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This paper considers the control problem of a class of uncertain switched systems defined on
polyhedral sets known as piecewise linear systems where, instead of the conventional Carathéodory
solutions, Filippov solutions are studied. In other words, in contrast to the previous studies, solutions
with infinite switching in finite time along the facets and on faces of arbitrary dimensions are also taken
into account. Firstly, established upon previous studies, a set of linear matrix inequalities are brought
forward which determines the asymptotic stability of piecewise linear systems with Filippov solutions.
Subsequently, bilinear matrix inequality conditions for synthesizing a robust controller with a
guaranteed H., performance are presented. Furthermore, these results has been generalized to the
case of piecewise affine systems. Finally, a V-K iteration algorithm is proposed to deal with the
aforementioned bilinear matrix inequalities. The validity of the proposed method is verified through

the analysis of two simulation examples.

© 2012 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Piecewise linear (PWL) systems are an important class of hybrid
systems, which have received tremendous attention in open litera-
ture [1-13]. By a PWL system, we understand a family of linear
systems defined on polyhedral sets such that the dynamics inside a
polytope is governed by a linear dynamic equation. The union of
these polyhedral sets forms the state-space. We say that a “switch”
has occurred whenever a trajectory passes to an adjacent polytope.

The stability analysis of PWL systems is an intricate assign-
ment. It is established that even if all the subsystems are stable,
the overall system may possess divergent trajectories [11].
Furthermore, the behavior of solutions along the facets may
engender unstable trajectories where transitions are, generally
speaking, multi-valued. That is, a PWL system with stable
Carathéodory solutions may possess divergent Filippov solutions
such that the overall system is unstable (see Example 5 in [8]).
Hence, the stability of Carathédory solutions does not imply the
stability of the overall PWL system.

The stability problem of PWL systems has been addressed by a
number of researchers. An efficacious contribution was made by
Johansson and Rantzer [4]. The authors proposed a number of
linear matrix inequality (LMI) feasibility tests to investigate the
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E-mail addresses: mrezaahmadi@ieee.org (M. Ahmadi), mojallali@gmail.com,
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exponential stability of a given PWL system by introducing the
concept of piecewise quadratic Lyapunov functions. Following the
same trend, [6] extended the results to the case of uncertain PWL
systems. The authors also brought forward an H,, controller synth-
esis scheme for uncertain PWL systems based on a set of LMI
conditions. In [14], the stability issue of uncertain PWL systems with
time-delay has been treated. The ultimate boundedness property of
large-scale arrays consisting of piecewise affine subsystems linearly
interconnected through channels with delays has also been inves-
tigated in [15].

However, the solutions considered implicitly in the mentioned
contributions are defined in the sense of Carathéodory. This
means that a solution of a PWL system is the concatenation of
classical solutions on the facets of polyhedral sets. In other words,
sliding phenomena or solutions with infinite switching in finite
time are inevitably eliminated from the analyses. In this study, in
lieu of the Carathéodory solutions, the more universal Filippov
solutions [16] are considered and analyzed. This is motivated by
recent trends in discontinuous control systems [17] and the
renowned sliding mode control techniques [18]. Our approach
has its roots in the results reported by [8], wherein the authors
applied the theory of differential inclusions to derive stability
theorems for switched systems with Filippov solutions. In this
regard, we propose a methodology to synthesize robust control-
lers with H,, performance. The results reported in this paper are
formulated as a set of LMI or bilinear matrix inequality (BMI)
conditions which can be formulated into a semi-definite pro-
gramming problem. It is also shown that with slight modifications

0019-0578/$ - see front matter © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
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the same results can be utilized to analyze piecewise affine (PWA)
systems.

The framework of this paper is organized as follows. A brief
introduction to polyhedral sets and the notations used in this
paper are presented in the subsequent section. The stability
problem of PWL systems is addressed in Section 3. The H.
Controller synthesis methodology and a V-K iteration algorithm to
deal with the BMI conditions are described in Section 4. The
accuracy of the proposed method is evaluated by two simulation
examples in Section 5. The paper ends with conclusions in Section 6.

2. Notations and definitions

A polyhedral set is defined by finitely many linear inequalities
{xe R"|Ex:=e} with EeR*" and ee R’ where the notation -
signifies the component-wise inequality. This definition connotes
that a polyhedra is the intersection of a finite number of half-
spaces. A polytope is a bounded polyhedral set or equivalently the
convex hull of finitely many points. Suppose X be a polyhedral set
and assume H be a halfspace such that X c H. Let X* =X NH be
non-empty. Then, the polyhedron XF is called a (proper) face of X.
Obviously, the improper faces of X are the subsets ¢ and X. Faces
of dimension dim(X)—1 are called facets [19].

In this study, we will consider a class of switched systems with
Filippov solutions S = {X,U,V,X,I,F,G}, where X c R" is a polyhe-
dral set representing the state space, X ={Xj};c; is the set
containing the polytopes in X with index set I={1,2,...,nx}
(note that |J;_X; = X). Each polytope X; is characterized by the
set {x e X|E;x:=0}. U is the control space and V is the disturbance
space, which are both subsets of Euclidean spaces. In addition,
each function v(t) belongs to the class of square integrable
functions L,[0,00); i.e., the class of functions for which

o0 1/2
Ivll, = ( / v v(t) dt>
0

is well-defined and finite. F = {f;};.; and G = {g;}; . are families of
linear functions associated with the system states x and outputs y.
Each f; consists of six elements (A;,B;,D;; AA;,AB;,AD;) and each g; is
composed of four elements (C;,Gi;AC;,AG;). Furthermore,
fi:YixUx V>R xu,v)—(ze R"|z= (A +AA)x+(B;i+ AB)u+ (D;+
ADyv} and g;:Y; x U->R™; (x,u)—{ze R"|z=(Ci+AC)x+ (G;i+
AG))u} where Y; is an open neighborhood of X;. The set of matrices
(A;,B;,C;,D;,G;) are defined over the polytope X; and (AA;,AB;, AG;,
AD;,AG;) encompass the corresponding uncertainty terms. In
order to derive the stability and control results, we assume that
the upper bound of uncertainties are known apriori; i.e.,

AATAA; < AT A;
ABIAB; < BI'B;
ACTAG <Clc
ADIAD; < DI'D;

AGIAG; <GlG; 1)

in which (A;,5;,C;,D;,G;) are any set of constant matrices with the
same dimension as (A;,B;,C;,D;,G;) satisfying (1).
The dynamics of the system can be described by

X(t) € co(F(x(t),u(t),v(t))) (2)

() € Gx(D),u(t)) 3)

where co(-) denotes the convex hull, the set valued maps [20] F
and G are defined as

FiXxUxV-2Yxuv)e{ze R z=fixuw) if xeX;) (4)

G: X x U2 () (z e R™|z=g;(x,u) if x e X;} (5)

where the notation 2% means the power set or the set of all
subsets of A. Denote by i:{(i,j)eIZ|XiﬂXj;é(Z),i;éj} the set of
index pairs which determines the polytopes with non-empty
intersections. We now assume that each polytope is the intersec-
tion of a finite set of supporting halfspaces. By N; denote the
normal vector pertained to the hyperplane supporting both X; and
X;. Consequently, each boundary can be characterized as

XiNXj={xeX|Njx~0, Hyx:=0, (i,j) eI} (6)

where ~ represent the component-wise equality and the inequality
Hjx =0 confines the hyperplane to the interested region. Through-
out the paper, the matrix inequalities should be understood in the
sense of positive definiteness; i.e, A>B (A>B) means A-B is
positive definite (semi-positive definite). In case of matrix inequal-
ities, I denotes the unity matrix (the size of I can be inferred from the
context) and should be distinguished from the index set I In
matrices, « in place of a matrix entry a,,, means that ap, =al,,.

A Filippov solution to (2) is an absolutely continuous function
[0,T)- X;t—¢(t) (T>0) which solves the following Cauchy
problem

b(t) € cO(F (PO, u) (1) ae, GO)=d, )

In the sequel, it is assumed that at any interior point x € X’ there
exists a Filippov solution to system (1). This can be evidenced by
Proposition 5 in [8]. For more information pertaining to the
solutions and their existence or uniqueness properties, the inter-
ested reader is referred to the expository review [21] and the
didactic book [16].

3. Stability of PWL systems with Filippov Solutions

In [8], a stability theorem for switched systems defined on
polyhedral sets in the context of Filippov solutions is proposed. In
what follows, we reformulate this latter stability theorem in terms
of matrix inequalities which provides computationally doable
means to inspect the robust stability of uncertain switched systems.
These matrix inequalities would be later utilized to devise a
stabilizing controller with H,, disturbance rejection performance.

Lemma 1. Consider the following autonomous PWL system
X € co(F(x)) 8)

with AA; ~ 0. If there exists quadratic forms ®;(x) =x"Q;x, ¥;(x) =
XT(ATQi+QiAnx and W(x) = X" (A Q; + QiA)x satisfying

@i(x)>0 forall xeX\{0} )
Yix)<0 forall xeX\{0} (10)
foralliel, and

Yix)<0 forall xeX;nX;\(0) m)
Qi(x)=Dj(x) forall xeX;nX; (12)

for all (i,j) eI. Then, the equilibrium point 0 of (8) is asymptotically
stable.

Remark 1. The inclusions x € X;\{0} and x € X; N X; are analogous
to {x e X|Ex>>0} and (6), respectively.

It is worth noting that Conditions (9)-(10) are concerned with
the positivity of a quadratic form over a polytope; whereas, (11) is
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about positivity over a hyperplane. Condition (12) asserts that the
candidate Lyapunov functions should be continuous (along the
facets). A well known LMI formulation of conditions (9), (10) and
(12) was proposed in [4] which is described next. Let us construct
a set of matrices F;, i eI such that Fix=Fjx for all xe X; nX; and
(ij)el. Then, it follows that the piecewise linear candidate
Lyapunov functions can be formulated as

V) =xTFIMFx=x"Qix if xeX; 13)

where the free parameters of Lyapunov functions are concen-
trated in the symmetric matrix M. In the following lemma we
generalize the results proposed by [4] to PWL systems with the
more general Filippov solutions.

Lemma 2. Consider the PWL system (8) with Fillipov solutions, and
the family of piecewise quadratic Lyapunov functions V;(x)=x"
Qix=x"FIMFx, i L. If there exist a set of symmetric matrices Q;,
three sets of symmetric matrices U;, S;, Ty with non-negative entries,
and matrices Wy of appropriate dimensions with iel and Gj)el,
such that the following LMI problem is feasible

Q;—ElSEi>0 (14)

ATQ;+ QA +ETUE; <0 (15)
foralliel, and
Al Qi +QiAj+WNf+NyW] + HiTyHy < 0 (16)

for all (i,j) e I. Then, the equilibrium point 0 of (8) is asymptotically
stable.

Proof. Matrix inequalities (14) and (15) are the same as Eq. (11)
in Theorem 1 in [4] which satisfy (9)-(10). The continuity of the
Lyapunov functions is also ensured from the assumption that

Vix)=x"Qix=x"FI MFx , i € I since Fix = Fjx, for all xe X; N X; and
(ij) el.(11)is equivalent to xT(AjTQi +Q;Ajx <0 for {xe X\Ngx ~0,
H;jx>0}. Applying the S-procedure and Finsler’s lemma [22], we
obtain (16) for a set of matrices Ty, (i,j) el with non-negative
entries and Wy, (i,j) eI with appropriate dimensions. [

We remark that algorithms for constructing matrices E; and F;,
iel, are described in [9].

Remark 2. A similar LMI formulation to (11) can be found in [9];
whereas, our analysis, in this paper, is established upon the
stability theorem delineated in Proposition 10 in [8] which
considered the Filippov Solutions.

4. Robust controller synthesis with H,, performance

In this section, we propose a set of conditions to design a
robust stabilizing switching controller of the form

uekK(x)

K:X—-2% x> {zel|z=Kx if xeX;) a7

with a guaranteed H,, performance [23]. That is, a controller such
that, in addition to asymptotic stability (lim;_ .¢(t)=0 for all
&(t) satisfying (7)), ensures that the induced L,-norm of the
operator from v(t) to the controller output y(t) is less than a
constant # >0 under zero initial conditions (x(0)=0); in other
words,

Iyl <nllviy, (18)

given any non-zero v € L,[0,00).

If we apply the switching controller (17) to (2) and (3), we
arrive at the following controlled system with outputs

X(t) € co(F (x(t),v(t)))

y(t) e Gx(t) (19)

where F : X x V-2Y(x,v)—>{ze R"|z=Ax+Dgv if xeX;) and
G: x-2% x> {ze R™|z = Cg(x) if x € X;} with

Ac = Ai+AA; +(Bi + AB)K;
D = D;i+AD;

Coi = Gi+AG +(Gi+AG)K; (20)

Theorem 1. System (19) is asymptotically stable at the origin with
disturbance attenuation n as defined in (18), if there exist a set of
symmetric matrices Q;, i eI, three sets of symmetric matrices U;, S;,
iel, Ty, (ij) eI with non-negative entries, and matrices Wy, (i,j) eI
of appropriate dimensions such that

Qi—E'SE;>0 21)

AGQi+QiAq+E UE;i+n72QiDqDLQ;+CLCi < 0 (22)
foralliel, and

ALQi+QiAg+WyNj+NyWJ + HiTyHy +1~2QiDgDEQ; + CjCg < O
(23)

for all (i,j)el.
Proof. Refer to Appendix A.

Theorem 2. Given a constant n > 0, the closed loop control system
(19) is asymptotically stable at the origin with disturbance attenua-
tion n, if there exist constants ¢; > 0, (i,j) € I, ¢; > 0, iel, matrices K;,
iel, a set of symmetric matrices Q;, iel, three sets of symmetric
matrices Uy, S;, iel , Ty (ij) el with non-negative entries, and
matrices Wy, (i,j) eI of appropriate dimensions such that

Q;—ElSiE;>0 (24

A;<0 (25)
foralliel, and
A <0 (26)

for all (i,j) eI, where

(1, Q  k'B Kk'Bl  KIG! Klg!
« —077 0 0 0 0
0 0
* * 1+€i2
_ -1
Ai— * * * —1 0 0
€
g 0
ot * 24+
ot * * * T+¢+26
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1y QKB KBl K[G Kig
« —0;' 0 0 0 0
0 0 0
* * l+€izj
-1
Aij: * * * ?I 0 0
ij
— 0
. . . s
T+e+2¢;

with

3
;= Al Qi+ QA +ETUE; + AT A+ (1 + Z) Cra+(1+3¢)clc
1

T = AT Qi+ QA+ WyNJ + NyW + HiTyHy + ¢ AT A;

3
+ (1 + ;) ¢/ Ci+(1+3€6)C] ¢
ij

3 1
O;= (e,-+ E>I+n‘2 (1 + Z) DDl +1n~2(1 +¢)D;D!
1 1
and

3 1
;= (cij+ ;>I+n*2 (l + Z) DijTJrn’z(l +¢;)D;Df
-ij ij

Proof. We need to apply Theorem 1. Inequality (24) corresponds
0 (21). Substituting (27) in (23), the left-hand side of (23) is
simplified as LHS = (Aj+AA;+ (B;+AB)K)" Qi+ Qi(Aj+AA;+(B;+
AB)K})+WyNj+NyWi + Hi TyHy +1-2Qy(Dj+ AD)(Dj + AD)" Qi+
(Cj+AG +(Gi+AG)K) (Ci+AG; +(Gi+ AG)K)) < A] Qi+ Qi+ W
Nj+NiWi+HiTyH;+ K B] Qi+ QiBiK; + 2/€;QiQ; + €Al Aj+ ;K]
BIBK;+ n72Qi(1+1/€)D;D] +(1+€e)DPNHQi+  (1+€65)Cf G+
(1+6§)C] C+1/¢5Cf G+ 6K} G GiK;+1/¢C G+ K] G GiK;+ ¢C]
Cj+1/€5K] G GiK;+ €51 Cj+ 1/€5K] GT GiK;+ K (1+1/€)G] G +(1+
€1j)nggj)Kj-
With some calculation, it can be verified that

2 1
LHS < I1;;+Q; <;I+n*2 <1 + Z) D/D;+n2(1 +e,—,—)1>,—1>}) Q;

ij ij
2+¢€j+€

7’1) KIGIGiK;+ <
Cij

1+€+2¢

+¢5K B/ BK;+ < "> K/ G/ GiK;

ij
1 1
+ ?UKfoBjI(j +6;QiQ;+ P» QiQi+¢€;K[B/BiK;
which is equivalent to LHS<IT;+Q;0;Qi+ ((1+c})/¢) KB
BiK;+€K] B BiK; + (2 + €+ €2)/ei)K] Gf GiK+ (1 + €+ 2€2) /€K
gl GiK;.

Utilizing Shur complement theorem, (26) can be obtained. Thus,

if (26) is feasible, then (23) is satisfied. Analogously, it can be
proved that (25) is consistent with (22). O

Remark 3. The conditions derived in Theorem 2 are BMIs [24]
in the variables Q; and K;.

In order to deal with the BMI conditions encountered in
Theorem 2, the following V-K iteration algorithm [25] is suggested:

e [nitialization: Select a set of controller gains based on pole
placement method or any other controller design scheme to
predetermine a set of initial controller gains.

e Step V: Given the set of fixed controller gains K;, i € I, solve the
following optimization problem
Qig:bl?jxj'yi
subject to (24),4;—y;1 <0 and A;—y;1 <0

for a set of matrices Q;, iel.
e Step K: Given the set of fixed controller gains Q;, i €I, solve the
following optimization problem

min_vy;
K,-,s,,u,-,T,-jy’

subject to (24),4;—y;1 <0 and A;—y;1 <0

for a set of matrices K;, ieI.

The algorithm continues till y; <0, iel.

Remark 4. Generalization of the results presented in this paper
to the case of piecewise affine (PWA) dynamics is straightforward.
This can be simply realized by augmenting the corresponding
system matrices as demonstrated in [8]. The interested reader can
refer to Appendix B.

5. Simulation results

In this section, we demonstrate the performance of the
proposed approach using numerical examples. Example 1 deals
with a switched system with Filippov solutions which is asymp-
totically stable at the origin; but, the disturbance attenuation
performance is not satisfactory. Unlike Example 1, Example
2 considers an unstable PWL system in which both asymptotic
stability and disturbance mitigation are investigated based on the
proposed approach. Not to mention that in both cases uncertain-
ties are also associated with the nominal systems.

5.1. Example 1

Suppose the state-space X = R? is divided into four polytopes
corresponding to the four quadrants of the second dimensional
Euclidean space; i.e,

X1 = {(x1,%2) € R?|x; > 0 and x, > 0}
Xa = {(x1,%2) € R?|x; <0 and x, > 0}
X3 = {(x1,%2) € R?|x; <0 and x, < 0}

X4 = {(%1,%2) € R?|x; > 0 and x, < 0} 27)

Consider a PWL system with Filippov solutions characterized by
(19) and (20) where the associated system matrices are given by

0 1 0 1
A1:A3:{—2 o}’ A22A4:{05 0}

1
31232:133:34:[ ]

2 T
C1:C2:C3:C4:[0]

0 T
Di=Dy;=D3=D4y= {01}

and the uncertainty bounds specified as

0 0.03} {0.03 0 }
, Aa=Ay=

Ar=dAs = {_0.03 0 0 -003
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0.0177 o 17
CFCF{ 0 } 62264:{001}

The matrices regarding the polytopes can be constructed as
10 -1 0
0 1 0 1

Eq E; E; E4
F“{l}' FZ*{I] Fs {1} F“*{l}
Nip =N34 = 1 Nis=Ny3 = 0

12 = 34_|:0:|v 14 — 23_|:1:|

0 1 10
H12=—H34={0 0}- H14=—H23={0 0}

E1=—53={ } Ez=—E4=[

Based on Theorem 2, a switching controller as defined in (17) is
designed in order to ensure that (in addition to preserving the
asymptotic stability property of the system) under zero initial
conditions the disturbance signal of v(t) =5 cos(nt) is attenuated
with # = 0.05. In this experiment, the constant scalars were preset
to €12 =€33 =€14 =€34=1 and €; = ¢; = €3 = €4 = 5. The algorithm
was initialized using pole placement method with initial pole
positions of (—1,—2) and controller gains of

-3717 -317
1<1:1<3:{ 0} , 1<2:1<4:[_5}

The following solutions was obtained in two iterations

0 -0, 7829 5.96 . [3306 -135
1= 3_[5.96 3.01}’ 2 _{71.35 65.14]
Ko — K. _ [ 709014 T 0 — K. [ 701137 T
1= 3_{—0‘8292}' 2= 4_{—0.2715}

Vmin = —7-03921 x 107*

Fig. 1 sketches the trajectories of the closed-loop system
without disturbance when the H,, controller is incorporated. This
demonstrates that the Filippov solutions of the closed-loop
system are asymptotically stable at 0. One should observe that
the solutions entering the facet x, = 0 cannot leave the facet (the
so called attractive sliding mode property). This is due to the fact
that the velocities at both regions X; and X, are toward the facet.

Fig. 1. The trajectories of the closed loop system. The dashed lines illustrate the
facets.

0.5 T T T T T

X

X2

0 10 20 30 40 50 60

X4

X2

0.8 1

04} 1

0.2 i

_02 i i i i i
0 10 20 30 40 50 60

Fig. 2. Evolution of system states when the H,, controller is applied: with an
initial condition on a non-attractive facet (top) and with an initial condition on an
attractive facet (bottom).

We emphasize that this result could not been achieved by
previous studies which excluded those solutions with infinite
switching in finite time. Moreover, Fig. 2. displays the evolution of
the states of the closed-loop system. The applied control inputs
corresponding to simulations portrayed in Fig. 2 are available in
Fig. 3. As can be inspected from Fig. 3 (and of course as expected),
the control signals are discontinuous since switching occurs in the
neighborhood of the attractive facets. This switching in the
applied control signals diminishes considerably as the trajectories
converge to origin in approximately 30 s.

The disturbance mitigation performance of the proposed
method can also be deduced from Fig. 4. It can be discerned from
the figure that the disturbance signal is considerably extenuated
as the H,, controller is employed.

5.2. Example 2

For the sake of comparison, the example used in [6] is
selected; but, instead of Carathéodory solutions, Filippov solu-
tions are investigated. Therefore, the system structure has to be
modified as delineated next. Consider an uncertain PWL system
described by (19) and (20) with I ={1,2,3,4} and the state-space
is a polyhedral set divided into four polytopes. The associated

Please cite this article as: Ahmadi M, et al. Robust H,, control of uncertain switched systems defined on polyhedral sets with
Filippov solutions. ISA Transactions (2012), http://dx.doi.org/10.1016/j.isatra.2012.06.006



dx.doi.org/10.1016/j.isatra.2012.06.006
dx.doi.org/10.1016/j.isatra.2012.06.006
dx.doi.org/10.1016/j.isatra.2012.06.006

6 M. Ahmadi et al. / ISA Transactions 1 (11In) Ba—ENR

3 : : : : : 0.1
0 -
25 1 -0.1
= 5 __-02
2 1 2 -03
3 3
€15 | g-04
§ § -0.5
S 1 { § -06
© © o7
0.5 1 -0.8
-0.9
Ot - L L L L -1 n n n n n
0 10 20 30 40 50 60 0 10 20 30 40 50 60
-3 -3
20 x 10 ' ' ' ' 2 x 10
15l ] ol YT
= s -2
5 10t 1 5
Q o
= = -4
o <
£ ° 1 %
o 3 6
I A AA AN
0 -8
-5 ' ' ' ' -10 ' ' ' '
10 15 20 25 30 35 10 15 20 25 30 35

Fig. 3. Time histories of the applied control inputs corresponding to state evolutions provided in Fig. 2 (top), and the same figures enlarged (bottom).
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Fig. 4. Response of the closed loop control system with disturbance and zero initial condition: before applying the H., controller (left) and after utilizing the H,, controller
(right).

system matrices are The uncertainty bounds are characterized as
1 0.1 1 05 0 0.02 0.01 0

A1:A3:{_0_5 1}, AFAF{_Q1 _1} ““‘—““3—{70.01 . } Az—v‘h—[ ) 70.02}

0 ; g_p_| 0 5 — . [002
B1=B3={1}, BZ=B4=[O] = 3_[0.02}‘ 2= 4_[ 0 }

The matrices characterizing the polytopes are given as follows

Dy=Dy=Ds=Dy=|° C—C—C—C—OT EeBe| 'Y Be—p =[]
1=P2=U3= 4—|:.l:|: 1=%L2=L3= 4—|:.l:| 1—_3—|:_.1 .l:|v 2—_4—|:.1 .l:|
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1 -1
N12=N34=[J. N14=N23={ 1 }

-1 0 10
H12=—H34={ 1 0] H14=—H23={] 0}

It is worth noting that the open-loop system is unstable and since
solutions with infinite switching in finite time are present the
approach reported in [6] and common Lyapunov based methods
are not applicable. The V-K iteration algorithm is initialized using
pole placement method. The assigned closed-loop poles for the
dynamics in each polytope are (—3,—2) and the corresponding
initial controller gains are

Ki=K;= -119.577 Ky =Kq= sl
= 3_[ -7 } 2= 4_[19.5}

Using the scheme presented in this paper for a set of constants
€12 =€3=€14=¢€33=10 and €1 =6 =€3=¢4=100, the following

4 T T T T T T T

Fig. 5. The trajectories of the closed loop control system. H,, synthesis based on
[6] (top), and using the proposed methodology (bottom). The dashed lines
illustrate the facets.

solutions has been obtained

0 -0, = 463.75 24.94 . [5226 -7.39
= 3_[24.94 2.39}' 2 4_[—7.:«;9 763.47}
c k. [837721" o [-2153]
1= 3_{—30,14}' 2= 4_[—1.69}

Vmin = —2.7186 x 107>

for the H., controller design with #=0.1 in five iterations. Conse-
quently, it follows from Theorem 2 that the closed loop control
system is asymptotically stable at the origin and the disturbance
attenuation criterion is satisfied. Fig. 5. demonstrates the simulation
results of four different initial conditions (in the absence of
disturbance) using both the method expounded in [6] and the
suggested scheme which prove the stability of the closed loop
systems. It can be examined that the approach in [6] neglects the
sliding motion along the facets; hence, it cannot take into account the
solutions with infinite switching in finite time which are intrinsic to
switched systems. Notice, in particular, that solutions with infinite
switching in finite time on facets are also present (see Fig. 6.) when
the proposed method is exploited. Additionally, the applied control
inputs associated with the simulations in Fig. 6 are shown in Fig. 7.
Once again as expected, the controller starts to switch (discontinuous

1 T T

X4
X2

i
50 100 150

X4
Xz

1.5F--

i
0 50 100 150

Fig. 6. Evolution of system states when the H,, controller is applied: with an
initial condition in the interior of a polytope (top) and with an initial condition on
an attractive facet (bottom).
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Fig. 7. Time histories of the applied control inputs corresponding to state evolutions provided in Fig. 6 (top), and the same figures enlarged (bottom).
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Fig. 8. Response of the closed loop control system with disturbance and zero initial condition: the stable controller synthesis (left) and the H., controller synthesis (right).

behavior) when the trajectories reach an attractive facet. The fluctua-
tions of the control signal mitigates significantly in around 130s,
implying that the solutions have converged to the origin. This should
be opposed to the results in [6] where only Carathédory solutions
are taken into account. Additionally, the simulation results in the
presence of disturbance (v(t) =4 sin(2xt)) and zero initial conditions
are illustrated in Fig. 8, which ascertains the disturbance attenuation
performance of the proposed controller.

6. Conclusions

In this paper, the stability and control problem of uncertain PWL
systems with Filippov Solutions was considered. The foremost

purpose of this research was to extend the previous results on
switched systems defined on polyhedral sets to the case of solutions
with infinite switching in finite time and sliding motions. In this
regard, a set of matrix inequality conditions are brought forward to
investigate the stability of a PWL system in the framework of
Filippov solutions. Additionally, a method based on BMIs are devised
for the synthesis of stable and robust H,, controllers for uncertain
PWL systems with Filippov solutions. These schemes has been
examined through simulation experiments. The following subjects
are suggested for further research:

e Due to practical considerations, it is sometimes desirable to
assuage the switching frequency in the control signal which
may contribute to unwanted outcomes, e.g., high heat losses in
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power circuits, mechanical wear, and etc. The authors suggest
the application of chattering-free techniques such as boundary
layer control (BLC). However, how these methods could be
embedded in the framework of the analyses presented here is
still an open problem.

e The robust control and stability results can be extended to
other solution types for discontinuous systems, e.g. Krasovskii,
Aizerman and Gantmakher (see the expository review [21]).

e The curious reader may consult [26] for novel (robust) stability
analysis results on nonlinear switched systems defined on
compact sets in the context of Filippov solutions.

Appendix A. Proof of Theorem 1

From (21)-(22) and Lemma 2, it can be discerned that the
Filippov solutions of the closed loop system (19) converge to 0
asymptotically. Additionally, since Q; = FT MF; and Fix = Fjx, for all
xeX;NX; the continuity of the Lyapunov functions is assured.
What remains is to show that the disturbance attenuation

performance is 7. Define a multi-valued function
Nx)={ze R‘Z: Vix) ifXEX,‘} (A1)

and set I'(x)=co(X(x)). This can be thought of as a switched
Lyapunov function. Differentiating and integrating I" with respect
to t yields

o dr
Jo dt

oty
+ / XT(AL,Qa +Q2A0)x+1"DL, Qux+ X" QuDpv] dt + - - -
ty

r -ty
+ Z Oﬁj{ / [XT(AZij‘F Qkch)X-f-UTDIijX—FXTQqu'U] dl’} + ...

ji=1 7]

m 4
+> [g{ / X" (A§Qi+QiAg)X + v DfQix+XTQ,Dgjv] dt} 4.
j=1 St

o0
+ [ (X" (Al Qn+ QuAcn)X+ " D{, Qnx+XTQDenv] dt
wherein ;, f; >0suchthat >/, o;=1,and }/_, f;=1.mandr
are the number of neighboring cells to a boundary where the
solutions possess infinite switching in finite time (in the time
intervals of [t,_q,t] and [t,_q,t;]), respectively. With the above
formulation, we consider a state evolution scenario including the

interior of different polytopes as well as the facets. Suppose
conditions (22) and (23) hold, then it follows that

b
/ XT(ALQ; + QiAi)x+ v DL.Qix+ X" Q;Dv] dt
a
b
< [ W -E[UE—n 2QuDaD} 0~ CliCarx
a
+v'DLQix+x"QDav + v v—n?vTv] dt
b
< / Y'Y+ v v—n? -y DyQix) (v—n~?DgQix))] dt
a
b
s/ (=y'y+n?vTv)dt
a
Correspondingly,

n d
> ocj{ / X" (AfQi+ QiAg)x+ v DfQix+XTQ;Dyjv] dr}
JC

i=

n d
- Z%{/ X" (= WiiN—NgWi—Hj THy
= e

ty
Gedt= [ AL Q1 +QiAax+ DL Qux+ T Qi Da ] det -
JOo

—n72QiDgD5Qi—CiCox+n* v v—n*vTv] dt}

d n
< / (—yTy+n2vTV— > ij(nz(v—n‘zDZjQiX)T(V—n‘ZDZjQiX))> dt
c

=1

d
< / (=yTy+n?vTv)dt
c

where, a,b,c,d > 0 are arbitrary non-negative constants (b > a, and
d > c). Finally, we arrive at the justification that

o] t t
/ Ccll—l;dts/ (—yTy+172vTu)dt+/ (—yTy+n2v vy de+ -
0 0 t

ty

+ [ Yy+nvivydes
[!:—1
f

+ [ Yy+nPvTvyde+ -
tiq

+ [ (Y y+n2vTv)de

tn

which reduces to
I(x(00) T (x(0)) < / Ty vty de (A2)
0

Moreover, note that x(co) = x(0) = 0. This can be concluded from
the assumption on zero initial conditions, and from the fact that
the system is asymptotically stable at origin (as demonstrated
earlier in this proof). Consequently, we have

Os/ =yTy+n*vTv) de (A.3)
0

which is equivalent to (18). This completes the proof.

Appendix B. Generalization to piecewise affine systems

It is worth noting that all results obtained for PWL systems
with Filippov solutions can also be accommodated for PWA
systems. However, the following modifications should be applied
in advance.

Consider a PWA system with Filippov solutions S = {X,i, V,
X.IF,G}, where X < R"*! is a polyhedral set representing the
state space, X = {X;};.; is the set containing the polytopes in X
with index set [={1,2,...,nx} (note that ;. Xi =X). F={fi}ic;
and G = {g;}; ., are families of linear functions associated with the
(augmented) system states X =[x’ 1]” € X and outputs y. Each f;
consists of six elements (A;,B;,D;;: AA;,AB;,AD;) and each g; is
composed of four elements (C;,G;; AC;,AG)).

The following augmented system matrices can be constructed

_ A,‘ a; — B,' — Di _
Ai= o ol Bi = ol D= ol Ci=[G 0] (B.1)
where ¢@; is the affine term associated with the dynamics in
the polytope X;, and correspondingly the augmented uncertain
matrices

— AA,‘ Aﬂ,‘ — ABl
S P IR

AD;

AE:{O

} . AG; =[AG; 0] (B.2)
Besides, the matrices characterizing each polytope can also be
modified as

E: [E, ei] and Filz [Fl fl] (B3)
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Then, each polytope is defined as

X; = (X e X|EX =0} (B.4)
and for all X e X; N X; and (i,j) eI it holds that
Fix=Fx (B.5)

Hence, the candidate Lyapunov function in effect in the polytope
X; is formulated as

Vix)=X'F, MFx=%"Q;x (B.6)

It is possible that the facets may not have intersections at the
origin. Therefore, let

_ N;i o H. h;
N,j:{n;} and H,»,:{OU ﬂ (B.7)

and each boundary can be characterized as
X NX; = (x e X|Njx ~ 0, Hyx =0, (i,j) e} (B.8)

With the above formulation at hand, one can utilize the results
given in this paper for PWA systems. This is simply accomplished
by replacing the associated matrices for PWL systems by their
PWA counterparts.
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