
2), (lS , vS2)) = qY2 and ((lT3 , l

S), v3) =

((lT3 , v
T
3), (lS , vS3)) = qY3 , and we can show that qY2

i?−→ qY3 is a
transition in JT\\SKρsem = X. Also, observe now that qX2 = qY2
and qX3 = qY3 .

∗ vS2 6|= Inv(lS2). In this case, state q2 = (lT2 , v
T
2 , l

S
2 , v

S
2) cannot

be reached by delaying into it, since vS2 6|= Inv(lS2) implies with
Definition 3 of the semantic that ∀qJSKsem ∈ QJSKsem we have
qJSKsem X d−−→ JSKsemq

JSKsem

2 . From Definition 18 we have that in

this case qY d−−→Y u, and qY2 6= u. Thus this case is infeasible.
4. d ∈ R≥0, qY2 = (q

JT Ksem

2 , q
JSKsem

2), qY3 = (q
JT Ksem

3 , q
JSKsem

3),

q
JT Ksem

2
d−−→JT Ksemq

JT Ksem

3 , and q
JSKsem

2
d−−→JSKsemq

JSKsem

3 . This case is
infeasible, since i? 6= d.

5. i! ∈ ActSo , qY2 = (qJT Ksem , qJSKsem), qY3 = u, qJT Ksem ∈ QJT Ksem ,

and qJSKsem X i!−−→JSKsem . From Definition 3 of semantic it follows that
qJT Ksem = (lT , vT) and qJSKsem = (lS , vS). There are two reasons why

qJSKsem X i!−−→JSKsem : there might be no edge in ES labeled with action
i! from location lS or none of the edges labeled with i! from lS are
enabled. An edge (lS , i!, ϕ, c, lS′) ∈ ES is not enabled if vS 6|= ϕ or
vS [r 7→ 0]r∈c 6|= Inv(lS′) (or both), which can also be written as vS 6|=
ϕ ∧ Inv(lS′)[r 7→ 0]r∈c. Looking at the third rule in Definition 19 of
the quotient for TIOA, we have that ((lT , lS), i?,¬GS , ∅, lu) ∈ ET\\S
and vS 6|= GS , or vS |= ¬GS . Because ClkT ∩ClkS = ∅, it holds that
v |= ¬GS .
Now, since Inv(lu) = T and no clocks are reset, it holds that

v[r 7→ 0]r∈∅ = v |= Inv(lu). From Definition 3 it now follows

that ((lT , lS), v)
i?−→ (lu, v3) is a transition in JT\\SKsem. From

Springer Nature 2021 LATEX template

72 Timed I/O Automata

the state label renaming function f from Lemma 20 we have that
qX3 = f((lu, v3)) = u = qY3 and qX2 = qY2 . And from Definition 22

of the reduced ∼-quotient of JT\\SKsem we have that qY2
i?−→ qY3 is a

transition in JT\\SKρsem = X.
6. d ∈ R≥0, qY2 = (qJT Ksem , qJSKsem), qY3 = u, qJT Ksem ∈ QJT Ksem , and

qJSKsem X d−−→JSKsem . This case is infeasible, since i? 6= d.
7. i! ∈ ActSo ∩ActTo , qY2 = (qJT Ksem , qJSKsem), qY3 = e, qJT Ksem X a−−→JT Ksem ,

and qJSKsem a−−→JSKsem . Since the target location is the error location,
it holds that q3 /∈ P . Thus this case is not feasible.

8. i! ∈ ActSo ∩ ActTo , qY2 = (qJT Ksem , qJSKsem), qY3 = (qJT Ksem , qJSKsem),

qJT Ksem X i!−−→JT Ksem , and qJSKsem X i!−−→JSKsem . From Definition 3 of seman-
tic it follows that qJT Ksem = (lT , vT) and qJSKsem = (lS , vS). There

are two reasons why qJT Ksem X i!−−→JT Ksem : there might be no edge in ET

labeled with action i! from location lT or none of the edges labeled
with i! from lT are enabled. An edge (lT , i!, ϕ, c, lT ′) ∈ ET is not
enabled if vT 6|= ϕ or vT [r 7→ 0]r∈c 6|= Inv(lT ′) (or both), which
can also be written as vT 6|= ϕ ∧ Inv(lT ′)[r 7→ 0]r∈c. We have the

exact same reasoning explaining qJSKsem X i!−−→ JSKsem . Looking at the
sixth rule in Definition 19 of the quotient for TIOA, we have that
((lT , lS), i?,¬GT ∧¬GS , ∅, (lT , lS)) ∈ ET\\S , vT |= ¬GT , vS |= ¬GS ,
and v[r 7→ 0]r∈∅ = v. Because ClkT ∩ ClkS = ∅, it holds that
v |= ¬GT ∧ ¬GS .
Since Inv((lT , lS)) = T by definition of T\\S, we have that v |=

Inv((lT , lS)). From Definition 3 it now follows that ((lT , lS), v)
i?−→

((lT , lS), v) is a transition in JT\\SKsem. Using Definition 22 of the
reduced ∼-quotient of JT\\SKsem and Lemma 20, we can rearrange
the states into ((lT , lS), v) = ((lT , vT), (lS , vS)) = qY2 = qY3 , and we

can show that qY2
i?−→ qY3 is a transition in JT\\SKρsem = X. Also,

observe now that qX2 = qY2 and qX3 = qY3 .
9. i ∈ ActT ∪ ActS ∪ R≥0, qY2 = u, qY3 = u. There are two cases how
qY2 = u could have been reached by a delay.

∗ qY = u. In this case, it follows directly from Definition 19 that
(lu, i?,T, ∅, lu) ∈ ET\\S . Since any valuation satisfies a true
guard and by definition of T\\S that Inv(lu) = T, we have with

Definition 3 of semantic that (lu, v)
i?−→ (lu, v) is a transition

in JT\\SKsem. From the state label renaming function f from
Lemma 20 we have that qX2 = qY2 and qX3 = f((lu, v)) = u = qY3 .
And from Definition 22 of the reduced ∼-quotient of JT\\SKsem

we have that qY2
i?−→ qY3 is a transition in JT\\SKρsem = X.

∗ qY = (lT , vT , lS , vS) ∈ QY with vS + d 6|= Inv(lS). In this case,

it follows from Definitions 19, 3, and 22 that qY d−→ (lT , lS , v+d)
in X. Furthermore, it follows directly from Definition 19 that
((lT , lS), i?,¬Inv(lS), ∅, lu) ∈ ET\\S . Since vS + d 6|= Inv(lS),
we have vS + d |= ¬Inv(lS). By definition of T\\S we have
that Inv(lu) = T, thus v + d[r 7→ 0]r∈∅ = v + d |= Inv(lu).
Now, with Definition 3 of semantic we it follows that (lu, v +

Springer Nature 2021 LATEX template

Timed I/O Automata 73

d)
i?−→ (lu, v + d) is a transition in JT\\SKsem. From the state

label renaming function f from Lemma 20 we have that qX3 =
f((lu, v + d)) = u = qY3 . And from Definition 22 of the reduced

∼-quotient of JT\\SKsem we have that qY2
i?−→ qY3 is a transition

in JT\\SKρsem = X.
10. a ∈ ActTi ∪ ActSo , qY2 = e, qY3 = e. Since the target location is the

error location, it holds that q3 /∈ P . Thus this case is not feasible.
Thus, in all feasible cases we can show that q2

i?−−→Y q3 implies q2
i?−−→Xq3.

Since we have chosen an arbitrarily i? ∈ ActYi , it holds for all i? ∈ ActYi .

It remains to be shown that q2
inew−−−→Xq3 and q3 ∈ P , since inew /∈ ActYi .

We only have to consider five cases from Definition 19 that involve inew
(rule 4, 7, 8, 10, and 11). Using the same arguments as in these cases when
we were considering ΘX(P) ⊆ ΘY (P) we can conclude that q3 ∈ P in all
feasible cases for inew . Thus the implication also holds for q2 in X.

Thus, in both cases the implication holds. Therefore, we can conclude that
qY

d−−→Xq2 ⇒ q2 ∈ P ∧ ∀i? ∈ ActXi : ∃q3 ∈ P : q2
i?−−→Xq3. As q2 is chosen

arbitrarily, it holds for all q2 ∈ QX = QY . Therefore, the left-hand side is true.
• Assume the right-hand side is true, i.e., ∃d′ ≤ d ∧ ∃q2, q3 ∈ P ∧ ∃o! ∈ ActYo :

q
d′−−→Y q2 ∧ q2

o!−−→Y q3 ∧ ∀i? ∈ ActYi : ∃q4 ∈ P : q2
i?−−→Y q4. First, focus on the

delay. From Definition 19 of the quotient for TIOA it follows that Inv((lT , lS)) =
T. Therefore, with Definition 3 of the semantic and Definition 22 of the ∼-
reduced quotient of JT\\SKsem it follows that qY d−−→Xq2.
Now, consider the output transition labeled with o!. Remember that ActYo =
ActXo = ActTo \ ActSo ∪ ActSi \ Act

T
i . We have to consider the ten cases from

Definition 18. We can use the exact same argument as before (where now rules

5, 7, and 8 have become infeasible) to show that q2
o!−−→Xq3 is a transition in X

for all feasible cases. Since we have chosen an arbitrarily o! ∈ ActYo , it holds for

all o! ∈ ActYo . Therefore, we can conclude that qY d′−−→Xq2 ∧ q2
o!−−→Xq3 with

q2, q3 ∈ P .
Finally, consider the input transitions labeled with i?. Using the same argument
as before, we can show that q2

i?−→ q4 in Y is also a transition in X, and q4 ∈ P .
Therefore, we can conclude that qY d′−−→Xq2 ∧ q2

o!−−→Xq3 ∧ ∀i? ∈ ActXi : ∃q4 ∈
P : q2

i?−−→Xq4 with q2, q3, q4 ∈ P . Thus, the right-hand side is true.

Thus, we have shown that when the left-hand side is true for qY in Y , it is also
true for qY in X; and that when the right-hand side is true for qY in Y , it is also
true for qY in X. Thus, qY ∈ ΘX(P). Since qY ∈ P was chosen arbitrarily, it holds
for all states in P . Once we choose P to be the fixed-point of ΘY , we have that
ΘY (P) ⊆ ΘX(P). �

Finally, we are ready to proof Theorem 11.

Proof of Theorem 11 First, observe that the semantic of a TIOA and adversarial
pruning do not alter the action set. Therefore, it follows directly that (JT\\SKsem)∆

and (JT Ksem\\JSKsem)∆ have the same action set and partitioning into input and
output actions, except that (JT\\SKsem)∆ has an additional input event inew , i.e.,
ActJT\\SKsem ∪ {inew} = ActJT Ksem\\JSKsem .

Springer Nature 2021 LATEX template

74 Timed I/O Automata

Now, it follows from Lemma 22 that it suffice to show that (JT\\SKρsem)∆ '
(JT Ksem\\JSKsem)∆. It follows from Lemma 20 that there is a bijective function f
relating states from JT\\SKρsem and JT Ksem\\JSKsem together. Therefore, we can effec-
tively say that they have the same state set (up to relabeling), i.e., QJT\\SKρsem =

QJT\\SKsem . For brevity, in the rest of this proof we write we write X = JT\\SKρsem,
Y = JT Ksem\\JSKsem, Clk = ClkT] ClkS , and vS and vT to indicate the part of a
valuation v of only the clocks of S and T , respectively. Note that xnew /∈ Clk , but
xnew ∈ ClkX .

Let A = {q ∈ QX
∆

| q = ((lT , lS), v), v 6|= Inv(lS)}. Let R ⊆ QX
∆

×QY
∆

such
that R = {(q, u) | q ∈ A} ∪ {(qX , qY) ∈ QX

∆

\ A×QY
∆

| qX = qY }. We will show
that R is a bisimulation relation. First, observe that (q0, q0) ∈ R. Consider a state
pair (qX1 , q

Y
1) ∈ R. We have to check whether the six cases from Definition 20 of

bisimulation hold.
• qX1

a−−→X∆

qX2 , qX2 ∈ QX , and a ∈ ActX ∩ ActY . Combining Definitions 12, 18
and 19 it follows that a ∈ ActS ∪ ActT . From Definition 12 of adversarial
pruning we have that qX1

a−−→XqX2 and qX1 , q
X
2 ∈ consX . Following Definition 3

of the semantic and Definition 22 of the reduced ∼-quotient of JT\\SKsem, it
follows that there exists an edge (l1, a, ϕ, c, l2) ∈ ET\\S with qX1 = (l1, v1),
qX2 = (l2, v2), l1, l2 ∈ LocT\\S , v1, v2 ∈ [Clk 7→ R≥0], v1 |= ϕ, v2 = v1[r 7→
0]r∈c, and v2 |= Inv(l2). Now, consider the eleven cases from Definition 19 of
quotient of TIOAs. We have to show for feasible each case that we can simulate
a transition in Y , that the involved states in Y are consistent, and that the
resulting state pair is again in the bisimulation relation R.
1. a ∈ ActS∩ActT , l1 = (lT1 , l

S
1), l2 = (lT2 , l

S
2), ϕ = ϕT ∧Inv(lT2)[r 7→ 0]r∈cT ∧

ϕS ∧ Inv(lS1) ∧ Inv(lS2)[r 7→ 0]r∈cS , c = cT ∪ cS , (lT1 , a, ϕ
T , cT , lT2) ∈ ET ,

and (lS1 , a, ϕ
S , cS , lS2) ∈ ES . Since v1 |= ϕ, it holds that v1 |= ϕT , v1 |=

Inv(lT2)[r 7→ 0]r∈cT , v1 |= ϕS , v1 |= Inv(lS1), and v1 |= Inv(lS2)[r 7→ 0]r∈cS .
Because ClkS ∩ ClkT = ∅, it holds that vT1 |= ϕT , vT1 |= Inv(lT2)[r 7→
0]r∈cT , v

S
1 |= ϕS , vS1 |= Inv(lS1), and vS1 |= Inv(lS2)[r 7→ 0]r∈cS . Since v2 =

v1[r 7→ 0]r∈c, it holds that vT2 = vT1 [r 7→ 0]r∈cT and vS2 = vS1 [r 7→ 0]r∈cS .
Therefore, vT2 |= Inv(lT2) and vS2 |= Inv(lS2).
Combining all information about T , we have that (lT1 , a, ϕ

T , cT , lT2) ∈
ET , vT1 |= ϕT , vT2 = vT1 [r 7→ 0]r∈cT , and v

T
2 |= Inv(lT2). Therefore, from

Definition 3 it follows that (lT1 , v
T
1)

a−−→ (lT2 , v
T
2) in JT Ksem. Combining

all information about S, we have that (lS1 , a, ϕ
S , cS , lS2) ∈ ES , vS1 |= ϕS ,

vS2 = vS1 [r 7→ 0]r∈cS , and vS2 |= Inv(lS2). Therefore, from Definition 3 it
follows that (lS1 , v

S
1)

a−−→ (lS2 , v
S
2) in JSKsem.

Now, from Definition 18 it follows that ((lT1 , v
T
1), (lS1 , v

S
1)) =

(lT1 , l
S
1 , v1) = qY1

a−−→Y ((lT2 , v
T
2), (lS2 , v

S
2)) = (lT2 , l

S
2 , v2) = qY2 in Y . Thus,

we can simulate a transition in Y . Also, observe now that qX1 = qY1 and
qX2 = qY2 .

2. a ∈ ActS \ActT , l1 = (lT , lS1), l2 = (lT , lS2), ϕ = ϕS∧Inv(lS1)∧Inv(lS2)[r 7→
0]r∈cS , c = cS , lT ∈ LocT , and (lS1 , a, ϕ

S , cS , lS2) ∈ ES . Since v1 |= ϕ

and ClkS ∩ ClkT = ∅, it holds that vS1 |= ϕS , vS1 |= Inv(lS1), and vS1 |=
Inv(lS2)[r 7→ 0]r∈cS . Since v2 = v1[r 7→ 0]r∈c and c = cS , it holds that vS2 =

vS1 [r 7→ 0]r∈cS , v
T
2 = vT1 , and vS2 |= Inv(lS2). Combining all information

above about S, it follows from Definition 3 that (lS1 , v
S
1)

a−−→ (lS2 , v
S
2) in

Springer Nature 2021 LATEX template

Timed I/O Automata 75

JSKsem. From Definition 3 it also follows that (lT , vT1) ∈ QJT Ksem . Therefore,
following Definition 18 it follows that ((lT , vT1), (lS1 , v

S
1)) = (lT , lS1 , v1) =

qY1
a−−→Y ((lT , vT1), (lS2 , v

S
2)) = (lT , lS2 , v2) = qY2 in Y . Thus, we can simulate

a transition in Y . Also, observe now that qX1 = qY1 and qX2 = qY2 .
3. a ∈ ActSo , l1 = (lT , lS1), l2 = lu, ϕ = ¬GS , c = ∅, lT ∈ LocT and
GS =

∨
{ϕS ∧ Inv(lS2)[r 7→ 0]r∈cS | (lS1 , a, ϕS , cS , lS2) ∈ ES}. Since v1 |= ϕ

and ClkS ∩ClkT = ∅, it holds that vS1 |= ¬GS . Therefore, vS1 6|= GS , which
indicates that ∀(lS1 , a, ϕS , cS , lS2) ∈ ES : vS1 6|= ϕS ∧ Inv(lS2)[r 7→ 0]r∈cS .
This means that vS1 6|= ϕS or vS1 6|= Inv(lS2)[r 7→ 0]r∈cS or both, where the
second option is equivalent to vS1 [r 7→ 0]r∈cS 6|= Inv(lS2). Following Defini-
tion 3, we can conclude that (lS1 , v

S
1) X a−−→ in JSKsem. From Definition 3 it

also follows that (lT , vT1) ∈ QJT Ksem . Now, following Definition 18, we have
transition ((lT , vT1), (lS1 , v

S
1)) = (lT , lS1 , v1) = qY1

a−−→Y u = qY2 in Y . Thus
we can simulate a transition in Y . Also, observe now that qX1 = qY1 and
qX2 = qY2 (where (lu, v2) is mapped into u by f from Lemma 20).

4. a ∈ ActS∪ActT , l1 = (lT , lS), l2 = lu, ϕ = ¬Inv(lS), c = ∅, lT ∈ LocT , and
lS ∈ LocS . Since v1 |= ϕ and ClkS∩ClkT = ∅, it holds that vS1 |= ¬Inv(lS).
Therefore, vS1 6|= Inv(lS). Since (qX1 , q

Y
1) ∈ R and vS1 6|= Inv(lS), it follows

that qY1 = u. From Definition 18 it follows that u = qY1
a−−→Y u = qY2 in Y .

Thus we can simulate a transition in Y . Also, observe now that qX2 = qY2
(where (lu, v2) is mapped into u by f from Lemma 20).

5. a ∈ ActSo ∩ActTo , l1 = (lT1 , l
S
1), l2 = le, ϕ = ϕS∧Inv(lS2)[r 7→ 0]r∈cS ∧¬GT ,

c = {xnew}, (lS1 , a, ϕ
S , cS , lS2) ∈ ES , and GT =

∨
{ϕT ∧ Inv(lT2)[r 7→

0]r∈cT | (lT1 , a, ϕ
T , cT , lT2) ∈ ET }. Since the target location is the error

location, it holds that qX2 /∈ consX . Thus this case is not feasible.
6. a ∈ ActSo ∩ ActTo , l1 = l2 = (lT1 , l

S
1), ϕ = ¬GS ∧ ¬GT , c = ∅, GS =∨

{ϕS ∧ Inv(lS2)[r 7→ 0]r∈cS | (lS1 , a, ϕS , cS , lS2) ∈ ES}, and GT =
∨
{ϕT ∧

Inv(lT2)[r 7→ 0]r∈cT | (lT1 , a, ϕ
T , cT , lT2) ∈ ET }. Since v1 |= ϕ, it holds

that v1 |= ¬GS and v1 |= ¬GT . Because ClkS ∩ ClkT = ∅, it holds that
vS1 |= ¬GS and vT1 |= ¬GT . This indicates that vS1 6|= GS and vT1 6|= GT ,
which implies that ∀(lS1 , a, ϕS , cS , lS2) ∈ ES : vS1 6|= ϕS∧Inv(lS2)[r 7→ 0]r∈cS

and ∀(lT1 , a, ϕT , cT , lT2) ∈ ET : vT1 6|= ϕT ∧ Inv(lT2)[r 7→ 0]r∈cT . This means
that vS1 6|= ϕS or vS1 6|= Inv(lS2)[r 7→ 0]r∈cS or both for S, and vT1 6|= ϕT or
vT1 6|= Inv(lT2)[r 7→ 0]r∈cT or both for T , where the second option for both
S and T is equivalent to vS1 [r 7→ 0]r∈cS 6|= Inv(lS2) and vT1 [r 7→ 0]r∈cT 6|=
Inv(lT2), respectively. It follows from Definition 3 that (lS1 , v

S
1) X a−−→ in

JSKsem and (lT1 , v
T
1) X a−−→ in JT Ksem. Now, following Definition 18, we have

transition ((lT1 , v
T
1), (lS1 , v

S
1)) = (lT1 , l

S
1 , v1) = qY1

a−−→Y (lT1 , l
S
1 , v1) = qY2 in

Y . Thus we can simulate a transition in Y .
7. a = inew , l1 = (lT , lS), l2 = le, ϕ = ¬Inv(lT) ∧ Inv(lS), c = {xnew},
lT ∈ LocT , and qS ∈ LocS . This case is infeasible, since inew /∈ ActY , thus
inew /∈ ActX ∩ActY .

8. a = inew , l1 = l2 = (lT1 , l
S
1), ϕ = Inv(lT) ∨ ¬Inv(lS) and c = ∅. This case

is infeasible, since inew /∈ ActY , thus inew /∈ ActX ∩ActY .
9. a ∈ ActT \ActS , l1 = (lT1 , l

S), l2 = (lT2 , l
S), ϕ = ϕT ∧Inv(lT2)[r 7→ 0]r∈cT ∧

Inv(lS), c = cT , lS ∈ LocS , and (lT1 , a, ϕ
T , cT , lT2) ∈ ET . Since v1 |= ϕ and

ClkS ∩ ClkT = ∅, it holds that vT1 |= ϕT and vT1 |= Inv(lT2)[r 7→ 0]r∈cT .

Springer Nature 2021 LATEX template

76 Timed I/O Automata

Since v2 = v1[r 7→ 0]r∈c and c = cT , it holds that vT2 = vT1 [r 7→ 0]r∈cT ,
vS2 = vS1 , and vT2 |= Inv(lT2). Combining all information above about T ,
it follows from Definition 3 that (lT1 , v

T
1)

a−−→ (lT2 , v
T
2) in JT Ksem. From

Definition 3 it also follows that (lS , vS1) ∈ QJSKsem . Therefore, following
Definition 18 it follows that ((lT1 , v

T
1), (lS , vS1)) = (lT1 , l

S , v1) = qY1
a−−→

Y ((lT2 , v
T
2), (lS , vS1)) = (lT2 , l

S , v2) = qY2 in Y . Thus, we can simulate a
transition in Y . Also, observe now that qX1 = qY1 and qX2 = qY2 .

10. a ∈ ActS ∪ ActT , l1 = lu, l2 = lu, ϕ = T, c = ∅. From the construction
of the bisimulation relation R, we know that if qX1 = f((lu, v1)) = u for
some valuation v1, then qY1 = u. From Definition 18 it follows directly that
there exists a transition qY1 = u

a−−→Y u = qY2 in Y . Thus, we can simulate
a transition in Y . Also, observe now that qX1 = qY1 and qX2 = qY2 .

11. a ∈ ActSi ∪ ActTi , l1 = le, l2 = le, ϕ = xnew = 0, c = ∅. Since the source
and target locations are the error location, it holds that qX1 , q

X
2 /∈ consX .

Thus this case is not feasible.
In all feasible cases we can show that qY1 = qX1 or qY1 = u and qY2 = qX2 . Since
qX1 , q

X
2 ∈ consX and u ∈ consY by construction of u, it follows from Lemma 25

that qY1 , q
Y
2 ∈ consY . Therefore, we can conclude that qY1

a−−→Y ∆

qY2 . And from
the construction of the bisimulation relation R it follows that (qX2 , q

Y
2) ∈ R.

• qX1
a−−→X∆

qX2 , qX2 ∈ QX , and a = inew . From Definition 12 of adversarial
pruning we have that qX1

a−−→XqX2 and qX1 , q
X
2 ∈ consX . Following Definition 3

of the semantic, it follows that there exists an edge (l1, a, ϕ, c, l2) ∈ ET\\S with
qX1 = (l1, v1), qX2 = (l2, v2), l1, l2 ∈ LocT\\S , v1, v2 ∈ [Clk 7→ R≥0], v1 |= ϕ,
v2 = v1[r 7→ 0]r∈c, and v2 |= Inv(l2). There are three cases from Definition 19
of the quotient for TIOA that apply here.
– l1 = (lT , lS), l2 = le, ϕ = ¬Inv(lT) ∧ Inv(lS), c = {xnew}, lT ∈ LocT ,
and qS ∈ LocS . Since the target location is the error location, it holds that
qX2 /∈ consX . Thus this case is not feasible.

– l1 = l2 = (lT1 , l
S
1), ϕ = Inv(lT) ∨ ¬Inv(lS) and c = ∅. Since c = ∅, it

follows that v2 = v1. Therefore, qX1 = qX2 . Following the second case of
Definition 20 and knowing that (qX1 , q

Y
1) ∈ R, if follows immediately that

(qX2 , q
Y
1) ∈ R. Since qX1 ∈ consX , it follows from the construction of R and

Lemma 25 that qy1 = qX1 and thus qY1 ∈ consY .
– l1 = l2, l2 = le, ϕ = xnew , and c = ∅. Since the source and target locations
are the error location, it holds that qX1 , q

X
2 /∈ consX . Thus this case is not

feasible.
• qY1

a−−→Y ∆

qY2 , qY2 ∈ QY , and a ∈ ActY ∩ ActX . Combining Definitions 12, 18
and 19 it follows that a ∈ ActS ∪ ActT . From Definition 12 of adversarial
pruning we have that qY1

a−−→Y qY2 and qY1 , q
Y
2 ∈ consY . Now, consider the ten

cases from Definition 18 of the quotient of TIOTS. We have to show for each
feasible case that we can simulate a transition in X, that the involved states in
X are consistent, and that the resulting state pair is again in the bisimulation
relation R.
1. a ∈ ActS ∩ ActT , qY1 = (q

JT Ksem

1 , q
JSKsem

1), qY2 = (q
JT Ksem

2 , q
JSKsem

2),
q
JT Ksem

1
a−−→JT Ksemq

JT Ksem

2 , and qJSKsem

1
a−−→JSKsemq

JSKsem

2 . From Definition 3
of semantic it follows that there exists an edge (lT1 , a, ϕ

T , cT , lT2) ∈ ET

with q
JT Ksem

1 = (lT1 , v
T
1), qJT Ksem

2 = (lT2 , v
T
2), lT1 , l

T
2 ∈ LocT , vT1 , v

T
2 ∈

Springer Nature 2021 LATEX template

Timed I/O Automata 77

[ClkT 7→ R≥0], vT1 |= ϕT , vT2 = vT1 [r 7→ 0]r∈cT , and vT2 |= InvT (lT2).
Similarly, it follows from the same definition that there exists an edge
(lS1 , a, ϕ

S , cS , lS2) ∈ ES with q
JSKsem

1 = (lS1 , v
S
1), qJSKsem

2 = (lS2 , v
S
2),

lS1 , l
S
2 ∈ LocS , vS1 , v

S
2 ∈ [ClkS 7→ R≥0], vS1 |= ϕS , vS2 = vS1 [r 7→ 0]r∈cS , and

vS2 |= InvS(lS2). Based on Definition 19 of the quotient for TIOA, we need
to consider the following two cases.

– vS1 |= Inv(lS1). In this case, there exists an edge ((lT1 , l
S
1), a, ϕT ∧

Inv(lT2)[r 7→ 0]r∈cT ∧ ϕS ∧ Inv(lS1) ∧ Inv(lS2)[r 7→ 0]r∈cS , c
T ∪

cS , (lT2 , l
S
2)) in T\\S. Let vi, i = 1, 2 be the valuations that combines

the one from T with the one from S, i.e. ∀r ∈ ClkT : vi(r) = vTi (r)
and ∀r ∈ ClkS : vi(r) = vSi (r). Because ClkT ∩ClkS = ∅, it holds that
v1 |= ϕT , v1 |= ϕS , and vS1 |= Inv(lS1), thus v1 |= ϕT ∧ ϕS ∧ Inv(lS1);
v2 = v1[r 7→ 0]r∈cT∪cS ; and v2 |= InvT (lT2) and v2 |= InvS(lS2), thus
v2 |= InvT (lT2) ∧ InvS(lS2).
From Definition 3 it now follows that ((lT1 , l

S
1), v1)

a−→ ((lT2 , l
S
2), v2)

is a transition in JT\\SKsem. Because ClkT ∩ ClkS = ∅, we can rear-
range the states into ((lT1 , l

S
1), v1) = ((lT1 , v

S
1), (lT1 , v

S
1)) = qY1 and

((lT2 , l
S
2), v2) = ((lT2 , v

T
2), (lS2 , v

S
2)) = qY2 . Thus, qY1

a−→ qY2 is a tran-
sition in JT\\SKsem = Y . Also, observe now that qX1 = qY1 and
qX2 = qY2 .

– vS1 6|= Inv(lS1). From the construction of R, it follows that
((lT1 , l

S
1 , v1), u) ∈ R, i.e. qY1 = u. This contradicts with the start of

this case that qY2 = (q
JT Ksem

2 , q
JSKsem

2). Thus this case is infeasible.
2. a ∈ ActS \ ActT , qY1 = (qJT Ksem , q

JSKsem

1), qY2 = (qJT Ksem , q
JSKsem

2),
qJT Ksem ∈ QJT Ksem , and q

JSKsem

1
a−−→ JSKsemq

JSKsem

2 . From Definition 3 of
semantic it follows that there exists an edge (lS1 , a, ϕ

S , cS , lS2) ∈ ES with
q
JSKsem

1 = (lS1 , v
S
1), qJSKsem

2 = (lS2 , v
S
2), lS1 , l

S
2 ∈ LocS , vS1 , v

S
2 ∈ [ClkS 7→

R≥0], vS1 |= ϕS , vS2 = vS1 [r 7→ 0]r∈cS , and vS2 |= InvS(lS2). From the
same definition, it follows that qJT Ksem = (lT , vT) for some lT ∈ LocT and
vT ∈ [ClkT 7→ R≥0]. Based on Definition 19 of the quotient for TIOA, we
need to consider the following two cases.

– vS1 |= Inv(lS1). In this case, there exists an edge ((lT , lS1), a, ϕS ∧
Inv(lS1) ∧ Inv(lS2)[r 7→ 0]r∈cS , c

S , (lT , lS2)) in T\\S. Let vi, i = 1, 2 be
the valuations that combines the one from T with the one from S, i.e.
∀r ∈ ClkT : vi(r) = vTi (r) and ∀r ∈ ClkS : vi(r) = vSi (r). Because
ClkT ∩ ClkS = ∅, it holds that v1 |= ϕS , and v1 |= Inv(lS1), thus
v1 |= ϕS ∧ Inv(lS1); v2 = v1[r 7→ 0]r∈cS ; and v2 |= InvS(lS2).
Since Inv((lT , lS2)) = T by definition T\\S, we have that v2 |=

Inv((lT , lS2)). From Definition 3 it now follows that ((lT , lS1), v1)
a−→

((lT , lS2), v2) is a transition in JT\\SKsem. Using Definition 22 of
the reduced ∼-quotient of JT\\SKsem and Lemma 20, we can rear-
range the states into ((lT , lS1), v1) = ((lT , vT1), (lS1 , v

S
1)) = qY1 and

((lT , lS2), v2) = ((lT , vT2), (lS2 , v
S
2)) = qY2 , and we can show that

qY1
a−→ qY2 is a transition in JT\\SKρsem = X. Also, observe now that

qX1 = qY1 and qX2 = qY2 .

Springer Nature 2021 LATEX template

78 Timed I/O Automata

– vS1 6|= Inv(lS1). From the construction of R, it follows that
((lT1 , l

S
1 , v1), u) ∈ R, i.e. qY1 = u. This contradicts with the start of

this case that qY2 = (q
JT Ksem

2 , q
JSKsem

2). Thus this case is infeasible.
3. a ∈ ActT \ ActS , qY1 = (q

JT Ksem

1 , qJSKsem), qY2 = (q
JT Ksem

2 , qJSKsem),
qJSKsem ∈ QJSKsem , and q

JT Ksem

1
a−−→ JT Ksemq

JT Ksem

2 . From Definition 3 of
semantic it follows that there exists an edge (lT1 , a, ϕ

T , cT , lT2) ∈ ET with
q
JT Ksem

1 = (lT1 , v
T
1), qJT Ksem

2 = (lT2 , v
T
2), lT1 , l

T
2 ∈ LocT , vT1 , v

T
2 ∈ [ClkT 7→

R≥0], vT1 |= ϕT , vT2 = vT1 [r 7→ 0]r∈cT , and vT2 |= InvT (lT2). From the
same definition, it follows that qJSKsem = (lS , vS) for some lS ∈ LocS and
vS ∈ [ClkS 7→ R≥0]. Based on Definition 19 of the quotient for TIOA, we
need to consider the following two cases.

– vS1 |= Inv(lS1). In this case, there exists an edge ((lT1 , l
S), a, ϕT ∧

Inv(lT2)[r 7→ 0]r∈cT ∧ Inv(lS), cT , (lT2 , l
S)) in T\\S. Let vi, i = 1, 2 be

the valuations that combines the one from T with the one from S, i.e.
∀r ∈ ClkT : vi(r) = vTi (r) and ∀r ∈ ClkS : vi(r) = vSi (r). Because
ClkT ∩ ClkS = ∅, it holds that v1 |= ϕT , and v1 |= Inv(lS), thus
v1 |= ϕT ∧ Inv(lS); v2 = v1[r 7→ 0]r∈cT ; and v2 |= InvT (lT2).
Since Inv((lT2 , l

S)) = T by definition T\\S, we have that v2 |=
Inv((lT2 , l

S)). From Definition 3 it now follows that ((lT1 , l
S), v1)

a−→
((lT2 , l

S), v2) is a transition in JT\\SKsem. Using Definition 22 of
the reduced ∼-quotient of JT\\SKsem and Lemma 20, we can rear-
range the states into ((lT1 , l

S), v1) = ((lT1 , v
T
1), (lS , vS1)) = qY1 and

((lT2 , l
S), v2) = ((lT2 , v

T
2), (lS , vS2)) = qY2 , and we can show that

qY1
a−→ qY2 is a transition in JT\\SKρsem = X. Also, observe now that

qX1 = qY1 and qX2 = qY2 .
– vS1 6|= Inv(lS1). From the construction of R, it follows that

((lT1 , l
S , v1), u) ∈ R, i.e. qY1 = u. This contradicts with the start of

this case that qY2 = (q
JT Ksem

2 , q
JSKsem

2). Thus this case is infeasible.

4. d ∈ R≥0, qY1 = (q
JT Ksem

1 , q
JSKsem

1), qY2 = (q
JT Ksem

2 , q
JSKsem

2), qJT Ksem

1
d−−→

JT Ksemq
JT Ksem

2 , and q
JSKsem

1
d−−→JSKsemq

JSKsem

2 . This case is infeasible, since
a 6= d (delays will be treated later in the proof).

5. a ∈ ActSo , qY1 = (qJT Ksem , qJSKsem), qY2 = u, qJT Ksem ∈ QJT Ksem , and
qJSKsem X a−−→JSKsem . From Definition 3 of semantic it follows that qJT Ksem =
(lT , vT) and qJSKsem = (lS , vS). There are two reasons why qJSKsem X a−−→

JSKsem : there might be no edge in ES labeled with action a from loca-
tion lS or none of the edges labeled with a from lS are enabled. An edge
(lS , a, ϕ, c, lS′) ∈ ES is not enabled if vS 6|= ϕ or vS [r 7→ 0]r∈c 6|= Inv(lS′)
(or both), which can also be written as vS 6|= ϕ∧ Inv(lS′)[r 7→ 0]r∈c. Look-
ing at the third rule in Definition 19 of the quotient for TIOA, we have
that ((lT , lS), a,¬GS , ∅, lu) ∈ ET\\S and vS 6|= GS , or vS |= ¬GS . Because
ClkT ∩ ClkS = ∅, it holds that v |= ¬GS .
Now, since Inv(lu) = T and no clocks are reset, it holds that v[r 7→

0]r∈∅ = v |= Inv(lu). From Definition 3 it now follows that ((lT , lS), v)
a−→

(lu, v2) is a transition in JT\\SKsem. From the state label renaming function
f from Lemma 20 we have that qX2 = f((lu, v2)) = u = qY2 and qX1 = qY1 .

Springer Nature 2021 LATEX template

Timed I/O Automata 79

And from Definition 22 of the reduced ∼-quotient of JT\\SKsem we have
that qY1

a−→ qY2 is a transition in JT\\SKρsem = X.
6. d ∈ R≥0, qY1 = (qJT Ksem , qJSKsem), qY2 = u, qJT Ksem ∈ QJT Ksem , and

qJSKsem X d−−→JSKsem . This case is infeasible, since a 6= d (delays will be treated
later in the proof).

7. a ∈ ActSo ∩ ActTo , qY1 = (qJT Ksem , qJSKsem), qY2 = e, qJT Ksem X a−−→JT Ksem , and
qJSKsem a−−→JSKsem . Since the target state is the error state, it holds that
qY2 /∈ consY . Thus this case is not feasible.

8. a ∈ ActSo ∩ ActTo , qY1 = (qJT Ksem , qJSKsem), qY2 = (qJT Ksem , qJSKsem),
qJT Ksem X a−−→ JT Ksem , and qJSKsem X a−−→ JSKsem . From Definition 3 of seman-
tic it follows that qJT Ksem = (lT , vT) and qJSKsem = (lS , vS). There are
two reasons why qJT Ksem X a−−→JT Ksem : there might be no edge in ET labeled
with action a from location lT or none of the edges labeled with a from
lT are enabled. An edge (lT , a, ϕ, c, lT ′) ∈ ET is not enabled if vT 6|= ϕ
or vT [r 7→ 0]r∈c 6|= Inv(lT ′) (or both), which can also be written as
vT 6|= ϕ∧ Inv(lT ′)[r 7→ 0]r∈c. We have the exact same reasoning explaining
qJSKsem X a−−→JSKsem . Looking at the sixth rule in Definition 19 of the quo-
tient for TIOA, we have that ((lT , lS), a,¬GT ∧¬GS , ∅, (lT , lS)) ∈ ET\\S ,
vT |= ¬GT , vS |= ¬GS , and v[r 7→ 0]r∈∅ = v. Because ClkT ∩ClkS = ∅, it
holds that v |= ¬GT ∧ ¬GS .
Since Inv((lT , lS)) = T by definition of T\\S, we have that v |=

Inv((lT , lS)). From Definition 3 it now follows that ((lT , lS), v)
a−→

((lT , lS), v) is a transition in JT\\SKsem. Using Definition 22 of the reduced
∼-quotient of JT\\SKsem and Lemma 20, we can rearrange the states into
((lT , lS), v) = ((lT , vT), (lS , vS)) = qY1 = qY2 , and we can show that
qY1

a−→ qY2 is a transition in JT\\SKρsem = X. Also, observe now that
qX1 = qY1 and qX2 = qY2 .

9. a ∈ ActT ∪ ActS ∪ R≥0, qY1 = u, qY2 = u. From the construction of R it
follows that there are two options for qX1 for the pair (qX1 , u) ∈ R.

– qX1 = u (= (lu, v)). In this case, it follows directly from Definition 19
that (lu, a,T, ∅, lu) ∈ ET\\S . Since any valuation satisfies a true guard
and by definition of T\\S that Inv(lu) = T, we have with Definition 3
of semantic that (lu, v)

a−→ (lu, v) is a transition in JT\\SKsem. From
the state label renaming function f from Lemma 20 we have that
qX1 = qY1 and qX2 = f((lu, v)) = u = qY2 . And from Definition 22
of the reduced ∼-quotient of JT\\SKsem we have that qY1

a−→ qY2 is a
transition in JT\\SKρsem = X.

– qX1 = ((lT , lS), v) ∈ QX
∆

with v 6|= Inv(lS). In this case, it follows
directly from Definition 19 that ((lT , lS), a,¬Inv(lS), ∅, lu) ∈ ET\\S .
Since v 6|= Inv(lS), we have v |= ¬Inv(lS). By definition of T\\S
we have that Inv(lu) = T, thus v[r 7→ 0]r∈∅ = v |= Inv(lu). Now,
with Definition 3 of semantic we it follows that (lu, v)

a−→ (lu, v) is
a transition in JT\\SKsem. From the state label renaming function f
from Lemma 20 we have that qX2 = f((lu, v)) = u = qY2 . And from
Definition 22 of the reduced ∼-quotient of JT\\SKsem we have that
qY1

a−→ qY2 is a transition in JT\\SKρsem = X.

Springer Nature 2021 LATEX template

80 Timed I/O Automata

10. a ∈ ActTi ∪ ActSo , qY1 = e, qY2 = e. Since the source and target states are
the error state, it holds that qY1 , q

Y
2 /∈ consY . Thus this case is not feasible.

In all feasible cases we can show that qX1 = qY1 or qX1 = ((lT , lS), v) with
v 6|= Inv(lS) and qX2 = qY2 . Since qY1 , q

Y
2 ∈ consY and ((lT , lS), v) ∈ QX

∆

by
construction ofR, it follows from Lemma 25 that qX1 , q

X
2 ∈ consX . Therefore, we

can conclude that qX1
a−−→X∆

qX2 . And from the construction of the bisimulation
relation R it follows that (qX2 , q

Y
2) ∈ R.

• qY1
a−−→ Y ∆

qY2 , qY2 ∈ QY , and a ∈ ActY \ ActX . This case is infeasible, as
ActX = ActY ∪ {inew}.

• qX1
d−−→X∆

qX2 , qX2 ∈ QX , and d ∈ R≥0. From Definition 12 of adversarial

pruning we have that qX1
d−−→XqX2 and qX1 , q

X
2 ∈ consX . Following Definition 3

of the semantic and Definition 22 of the reduced ∼-quotient of JT\\SKsem, it
follows that qX1 = (l1, v1) and qX2 = (l1, v1 + d) with l1 ∈ LocT\\S , v1 ∈
[Clk 7→ R≥0], v1 + d |= Inv(l1), and ∀d′ ∈ R≥0, d

′ < d : v1 + d′ |= Inv(l1).
Since qX1 ∈ consX , it follows that l1 = (lT1 , l

S
1) or l1 = lu. Therefore, from

Definition 19 of the quotient for TIOA, we have that and Inv(l1) = T. Note
that we do not directly get information about whether the valuation v1 + d
satisfy the location invariant in T or S.
Now consider first the simple case where l1 = lu. From Definition 18 of the
quotient for TIOTS, it follows directly that u d−−→Y u. And note with Lemma 20
that qX2 = f((lu, v1 + d)) = u = qY2 and thus (qX2 , q

Y
2) ∈ R.

Now consider the case where l1 = (lT1 , l
S
1). We have to consider whether delays

are possible in JT Ksem and JSKsem in order to show that Y can follow the delay
and that the resulting state pair is in the bisimulation relation R.

– q
JT Ksem

1
d−−→ JT Ksemq

JT Ksem

2 and q
JSKsem

1
d−−→ JSKsemq

JSKsem

2 . In this case, it
follows from Definition 3 of the semantic that qJT Ksem

1 = (lT1 , v
T
1), ∀c ∈

ClkT : vT1 (c) = v1(c), qJT Ksem

2 = (lT1 , v
T
1 + d), vT1 + d |= Inv(lT1), and ∀d′ ∈

R≥0, d
′ < d : vT1 + d′ |= Inv(lT1); similarly we have that qJSKsem

1 = (lS1 , v
S
1),

∀c ∈ ClkS : vS1 (c) = v1(c), qJSKsem

2 = (lS1 , v
S
1 + d), vS1 + d |= Inv(lS1), and

∀d′ ∈ R≥0, d
′ < d : vS1 +d′ |= Inv(lS1). From Definition 18 of the quotient for

TIOTS it follows that (qT1 , q
S
1)

d−−→Y (qT2 , q
S
2). Observe with Lemma 20 that

qY1 = (q
JT Ksem

1 , q
JSKsem

1) = (lT1 , l
S
1 , v1) = qX1 and qY2 = (q

JT Ksem

2 , q
JSKsem

2) =

(lT1 , l
S
1 , v2) = qX2 . Thus (qX2 , q

Y
2) ∈ R.

– q
JT Ksem

1
d−−→ JT Ksemq

JT Ksem

2 and q
JSKsem

1 X d−−→ JSKsem . In this case, it follows
from Definition 3 of the semantic that qJT Ksem

1 = (lT1 , v
T
1), ∀c ∈ ClkT :

vT1 (c) = v1(c), qJT Ksem

2 = (lT1 , v
T
1 + d), vT1 + d |= Inv(lT1), and ∀d′ ∈

R≥0, d
′ < d : vT1 + d′ |= Inv(lT1); similarly we have that qJSKsem

1 = (lS1 , v
S
1),

∀c ∈ ClkS : vS1 (c) = v1(c), and ∃d′ ∈ R≥0, d
′ ≤ d : vS1 + d′ 6|= Inv(lS1). We

have to consider two cases.
∗ vS1 |= Inv(lS1). Since ClkT ∩ClkS = ∅, v1 |= Inv(lS1). Since (qX1 , q

Y
1) ∈

R and vS1 |= Inv(lS1), we have that qY1 = qX1 . From Definition 18 of

the quotient for TIOTS, it follows that qY1 = ((lT1 , v
T
1), (lS1 , v

S
1))

d−−→

Springer Nature 2021 LATEX template

Timed I/O Automata 81

Y u = qY2 . From the construction of R we have that qX2 ∈ A, thus we
can confirm that (qT2 , q

Y
2) ∈ R.

∗ vS1 6|= Inv(lS1). Again, since ClkT ∩ ClkS = ∅, v1 6|= Inv(lS1). Since
(qX1 , q

Y
1) ∈ R and vS1 6|= Inv(lS1), we have that qX1 ∈ A, thus qY1 = u.

From Definition 18 of the quotient for TIOTS, it follows that u d−−→Y u.
And by construction of R it follows that (qX2 , q

Y
2) ∈ R.

– q
JT Ksem

1 X d−−→ JT Ksemq
JT Ksem

2 and q
JSKsem

1 X d−−→ JSKsem . This case follows the
exact same reasoning as the one above, since Definition 18 of the quotient
for TIOTS does not care whether a delay d is possible in JT Ksem once it is
not possible in JSKsem.

– q
JT Ksem

1 X d−−→ JT Ksemq
JT Ksem

2 and q
JSKsem

1
d−−→ JSKsemq

JSKsem

2 . In this case, it
follows directly from Definition 18 of the quotient for TIOTS that there is
no delay possible in Y , i.e., (q

JT Ksem

1 , q
JSKsem

1) X d−−→JT Ksem\\JSKsem . It follows
from Definition 3 of the semantic that qJT Ksem

1 = (lT1 , v
T
1), ∀c ∈ ClkT :

vT1 (c) = v1(c), and ∃d′ ∈ R≥0, d
′ ≤ d : vT1 +d′ 6|= Inv(lT1); similarly we have

that qJSKsem

1 = (lS1 , v
S
1), ∀c ∈ ClkS : vS1 (c) = v1(c), qJSKsem

2 = (lS1 , v
S
1 + d),

vS1 +d |= Inv(lS1), and ∀d′ ∈ R≥0, d
′ < d : vS1 +d′ |= Inv(lS1). Without loss of

generality, we can assume that vT1 +0 6|= Inv(lT1)16, which simplifies to vT1 6|=
Inv(lT1). Combining this information, we have that v1 |= ¬Inv(lT1)∧Inv(lS1),
where we used the fact that ClkT ∩ ClkS = ∅. Now, using Definition 19
of the quotient for TIOA and Definition 3 of the semantics, we have that
(lT1 , l

S
1 , v1)

inew−−−→ JT\\SKsem(le, v1). Since (le, v1) /∈ consX and inew is an
input, it follows that (lT1 , l

S
1 , v1) = qX1 /∈ consX . This contradicts with our

assumption that qX1 ∈ consX . Therefore, this case is infeasible.
In all feasible cases we can show that (qX2 , q

Y
2) ∈ R. Since qX1 , qX2 ∈ consX and

A ⊆ QX
∆

by construction of R, it follows from Lemma 25 that qY1 , q
Y
2 ∈ consY .

Therefore, we can conclude that qY1
d−−→Y ∆

qY2 .

• qY1
d−−→ Y ∆

qY2 , qY2 ∈ QY , and d ∈ R≥0. From Definition 12 of adversarial

pruning we have that qY1
d−−→Y qY2 and qY1 , q

Y
2 ∈ consY . Consider the following

three cases from Definition 18 of the quotient for TIOTS.

– qY1 = (q
JT Ksem

1 , q
JSKsem

1), qY2 = (q
JT Ksem

2 , q
JSKsem

2), qJT Ksem

1
d−−→JT Ksemq

JT Ksem

2 ,

and qJSKsem

1
d−−→JSKsemq

JSKsem

2 . From Definition 3 of the semantic it follows
that qJT Ksem

1 = (lT1 , v
T
1), qJT Ksem

2 = (lT1 , v
T
1 + d), vT1 + d |= Inv(lT1), ∀d′ ∈

R≥0, d
′ < d : vT1 + d′ |= Inv(lT1), qJSKsem

1 = (lS1 , v
S
1), qJSKsem

2 = (lS1 , v
S
1 + d),

vS1 + d |= Inv(lS1), and ∀d′ ∈ R≥0, d
′ < d : vS1 + d′ |= Inv(lS1). Now, from

Definition 19 of the quotient for TIOA we have that Inv((lS1 , l
T
1)) = T

in T\\S, thus using Definitions 3 and 22 we have qX1 = (lS1 , l
T
1 , v1)

d−−→
X(lS1 , l

T
1 , v1 +d) = qX2 . Observe that qX1 = qY1 and qX2 = qY2 , thus qX2 , q

Y
2 ∈

R.
– qY1 = (q

JT Ksem

1 , q
JSKsem

1), qY2 = u, and qJSKsem

1 X d−−→JSKsemq
JSKsem

2 . From Def-
inition 3 of the semantic it follows that qJT Ksem

1 = (lT1 , v
T
1), qJSKsem

1 =

16In case there would be a d′ < d such that vT1 + d′ |= Inv(lT1), we can use the first case to
simulate the delay d′ inY .

Springer Nature 2021 LATEX template

82 Timed I/O Automata

Fig. 11: Screenshot of the GUI of Ecdar 2.4

(lS1 , v
S
1), and ∃d′ ∈ R≥0, d

′ ≤ d : vS1 +d′ 6|= Inv(lS1). Now, from Definition 19
of the quotient for TIOA we have that Inv((lS1 , l

T
1)) = T in T\\S, thus using

Definitions 3 and 22 we have qX1 = (lS1 , l
T
1 , v1)

d−−→X(lS1 , l
T
1 , v1 + d) = qX2 .

We have to consider two cases to show that (qX2 , q
Y
2) ∈ R.

∗ vS1 |= Inv(lS1). In this case qX1 /∈ A and qX2 ∈ A. Therefore, (qX2 , q
Y
2) ∈

R.
∗ vS1 6|= Inv(lS1). In this case qX1 , q

X
2 ∈ A. From the construction of R

it follows that any state from A can only be related to state u in
Y , but qY1 = (q

JT Ksem

1 , q
JSKsem

1). This contradiction renders this case
infeasible.

– qY1 = u and qY2 = u. From Definition 19 of the quotient for TIOA, it

follows directly that (lu, v)
d−−→X(lu, v) for any v ∈ [Clk 7→ R≥0]. And note

with Lemma 20 that qX1 = qX2 = f((lu, v)) = u = qY1 = qY2 and thus
(qX2 , q

Y
2) ∈ R.

In all feasible cases we can show that (qX2 , q
Y
2) ∈ R. Since qY1 , qY2 ∈ consY and

A ⊆ QX
∆

by construction of R, it follows from Lemma 25 that qX1 , q
X
2 ∈ consX .

Therefore, we can conclude that qX1
d−−→X∆

qX2 .

We have show for state pair (qX1 , q
Y
1) ∈ R that all the six cases of bisimulation

hold. Since we have chosen an arbitrary state pair from R, it holds for all state pairs
in R. This concludes the proof. �

6 Tool implementation
In parallel with writing this paper and proving all the theorems in it we are
also implementing the theory in an updated tool. This process also helps with
an extra layer of sanity check for the theory.

The tool consists of two major parts: the GUI and the verification engine
jEcdar. Figure 11 shows a screenshot of the GUI for Ecdar version 2.4. The
verification engine developed along with the GUI is written in Java and is
called jEcdar and can be used both from the GUI and through a command
line interface. The tool can be found at http://ecdar.net.

http://ecdar.net

Springer Nature 2021 LATEX template

Timed I/O Automata 83

7 Conclusion
We have proposed a complete game-based specification theory for timed sys-
tems, in which we distinguish between a component and the environment in
which it is used. To the best of our knowledge, our contribution is the first
game-based approach to support both refinement, consistency checking, logical
and structural composition, and quotient. Our results have been implemented
in the ECDAR toolset.

One could also investigate whether our approach can be used to perform
scheduling of timed systems (see [1, 26, 27] for examples). For example, the
quotient operation could perhaps be used to synthesize a scheduler for such
problem.

References
[1] Henzinger, T.A., Sifakis, J.: The embedded systems design challenge. In:

International Symposium on Formal Methods. Lecture Notes in Computer
Science, vol. 4085, pp. 1–15. Springer, Berlin, Heidelberg (2006). https:
//doi.org/10.1007/11813040_1

[2] de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Engineer-
ing Theories of Software Intensive Systems. NATO Science Series, vol.
195, pp. 83–104. Springer, Dordrecht (2005). https://doi.org/10.1007/
1-4020-3532-2_3

[3] Chakabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.I.A.:
Resource interfaces. In: Proceedings of the International Workshop on
Embedded Software. Lecture Notes in Computer Science, vol. 2855, pp.
117–133. Springer, Berlin, Heidelberg (2003). https://doi.org/10.1007/
978-3-540-45212-6_9

[4] de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the
Annual Symposium on Foundations of Software Engineering, pp. 109–
120. ACM Press, New York, NY (2001). https://doi.org/10.1145/503209.
503226

[5] Larsen, K.G.: Modal specifications. In: Automatic Verification Methods
for Finite State Systems. Lecture Notes in Computer Science, vol. 407, pp.
232–246. Springer, Berlin, Heidelberg (1989). https://doi.org/10.1007/
3-540-52148-8_19

[6] Milner, R.: Communication and Concurrency. Prentice Hall, USA (1989)

[7] Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata.
Technical Report MIT/LCS/TM-373, The MIT Press (1988)

[8] de Alfaro, L., Henzinger, T.A., Stoelinga, M.I.A.: Timed interfaces. In:

https://doi.org/10.1007/11813040_1
https://doi.org/10.1007/11813040_1
https://doi.org/10.1007/1-4020-3532-2_3
https://doi.org/10.1007/1-4020-3532-2_3
https://doi.org/10.1007/978-3-540-45212-6_9
https://doi.org/10.1007/978-3-540-45212-6_9
https://doi.org/10.1145/503209.503226
https://doi.org/10.1145/503209.503226
https://doi.org/10.1007/3-540-52148-8_19
https://doi.org/10.1007/3-540-52148-8_19

Springer Nature 2021 LATEX template

84 Timed I/O Automata

Proceedings of the International Workshop on Embedded Software. Lec-
ture Notes in Computer Science, vol. 2491, pp. 108–122. Springer, Berlin,
Heidelberg (2002). https://doi.org/10.1007/3-540-45828-X_9

[9] Kaynar, D.K., Lynch, N.A., Segala, R., Vaandrager, F.W.: Timed i/o
automata: A mathematical framework for modeling and analyzing real-
time systems. In: Proceedings of the IEEE Real-Time Systems Sympo-
sium, pp. 166–177 (2003). https://doi.org/10.1109/REAL.2003.1253264

[10] Bulychev, P., Chatain, T., David, A., Larsen, K.G.: Efficient on-the-
fly algorithm for checking alternating timed simulation. In: Proceed-
ings of the International Conference on Formal Modeling and Analysis
of Timed Systems. Lecture Notes in Computer Science, vol. 5813,
pp. 73–87. Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-04368-0_8

[11] Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers
for timed systems (an extended abstract). In: Proceedings of the Annual
Symposium on Theoretical Aspects of Computer Science. Lecture Notes
in Computer Science, vol. 900, pp. 229–242. Springer, Berlin, Heidelberg
(1995). https://doi.org/10.1007/3-540-59042-0_76

[12] Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-
the-fly algorithms for the analysis of timed games. In: Proceedings of the
International Conference on Concurrency Theory. Lecture Notes in Com-
puter Science, vol. 3653, pp. 66–80. Springer, Berlin, Heidelberg (2005).
https://doi.org/10.1007/11539452_9

[13] David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed
i/o automata: a complete specification theory for real-time systems. In:
Proceedings of the 13th ACM International Conference on Hybrid Sys-
tems: Computation and Control. HSCC ’10, pp. 91–100. Association for
Computing Machinery. https://doi.org/10.1145/1755952.1755967

[14] David, A., Larsen, K.G., Legay, A., Nyman, U., Wąsowski, A.: Methodolo-
gies for specification of real-time systems using timed i/o automata. In: de
Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) Formal
Methods for Components and Objects. Lecture Notes in Computer Sci-
ence, pp. 290–310. Springer. https://doi.org/10.1007/978-3-642-17071-3_
15

[15] Henzinger, T.A., Manna, Z., Pnueli, A.: Timed transition systems. In:
REX Workshop. Lecture Notes in Computer Science, vol. 600, pp.
226–251. Springer, Berlin, Heidelberg (1991). https://doi.org/10.1007/
BFb0031995

[16] Lynch, N.: I/O automata: A model for discrete event systems. In: Annual

https://doi.org/10.1007/3-540-45828-X_9
https://doi.org/10.1109/REAL.2003.1253264
https://doi.org/10.1007/978-3-642-04368-0_8
https://doi.org/10.1007/978-3-642-04368-0_8
https://doi.org/10.1007/3-540-59042-0_76
https://doi.org/10.1007/11539452_9
https://doi.org/10.1145/1755952.1755967
https://doi.org/10.1007/978-3-642-17071-3_15
https://doi.org/10.1007/978-3-642-17071-3_15
https://doi.org/10.1007/BFb0031995
https://doi.org/10.1007/BFb0031995

Springer Nature 2021 LATEX template

Timed I/O Automata 85

Conference on Information Sciences and Systems, Princeton University,
Princeton, N.J., pp. 29–38 (1988)

[17] Garland, S.J., Lynch, N.A.: The IOA language and toolset: Support for
designing, analyzing, and building distributed systems. Technical report,
Massachusetts Institute of Technology, Cambridge, MA (1998)

[18] Stark, E.W., Cleavland, R., Smolka, S.A.: A process-algebraic language
for probabilistic I/O automata. In: Proceedings of the International Con-
ference on Concurrency Theory. Lecture Notes in Computer Science, vol.
2761, pp. 193–207. Springer, Berlin, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-45187-7_13

[19] Vaandrager, F.W.: On the relationship between process algebra and
input/output automata. In: Proceedings Annual IEEE Symposium on
Logic in Computer Science, pp. 387–398 (1991). https://doi.org/10.1109/
LICS.1991.151662

[20] Nicola, R.D., Segala, R.: A process algebraic view of input/output
automata. Theoretical Computer Science 138(2), 391–423 (1995). https:
//doi.org/10.1016/0304-3975(95)92307-J

[21] de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.:
The element of surprise in timed games. In: Amadio, R., Lugiez, D. (eds.)
CONCUR 2003 - Concurrency Theory. Lecture Notes in Computer Sci-
ence, pp. 144–158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/
978-3-540-45187-7_9

[22] Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.: Alternating refine-
ment relations. In: Proceedings of the International Conference on
Concurrency Theory. Lecture Notes in Computer Science, vol. 1466, pp.
163–178. Springer, Berlin, Heidelberg (1998). https://doi.org/10.1007/
BFb0055622

[23] Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Peddersen, M.,
Wasowski, A.: Compositional design methodology with constraint markov
chains. Technical report, Hal-INRIA (2009)

[24] de Alfaro, L., Henzinger, T.A., Majumdar, R.: Symbolic algorithms for
infinite-state games. In: Proceedings of the International Conference on
Concurrency Theory. Lecture Notes in Computer Science, vol. 2154, pp.
536–550. Springer, Berlin, Heidelberg (2001). https://doi.org/10.1007/
3-540-44685-0_36

[25] Tarski, A.: A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics 5, 285–309 (1955)

https://doi.org/10.1007/978-3-540-45187-7_13
https://doi.org/10.1007/978-3-540-45187-7_13
https://doi.org/10.1109/LICS.1991.151662
https://doi.org/10.1109/LICS.1991.151662
https://doi.org/10.1016/0304-3975(95)92307-J
https://doi.org/10.1016/0304-3975(95)92307-J
https://doi.org/10.1007/978-3-540-45187-7_9
https://doi.org/10.1007/978-3-540-45187-7_9
https://doi.org/10.1007/BFb0055622
https://doi.org/10.1007/BFb0055622
https://doi.org/10.1007/3-540-44685-0_36
https://doi.org/10.1007/3-540-44685-0_36

Springer Nature 2021 LATEX template

86 Timed I/O Automata

[26] de Alfaro, L., Faella, M.: An accelerated algorithm for 3-color parity games
with an application to timed games. In: Proceedings of the International
Conference on Computer Aided Verification. Lecture Notes in Computer
Science, vol. 4590, pp. 108–120. Springer, ??? (2007). https://doi.org/10.
1007/978-3-540-73368-3_13

[27] Deng, Z., Liu, J.W.-s.: Scheduling real-time applications in an open envi-
ronment. In: Proceedings of the IEEE Real-Time Systems Symposium,
pp. 308–319 (1997). https://doi.org/10.1109/REAL.1997.641292

https://doi.org/10.1007/978-3-540-73368-3_13
https://doi.org/10.1007/978-3-540-73368-3_13
https://doi.org/10.1109/REAL.1997.641292

