

Aalborg Universitet

Kaki

Efficient Concurrent Update Synthesis for SDN

Johansen, Nicklas Slorup; Kær, Lasse Brink; Madsen, Andreas Leicht; Nielsen, Kristian
Ødum; Srba, Jiri; Tollund, Rasmus Grønkjær
Published in:
Formal Aspects of Computing

DOI (link to publication from Publisher):
10.1145/3605952

Creative Commons License
CC BY 4.0

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Johansen, N. S., Kær, L. B., Madsen, A. L., Nielsen, K. Ø., Srba, J., & Tollund, R. G. (2023). Kaki: Efficient
Concurrent Update Synthesis for SDN. Formal Aspects of Computing, 35(3), 1-22. Article 20.
https://doi.org/10.1145/3605952

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: February 06, 2025

https://doi.org/10.1145/3605952
https://vbn.aau.dk/en/publications/cacc4db9-1177-410a-9c54-ebe57d541c8a
https://doi.org/10.1145/3605952

20

Kaki: Efficient Concurrent Update Synthesis for SDN

NICKLAS S. JOHANSEN, LASSE B. KÆR, ANDREAS L. MADSEN, KRISTIAN Ø. NIELSEN,
JIŘÍ SRBA, and RASMUS G. TOLLUND, Department of Computer Science, Aalborg University,

Denmark

Modern computer networks based on the software-defined networking (SDN) paradigm are becoming in-
creasingly complex and often require frequent configuration changes in order to react to traffic fluctuations.
It is essential that forwarding policies are preserved not only before and after the configuration update
but also at any moment during the inherently distributed execution of such an update. We present Kaki, a
Petri game based tool for automatic synthesis of switch batches which can be updated in parallel without
violating a given (regular) forwarding policy like waypointing or service chaining. Kaki guarantees to find
the minimum number of concurrent batches and supports both splittable and nonsplittable flow forwarding.
In order to achieve optimal performance, we introduce two novel optimisation techniques based on static
analysis: decomposition into independent subproblems and identification of switches that can be collectively
updated in the same batch. These techniques considerably improve the performance of our tool Kaki, relying
on TAPAAL’s verification engine for Petri games as its backend. Experiments on a large benchmark of real
networks from the Internet Topology Zoo database demonstrate that Kaki outperforms the state-of-the-art
tools Netstack and FLIP. Kaki computes concurrent update synthesis significantly faster than Netstack and
compared to FLIP, it provides shorter (and provably optimal) concurrent update sequences at similar runtimes.

CCS Concepts: • Computer systems organization→ Embedded systems; Redundancy; Robotics; • Net-

works→ Network reliability;

Additional Key Words and Phrases: Computer networks, software defined networking, concurrent update
synthesis, security policies

ACM Reference format:

Nicklas S. Johansen, Lasse B. Kær, Andreas L. Madsen, Kristian Ø. Nielsen, Jiří Srba, and Rasmus G. Tollund.
2023. Kaki: Efficient Concurrent Update Synthesis for SDN. Form. Asp. Comput. 35, 3, Article 20 (Septem-
ber 2023), 22 pages.
https://doi.org/10.1145/3605952

1 INTRODUCTION

Software defined networking (SDN) [7] delegates the control of a network’s routing to the control
plane, allowing for programmable control of the network and creating a higher degree of flexibility
and efficiency. If a group of switches fail, a new routing of the network flows must be established in

This work was supported by DFF project QASNET.
Authors’ address: N. S. Johansen, L. B. Kar, A. L. Madsen, K. O. Nielsen, J. Srba, and R. G. Tollund, Department of Computer
Science, Aalborg University, Selma Lagerlofs Vej 300, Aalborg, Denmark, 9220; emails: {nslorup, lasse.b.kaer, andreasmad-
sen327, kristianodum}@gmail.com, srba@cs.aau.dk, rasmusgtollund@gmail.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0934-5043/2023/09-ART20 $15.00
https://doi.org/10.1145/3605952

Formal Aspects of Computing, Vol. 35, No. 3, Article 20. Publication date: September 2023.

https://orcid.org/0009-0004-5879-9780
https://orcid.org/0009-0009-1121-6847
https://orcid.org/0009-0007-5073-1660
https://orcid.org/0009-0003-4112-558X
https://orcid.org/0000-0001-5551-6547
https://orcid.org/0009-0001-9829-366X
https://doi.org/10.1145/3605952
mailto:permissions@acm.org
https://doi.org/10.1145/3605952
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605952&domain=pdf&date_stamp=2023-10-06

20:2 N. S. Johansen et al.

order to avoid sending packets to the failed switches, resulting ultimately in packet drops. While
updating the routing in an SDN network, the network must preserve a number of policies like
waypointing that requires that a given firewall (waypoint) must be visited before a packet in the
network is delivered to its destination. The update synthesis problem [7] is to find an update
sequence (ordering of switch updates) that preserves a given policy.

In order to reduce the time of the update process, it is of interest to update switches in
parallel. However, due to the asynchronous nature of networks, attempting to update all switches
concurrently may lead to transient (i.e., during the update) policy violations before the update is
completed. This raises the problem of finding a concurrent update strategy (sequence of batches
of switches that can be updated concurrently) while preserving a given forwarding policy during
the update. We study this concurrent update synthesis problem and provide an efficient translation
of the problem of finding an optimal (shortest) concurrent update sequence into Petri net games.
Our translation, implemented in the tool Kaki, guarantees that we preserve a given forward-
ing policy, expressed as a regular language over the switches describing the sequences of all
acceptable hops.

Popular routing schemes like Equal-Cost-MultiPath (ECMP) [8] allow for switches to have mul-
tiple next hops that split a flow along several paths to its destination in order to account for traffic
engineering like load balancing, using e.g., hash-based schemes [1]. In our translation approach,
we support concurrent update synthesis that takes into account such multiple forwarding (split-
table flows) modelled using nondeterminism.

To solve the concurrent update synthesis problem, our framework, called Kaki, translates a given
network and its forwarding policy into a Petri game and synthesises a winning strategy for the
controller using TAPAAL’s Petri game engine [9, 10]. Kaki guarantees to find a concurrent update
sequence that is minimal in the number of batches. We provide two novel optimisation techniques
based on static analysis of the network that reduce the complexity of solving a concurrent update
synthesis problem, which is known to be NP-hard even if restricted only to the basic loop-freedom
and waypointing properties [16]. The first optimisation, topological decomposition, effectively
splits the network with its initial and final routing into two subproblems that can be solved inde-
pendently and even in parallel. The second optimisation identifies collective update classes (sets
of switches) that can always be updated in the same batch.

Finally, we conduct a thorough comparison of our tool against the state-of-the-art update syn-
thesis tools Netstack [23] and FLIP [26], and another Petri game tool [4] (though only allowing
for sequential updates). We benchmark on the set of 8,759 problem instances of realistic network
topologies with various policies required by network operators. Kaki manages to solve a similar
number of problems as FLIP, however, in 9% of cases it synthesises a solution with a smaller number
of batches than FLIP. The tool Netstack synthesises also provably optimal concurrent update solu-
tions, however, at almost an order of magnitude slower running time. When Kaki is specialised to
produce only singleton batches and policies containing only reachability and single waypointing,
it performs similarly as the Petri game approach from [4] that is also using TAPAAL verification
engine as its backend but solves a simpler problem. This demonstrates that our more elaborate
translation that supports concurrent updates does not create any considerable performance over-
head when applied to the simpler setting.

Related Work

The update synthesis problem recently attracted lots of attention (see e.g., the recent overview [7]).
State-of-the-art solutions/tools include NetSynth [19], FLIP [26], Snowcap [24], AllSynth [14], Net-
stack [23], and a Petri game based approach [4].

Formal Aspects of Computing, Vol. 35, No. 3, Article 20. Publication date: September 2023.

Kaki: Efficient Concurrent Update Synthesis for SDN 20:3

The tools NetSynth [19] and AllSynth [14] use the generic LTL logic for policy specification but
support the synthesis of only sequential updates. NetSynth is using incremental model checking
approach and the authors in [4] argue that their tool outperforms NetSynth. AllSynth is based on
the BDD technology in order to compactly represent all sequential solutions, however, it does not
support concurrent updates either.

The update synthesis tool FLIP [26] supports general policies, and moreover it allows to synthe-
sise concurrent update sequences. Similarly to Kaki, it handles every flow independently but Kaki
provides more advanced structural decomposition (that can be possibly applied also as a prepro-
cessing step for FLIP). FLIP provides a faster synthesis compared to NetSynth (see [26]) but the
tool’s performance is negatively affected by more complicated forwarding policies. FLIP synthe-
sises policy-preserving update sequences by constructing constraints that enforce precedence of
switch updates, implying a partial order of updates and hence allowing FLIP to update switches
concurrently. FLIP, contrary to our tool Kaki, does not guarantee to find the minimal number of
batches and it sometimes reverts to an undesirable two-phase commit approach [22] via packet tag-
ging. This is suboptimal as it doubles the required (expensive) ternary content-addressable memory
(TCAM) [15].

The tool Netstack [23] is a very recent addition to the family of update synthesis tools that
support concurrent updates. Netstack reduces the concurrent update synthesis problem to Stack-
elberg games [25] but the update policies are restricted to basic reachability and waypointing. Our
approach instead reduces the concurrent update problem to Petri games and moreover it allows for
the specification of generic (regular) network policies. The performance of our tool Kaki is almost
an order of magnitude faster than Netstack. To the best of our knowledge, FLIP and Netstack are
the only tools supporting concurrent updates and we provide an extensive performance compari-
son of FLIP and Netstack against Kaki on a large benchmark of concurrent update problems.

The update synthesis problem via Petri games was recently studied in [4]. Our work generalises
this work in several dimensions. The translation in [4] considers only sequential updates and re-
duces the problem to a simplistic type of game with only two rounds and only one environmental
transition. Our translation uses the full potential of Petri games with multiple rounds where the
controller and environment switch turns—this allows us to encode the concurrent update synthe-
sis problem. Like many others [17, 18], the work in [4] fails to provide general forwarding policies
and defines only a small set of predefined policies. Our tool, Kaki, solves the limitation by provid-
ing a regular language for the specification of forwarding policies and it is also the first tool that
considers splittable flows with multiple (nondeterministic) forwarding.

A recent work introduces Snowcap [24], a generic update synthesis tool allowing for both soft
and hard specifications. A hard specification specifies a forwarding policy, whereas the soft spec-
ification is a secondary objective that should be minimised. Snowcap uses LTL logic for the hard
specification but it supports only sequential updates and, as documented in [23] on the same bench-
mark as used in this paper, it is significantly slower than the approach from [4] that we compare
against in our experiments.

Other recent works relying on the Petri net formalism include timing analysis for network up-
dates [2] and verification of concurrent network updates against Flow-LTL specifications [6], how-
ever, both approaches focus solely on the analysis/verification part for a given update sequence
and do not discuss how to synthesise such sequences.

This paper is an extended version of the conference paper [12] with full proofs of all theorems
and lemmas, additional examples in Figures 3 and 4 and their descriptions, and extended experi-
ments that compare Kaki performance with a recently released tool Netstack [23] (Figure 9) and a
comparison plot of deterministic and nondeterministic forwarding (Figure 10).

Formal Aspects of Computing, Vol. 35, No. 3, Article 20. Publication date: September 2023.

20:4 N. S. Johansen et al.

Fig. 1. Network and a routing function (dotted lines are links present in the network but not used in the
routing) for the flow F = ({s1}, {s4, s5}) where R (s1) = {s3}, R (s2) = {s3, s4, s5}, R (s3) = {s2} and R (s4) =
R (s5) = ∅.

2 CONCURRENT UPDATE SYNTHESIS

We shall now formally define a network, routing of a flow in a network, flow policy as well as the
concurrent update synthesis problem.

A network is a directed graphG = (V ,E) whereV is a finite set of switches (nodes) and E ⊆ V ×V
is a set of links (edges) such that (s, s) � E for all s ∈ V . A flow in a network is a pair F = (SI , SF) of
one or more initial (ingress) switches and one or more final (egress) switches where ∅ � SI , SF ⊆ V .
A flow aims to forward packets such that a packet arriving to any of the ingress switches eventually
reaches one of the egress switches. Packet forwarding is defined by network routing, specifying
which links are used for forwarding of packets. Given a networkG = (V ,E) and a flowF = (SI , SF),
a routing is a function R : V → 2V such that s ′ ∈ R (s) implies that (s, s ′) ∈ E for all s ∈ V , and
R (sf) = ∅ for all sf ∈ SF . We write s → s ′ if s ′ ∈ R (s), as an alternative notation to denote the
edges in the network that are used for packet forwarding in the given flow.

Figure 1 shows a network example together with its routing. Note that we allow nondetermin-
istic forwarding as there may be defined multiple next-hops—this enables splitting of the traffic
through several paths for load balancing purposes.

We now define a trace in a network as a maximal sequence of switches that can be observed
when forwarding a packet under a given routing function. A trace t for a routing R and a flow
F = (SI , SF) is a finite or infinite sequence of switches starting in some ingress switch s0 ∈ SI

where for the infinite case we have t = s0s1 . . . si . . . where si ∈ R (si−1) for i ≥ 1, and for the finite
case t = s0s1 . . . si . . . sn where si ∈ R (si−1) for 1 ≤ i ≤ n and R (sn) = ∅ for the final switch in the
sequence sn . For a given routing R and a flow F , we denote by T (R,F) the set of all traces.

In our example from Figure 1, the set T (R, ({s1}, {s4, s5})) contains e.g., the traces s1s3s2s4,
s1s3s2s3s2s4 as well as the infinite trace s1 (s3s2)ω that exhibits (undesirable) looping behaviour as
the packets are never delivered to any of the two egress switches.

2.1 Routing Policy

A routing policy specifies all allowed traces on which packets (in a given flow) can travel. Given
a network G = (V ,E), a policy P is a regular expression over V describing a language L(P) ⊆ V *.
Given a routing R for a flow F = (SI , SF), a policy P is satisfied by R ifT (R,F) ⊆ L(P). Hence, all
possible traces allowed by the routing must be in the language L(P). As L(P) contains only finite
traces, if the set T (R,F) contains an infinite trace then it never satisfies the policy P .

Our policy language can define a number of standard routing policies for a flow F = (SI , SF) in
a network G = (V ,E).

• Reachability is expressed by the policy (V \ SF)*SF . It ensures loop and black hole freedom
as it requires that an egress switch must always be reached.

Formal Aspects of Computing, Vol. 35, No. 3, Article 20. Publication date: September 2023.

Kaki: Efficient Concurrent Update Synthesis for SDN 20:5

• Waypoint enforcement requires that packets must visit a given waypoint switch sw ∈ V
before they are delivered to an egress switch (where, by our assumption, the trace ends) and
it is given by the policy V *swV *.
• Alternative waypointing specifies two waypoints s and s ′ such that at least one of them must

be visited and it is given by the union of the waypoint enforcement regular languages for s
and s ′, or alternatively by V *(s + s ′)V *.
• Service chaining requires that a given sequence of switches s1, s2, . . . , sn must be visited in

the given order and it is described by the policy (V \{s1, . . . , sn })*s1 (V \{s2, . . . , sn })*s2 . . . (V \
{sn })*snV *.
• Conditional enforcement is given by a pair of switches s, s ′ ∈ V such that if s is visited then
s ′ must also be visited and it is given by the policy (V \ {s})* +V *s ′V *.

Regular languages are closed under union and intersection, hence the standard policies can be com-
bined using Boolean operations. As reachability is an essential property that we always want to sat-
isfy, we shall assume that the reachability property is always assumed in any other routing policy.

In our translation, we represent a policy by an equivalent nondeterministic finite automaton
(NFA)A = (Q,V ,δ ,q0, F) whereQ is a finite set of states,V is the alphabet equal to set of switches,
δ : Q × V → 2Q is the transition function, q0 is the initial state and F is the set of final states.
We extend the δ function to sequences of switches by δ (q, s0s1 . . . sn) =

⋃
q′ ∈δ (q,s0) δ (q′, s1 . . . sn)

in order to obtain all possible states after executing s0s1 . . . sn . We define the language of A by
L(A) = {w ∈ V ∗ | δ (q0,w) ∩ F � ∅}. An NFA where |δ (q, s) | = 1 for all q ∈ Q and s ∈ V is
called a deterministic finite automaton (DFA). It is a standard result that NFA, DFA, and regular
expressions have the same expressive power (w.r.t. the generated languages).

2.2 Concurrent Update Synthesis Problem

Let Ri and Rf be the initial and final routing, respectively. We aim to update the switches in
the network so that the packet forwarding is changed from the initial to the final routing. The
goal of the concurrent update synthesis problem is to construct a sequence of nonempty sets of
switches, called batches. We want to guarantee that when we update the switches from their initial
to the final routing in every batch concurrently (while waiting so that all updates in the batch are
finished before we update the next batch), a given routing policy is transiently preserved. Our aim
is to synthesise an update sequence that is optimal, i.e., minimises the number of batches.

During the update, only switches that actually change their forwarding function need to be
updated. Given a networkG = (V ,E), an initial routing Ri and a final routing Rf , the set of update

switches is defined byU = {s ∈ V | Ri (s) � Rf (s)}. An update of a switch s ∈ U changes its routing
from Ri (s) to Rf (s).

Definition 1. Let G = (V ,E) be a network, let R and Rf be the current and final routing, respec-
tively, and let U the set of update switches. An update of a switch s ∈ U results in the updated
routing Rs given by

Rs (s ′) =
⎧⎪⎨
⎪
⎩

R (s ′) if s � s ′

Rf (s) if s = s ′.

A concurrent update sequence ω = X1 . . .Xn ∈ (2U \ ∅)* is a sequence of nonempty batches of
switches such that each update switch appears in exactly one batch of ω. As a network is a highly
distributed system with asynchronous communication, the switch updates can be executed in any
permutation of the batch, even if all switches in the batch are commanded to start the update
at the same time. An execution π = p1p2 . . .pn ∈ U ∗ respecting a concurrent update sequence

Formal Aspects of Computing, Vol. 35, No. 3, Article 20. Publication date: September 2023.

20:6 N. S. Johansen et al.

Fig. 2. Network with an optimal concurrent update sequence {s3, s4}{s2, s5}.

ω = X1 . . .Xn is the concatenation of a permutation of each batch in ω such that pi ∈ perm(Xi)
for all i , 1 ≤ i ≤ n, where perm(Xi) denotes the set of all permutations of the switches in Xi .

Given a routing R and an execution π = s1s2 . . . sn where si ∈ U for all i , 1 ≤ i ≤ n, we
inductively define the updated routing Rπ by (i) Rϵ = R and (ii) Rsπ = (Rs)π where s ∈ U and ϵ
is the empty execution. An intermediate routing is any routing Rπ ′ where π ′ is a prefix of π . We
notice that for any given routing R and any two executions π ,π ′ that respect a concurrent update
sequence ω = X1 . . .Xm , we have Rπ = Rπ ′ , whereas the sets of intermediate routings can be
different.

Given an initial routingRi and a final routingRf for a flow (SI , SF), a concurrent update sequence
ω where Rω

i = Rf satisfies a policy P if R′ satisfies P for all intermediate routings R′ generated by
any execution respecting ω.

Definition 2. The concurrent update synthesis problem (CUSP) is a 5-tupleU = (G,F ,Ri ,Rf , P)
where G = (V ,E) is a network, F = (SI , SF) is a flow, Ri is an initial routing, Rf is a final routing,
and P is a routing policy that includes reachability i.e., L(P) ⊆ L((V \ SF)*SF). A solution to a
CUSP is a concurrent update sequence ω such that Rω

i = Rf where ω satisfies the policy P and the
sequence is optimal, meaning that the number of batches, |ω |, is minimal.

Consider an example in Figure 2(a) where the initial routing is depicted in solid lines and the final
one in dashed ones. We want to preserve the reachability policy between the ingress and egress
switch. The set of update switches is {s2, s3, s4, s5}. Clearly, all update switches cannot be placed
into one batch because the execution starting with the update of s2 creates a possible black hole
at the switch s4. Hence, we need at least two batches and indeed the concurrent update sequence
ω = {s3, s4}{s2, s5} satisfies the reachability policy. Any execution of the first batch preserves the
reachability of the switch s6 and brings us to the intermediate routing depicted in Figure 2(b). Any
execution order of the second batch also preserves the reachability policy, implying that ω is an
optimal concurrent update sequence.

3 OPTIMISATION TECHNIQUES

Before we present the translation of CUSP problem to Petri games, we introduce two preprocessing
techniques that allow us to reduce the size of the problem.

3.1 Topological Decomposition

The intuition of topological decomposition is to reduce the complexity of solving CUSP U =

(G,F ,Ri ,Rf , P) where G = (V ,E) by decomposing it into two smaller subproblems. In the rest of
this section, we use the aggregated routing Rc (s) = Ri (s) ∪Rf (s) for all s ∈ V (also denoted by the
relation→) in order to consider only the relevant part of the network.

We can decompose our problem at a switch sD ∈ V if sD splits the network into two independent
networks and there is at most one possible NFA state that can be reached by following any path

Formal Aspects of Computing, Vol. 35, No. 3, Article 20. Publication date: September 2023.

Kaki: Efficient Concurrent Update Synthesis for SDN 20:7

ALGORITHM 1: Potential NFA state set
input : A CUSPU = (G,F ,Ri ,Rf , P) and NFA A = (Q,V ,δ ,q0, F).

output : Function Q : V → 2Q of potential NFA states at a given switch.

1 Qf (s) := ∅ and Qb (s) := ∅ for all s ∈ V
2 Qf (si) := δ (q0, si) for all si ∈ SI

3 Qb (sf) := F for all sf ∈ SF

// s → s ′ can be relaxed if it changes Qf (s ′) or Qb (s)

4 while there exists s → s ′ ∈ Rc that can be relaxed do

5 Qf (s ′) := Qf (s ′) ∪⋃q∈Qf (s) δ (q, s ′)

6 Qb (s) := Qb (s) ∪ {q ∈ Q | δ (q, s ′) ∩ Qb (s ′) � ∅}
7 return Q (s) := Qf (s) ∩ Qb (s) for all s ∈ V

from any of the ingress switches to sD , and the path has a continuation to some of the egress
switches while reaching an accepting NFA state. By Q (s) we denote the set of all such possible
NFA states for a switch s . Algorithm 1 computes the set Q (s) by iteratively relaxing edges, i.e.,
by forward propagating the potential NFA states and storing them in the function Qf and in a
backward manner it also computes NFA states that can reach a final state and stores them in Qb .
An edge s → s ′ can be relaxed if it changes the value of Qf (s ′) or Qb (s) and the algorithm halts
when no more edges can be relaxed.

Figure 3 shows a network and a policy NFA. Here, the switches are annotated with the potential
NFA states from the forward propagation, and those crossed out are the ones that are pruned by
the backward propagation. For instance, at switch s4 it is possible to be in either NFA state a or b,
however, only the state b can reach a final state, since from state a the switch s2 must be visited,
which is impossible.

Lemma 1. LetU = (G,F ,Ri ,Rf , P) be a CUSP where F = (SI , SF) is a flow and let (Q,V ,δ ,q0, F)
be an NFA describing its routing policy P . Algorithm 1 terminates and the resulting function Q has

the property that q ∈ Q (si) iff there exists a trace s0 . . . si . . . sn ∈ T (Rc ,F) such that s0 ∈ SI , sn ∈ SF ,

q ∈ δ (q0, s0 . . . si) and δ (q, si+1 . . . sn) ∩ F � ∅.

Proof. The algorithm terminates because in each iteration of the while loop, an NFA state is
added either to Qf or Qb . Since there are only finitely many states, it must terminate.

We now prove that at line 7 the set Qf (s) contains the NFA states can be reached from an initial
switch to s , and afterwards, we prove that Qb (s) contains the NFA states that can reach a final state
from s . We prove by induction on the number of hops from an initial switch, with the induction
hypothesis Hf (n) = “q ∈ Qf (s) iff from the initial state, q can be reached by a path of length at most

n from an initial switch to s”.
Base case (0 hops): This is trivially true, because the only switches reachable with no hops is the
initial switches, and Qf is initialised to the NFA states reached from q0.
Induction step: Assume Hf (n), we now show Hf (n + 1). (⇒) After the while loop has terminated,
there are no more edges that can be relaxed forwards. Therefore, for switches s ′where s ′ → s , if an
NFA state q can be reached in s ′ with n hops, then relaxing s ′ → s will ensure that δ (q, s) ⊆ Qf (s).
(⇐) A state is only added when a relaxation adds NFA states that can be reached from the initial
state (follows from the induction hypothesis), therefore no superfluous states are in Qf (s).

We now prove by induction on the number of hops to a final switch that Hb (n) = “q ∈ Qb (s) iff

from q a final state can be reached by a path of at most n switches from s to a final switch”.
Base case (0 hops): This is trivially true, because the only switches that can reach a final switch
with no hops are final switches, and Qf is initialised to the final NFA states.

Formal Aspects of Computing, Vol. 35, No. 3, Article 20. Publication date: September 2023.

20:8 N. S. Johansen et al.

Fig. 3. Example of network depicted in (a) and a simplified NFA for the policy seen on (b). The decomposition
is shown in (c) and (d).

Induction step: Assume Hb (n), we now show Hb (n + 1). (⇒) After the while loop, for switches s ′

where s → s ′, if an NFA state q can reach a final state from s ′ with n hops, then relaxing s → s ′

will ensure that {q′ ∈ Q | q ∈ δ (q′, s ′)} ⊆ Qb (s). (⇐) A state is only added when a relaxation adds
NFA states that can reach a final state, so from the induction hypothesis no superfluous states are
added to Qb (s).

Finally, the intersection of Qf and Qb will contain only those states that can be reached from
the initial switch and that can reach a final state. This proves both directions. �

Definition 3. Let U = (G,F ,Ri ,Rf , P) be a CUSP where G = (V ,E), F = (SI , SF) and where
P is expressed by an equivalent NFA A = (Q,V ,δ ,q0, F). A switch sD ∈ V is a topological

decomposition point if |Q (sD) | = 1 and for all s ∈ V \ {sD } either (i) s →* sD and sD �→* s or (ii)

s �→* sD and sD →* s .

We can notice that in the network from Figure 3(a) the switch s4 is a topological decomposition
point as it satisfies all conditions of Definition 3.

Let sD be a decomposition point. We construct two CUSP subproblems U′ and U′′, the first
one containing the switches V ′ = {s ∈ V | s →* sD } and the latter one the switches V ′′ = {s ∈ V |
sD →* s}. Let G[V] be the induced subgraph of G restricted to the set of switches V ⊆ V .

Formal Aspects of Computing, Vol. 35, No. 3, Article 20. Publication date: September 2023.

Kaki: Efficient Concurrent Update Synthesis for SDN 20:9

The first subproblem is given by U′ = (G[V ′],F ′,R′i ,R′f , P
′) where (i) F ′ = (SI , {sD }), (ii)

R′i (s) = Ri (s) and R′
f

(s) = Rf (s) for all s ∈ V ′ \ {sD } and R′i (sD) = R′
f

(sD) = ∅, and (iii) L(P ′) =

L(A′)∩L((V ′ \ {sD })*sD) whereA′ = (Q,V ,δ ,q0, F
′) with F ′ = Q (sD). In other words, the network

and routing are projected to only include the switches from V ′ and the policy ensures that we
must reach sD as well as the potential NFA state of sD .

The second subproblem is given by U′′ = (G[V ′′],F ′′,R′′i ,R′′f , P
′′) where (i) F ′′ = ({sD }, SF),

(ii) R′′i (s) = Ri (s) and R′′
f

(s) = Rf (s) for all s ∈ V ′′, and (iii) L(P ′′) = L(A′′) where

A′′ = (Q,V ,δ ,q′0, F) and {q′0} = Q (sD). The policy of the second subproblem ensures that
starting from the potential NFA state q′0 for the switch sD , a final state of the original policy can be
reached.

Figure 3 shows an example of topological decomposition. By analysing the network 3(a), we
find that s4 is a topological decomposition point because Q (s4) only contains one viable NFA state,
namelyb. We then construct in Figures 3(c) and 3(d) two subproblems concerned with the switches
s1, s2, s3, s4 and s4, s5, s6, s7, respectively. The concurrent update sequences solving the two sub-
problems are {s2}{s3}{s1} and {s4}{s5}{s6}. Merging the solutions for the two subproblems yields
the concurrent update sequence {s2, s4}{s3, s5}{s1, s6} for the original problem. We shall now argue
that such merging always produces an (optimal) concurrent update sequence.

First, we prove that from the optimal solutions of the subproblems, we can synthesise an optimal
solution for the original problem.

Theorem 4. Let ω ′ = X ′1X
′
2 . . .X

′
j and ω ′′ = X ′′1 X

′′
2 . . .X

′′
k

be optimal solutions for U′ and U′′,
respectively. Then ω = (X ′1 ∪ X ′′1) (X ′2 ∪ X ′′2) . . . (X ′m ∪ X ′′m) where m = max{j,k } and where by

conventions X ′i = ∅ for i > j and X ′′i = ∅ for i > k , is an optimal solution toU .

Proof. We first prove thatω is a solution. Trivially,Rω
i = Rf becauseV ′∪V ′′ = V , so all switches

are updated. We show that for any prefix π = sisi+1 . . . sn of any execution of ω the routing Rπ
i

satisfies the given policy P , and therefore that t ∈ L(P) for all traces t = s0s1 . . . sn ∈ T (Rπ
i ,F). Let

π ′ be the subsequence of π consisting of updates for switches fromU′, and π ′′ be those fromU′′.
We then examine the behaviour of the subproblems after the partial update. From the definition of
U′ we know that an injected packet must reach the decomposition point sD . From the definition
ofU′′ we know that an injected package in sD must reach a final switch. Therefore, the trace must
be of the form t = s0s1 . . . sD . . . sn where s0 ∈ SI and sn ∈ SF . By the assumption that ω ′ is correct,
the trace t ′ = s0s1 . . . sD must end in the final state qf of the NFA forU′. By the assumption that
ω ′′ is correct, the trace t ′′ = sD . . . sf starting from the state qf must end in a final state of U .
Therefore, t must also satisfy P .

We now prove by contradiction that ω is optimal. Assume that there exists an ω = X1 . . .Xk so-
lution s.t. |ω | < |ω |. We then pick the subproblem with the longest optimal solution, w.l.o.g. let it be
ω ′. Notice that |ω | < |ω ′ |. We can then construct a new (and shorter) solution for this subproblem
by extracting the update switches from the subproblem from ω, i.e., ω ′ = (X1 ∩V ′) . . . (Xk ∩V ′).
This contradicts ω ′ being an optimal solution. �

Second, we realise that a solution toU implies the existence of solutions to bothU′ andU′′.
Theorem 5. If ω = X1 . . .Xn is a solution to U then ω ′ = (X1 ∩ V ′) . . . (Xn ∩ V ′) and ω ′′ =

(X1 ∩V ′′) . . . (Xn ∩V ′′), where empty batches are omitted, are solutions toU′ andU′′, respectively.

Proof. The argument is similar to Theorem 4. Since the routings of the two subproblems do not
affect the part of the policy they each are concerned with, delineated by the single potential NFA
state of the decomposition point, the subproblems’ updates are independent. Therefore, solutions
toU′ andU′′ can directly be extracted from ω. �

Formal Aspects of Computing, Vol. 35, No. 3, Article 20. Publication date: September 2023.

20:10 N. S. Johansen et al.

Fig. 4. Network with initial and final routing. ℵi = {s3, s4, s8, s9} and ℵf = {s1, s2, s6, s7}.

Hence, if the original problem has a solution and can be decomposed into two subproblems,
then these subproblems also have solutions and from the optimal solutions of the subprob-
lems, we can construct an optimal solution for the original problem. Importantly, since the
subproblems are themselves also CUSPs, they may be subject to further decompositions.

3.2 Collective Update Classes

We now present the notion of a collective update class, or simply collective updates, which is a set of
switches that can be always updated in the same batch in an optimal concurrent update sequence.
The switches in a collective update class can then be viewed only as a single switch, thus reducing
the complexity of the synthesis by reducing the number of update switches.

The first class of collective updates is inspired by [4] where the authors realize that in case
of sequential updates, update switches that are undefined in the initial routing can be always
updated in the beginning of the update sequence and similarly update switches that should become
undefined in the final routing can always be moved to the end of the update sequence. Consider
e.g., Figure 4 where we can w.l.o.g. assume that the routers s3, s4, s8, and s9 can be all updated
(initialised) in the first batch and the update (removal of forwarding rules) of the routers s1, s2, s6,
and s7 can be scheduled in the last batch. This observation is generalised (for concurrent update
sequences) in the following theorem.

Theorem 6. LetU = (G,F ,Ri ,Rf , P) be a CUSP. Let ℵi = {s ∈ V | Ri (s) = ∅ ∧ Rf (s) � ∅} and

ℵf = {s ∈ V | Rf (s) = ∅ ∧ Ri (s) � ∅}. If U is solvable then it has an optimal solution of the form

X1 . . .Xn where ℵi ⊆ X1 and ℵf ⊆ Xn .

Proof. Letω = X1 . . .Xn be an optimal concurrent update sequence. Recall that P must contain
reachability. The switches in ℵi and ℵf can only be updated when they are not reachable, because
otherwise they create a black hole. Additionally, updating an unreachable switch does not violate
the policy as it does not affect the traces of the current routing. The switches in ℵi have no ini-
tial next-hop, and therefore they are not in the initial routing; otherwise, it violates reachability.
Therefore, ℵi is not reachable in the first batch and can therefore be in the first batch. There are
no other switches in the first batch whose update can make any switch in ℵi reachable, because
if a switch s makes some switch in ℵi reachable, then the intermediate routing after updating s
creates a black hole, and therefore ω is not a solution. Similarly, ℵf cannot be reachable in the last
batch, and those switches can therefore be updated in the last batch. �

In Figure 5 we show another class of collective updates with a chain-like structure where the
initial and final routings forward packets in opposite directions. We claim that the switches ℵc =

{s3, s4, s5} can be always updated in the same batch. As long as the intermediate routing is passing
through the switches, updating any switch in ℵc introduces a looping behaviour, and hence they
cannot be updated at this moment. Once the switches in ℵc are not a part of the intermediate

Formal Aspects of Computing, Vol. 35, No. 3, Article 20. Publication date: September 2023.

Kaki: Efficient Concurrent Update Synthesis for SDN 20:11

Fig. 5. Chain structure with initial (solid) and final (dashed) routings.

routing, we can update all of them in the same batch without causing any forwarding issues. The
notion of chain-reducible collective updates is formalised as follows.

Definition 7. Let C ⊆ V be a strongly connected component w.r.t. → such that |C | ≥ 4. The
triple (se , se ′ , C), where se , se ′ ∈ C , is chain-reducible if it satisfies:

(i) if s ∈ C \ {se , se ′ } and s ′ → s then s ′ ∈ C ,
(ii) if s ∈ C \ {se , se ′ } and s → s ′ then s ′ ∈ C , and

(iii) for every s ∈ C \ {se , se ′ } if there exists a switch s ′ ∈ Rf (s) then s ′ →* s using only the initial
routing or Ri (s ′) = ∅.

The restriction |C | ≥ 4 is included so that reduction in size can be achieved. Cases (i) and (ii)
ensure that the switches in C \ {se , se ′ } do not influence or are influenced by any of the switches
not in C and can be part of a collective update. Case (iii) guarantees that updating a reachable
switch s ∈ C \ {se , se ′ } induces either a loop or a black hole.

Theorem 8. Let U = (G,F ,Ri ,Rf , P) be a CUSP and let (se , se ′,C) be chain-reducible and let

ℵc = C \ {se , se ′ }. If U has an optimal solution ω = X1 . . .Xn then there exists another optimal

solution ω ′ = X1 \ ℵc . . .Xk ∪ ℵc . . .Xn \ ℵc for some k , 1 ≤ k ≤ n.

Proof. LetXk be the first batch of the optimal concurrent update sequenceω = X1 . . .Xk . . .Xn

that contains a switch s ∈ ℵc , where s is routed to in both the initial and final routing. We construct
another concurrent update sequence ω ′ = X1 \ ℵc . . .Xk ∪ ℵc . . .Xn \ ℵc and prove that it is an
optimal solution toU .

Let sk ∈ ℵc ∩ Xk be one of the switches first updated in ℵc . Notice that P always contains
reachability and by (iii) that updating any switch s ∈ ℵc introduces a loop or black hole if ℵc is
reachable, therefore, s ∈ ℵc can only be updated when ℵc is unreachable. The collective update
class ℵc can only again become reachable when it is completely updated as it transiently contains
loops. By (i) and (ii) only se and se ′ have incoming or outgoing routings of C , therefore, all other
switches s ∈ ℵc have no influence on any intermediate routing of ω. Therefore, all switches of ℵc

can be updated in Xk since their updates cannot change the traces of any intermediate routing,
i.e., T (Rπi ,F) = T (Rπ ′i ,F), for all prefixes πi of π , where π respects ω and for all prefixes π ′i of
π ′, where π ′ respects ω ′. �

4 TRANSLATION TO PETRI GAMES

We shall first present the formalism of Petri games and then reduce the concurrent update synthesis
problem to this model.

4.1 Petri Games

A Petri net is a mathematical model for distributed systems focusing on concurrency and
asynchronicity (see [20]). A Petri game [4, 10] is a 2-player game extension of Petri nets, splitting
the transitions into controllable and environmental ones. We shall reduce the concurrent update

Formal Aspects of Computing, Vol. 35, No. 3, Article 20. Publication date: September 2023.

20:12 N. S. Johansen et al.

synthesis problem to finding a winning strategy for the controller in a Petri game with a
reachability objective.

A Petri net is a 4-tuple (P ,T ,W ,M) where P is a finite set of places,T is a finite set of transitions
such that P ∩T = ∅,W : (P ×T) ∪ (T × P) → N0 is a weight function and M : P → N0 is an initial
marking that assigns a number of tokens to each place. We depict places as circles, transitions as
rectangles and draw an arc (directed edge) between a transition t and place p if W (t ,p) > 0, or
place p and transition t ifW (p, t) > 0. When an arc has no explicit weight annotation, we assume
that it has the weight 1.

The semantics of a Petri net is given by a labeled transition system where states are Petri net

markings and we write M
t−→ M ′ if M (p) ≥W (p, t) for all p ∈ P (the transition t is enabled in M)

and M ′(p) = M (p) −W (p, t) +W (t ,p).
Marking properties are given by a formula φ which is a Boolean combination of the atomic

predicates of the form p �� n where p ∈ P , �� ∈ {<, ≤, >, ≥,=,�} and n ∈ N0. We write M |= p �� n
iff M (p) �� n and extend this naturally to the Boolean combinators. We use the classical CTL

operator AF and write M |= AF φ if (i) M |= φ or (ii) M ′ |= AF φ for all M ′ such that M
t−→ M ′ for

some t ∈ T , meaning that on any maximal firing sequence from M , the marking property φ must
eventually hold.

A Petri game [4, 10] is a two-player game extension of Petri nets where transitions are partitioned
T = Tctr l � Tenv into two distinct sets of controller and environment transitions, respectively.
During a play in the game, the environment has a priority over the controller in the decisions:
the environment can always choose to fire its own fireable transition, or ask the controller to fire
one of the controllable transitions. The goal of the controller is to find a strategy in order to satisfy a
givenAF φ property whereas the environment tries to prevent this. Formally, a (controller) strategy

is a partial function σ :MN ⇀ T , whereMN is the set of all markings, that maps a marking to a

fireable controllable transition (or it is undefined if no such transition exists). We write M
t−→σ M ′

if M
t−→ M ′ and t ∈ Tenv ∪ {σ (M)}. A Petri game satisfies the reachability objective AF φ if there

exists a controller strategy σ such that the labelled transition system under the transition relation
−→σ satisfies AF φ.

4.2 Translation Intuition

We now present the intuition for our translation from CUSP to Petri games. For a given CUSP
instance, we compositionally construct a Petri game where the controller’s goal is to select a valid
concurrent update sequence and the environment aims to show that the controller’s update se-
quence is invalid. The game has two phases: generation phase and verification phase.

The generation phase has two modes where the controller and environment switch turns in
each mode. The controller proposes the next update batch (in a mode where only controller’s
transitions are enabled) and when finished, it gives the turn to the environment that sequentialises
the batch by creating an arbitrary permutation of the update switches in the batch (in this mode
only environmental transitions are enabled). At any moment during the batch sequentialisation,
the environment may decide to enter the second phase that is concerned with validation of the
current intermediate routing.

The verification phase begins when the environment injects a packet (token) to the network
and wishes to examine the currently generated intermediate routing. In this phase, a next hop
of the packet is simulated in the network according to the current switch configuration; in case
of nondeterministic forwarding it is the environment that chooses the next switch. A hop in the
network is followed by an update of the current state of a DFA that represents the routing policy.

Formal Aspects of Computing, Vol. 35, No. 3, Article 20. Publication date: September 2023.

Kaki: Efficient Concurrent Update Synthesis for SDN 20:13

These two steps alternate, until (i) an egress switch is reached, (ii) the token ends in a black hole
(deadlock), or (iii) the packet forwarding forms a loop, wherefrom the execution is deadlocked
by only allowing to visit each switch once. The controller wins the game only in situation (i),
providing that the currently reached state in the DFA is an accepting state.

The controller now has a winning strategy if and only if the CUSP problem has a solution. By
restricting the number of available batches and using the bisection method (binary search), we can
further identify an optimal concurrent update sequence.

4.3 Translation of Network Topology and Routings

Let (G,F ,Ri ,Rf , P) be a concurrent update synthesis problem where G = (V ,E) is a network
and F = (SI , SF) is the considered flow. We construct a Petri game N (U) = (P ,T ,W ,M). This
subsection describes the translation of the network and routings, and the next subsection deals
with the policy translation.

Figure 6 shows the Petri game building blocks for translating the network and the routings. En-
vironmental transitions are denoted by empty rectangles and controller transitions are depicted
as black/filled. The captions of each subfigure quantify for which switches such components are
created. The final net is then constructed as a composition of all such components and if a tran-
sition/place is surrounded by a dashed line then it has only a single copy in the final net—such a
place/transition is shared across all components that use this transition/place.

Network Topology Component (Figure 6(a)). This component represents the network and its current
routing. For each s ∈ V , we create the shared places ps and a shared unvisited place punv

s with one
token. The unvisited place tracks whether the switch has been visited and prevents looping. We
use uncontrollable transitions so that the environment can decide how to traverse the network in
case of nondeterminism. The switch component ensures that these transitions are only fireable in
accordance with the current intermediate routing.

Update Mode Component (Figures 6(b) and 6(d)). These components handle the bookkeeping of
turns between the controller and the environment. A token present in the place pqueueinд enables
the controller to queue updates into a current batch. Once the token is moved to the placepupdatinд ,
it enables the environment to schedule (in an arbitrary order) the updates from the batch. The dual

places p#queued and p#queued count how many switches have been queued in this batch and how
many switches have not been queued, respectively. The place p#updated is decremented for each
update implemented by the environment. Hence, the environment is forced to inject a token to
the network, latest once all update switches are updated. Additionally, the number of produced
batches is represented by the number of tokens in the place pbatches .

Switch Component (Figure 6(c)). This component handles the queueing (by controller) and acti-
vation (by environment) of updates. For every s ∈ V where Ri (s) � Rf (s) we create a switch
component. Let U be the set of all such update switches. Initially, we put one token in pinit

s (the
switch forwards according to its initial routing) and pl imiter

s (making sure that each switch can be
queued only once). Once a switch is queued (by the controller transition t

queue
s) and updated (by

the environment transition t
update
s), the token from pinit

s is moved into p
f inal
s and the switch is

now forwarding according to the final routing function.

Packet Injection Component (Figure 6(e)). The environment can at any moment during the sequen-
tialisation mode use the transition t inject

s to inject a packet into any of the ingress routers and
enter the second verification phase.

Formal Aspects of Computing, Vol. 35, No. 3, Article 20. Publication date: September 2023.

20:14 N. S. Johansen et al.

Fig. 6. Construction of Petri game components; U is the set of update switches.

4.4 Policy Translation

Given a CUSP (G,F ,Ri ,Rf , P), we now want to encode the policy P into the Petri game rep-
resentation. We assume that P is given by a DFA A(P) such that L(P) = L(A(P)). We translate
A(P) into a Petri game so that DFA states/transitions are mapped into corresponding Petri net
places/transitions which are connected to the earlier defined Petri game for the topology and
routing.

Figure 7 presents the components for the policy translation.

(1) DFA transition component (Figure 7(a)). This component creates places/transitions for
each DFA state/transition. Note that if a Petri game transition is of the form ts then it
corresponds to a DFA-transition, contrary to transitions of the form t (s,s ′) that represent
network topology links.

(2) Policy tracking component (Figure 7(b)). For all s ∈ V , we create the place ptr ack
s in order to

track the current position of a packet in the network.

Formal Aspects of Computing, Vol. 35, No. 3, Article 20. Publication date: September 2023.

Kaki: Efficient Concurrent Update Synthesis for SDN 20:15

Fig. 7. Policy checking components.

(3) Turn component (Figure 7(c)). The intuition here is that whenever the environment fires the
topology transition t (s,s ′) then the DFA-component must match it by firing a DFA-transition
ts ′ . The token in the place pturn means that it is the environment turn to challenge with a
next hop in the network topology.

(4) DFA injection component (Figure 7(d)). For all inject transitions t inject
s to the switch s , we

add an arc to its tracking place ptr ack
s . This initiates the second phase of verification of the

routing policy.

4.5 Reachability Objective and Translation Correctness

We finish by defining the reachability objectiveC (k) for each positive numberk that gives an upper
bound on the maximum number of allowed batches (recall that F is the set of final DFA states):
C (k) = AF pbatches ≤ k ∧∨q∈F pq = 1.

The query expresses that all runs that follow the controller’s strategy must use fewer than k
batches and eventually end in an accepting DFA state. Note that since reachability is assumed as a
part of the policy P and that the final switch has no further forwarding, there can be no next-hop
in the network after the DFA gets to its final state.

The query can be iteratively verified (e.g., using the bisection method) while changing the
value of k , until we find k such that C (k) is true and C (k − 1) is false (which implies that also
C (�) is false for every � < k − 1). Then we know that the synthesised strategy is an optimal
solution. If C (k) is false for k = |U | where U is the set of update switches then there exists no
concurrent update sequence solving the CUSP. The correctness of the translation is summarised
in the following theorem.

Theorem 9. A concurrent update synthesis problemU has a solution withk or fewer batches if and

only if there exists a winning strategy for the controller in the Petri game N (U) for the query C (k).

Let us note that a winning strategy for the controller in the Petri game can be directly translated
to a concurrent update sequence. The firing of controllable transitions of the form t

queue
s indicates

that the switch s should be scheduled in the current batch and the batches are separated from each
other by the firings of the controllable transitions tconup .

Formal Aspects of Computing, Vol. 35, No. 3, Article 20. Publication date: September 2023.

20:16 N. S. Johansen et al.

4.6 Correctness of Translation

LetU = (G,F ,Ri ,Rf , P) be a concurrent update synthesis problem, and let N (U) = (P ,T ,W ,M)
be the Petri game resulting from translating U into a Petri game using the translation process
from Section 4.2. Also, let C (k) be the query from Section 4.5.

We first want to prove that the state-space of the constructed Petri game is finite. This is done
by proving that there exists no infinite run in N (U).

Theorem 10. Given the CUSPU = (G,F ,Ri ,Rf , P), the Petri game N (U) = (P ,T ,W ,M) never

produces an infinite run.

Proof. First, observe that the update switch component transitions t
queue
s and t

update
s can

be fired at most once. The transition t
queue
s is restricted by the place pl imiter

s , and t
update
s can

only be fired after tqueue
s has been fired. Second, t inject

s can be fired exactly once because it re-
moves the token from pupdatinд , and pupdatinд can never regain its lost token. Third, any topology
transition t (s,s ′) can be fired at most once. This is ensured by the limiter place punv

s ′ as it contains
one token by the initial marking, and it never regains tokens.

Notice that the transitions tconup can happen at most |U | times since it requires a token from
p#queued , and such a token indicates that a switch update has been queued. Furthermore, tr eady

can only fire after tconup has fired, which can therefore also only fire a finite number of times.
Lastly regarding the policy-component, the turn switch enforces that any DFA-transition ts can
only fire after a topology transition t (s ′,s) or t inject

s has fired, which both only happen a finite
number of times. �

We now prove the correctness of Theorem 9. The theorem states a bi-implication; therefore, its
proof is divided into two separate lemmas, which are presented below. First, we prove that if ω is
a solution to a CUSPU then there exists a winning strategy σ for N (U) with the query C (k).

Lemma 2. If ω is a solution to a CUSP U , where |ω | ≤ k , then there exists a winning strategy σ
for the controller player in the Petri game N (U) with the query C (k).

Proof. Let ω = X1 . . .Xk be a concurrent update sequence, s.t. Xi ⊆ U . We now define a
winning strategy σ w.r.t. C (k) for the controller, starting with the initial marking M0.

Notice that if M (pqueueinд) = 1 then only the controller can fire transitions. After tconup is
fired, the token of Pqueueinд is moved to pupdatinд , and the environment can update switches (or
alternatively inject a packet), and at some point move the token back by firing tr eady . The strategy
of the controller is to fire all queue transitions that correspond to the batches from ω, starting
with X1 and followed by X2, X3, and so on, in the next rounds. The controller queues a batch
X = {s1, . . . , sn } by firing the transitions tqueue

s1
. . . t

queue
sn

tconup—this adds a token to pbatches and
gives the turn to the environment. Notice that the order in which the transitions tqueue

s are fired
is irrelevant.

During the updating phase, i.e., when M (pupdatinд) = 1, the environment is able to fire transi-
tions corresponding to the switches that were queued by the controller, trying to find their per-
mutation breaking the given policy. Hence, if the controller fired t

queue
s in the queuing phase then

the transition t
update
s will be fired by the environment during its following updating phase (where

no controllable transitions are enabled so there is no need to define the controller’s strategy here).
We now prove that M0 |= C (k) under the strategy σ . Recall C (k) from Section 4.5, which states

that for all possible runs of N (U) the number of batches used is limited to k and after t inject
s

is fired, any sequence of transition firings (determined purely by the environment) results in an
accepting DFA state.

Formal Aspects of Computing, Vol. 35, No. 3, Article 20. Publication date: September 2023.

Kaki: Efficient Concurrent Update Synthesis for SDN 20:17

The predicate AF (pbatches ≤ k) is assured because each batch adds a token to pbatches and we
have k batches and every batch is queued exactly once. We then argue that t inject

s is guaranteed
to fire eventually, so that we must eventually enter the verification phase. The environment can
inject in the generation phase anytime it is its turn, and it is forced to do so after all switches have
been updated. This enforcement is ensured by the place p#updated as it loses a token after each
update, and after all updates are executed, the transition tr eady can no longer be fired, and inject
is the only option left for the environment.

We now prove that any run after firing of t inject
s always results in M (pq) = 1 for some q ∈ F ,

assuming that the controller follows the strategy σ . Once the Petri game enters the verification
phase by the environment firing the transition t inject

s , the place ptr ack
s gets a token. Now, the

environment chooses the only available transition ts , as all other transitions are unfireable because
they lack a token in their respective track place; this removes a token from pq0 and ptr ack

s and puts
a token into pq′ . After this the environment fires some transition t (s,sj) in the topology and a token

is put into ptr ack
sj

. Again, the environment is forced to match this by firing a transition tsj
; and so

on. Effectively, the DFA-component matches the trace that the environment simulates in a turn-
wise manner. Any path the environment can simulate this way is a trace in some intermediate
routing of ω, and we know all possible intermediate routings of ω satisfy the policy P . Therefore,
any simulation path chosen by the environment results in an accepting DFA-state. �

We now prove the other implication of Theorem 9.

Lemma 3. If σ is a winning strategy for the controller in the Petri game N (U) with the queryC (k)
then there exists a solution ω to the CUSPU , where |ω | = k .

Proof. Let σ be a winning strategy for the Petri Game N (U) with the query C (k). Whenever
pqueueinд = 1 then σ must fire one or more queue transitions and then the tconup transition.
Therefore, the strategy must be sequences of tqueue

s1
. . . t

queue
sj

. . . t
queue
sn

tconup repeated i times,
where 1 ≤ i ≤ k . This naturally produces a concurrent update sequenceω = X1 . . .Xk . In between
the queuing of batches, the environment updates the queued switches and has the option to fire the
inject transition at any moment. However, because σ is a winning strategy, no inject can violate
the policy. We now prove by contradiction that the derived concurrent update sequenceω satisfies
the policy P . Assume that ω does not satisfy P , then there must exist an execution of ω where its
prefix π = s1s2 . . . sk yields a routing Rπ

i s.t. t � L(P) for some t ∈ T (Rπ
i ,F). However, such a trace

cannot exist: in the Petri game, the environment is able to simulate the intermediate routing Rπ
i by

updating switches in correspondence with π . It can then inject a token and enter the verification
phase. If the produced trace t is an infinite trace then the network topology will deadlock due to
the punv

s places, and σ is not a winning strategy; if t is finite, then M (pq) � 1 for all q ∈ F because
the DFA in the Petri game recognises exactly P , but this also contradicts σ being a winning strategy.
Therefore, ω satisfies P .

Finally, |ω | ≤ k because σ |= C (k) which implies that Mi (pbatches) ≤ k for all markings Mi of
σ . Therefore, there are queued no more than k batches. �

5 EXPERIMENTAL EVALUATION

We implemented the translation approach and optimisation techniques in our tool Kaki. The tool
is coded in Kotlin and compiled to JVM. It uses the Petri game engine of TAPAAL [3, 9, 10] as its
backend for solving the Petri games. The source code of Kaki is publicly available on GitHub.1

1https://github.com/Ragusaen/Kaki.

Formal Aspects of Computing, Vol. 35, No. 3, Article 20. Publication date: September 2023.

https://github.com/Ragusaen/Kaki

20:18 N. S. Johansen et al.

Fig. 8. Kaki optimisation techniques comparison (y-axis is logarithmic) on extended benchmark.

We shall discuss the effect of our novel optimisation techniques and compare the performance of
our tool to FLIP [26] and Netstack [23] as well as the tool for sequential update synthesis from [4],
referred to as SEQ. We use the benchmark [5] of update synthesis problems from [4], based on 229
real-network topologies from the Internet Topology Zoo database [13]. The benchmark includes
four update synthesis problems for reachability and single waypointing for each topology, totalling
916 problem instances. As Kaki and FLIP support a richer set of policies, we further extend this
benchmark with additional policies for multiple waypointing, alternative waypointing, and condi-
tional enforcement, giving us 8,759 instances of the concurrent update synthesis problem.

All experiments (each using a single core) are conducted on a compute-cluster running Ubuntu
version 18.04.5 on an AMD Opteron(tm) Processor 6376 with a 1GB memory limit and 5 minute
timeout. A reproducibility package is available in [11] and it includes executable files to run Kaki,
pre-generated outputs that are used to produce the figures as well as the benchmark and related
scripts.

5.1 Results

To compare the Kaki optimisation techniques introduced in this paper, we include a baseline with-
out any optimisation techniques, its extension with only topological decomposition technique and
only collective update classes, and also the combination of both of them. Each method decides the
existence of a solution for the concurrent update synthesis problem and in the positive case it also
minimises the number of batches. Figure 8 shows a cactus plot of the results where the problem in-
stances on the x-axis are (for each method independently) sorted by the increasing synthesis time
shown on the y-axis. The experiments are run on the extended benchmark and we can observe
that both of the optimisation techniques provide a significant improvement over the baseline and
their combination is clearly beneficial as it solves 97% of the problems in the benchmark within
the 5 minute timeout.

In Figure 9 we also show a cactus plot for Kaki, FLIP, and Netstack on the benchmark of concur-
rent update synthesis problems that include reachability and waypointing only (because Netstack
cannot handle other network policies). As Kaki has to first generate the Petri game file and then
call the external TAPAAL engine for solving the Petri game, there is an initial overhead that

Formal Aspects of Computing, Vol. 35, No. 3, Article 20. Publication date: September 2023.

Kaki: Efficient Concurrent Update Synthesis for SDN 20:19

Fig. 9. Comparison with FLIP and Netstack (y-axis is logarithmic) on basic benchmark.

Table 1. Number of Solved Problems for Kaki and FLIP (Suboptimal and Tagging Refers to FLIP)

re
ac

ha
bi

lit
y

1-
w

p

2-
w

p

4-
w

p

8-
w

p

1-
al

t-
w

p
2-

al
t-

w
p

4-
al

t-
w

p
1-

co
nd

-e
nf

2-
co

nd
-e

nf
al

l

pe
rc

en
ta

ge

Total 856 916 916 844 647 916 916 916 916 916 8759 100.0%
Only Kaki 0 0 17 37 63 0 5 8 1 2 133 1.5%
Only FLIP 0 0 0 0 0 17 20 35 40 84 196 2.2%

Suboptimal 0 11 18 14 4 283 198 104 41 114 787 9.0%
Tagging 0 0 47 55 21 4 39 100 1 1 268 3.1%

implies that the single-purpose tool FLIP is faster on the smaller and easy-to-solve instances of the
problem that can be answered below 1 second. For the more difficult instances both Kaki and FLIP
obtain a similar performance and solve the most difficult instance in 8.3 and 5.1 seconds, respec-
tively. The most recent tool Netstack computes the optimal solutions similarly as Kaki, however,
at significantly slower running times and it times out for the more challenging instances of the
problems.

We also notice that FLIP does not always produce the minimal number of batches, which is
critical for practical applications because updating a switch can cause forwarding instability for
up to 0.4 seconds [21]. Hence, minimising the number of batches where switches can be updated
in parallel significantly decreases the forwarding vulnerability (some networks in the benchmark
have up to 700 switches). In fact, on the full benchmark of concurrent update synthesis problems,
FLIP synthesises a strictly larger number of batches in 787 instances, compared to the minimum
number of possible batches (that Kaki is guaranteed to find). The distribution of the solved prob-
lems for the different policies is shown in Table 1. Here we can also notice that FLIP uses the
less desirable tag-and-match update strategy in 268 problem instances, even though there exists
a concurrent update sequence as demonstrated by Kaki. In conclusion, Kaki has a slightly larger
overhead on easy-to-solve instances but scales almost as well as FLIP, however, FLIP in more than
12% of cases does not find the optimal update sequence or reverts to the less desirable two-phase
commit protocol.

Formal Aspects of Computing, Vol. 35, No. 3, Article 20. Publication date: September 2023.

20:20 N. S. Johansen et al.

Fig. 10. Total time taken for Kaki using splittable and nonsplittable forwarding.

Comparison with SEQ from [4] is more difficult as SEQ supports only reachability and single
waypointing and computes only sequential updates (single switch per batch). When we restrict the
benchmark to the subset of these policies and adapt our tool to produce sequential updates, we
observe that Kaki’s performance is in the worst case 0.06 seconds slower than SEQ when measuring
the verification time required by the TAPAAL engine. We remark that SEQ solved all problems in
under 0.55 seconds, except for two instances where it timed out, while Kaki was able to solve both
of them in under 0.1 second.

We further enlarged the extended benchmark with nondeterministic forwarding that models
splittable flows (using the Equal-Cost-MultiPath (ECMP) protocol [8] that divides a flow along all
shortest paths from an ingress to an egress switch). We observe that verifying the routing policies
in this modified benchmark implies only a negligible (3.4% on the median instance) overhead in
running time. The running times are summarised in Figure 10.

6 CONCLUSION

We presented Kaki, a tool for update synthesis that can deal with (i) concurrent updates, (ii) syn-
thesises solutions with a minimum number of batches, (iii) extends the existing approaches with
nondeterministic forwarding and can hence model splittable flows, and (iv) verifies arbitrary (regu-
lar) routing policies. It extends the state-of-the-art approaches with respect to generality but given
its efficient TAPAAL backend engine, it is also fast and provides more optimal solutions compared
to the competing tool FLIP and runs almost an order of magnitude faster than the tool Netstack.

Kaki’s performance is the result of its efficient translation in combination with optimisations
techniques that allow us to reduce the complexity of the problem while preserving the optimality
of its solutions. Kaki uses less than 1 second to solve 90% of all concurrent update synthesis
problems for real network topologies and hence provides a practical approach to concurrent
update synthesis.

ACKNOWLEDGMENTS

We thank Peter G. Jensen for his help with executing the experiments and Anders Mariegaard for
his assistance with setting up FLIP.

REFERENCES

[1] Zhiruo Cao, Zheng Wang, and Ellen W. Zegura. 2000. Performance of hashing-based schemes for internet load bal-
ancing. In Proceedings IEEE INFOCOM 2000, The Conference on Computer Communications, Nineteenth Annual Joint

Conference of the IEEE Computer and Communications Societies, Reaching the Promised Land of Communications, Tel

Aviv, Israel, March 26–30, 2000. IEEE Computer Society, 332–341. https://doi.org/10.1109/INFCOM.2000.832203
[2] N. Christesen, M. Glavind, S. Schmid, and J. Srba. 2020. Latte: Improving the latency of transiently consistent network

update schedules. In IFIP PERFORMANCE’20 (Performance Evaluation Review), Vol. 48, no. 3. ACM, 14–26.
[3] A. David, L. Jacobsen, M. Jacobsen, K. Y. Jørgensen, M. H. Møller, and J. Srba. 2012. TAPAAL 2.0: Integrated develop-

ment environment for timed-arc Petri nets. In Proceedings of the 18th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS’12) (LNCS), Vol. 7214. Springer-Verlag, 492–497.

Formal Aspects of Computing, Vol. 35, No. 3, Article 20. Publication date: September 2023.

https://doi.org/10.1109/INFCOM.2000.832203

Kaki: Efficient Concurrent Update Synthesis for SDN 20:21

[4] Martin Didriksen, Peter G. Jensen, Jonathan F. Jønler, Andrei-Ioan Katona, Sangey D. L. Lama, Frederik B. Lottrup,
Shahab Shajarat, and Jiří Srba. 2021. Automatic synthesis of transiently correct network updates via Petri games. In
Application and Theory of Petri Nets and Concurrency, Didier Buchs and Josep Carmona (Eds.). Springer International
Publishing, Cham, 118–137.

[5] Martin Didriksen, Peter G. Jensen, Jonathan F. Jønler, Andrei-Ioan Katona, Sangey D. L. Lama, Frederik B. Lottrup,
Shahab Shajarat, and Jiří Srba. 2021. Artefact for: Automatic Synthesis of Transiently Correct Network Updates via
Petri Games. (Feb. 2021). https://doi.org/10.5281/zenodo.4501982

[6] B. Finkbeiner, M. Gieseking, J. Hecking-Harbusch, and E.-R. Olderog. 2020. AdamMC: A model checker for Petri nets
with transits against flow-LTL. In CAV’20 (LNCS), Vol. 12225. Springer, 64–76.

[7] Klaus-Tycho Foerster, Stefan Schmid, and Stefano Vissicchio. 2019. Survey of consistent software-defined network
updates. IEEE Commun. Surv. Tutorials 21, 2 (2019), 1435–1461.

[8] Christian Hopps et al. 2000. Analysis of an Equal-cost Multi-path Algorithm. Technical Report. RFC 2992, November.
[9] J. F. Jensen, T. Nielsen, L. K. Oestergaard, and J. Srba. 2016. TAPAAL and reachability analysis of P/T nets. LNCS

Transactions on Petri Nets and Other Models of Concurrency (ToPNoC) 9930 (2016), 307–318. https://doi.org/10.1007/978-
3-662-53401-4_16

[10] P. G. Jensen, K. G. Larsen, and J. Srba. 2016. Real-time strategy synthesis for timed-arc Petri net games via discretiza-
tion. In Proceedings of the 23rd International SPIN Symposium on Model Checking of Software (SPIN’16) (LNCS), Vol. 9641.
Springer-Verlag, 129–146. https://doi.org/10.1007/978-3-319-32582-8_9

[11] N. S. Johansen, L. B. Kær, A. L. Madsen, K. Ø. Nielsen, J. Srba, and R. G. Tollund. 2022. Artefact for Kaki: Con-
current Update Synthesis for Regular Policies via Petri Games. (Oct. 2022). https://doi.org/10.5281/zenodo.6379555
https://doi.org/10.5281/zenodo.6379555.

[12] N. S. Johansen, L. B. Kaer, A. L. Madsen, K. O. Nielsen, J. Srba, and R. G. Tollund. 2022. Kaki: Concurrent update
synthesis for regular policies via Petri games. In Proceedings of the 17th International Conference on Integrated Formal

Methods (iFM’22) (LNCS), Vol. 13274. Springer-Verlag, 249–267.
[13] Simon Knight, Hung X. Nguyen, Nick Falkner, Rhys Alistair Bowden, and Matthew Roughan. 2011. The internet

topology zoo. IEEE J. Sel. Areas Commun. 29, 9 (2011), 1765–1775. https://doi.org/10.1109/JSAC.2011.111002
[14] K. G. Larsen, A. Mariegaard, S. Schmid, and J. Srba. 2022. AllSynth: Transiently correct network update synthesis

accounting for operator preferences. In Proceedings of the 16th International Symposium on Theoretical Aspects of

Software Engineering (TASE’22) (LNCS), Vol. 13299. Springer, 344–362.
[15] Alex X. Liu, Chad R. Meiners, and Eric Torng. 2010. TCAM razor: A systematic approach towards minimizing packet

classifiers in TCAMs. IEEE/ACM Trans. Netw. 18, 2 (2010), 490–500. https://doi.org/10.1145/1816262.1816274
[16] Arne Ludwig, Szymon Dudycz, Matthias Rost, and Stefan Schmid. 2016. Transiently secure network updates. ACM

SIGMETRICS Performance Evaluation Review 44, 1 (2016), 273–284.
[17] Arne Ludwig, Jan Marcinkowski, and Stefan Schmid. 2015. Scheduling loop-free network updates: It’s good to relax!.

In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián,

Spain, July 21–23, 2015, Chryssis Georgiou and Paul G. Spirakis (Eds.). ACM, 13–22. https://doi.org/10.1145/2767386.
2767412

[18] Arne Ludwig, Matthias Rost, Damien Foucard, and Stefan Schmid. 2014. Good network updates for bad packets: Way-
point enforcement beyond destination-based routing policies. In Proceedings of the 13th ACM Workshop on Hot Topics

in Networks, HotNets-XIII, Los Angeles, CA, USA, October 27–28, 2014, Ethan Katz-Bassett, John S. Heidemann, Brighten
Godfrey, and Anja Feldmann (Eds.). ACM, 15:1–15:7. https://doi.org/10.1145/2670518.2673873

[19] Jedidiah McClurg, Hossein Hojjat, Pavol Černý, and Nate Foster. 2015. Efficient synthesis of network updates. SIG-

PLAN Not. 50, 6 (June 2015), 196–207. https://doi.org/10.1145/2813885.2737980
[20] Tadao Murata. 1989. Petri nets: Properties, analysis and applications. Proc. IEEE 77, 4 (1989), 541–580.
[21] Peter Pereíni, Maciej Kuzniar, Marco Canini, and Dejan Kostić. 2014. ESPRES: Transparent SDN update scheduling.

In Proceedings of the Third Workshop on Hot Topics in Software Defined Networking (HotSDN’14). Association for Com-
puting Machinery, New York, NY, USA, 73–78. https://doi.org/10.1145/2620728.2620747

[22] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker. 2012. Abstractions for network
update. In ACM SIGCOMM 2012 Conference, Helsinki, Finland, Lars Eggert, Jörg Ott, Venkata N. Padmanabhan, and
George Varghese (Eds.). ACM, 323–334.

[23] Stefan Schmid, Bernhard Clemens Schrenk, and Álvaro Torralba. 2022. NetStack: A game approach to synthesizing
consistent network updates. In IFIP Networking Conference, IFIP Networking 2022, Catania, Italy, June 13–16, 2022. IEEE,
1–9.

[24] Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever. 2021. Snowcap: Synthesizing network-wide configuration up-
dates. In ACM SIGCOMM 2021 Conference, Virtual Event, USA, August 23–27, 2021, Fernando A. Kuipers and Matthew C.
Caesar (Eds.). ACM, 33–49. https://doi.org/10.1145/3452296.3472915

Formal Aspects of Computing, Vol. 35, No. 3, Article 20. Publication date: September 2023.

https://doi.org/10.5281/zenodo.4501982
https://doi.org/10.1007/978-3-662-53401-4_16
https://doi.org/10.1007/978-3-319-32582-8_9
https://doi.org/10.5281/zenodo.6379555
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1145/1816262.1816274
https://doi.org/10.1145/2767386.2767412
https://doi.org/10.1145/2670518.2673873
https://doi.org/10.1145/2813885.2737980
https://doi.org/10.1145/2620728.2620747
https://doi.org/10.1145/3452296.3472915

20:22 N. S. Johansen et al.

[25] Patrick Speicher, Marcel Steinmetz, Michael Backes, Jörg Hoffmann, and Robert Künnemann. 2018. Stackelberg plan-
ning: Towards effective leader-follower state space search. Proceedings of the AAAI Conference on Artificial Intelligence

32, 1 (2018).
[26] Stefano Vissicchio and Luca Cittadini. 2016. FLIP the (flow) table: Fast lightweight policy-preserving SDN updates.

In 35th Annual IEEE International Conference on Computer Communications, INFOCOM 2016, San Francisco, CA, USA,

April 10–14, 2016. IEEE, 1–9.

Received 22 October 2022; revised 4 April 2023; accepted 11 June 2023

Formal Aspects of Computing, Vol. 35, No. 3, Article 20. Publication date: September 2023.

