Aalborg Universitet

CO-PRODUCTION of WAVE and WIND POWER and its INTEGRATION into ELECTRICITY MARKETS

Case study: Wavestar and 525kW turbine

Chozas, Julia Fernandez

Publication date: 2012

Document Version Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

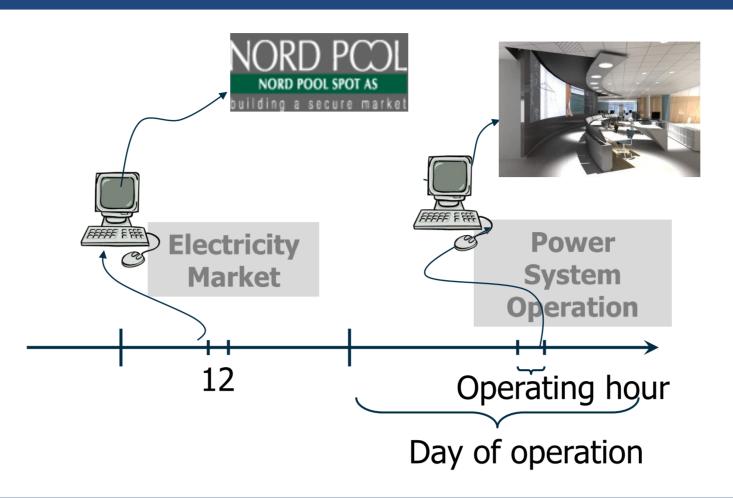
Citation for published version (APA): Chozas, J. F. (2012). CO-PRODUCTION of WAVE and WIND POWER and its INTEGRATION into ELECTRICITY MARKETS: Case study: Wavestar and 525kW turbine. Poster presented at The Annual Symposium of INORE, the International Network on Offshore Renewable Energy, Thisted, Denmark.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.



CO-PRODUCTION of WAVE and WIND POWER and its INTEGRATION into ELECTRICITY MARKETS – Case study: Wavestar and 525kW turbine

Julia Fernández Chozas (PhD Student)

BACKGROUND

- Waves are delayed to winds
- Waves are more constant than winds
- Several benefits if combining wave and wind: shared cable-costs, consenting process and EIA; reduced cost of energy; less variability in power output; increased predictability
- This study focuses on the 12 to 36 hours forecast and studies the advantages of a combined wind and wave system based on real production data

Short-term forecasting of wave and wind

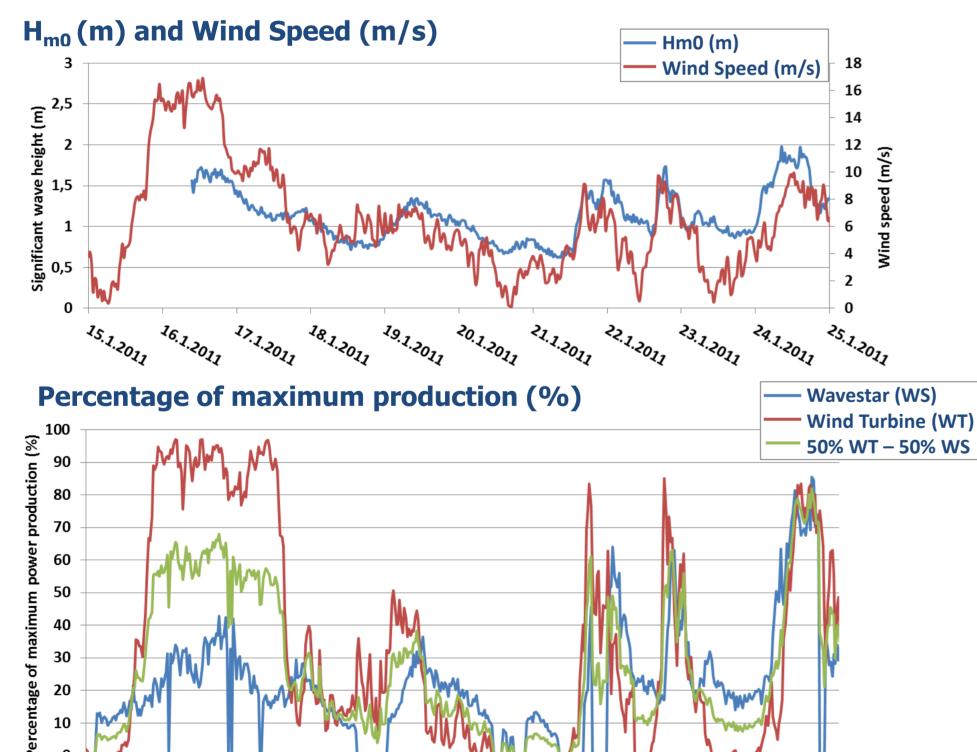
			<u> </u>		
	Mean	Bias	MAE	MAE/Mean	RMSE
H _{m0} (m)	1.4	0.2	0.3	0.2	0.4
H _{max} (m)	2.3	0.8	0.9	0.4	1.0
T ₀₂ (s)	4.7	-0.2	0.4	0.1	0.5
P _{wave} (kW/m)	7.4	1.5	2.9	0.4	5.3

	Mean	Bias	MAE	MAE/Mean	RMSE
u (m/s)	7.8	0.7	2	0.3	2.5
Pwind (W/m ²)	500	67	308	0.6	491
MWD (deg)	172	19	33	0.2	67

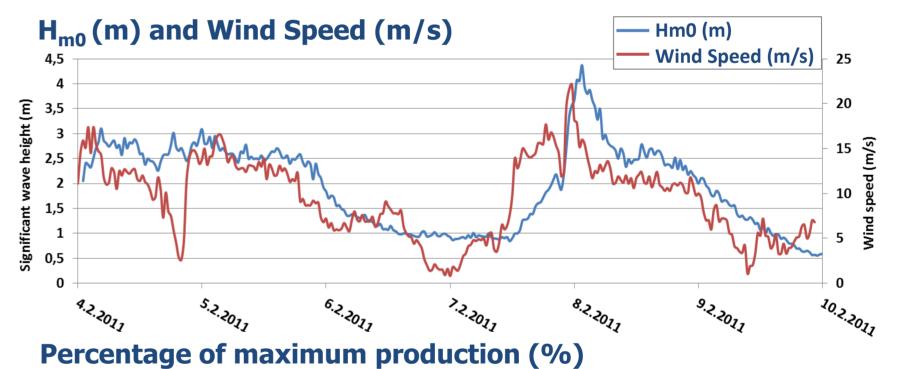
(time period: October 2010 to February 2011)

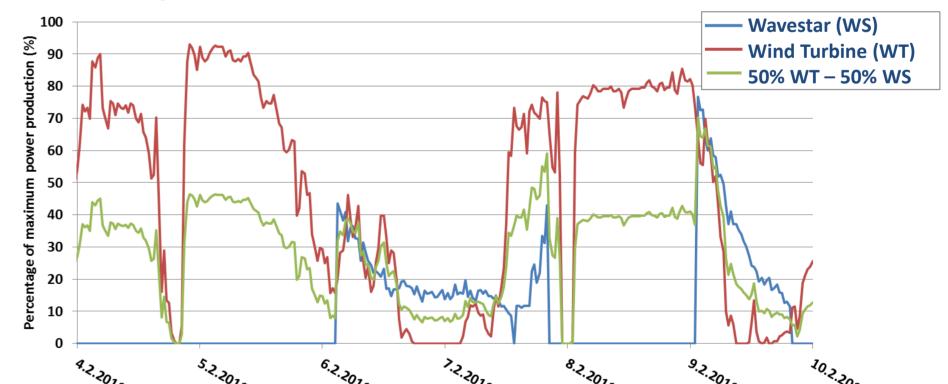
METHODOLOGY

Hanstholm **Danish North Sea**



Sea states contribution (%) to P_{wave}




WAVESTAR and WIND Turbine REAL sea-measured Co-Production

Normal Operating Conditions

Storm Conditions

22.1.2011 16.1.2011 17.1.2011 ^{23.1.2011} ²1.1.2011 ^{24,1,2011} ^{15,1,2}011 19.1.2011 ^{18.1.20}11 Date (UTC)

Production of different combinations of Wavestar and turbine

	Mean	σ	=0	0 <x<20< th=""><th>20<x<40< th=""><th>40<x<60< th=""><th>60<x<80< th=""><th>80<x<100< th=""><th>=100</th><th>N</th></x<100<></th></x<80<></th></x<60<></th></x<40<></th></x<20<>	20 <x<40< th=""><th>40<x<60< th=""><th>60<x<80< th=""><th>80<x<100< th=""><th>=100</th><th>N</th></x<100<></th></x<80<></th></x<60<></th></x<40<>	40 <x<60< th=""><th>60<x<80< th=""><th>80<x<100< th=""><th>=100</th><th>N</th></x<100<></th></x<80<></th></x<60<>	60 <x<80< th=""><th>80<x<100< th=""><th>=100</th><th>N</th></x<100<></th></x<80<>	80 <x<100< th=""><th>=100</th><th>N</th></x<100<>	=100	N
100% Wind Turbine (WT)	33	43	15	27	20	16	14	8	0	4307
75%WT- 25%WS	31	51	11	31	22	20	16	0	0	4307
50% WT - 50% WS	24	30	9	40	29	17	4	1	0	4307
25%WT - 75%WS	22	39	11	46	27	12	4	1	0	4307
100% Wavestar (WS)	16	31	46	23	18	8	4	1	0	4307

(time period: January 2011 - May 2011)

Date (UTC)

Short-term forecasting of Wavestar and turbine productions

	NMean	NBias	NMAE	NRMSE
Real Wavestar	0.30	0.24	0.28	0.33
Real Wind turbine	0.37	0.06	0.18	0.26
Real WS + WT	0.31	0.13	0.17	0.22
Modelled WS	0.44	0.04	0.15	0.24
Modelled WT	0.35	0.07	0.17	0.24
Modelled WS + WT	0.38	0.05	0.14	0.19

 \rightarrow Short-term forecasting of other WECs combined with wind based on modelled power productions

	NMean	NBias	NMAE	NRMSE
Pelamis	0.33	0.08	0.11	0.14
Wave Dragon	0.33	0.04	0.09	0.13
Wavestar	0.44	0.04	0.15	0.24
P+WD+WS	0.37	0.05	0.11	0.14
P+WD+WS +WT	0.36	0.06	0.11	0.14

(time period: October2010- February2011)

CONCLUSIONS

- ✓ Short-term forecasting (H=12-36 hours) of wave parameters 10% more accurate than for wind parameters
- ✓ Predictability of WECs individual power production 5-10% more accurate than for wind turbines
- ✓ Short-term forecasting of wind production 6% improved when wave production added
- \checkmark Best combination 50% wave & 50% wind: \rightarrow barely no zero production, small standard deviation, less fluctuating power than wind
- → Results are very dependent on the chosen location and case study: Wavestar 1:2 model and 525 kW wind turbine
- □ Further work: economic evaluation of wave energy production into electricity day-ahead bids, alone and in combination with wind energy