Emergency Load Shedding Strategy Based on Sensitivity Analysis of Relay Operation Margin against Cascading Events

Liu, Zhou; Chen, Zhe; Sun, Haishun Sun; Liu, Leo

Published in:

DOI (link to publication from Publisher):
10.1109/PowerCon.2012.6401450

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
https://doi.org/10.1109/PowerCon.2012.6401450

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
Emergency Load Shedding Strategy Based on Sensitivity Analysis of Relay Operation Margin against Cascading Events

Zhou Liu, Zhe Chen, Senior Member, IEEE, Haishun Sun, Chengxi Liu

Abstract: In order to prevent long term voltage instability and induced cascading events, a load shedding strategy based on the sensitivity of relay operation margin to load powers is discussed and proposed in this paper. The operation margin of critical impedance backup relay is defined to identify the runtime emergent states of related system component. Based on sensitivity analysis between the relay operation margin and power system state variables, an optimal load shedding strategy is applied to adjust the emergent states timely before the unwanted relay operation. Load dynamics is also taken into account to compensate load shedding amount calculation. And the multi-agent technology is applied for the whole strategy implementation. A test system is built in real time digital simulator (RTDS) and has demonstrated the effectiveness of the proposed strategy.

Keywords: voltage instability, load shedding, sensitivity analysis, relay operation margin, multi agent, RTDS

I. INTRODUCTION

In the post fault stage, assuming the power system has survived the short term period following the initial fault, the loads attempt to restore their pre fault powers though actions of load tap changer (LTC) or other auto regulation actions [1], when the increasing load demand is beyond the supply capability of generation and transmission system, the equilibrium between them will lose, which is referred as long term voltage instability. When transmission lines get overloaded and excitation of generators hit the limits (OEL), the backup relays on them may operate to trip the line or generator, which are regarded as unwanted relay operation. Such as adaptive backup relay (zone 3 relay) based on impedance principle. Take between the measured impedance and the set value of backup relay (zone 3 relay) based on impedance principle. The relay operation margin is defined here as the difference of the load angle, which are featured by overload of transmission line and over excitation of generators, should be adjusted to avoid this kind of blackouts.

In recent years, many special system protection schemes (SPS) based on wide area measurements (WAMS) has been proposed and designed to prevent voltage instability and subsequent cascading events. Such as adaptive backup relay system, LTC emergency control, reactive compensation, generator excitation emergency control, load shedding and etc [2-6]. Among the diverse countermeasures, load shedding is regarded as the last and fast resort when there is no other alternative to adjust the system emergent states and stop the progress approaching voltage collapse [4] [7] [8].

In this paper, a sensitivity based load shedding strategy is proposed in order to adjust the system emergent states and prevent unwanted relay operation and voltage instability during load restoration. The key issue of load shedding is to determine where to shed the load and how much should be shedding. A method based on sensitivity of relay operation margin to load power of the system is presented to determine the optimal load shedding strategy with reasonable shedding location and less shedding amount. The steady and transient characteristics of load model are considered in load shedding strategy to ensure the system operating in a secure scope finally. The whole strategy is implemented by multi-agent technology, and demonstrated in a test system in RTDS.

The rest of the paper is organized as follows. The concepts and deduction of relay operation margin and related sensitivity will be presented in Section II briefly. Then the sensitivity based load shedding strategy will be described in Section III. In Section IV, validation of the strategy will be demonstrated based on the test system simulation in RTDS. Finally, the conclusion will be made in Section V.

II. SENSITIVITY OF RELAY OPERATION MARGIN TO POWER SYSTEM STATE VARIABLES

A. Definition of Relay operation margin

The relay operation margin is defined here as the difference between the measured impedance and the set value of backup relay (zone 3 relay) based on impedance principle. Take consideration of the characteristics of transmission line backup impedance relay in the X-R plane. As shown in Fig. 1, the circle area represents the operation area of the relay. Z_{Tset} represents the set value of the relay which is along the circle in the plane. Z_{aij} is the measured impedance by the backup relay. At current load angle, the relay operation margin can be expressed as:

$$M_{Tij} = Z_{aij} - Z_{Tset_{ij}} \quad \text{(1)}$$

where

$$Z_{Tset_{ij}} = Z_{Tset} \cos(\Delta \phi) \quad \text{(2)}$$

$$\Delta \phi = \phi_{line} - \varphi_{ij} \quad \text{(3)}$$
The subscript i and j represent the bus numbers of line.

\(\phi_{\text{line}}, \phi_{ij} \) are line impedance angle and load angle respectively.

The set value of line backup relay is defined as [9]

\[
Z_{T\text{set}} = \frac{V_{\text{min}}}{S_{\text{max}} \cos (\phi_{\text{line}} - \phi_{\text{max}})}
\]

(4)

Where \(S_{\text{max}}, V_{\text{min}}, \phi_{\text{line}}, \phi_{\text{max}} \) represent the load capacity limit of the line, low voltage limit of the bus, impedance angle of the line and maximum load angle allowed respectively.

While the measured impedances \(Z_{aij} \) by the backup relay can be calculated by the terminal buses voltage of the line as [10]

\[
Z_{aij} = \sqrt{(V_i - V_j \cos \theta_{ij})^2 + (V_j \sin \theta_{ij})^2}
\]

(5)

Where \(Z_{ij}, V_i, V_j, \theta_{ij} \) represent the impedance, terminal buses voltage magnitude and phase angle of the line respectively. By equation (4) and (5) the relay operation margin can be related to the operation state of the line power flow.

On the other hand, considering the backup relay of generator based on impedance principle, similar definition of relay operation margin can be defined and the margin can be related to the system state variables as well. The characteristics of generator backup relay in X-R plane are shown in Fig. 2.

Fig. 1 Characteristics of transmission line backup impedance relay

Under normal system operation states, the measured apparent impedance \(Z'_{aij} \) should be located outside the circle area and the relay operation margin \(M_{Tij} \) is positive as shown in Fig. 1. When the measured impedance \(Z_{aij} \) enters into the circle area, the backup relay would be initiated to trip the line within a preset delay. At this time, the margin \(M_{Tij} \) is negative. If the negative margin is caused by the post fault load restoration dynamics, the trip of line is not expected to the operation state of the line power flow.

While the measured impedances \(Z_{aij} \) by the backup relay can be calculated by the terminal buses voltage of the line as [10]

\[
Z_{aij} = \sqrt{(V_i - V_j \cos \theta_{ij})^2 + (V_j \sin \theta_{ij})^2}
\]

(5)

Where \(Z_{ij}, V_i, V_j, \theta_{ij} \) represent the impedance, terminal buses voltage magnitude and phase angle of the line respectively. By equation (4) and (5) the relay operation margin can be related to the operation state of the line power flow.

On the other hand, considering the backup relay of generator based on impedance principle, similar definition of relay operation margin can be defined and the margin can be related to the system state variables as well. The characteristics of generator backup relay in X-R plane are shown in Fig. 2.

Fig. 2 Characteristics of generator backup impedance relay

The arc curve in the X-R plane represents the generator backup relay setting which can be transferred from the capacity capability curve of generator [11] and given by

\[
Z_{\text{set}} = Z_{\text{oel}} = \frac{X_o V_{\min}}{\sqrt{E_{\text{fdmax}}^2 + V_{\min}^2 - 2 V_{\min} E_{\text{fdmax}} \cos \delta_s}}
\]

(6)

where \(Z_{\text{set}} \) is the backup relay settings on generator, \(E_{\text{fdmax}} \) is the maximum excitation voltage, \(E_{\text{fdmax}} = X_{o\text{ad}} E_{\text{fdmax}} \), \(X_o \) is synchronous impedance of generator, \(\delta_s \) is the load angle of generator when active power of generator \(P_{\text{Gsp}} \), low limit voltage \(V_{\min} \) and \(E_{\text{fdmax}} \) are defined.

The measured impedance \(Z_{aij} \) is given by (7) and the relay operation margin is defined by (8). The subscript i denotes the number of the generator.

\[
Z_{ai} = \frac{X_o V_i}{\sqrt{E_{\text{fd}}^2 + V_i^2 - 2 V_i E_{\text{fd}} \cos \delta_i}}
\]

(7)

\[
M_{Gi} = Z_{ai} - Z_{\text{set}}
\]

(8)

When the measured margin is negative, it means that the generator is probably in an overexcited state. If this is the case, the trip of generator by the backup relay might deteriorate the system operation.

B. Sensitivity of relay operation margin to bus voltages

By definition, the relay operation margin can be used to identify the system emergent states. Since the margin is related to the power flow state of system, it is possible to obtain secure positive margin by adjusting the power flow. Following this idea, the load shedding strategy (LS) under emergent state, such as the post fault process with long term voltage instability due to the slow load restoration dynamics, can be formed based on sensitivity analysis of the relay operation margin to the bus load.

From equation (1)-(8), the sensitivity of relay operation margin related to state variables can be defined as follow [1]

\[
\text{Sen}_{xj} = \frac{\Delta M}{\Delta u_j} \quad j = 1, 2, ..., n
\]

(9)

where \(\Delta u_j \) is the adjusting amount of state variables at bus j, including \(\Delta V_i, \Delta \theta_i, \Delta \delta_i, \Delta \phi_i \) and \(\Delta S_j; \Delta M_x \) is the operation margin increment of critical relay x after adjusting state variables, and n is the number of controllable buses.

By linearization method, the sensitivity of transmission line relay operation margin to bus voltages can be given by (10) and (11) based on line power flow of the current operation state, where \(C_{ij} \) is the sensitivity vector including the sensitivities of the relay margin \(M_{Tij} \) to related bus voltages \(\theta_i, \theta_j, V_i, V_j \).

\[
\Delta M_{Tij} = C_{Tij} \Delta \theta_i + C_{Tij} \Delta \theta_j + C_{Tij} \Delta V_i + C_{Tij} \Delta V_j
\]

(10)

\[
C_{ij} = \begin{bmatrix} C_{ij} \\
\frac{\partial M_{Tij}}{\partial \theta_i} & \frac{\partial M_{Tij}}{\partial \theta_j} & \frac{\partial M_{Tij}}{\partial V_i} & \frac{\partial M_{Tij}}{\partial V_j} \end{bmatrix}
\]

(11)

Similarly, sensitivity analysis can be taken on generator relay operation margin as given by (12) and (13), where \(C_{Gi} \) is the sensitivity vector including the sensitivities of \(M_{Gi} \) to the related variables \(V_i, I_{fdi}, \delta_i \) at a generator bus i.

\[
\Delta M_{Gi} = C_{Gvi} \Delta V_i + C_{Gfdi} \Delta I_{fdi} + C_{Gsi} \Delta \delta_i
\]

(12)

\[
C_{Gi} = \begin{bmatrix} C_{Gvi} \\
\frac{\partial M_{Gi}}{\partial V_i} & \frac{\partial M_{Gi}}{\partial I_{fdi}} & \frac{\partial M_{Gi}}{\partial \delta_i} \end{bmatrix}
\]

(13)

Taking all the relays of concern into consideration, the sensitivity of relay operation margin can be expressed in matrix form as (14) and (15).

\[
\Delta M_T = C_T \begin{bmatrix} \Delta \theta \\
\Delta V \end{bmatrix} = \begin{bmatrix} C_T & C_{TV} \end{bmatrix} \begin{bmatrix} \Delta \theta \\
\Delta V \end{bmatrix}
\]

(14)
ΔMₘ = Cₜ [ΔV]

where Cₜᵣ and Cₜᵥ are submatrices of sensitivity matrix Cₜ which is composed by sensitivity vector Cₜᵣⱼ; Cₜᵥᵣ, Cₜᵥᵢ, Cₜᵥₒ are submatrices of sensitivity matrix Cₜ composed by sensitivity vector Cₜᵣ.

Under over excitation limit condition, the generator active and reactive power output can be calculated by

Pᵢ = \frac{VᵢEᵢmax \sin δ_i}{Xₛᵢ}
Qᵢ = \frac{VᵢEᵢmax \cos δ_i - Vᵢ^2}{Xₛᵢ}

Supposing the active power Pᵢ is constant from (16), the power angle δᵢ is a function of Vᵢ when the generator i hits the overexcited limit. Also from (17), the Qᵢ will change with Vᵢ, so the type of bus i can be regarded as so called P node with constant P and Iᵢ [12]. The equation (12) can be accordingly rewritten to (18) at this situation and the sensitivity Cᵥᵢ is calculated by (19).

\[\Delta M_{Gİ} = (C_{G𝑉I} + C_{G𝛿ᵢ} \cdot C_{G𝛿villa})DΔV_I = C_{G𝑉I} \Delta V_I \]
\[C_{G𝑉I} = C_{G𝑉I} + C_{G𝛿ᵢ} \cdot C_{G𝛿villa} = \frac{∂M_{G𝑖}}{∂V_I} + \frac{∂M_{G𝑖}}{∂δ_i} \cdot \frac{∂δ_i}{∂V_I} \]

C. Sensitivity of relay operation margin to bus powers

The bus voltages are related to bus powers by the system load flow equations, implying the sensitivity of relay margin to bus powers can be derived from (20) and (21) at current operation point, where Hᵣₜ and Hᵣₒ are the submatrices of H; Hᵣᵢ and Hᵣₒ are submatrices of H; ΔP and ΔQ are the variations of active and reactive powers; Jᵣᵢ and Jᵣₒ and Jᵣₜ are submatrices of the Jacobian matrix J; supposing that the bus power flowing into the bus is positive.

\[\Delta M_T = H_T [\Delta P / \Delta Q] = [Hᵣₜ Hᵣₒ] [\Delta P / \Delta Q] \]
\[\Delta M_G = H_G [\Delta P / \Delta Q] = [Hᵣᵢ Hᵣₒ] [\Delta P / \Delta Q] \]

where

\[H_T = CₜJ⁻¹ \]
\[H_G = CₘJ⁻¹ \]

\[[\Delta Q] = J[Δθ / ΔV] = [J₁₀ J₁ᵦ J₁ᵢv] [Δθ / ΔV] = \begin{bmatrix} \frac{∂ΔP}{∂θ} & \frac{∂ΔP}{∂Q} \\ \frac{∂ΔQ}{∂θ} & \frac{∂ΔQ}{∂Q} \end{bmatrix} [Δθ / ΔV] \]

III. EMERGENCY LOAD SHEDDING STRATEGY

A. Sensitivity based LS strategy

When the emergency load shedding scheme is considered, supposing the load powers are with constant power factor, then the sensitivity relationship between the critical relay margin and load powers can be given by (28), where ΔMₓ is the margin increment of critical relay x, Sᵢⱼ and ∆Sᵢⱼ represent the apparent load power and load shedding amount at load bus j, Hᵢⱼ is the sensitivity of operation margin of relay x to apparent load powers.

\[ΔMₓ = \sum_j \left(\frac{HᵢⱼP_j + HᵢⱼQ_j}{Sᵢⱼ} \Delta Sᵢⱼ \right) = \sum_j HᵢⱼΔSᵢⱼ \]
\(\alpha_s, \beta_s\) are the steady state ones; \(T_P, T_Q\) are the load restoration time constant respectively. In steady state, the voltage characteristics of the load model are given by (37) and (38):

\[
P_{Ls} = P_{L0} \left(\frac{V}{V_0}\right)^{\alpha_s} \tag{37}
\]

\[
Q_{Ls} = Q_{L0} \left(\frac{V}{V_0}\right)^{\beta_s} \tag{38}
\]

Assuming \(\alpha_s = \beta_s = 0\), \(\alpha_s = \beta_s = 2\) and \(T_P = T_Q = 100s\) in this paper, before the LS on this kind of loads, the system is already in a voltage instability situation due to LTC actions; all the sensitivity based information is obtained based on current power flow state which is not in a steady state. Especially around the time of LS, a big voltage variation is experienced on the load bus, the load will mainly respond with its transient characteristics (33) (34) before and just after LS. So both shedding amount and expected relay margin increment are calculated by the load powers with transient characteristics when backup relay is triggered. Also according to (33) (34), there will be an inevitable load power increment before and just after LS,

\[
\Delta P_{L\text{it}}^\text{inc} = D_{pi} \ast (V_{\min} - V_{\text{it}}) = D_{pi} \Delta V
\tag{39}
\]

where

\[
D_{pi} = \frac{\partial P_{Li}}{\partial V}
\tag{40}
\]

Then the load amount just after LS can be given by (41). \(P_{Li}^\text{lt}\) is the load amount with transient characteristics before LS. \(\Delta \alpha_s \) is the shedding amount given by former sensitivity based calculation.

\[
P_{Li} = P_{Li}^\text{lt} + \Delta P_{Li}^\text{res} + \Delta P_{Li}^\text{inc}
\tag{41}
\]

If \(\Delta M^*_\alpha\) exceeds \(\Delta M^*\alpha\) at this time, then LS strategy will stop, but after LS, the load will start to reach its steady state characteristics (37) (38) in a long run, which may induce \(\Delta M^*\alpha\) smaller than \(\Delta M^*\alpha\) again, even cause \(M^*_\alpha\) become negative again to trigger the backup relay. In order to prevent this unwanted relay operation successfully at one time, the restoration amount due to load restoration to steady state characteristics should be added into shedding amount on this load in advance. The restoration amount (\(\Delta P_{Li}^\text{res}\) for an example) can be calculated by (42), then total shedding amount (\(\Delta P_{Li}^\text{tot}\)) on load \(i\) can be given by (43). \(P_{L0}\) is steady state load power after LS, which will not changes with voltage variation due to \(\alpha_s = \beta_s = 0\), and is given by (44).

\[
\Delta P_{Li}^\text{res} = P_{L0}' - P_{Li}'
\tag{42}
\]

\[
\Delta P_{Li}^\text{tot} = \Delta P_{Li}^\text{res} + P_{Li}'
\tag{43}
\]

where

\[
P_{L0}' = P_{L0} + \Delta P_{Li}^\text{res}
\tag{44}
\]

Similarly, considering constant load power factor, the apparent load shedding amount can be also defined by (45).

\[
\Delta S_{Li}^\text{tot} = \Delta S_{Li}^\text{res} + \Delta S_{Li}^\text{res}
\tag{45}
\]

C. The structure of control strategy

According to the content discussed above, the procedure of the proposed LS strategy can be depicted by Fig. 3.

In order to implement the proposed LS, some functions in Fig. 3 will be fulfilled by control center, such as the integrated information processing, the sensitivity based strategy defining and etc. But other functions in this whole protection strategy including the emergent state detection, data collection from WAMS, and LS execution, are finished by distributed relays and controllers or some groups of them. Owing to good environment for cooperation and communication, multi agent system (MAS) based structure is applied to implement the whole strategy, which is shown in Fig. 4 and already discussed in [11].

IV. SIMULATION AND VERIFICATION

A. Test system in RTDS and study case

A 10-bus test system [15] shown in Fig.4 is selected as the test example and modeled in RTDS with details as follow:

Bus 1 is designated as slack bus. Two generators, G2 and G3 are connected to bus 2 and bus 3 with OEL model [15]. Two loads L1 and L2 are connected to bus 8 and bus 11 respectively. The exponential model described above in section III is applied to express the load restoration dynamics which had been depicted with the parameters in Table I.
Under load tap changer controllers (LTC) are modeled with transformers T4, T5 and T6. As for the cluster connected transformers, such as T5 and T6, the faster upstream tapping will have the priority to be chosen as control output \([1]\). The LTC parameters are shown in Table II. They will be blocked when the LS strategy is initiated.

Table II LTC DATA

<table>
<thead>
<tr>
<th>LTC</th>
<th>Delay on first step (s)</th>
<th>Delay on next step (s)</th>
<th>(\Delta r) (pu)</th>
<th>(r) (pu)</th>
<th>([r_{min}, r_{max}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>20</td>
<td>6</td>
<td>0.01</td>
<td>[0.8, 1.09]</td>
<td></td>
</tr>
<tr>
<td>T5</td>
<td>20</td>
<td>6</td>
<td>0.01</td>
<td>[0.8, 1.09]</td>
<td></td>
</tr>
<tr>
<td>T6</td>
<td>40</td>
<td>9</td>
<td>0.01</td>
<td>[0.9, 1.19]</td>
<td></td>
</tr>
</tbody>
</table>

All the backup relays of the generators and transmission lines are based on measured impedance and they are modeled with the standard distance relay model embedded in RTDS. The generators' OEL curves are modeled in R-X plot with the backup relay settings, which are used as criterion to initiate the alarm to CC. This new setting applies \(I_{f_{max}} = I_{f_{max}} = 2.625\) pu and \(V_{\text{ref}} = 0.9\) pu. The relay settings on transmission lines are defined according to initial power flow condition.

A three phase short circuit fault is applied on line TL2, the relay 10 trips the line immediately to clear the fault within 0.1s. Before this fault occurred, the system states are stressed by the two transmission lines outages (TL5, TL6 between bus 6 and bus 7). In the post fault stage, the system survives in the transient period. But with the load restoring, the network cannot support the increasing load demand. The voltage collapse progress can be observed as in Fig. 5 with two situations. The backup relays on TL3 and TL4 are triggered at about 160s to cut these two lines, which is regarded as unwanted relay operations. Then the network splits into two parts Area 1 and Area 2, the Area 1 survives, while the Area 2 including all the loads and one generator G3 collapses even faster due to bigger unbalance between generation and load.

Table III SYSTEM CONDITIONS UNDER EMERGENT STATE

<table>
<thead>
<tr>
<th>M3</th>
<th>M5</th>
<th>M67</th>
<th>(\Delta M_{\text{exp}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-1.2E-4)</td>
<td>(-8.62E-3)</td>
<td>(-2.828E-3)</td>
<td>(15.67E-3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(C_{G01})</th>
<th>(H_{G01})</th>
<th>(H_{G01})</th>
<th>(H_{G11})</th>
<th>(H_{G11})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-0.0677)</td>
<td>(0.0677)</td>
<td>(-0.1046)</td>
<td>(0.1294)</td>
<td></td>
</tr>
<tr>
<td>(H_{G08})</td>
<td>(H_{G08})</td>
<td>(H_{G11})</td>
<td>(H_{G11})</td>
<td></td>
</tr>
<tr>
<td>(4.1E-3)</td>
<td>(5.9E-3)</td>
<td>(4.1E-3)</td>
<td>(4.4E-3)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(C_{G03})</th>
<th>(H_{G03})</th>
<th>(H_{G03})</th>
<th>(H_{G11})</th>
<th>(H_{G11})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.0912)</td>
<td>(2.3E-3)</td>
<td>(3.1E-3)</td>
<td>(-1.7E-3)</td>
<td>(-1.9E-3)</td>
</tr>
</tbody>
</table>

Supposing \(M_{ij}^{\text{exp}} = 7.05E-3\) at current load angle to ensure that the loadability margin is no less than the required 5%, then \(\Delta M_{ij}^{\text{exp}} = M_{ij} - M_{ij} = 15.67E-3\), namely at this moment, the expected relay operation margin increment is to recover the most emergent situation \(M_{ij}\). Thereafter the sensitivity based load shedding amount can be calculated, considering the load restoration characteristics, as shown in Table IV.

From Table IV, the optimal method is better for minimizing the shedding amount when considering the same expected relay operation margin increment. The simulation results are shown in Fig. 6 and Fig. 7.

Table IV LOAD SHEDDING STRATEGY

Same percentage load shedding

<table>
<thead>
<tr>
<th>(a_{g})</th>
<th>(a_{s})</th>
<th>(\Delta P_{ij}(MW))</th>
<th>(\Delta S_{ij}^{\text{exp}}(MVA))</th>
<th>(\Delta S_{ij}^{\text{exp}}(MVArad))</th>
<th>(\Delta S_{ij}^{\text{fin}}(MVArad))</th>
<th>(\Delta S_{ij}^{\text{fin}}(MVA))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-14.53)%</td>
<td>342</td>
<td>339.28</td>
<td>609.87</td>
<td>642.9</td>
<td>951.87</td>
<td>982.18</td>
</tr>
</tbody>
</table>

Optimal load shedding

<table>
<thead>
<tr>
<th>(a_{g})</th>
<th>(a_{s})</th>
<th>(\Delta P_{ij}(MW))</th>
<th>(\Delta S_{ij}^{\text{exp}}(MVA))</th>
<th>(\Delta S_{ij}^{\text{exp}}(MVArad))</th>
<th>(\Delta S_{ij}^{\text{fin}}(MVArad))</th>
<th>(\Delta S_{ij}^{\text{fin}}(MVA))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(-21.65)%</td>
<td>505.53</td>
<td>609.87</td>
<td>642.9</td>
<td>609.87</td>
<td>1148.43</td>
</tr>
</tbody>
</table>
When the loads start to restore, the unwanted backup relay system separates and collapses immediately, which are shown sooner after the LS control as shown in Fig. 7. Relays on G2, G3 and TL3 are moved out of the backup setting agents, the system voltage of all buses recovers to a normal value. It can be seen that after the LS execution of distributed load shedding, the system voltage of all buses recovers to a normal value. Also, load dynamic characteristics have been considered in the calculation of load shedding amount to ensure the secure margin when loads reach their steady-state characteristics. The case study and simulation results have successfully demonstrated the effectiveness of the proposed sensitivity based emergency LS strategy.

V. CONCLUSION

In this paper, with the targets to prevent the unwanted relay operations and post fault voltage instability due to long term load restoration, an optimal load shedding strategy based on sensitivity analysis is proposed to adjust the emergent system states immediately. The excitation capability (OEL) of generator and the power flow constraints of transmission line are considered as the set values of the backup impedance relays to identify the emergent voltage states. The sensitivity based algorithm is based on runtime power flow states to select the reasonable load shedding locations and define shedding amounts optimally, which is used to adjust the negative operation margins in the critical relays to expected positive values. Also, load dynamic characteristics have been considered in the calculation of load shedding amount to ensure the secure margin when loads reach their steady-state characteristics. The case study and simulation results have successfully demonstrated the effectiveness of the proposed sensitivity based emergency LS strategy.

VI. REFERENCES