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Abstract— This paper presents an overview of current research
investigations within the WHERE-2 Project with respect to
possibilities of usage of geo-location information for protocol and
system optimizations. In this work we would like to underline
that incorporating the knowledge of nodes’ location in protocol
design and optimizations one should be aware of the associated
additional cost” in terms of increased communication overhead
and processing requirements, as well as potential inaccuracy of
the location information. We ellaborate on the example where
location information becomes stale due to nodes’ mobility and
delays caused by transmission and propagation delays. Presence
of malicious nodes can be another reason for erroneous location
estimation. We demonstrate the importance of choosing localiza-
tion techniques that are robust towards misbehaviours.

I. INTRODUCTION

Currently, location measurement technologies are becoming
more and more widespread and it is becoming common to
base smart phones and devices application on the availability
of location information, thus offering advanced services and
enhanced user experience. What is more, the use of location
information can potentially advance mobile communication
and mobile computing, e.g., by helping conducting efficient
network resource management, and in this way by enhancing
the quality of existing connections/communication links. Some
of the classical examples where information about nodes’
positions can be successfully applied for optimizing protocol
design are ad hoc networks and mobile wireless sensor net-
works. Here nodes are moving autonomously and comprise
a distributed network where cooperation between devices is
essential in order to provide networking functionalities. In such
scenarios, location information is the key for the implementa-
tion of geographical routing protocols (such as GPSR [1] and
GEAR [2]), which outperform other routing schemes in terms
of traffic overhead and scalability. Another class of examples is
relaying that is a well-known technique for improving connec-
tivity in wireless networks. By letting neighboring nodes act
as relays, two low error rate transmissions can be used instead
of a single high error rate transmission, thereby improving the
transmission quality. Here, also relying on information about
nodes’ positions for relay selction is a promising approach due
to lower signaling overhead and since it allows for movement

prediction, and thus, provides a good base for optimal relay
selection [3], [4].

In order to introduce intelligence in a network based on
location information, a system-wide perspective should be
taken, which typically requires that knowledge about the
positions of various physical objects, mobile devices and
different network entities (such as access points; mobile relays
or cluster heads) is available and distributed within the net-
work. It raises a question how positioning information can be
collected and exchanged efficiently and securely. Information
exchange introduces communication overhead and this should
be taken into account in the overall performance evaluation.
Additionally, in order to ensure confidentiality and integrity
the information exchange should be done in a secure and
lightweight manner.

How well the location information can be exploited depends
also on the accuracy of this information. Position information
can be inaccurate for the following reasons:

1) Imaccurate estimation: environmental factors in addi-
tion to limitations in receiver sensitivity and localization
algorithms means that an estimate of a user’s position
typically has some error relative to the true position. As
communication protocol designers we have to deal with
this inaccuracy and evaluate performance under realistic
assumption about the quality of positioning information;
it is important to understand the influence of inaccuracy
on the performance improvement.

2) Delayed and inconsistent position estimation: many
scenarios with a real need for location infomration are
networks characterized by a high nodes mobility. This
poses a requirement to have timely updated location
estimations. Due to mobility, information can quickly
become outdated. It is important to understand an im-
pact of the delayed information on the overall system
performance.

3) Malicious attacks: localization protocols are vulnerable
in hostile environments and traditional authentication
methods might not be very efficient; efficient methods to
tolerate malicious attacks against beacon-based location
discovery should be designed and evaluated to make
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Fig. 1.  Illustration of impact of data collection delays on event state
estimation: crosses indicate moments when a state change has taken places;
grey circles correspond to the wrong state estimation, while white circles show
correct estimation.

localization algorithms robust towards malicious data
manipulations.

The first mentioned reason for inaccuracy is already well-
understood and documented in the literature (see e.g. [5]). It
is becoming common to model the error in position estimation
due to localization algorithm as a zero-mean Gaussian noise.
In this paper our focus is on the two other reasons that are
often neglected. In the following we elaborate on how nodes
mobility and time required for infomation exchange impact
accuracy of information about nodes’ positions and illustrate it
by an example of geo-based clustering. Additionally, we show
that localization techniques are sensitive to malicious attacks,
and advocate that robust procedures should be employed when
there is suspicion about the behavior of any node that serves
as a reference position in the localization process.

II. DELAYED AND INCONSISTENT POSITION ESTIMATION
DUE TO MOBILITY

A. General note on Mismatch probability

In distributed systems we typically face a problem that
information about an event that has happened somewhere in
the system should be propagated to all network entities. An
event can for example be the latest measurement of a physical
phenomenon such as a temperature measurement, indicator
of an element state such as an indicator of an empty printer
cartridge or, as we will consider later, information about ge-
ographical location of network nodes. Delays associated with
processing and transmission of information can potentially
cause a mismatch between a received state and the true state.
It happens in a situation when during the time it takes to
propagate the information about the current state, the state
actually changes, and thus the received information becomes
outdated. This is illustrated in Figure 1. In case of a discrete
state space, we can speak about mismatch probability, i.e. the
probability that a state estimate at time ¢ is different from the
true state at that time. In case of continuous variables an error
in state estimation is of interest.

In the following we will use location information as a
state information. In mobile scenarios, a mismatch between
the actual position of a device and other nodes’ belief of the
node’s position, can easily occur, since a device continues to
move while information about its position is dissiminated. We
further illustrate this problem with an example of geo-location
clustering taking a closer look at which information flows are
in this scenario.

B. Geo-location based clustering

A problem of organizing a set of mobile, radio-equipped
nodes into a connected network is a general networking
problem. We require that a reliable structure can be achieved
in a distributed manner that is robust towards any topological
changes due to nodes’ mobility or failure. In cellular net-
works resource allocation is managed by a base station. In
a somewhat similar manner this solution can be extended to
ad hoc and sensor networks by creating clusters of nodes. Most
hierarchical clustering architectures for mobile radio networks
are based on the concept of clusterhead, a node that acts as a
local coordinator within the cluster.

The importance of clustering techniques comes from the
scalability problems of reactive and proactive routing proto-
cols. The complexity in terms of overhead is highly increased
with the size of the networks. Concretely, in proactive routing
protocols the overhead is in the order of n? where n is the
number of nodes, while in reactive routing protocols the delay
produced by the route search can be considerable.

With clustering techniques we can reduce the routing infor-
mation by setting a small group of nodes to form a backbone.
These will be the clusterheads and the rest of nodes will be
tied to one of the members of the backbone forming a cluster.
In this way we can significantly reduce the number of routes.
Thus, every node will have to store less routing information
and the topology itself will be more stable. The mobility of one
node will only affect the nodes of the cluster(s) it is leaving or
joining. With non-overlapping clusters we also get better reuse
of resources. Two clusters can use the same channel if they
are not in touch. Besides, since nodes are better coordinated
this reduces the number of collisions.

Due to the availability of GPS, Wi-Fi and cellular based
location systems in most of the new mobile devices, it is
possible to include the geographic location of the node as a
parameter in the cluster formation algorithm. In the following
we briefly describe the most currently known algorithms that
use location as metric to form clusters.

One of the most known mobility-aware algorithms is the
Weighted Clustering Algorithm (WCA) [6]. In WCA the
election of the clusterhead is influenced by four parameters:
the degree difference w.r.t. a defined threshold A,, the sum
of distances with all neighbours D,,, the speed average M,
and the time serving as a cluster head P, (this is related with
the battery consumption, the more the time being clusterhead
the more energy is being drained by the coordination tasks).
Performance evaluation indicates that the proposed metric
works well, however, each node is supposed to gather sufficient
accurate information for a period of time that does not fit
in a highly changeable scenario-the so called frozen period
is longer than in other algorithms. The message exchange
overhead is also bigger since the nodes have to share the metric
and also compute the distances from their neighbours.

There are other proposals focused on improving this metric
by including other parameters like remaining battery level or
the mean connectivity degree [7]. With respect to the mobility



parameter, M, the Entropy Based Weighted Clustering Algo-
rithm [8] improves the stability of the topology by measuring
the level of disorder of the set of neighbouring nodes of each
node. This is done by comparing the change of the current
position of the node with each neighbour and choosing the
one with a more uniform distribution.

Other studies face the problem of the optimization of a
composed metric. The work proposed by [9] and [10] use
a genetic algorithm and a simulated annealing technique to
optimize the election of the dominating set. These techniques,
however, just optimize the metric as a function of only one
variable, the weight, and choosing the value of the weights is
not a simple task. In [11] a method is proposed to optimize the
election of the clusterheads by optimizing multiple parameters
and not only the outcome of the weight function. In [12] the
Distributed Group Mobility Adaptive clustering algorithm is
proposed based on the measurement of the current location.
It records the location of the node in discrete times. If the
newest location differs more than a threshold from the previous
location it computes the direction (angle w.r.t. the coordinate
system) and the speed (magnitude of the movement) and
records it. By comparing these parameters with the neighbours
it computes the Total Spatial Dependency (TSD). TSD is the
addition of the Spatial Dependency (SD) of each neighbour,
thus a higher TSD implies the node has a bigger set of
neighbours with similar mobility. This algorithm is suited for
scenarios where nodes are moving in groups.

The Stable Cluster Protocol (SCP) in [13] proposes a new
metric based on the speed of the nodes: a Stable Factor is
calculated comparing a node’s speed with the average speed of
neighbours. The Mobility Based Clustering (MBC) algorithm
proposed in [14], as the previous ones, is also based on the
speed of the nodes. MBC takes the velocity vector of each
node and computes the relative mobility of each pair of nodes.

The Mobile Clustering (MC) algorithm described in [15]
is based on a collection of location updates at a server. In
MC all nodes update to a server an information vector that
includes location information. Each node is described by its
identity, position, velocity and time of the sample. With this
information the server can assess the level of dissimilarity of
two nodes using “only’ the position recorded at several times,
and weighting the samples to give more relevance to the most
current ones.

The algorithm KCMBC (k-hop Compound Metric Based
Clustering Algorithm) [16] uses a different approach. It takes
into account the connectivity degree, the Id of the node and the
mobility, but the latter is used to predict the time expiration of
a link between two nodes. It uses the position and the velocity
of the nodes to compute, in pairs, the time of availability
of a given link and computes the average of this time with
respect to the nodes in the neighbouring set. The most suitable
node to be clusterhead will be the one with bigger time
average. The assumption that the velocity will be invariable
for a given period of time is necessary. After this time interval
a hello message is needed between the nodes to update the
new values of velocity and position. KCMBC uses a dynamic

time interval that can be tunable depending on the mobility
of the nodes. The higher the mobility, the more frequent the
data is exchanged. This is an interesting and intuitively clear
observation on which we will ellaborate in the next subsection.

C. Is location information reliable?

From the literature overview presented above one can see
that there is a lot of focus on ways to construct suitable metrics
for clusterhead selection assuming the availability of location
information and much less considerations are done on efficient
ways to dissiminate this information among the nodes as well
as to evaluating the impact of a stale location information
on the system performance. In the following we illustrate that
delays in location information dissemination can have a drastic
impact on the accuracy of the information.

Let us consider a scenario when each node in a network
periodically sends updates containing information about its
current position. Upon receving this broadcast the neighboring
nodes update their entries and recalculate the distances among
each pair of nodes in a network. In such situation, while
making a distance estimation, only information about one
node can be assumed to be sufficiently correct; the infor-
mation about other nodes’ positions can be slightly outdated
depending on the time when the broadcast from a particular
node was received last. To model this situation we assume
that there are n nodes in a network exchanging information
either directly or via multiple hops. From a point of view of a
single node, location updates from other nodes are received at
some random points in time and interarrival times between
consecutive updates are exponentially distributed with rate
A. It means that the time that elapsed from receiving k-
last update is gamma distributed with parameters (k, \). We
assume that all nodes move with the same constant speed v,
but no information is available about the direction of their
movement. Thus, in a time At that has elapsed since the
last update from a node, at the current time it could be
anywhere on a circle with a centre at his old position and
radius r = At - v. Figure 2 shows the average values for
distance error €q = |dbw — dgjy| Where diy, is a true distance
between nodes ¢ and j, whereas d.), is a distance calculated
based on the stale position information available at a node.
The horisontal axis corresponds to a rate at which location
updates are performed. Three curves are presented for different
speed values. Increase in location update rate, thus reducing
the interval between consecutive updates, leads to significant
reduction of distance estimation error. However, it also means
increase in control overhead as the number of broadcasted
messages is increased. Speed of nodes’ movement also plays
an important role: with low speed even infrequent location
updates are sufficient to keep estimation error at an acceptable
level, while high speed requires more often updates.

D. Discussions

With the simple example presented in the previous sub-
section we have motivated a balanced approach where an
update rate of location information exchange is correlated with
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the required estimation error and nodes’ mobility. Using the
dependency between these parameters like the one presented
on Figure 2, one can choose optimal values for A\. An ad-
ditional optimization constraint in this case is minimization
of resource consumption required for location information
dissimination.

Similar problems concerning the impact of mobility on the
accuracy of location information appears in other situation as
well, typically in a dynamic environments and when location
information is used for protocol and system performance
optimizations. In [4] the authors consider the problem of a mo-
bile relay selection based on collected location information—
specifically on the impact of node mobility and information
collection delays. It is shown that selecting good values for
particularly the information update frequency, is crucial for
achieving good system throughput with a location based relay
selection scheme. However, setting the update frequency too
high, leads to a waste of of network resources due to excess
signaling overhead. This work has been extended within the
WHERE2 project in order to analytically model this impact.
Specifically we have proposed a Markov Chain model that
takes into account relay mobility and information collection
delays, which is described in details in [17]. A key outcome of
this contribution is that the proposed model allows to calculate
the optimal information update frequency for a given scenario
in terms of mobility speed and required Quality of Service
(QoS). The QoS is specified in terms of a maximum allowed
fraction of lost throughput, which is defined relative to the
hypothetical case of having perfect information. This result is
shown in Fig. 3.

III. INACCURATE POSITION ESTIMATION DUE TO
MALICIOUS ATTACKS

The availability of accurate node localization is critical for
the successful implementation of communication protocols
that are resilient to different kinds of attacks, such as link
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Fig. 3. Results showing how the proposed Markov Chain model of location
based relaying can be used to determine the optimal information update
frequency for a given scenario, where 7 is the update rate and v is the mobility
speed.

spoofing, wormholes, etc [18]. Localization protocols assume
the existence of a set of nodes (anchor nodes or beacons) that
are aware of their own positions and make such information
available to the network. Then, any other node could be able
to locate itself using these reference positions along with some
measurements obtained by the node that can be related to
its relative position with respect to the beacons. However,
the localization process can be compromised by nodes that
deliberately report incorrect position references (i.e. malicious
anchor nodes) so that the measured distances are inconsistent
with such fake locations and thus lead to biased positions
estimations.

A. Secure localization

Let us assume that there are N beacons located at points in
the plane (z1,y1), (z2,¥y2),---, (TN, yn), and the node to be
located is able to estimate the distances dy,ds, ...,dy to the
beacons. Then, the absolute position (z,y) of the node can be
estimated via a trilateration procedure as

(:i:,@):arg(rm%C(x,yb:“y,,d“z:1,2,,N) (1)
T,y

where C(+) is a suitable “cost function”. An example of cost
function is the one used in the method of least squares (LS)

N
Cis=Y & 2)
=1

where ¢; is a “residual” that depends on the difference d; —
V(@ — ;)2 + (y — v;)? and is, therefore, only related to the
information obtained from the i-th anchor.

If there are malicious beacons reporting fake location refer-
ences, we face a problem of estimating an unknown vector of
parameters (i.e. the node position) using a set of observations
(distances to the beacons) some of which are “outliers” (those
given by the malicious beacons). It is well-known that the con-
ventional LS approach is especially sensitive to the presence
of outliers, so a solution to mitigate the effects of such kind




of attacks is to resort to robust estimation techniques, which
are resilient to the effects of outliers [19]-[21].
Among those robust estimators, we have:
a) Least Absolute Deviations (LAD): In this method, the
cost function is the £;-norm of the vector of residuals, instead
of the quadratic norm used in the LS procedure

N
Crap =Y _ el 3)
i=1

b) Least Trimmed Squares (LTS): The cost function is
quadratic, but only considers the subset of the ¢ (with ¢ < N)
smallest squared residuals, so that up to N — g observations
could be outliers without reaching the breakdown point

q
Curs =Y €4y )
=1

c¢) Least Median of Squares (LMS): It is well-known
that the median is a robust measure of centrality; by using a
cost function based on this statistic, the location estimation
can tolerate up to 50% of malicious beacons

Crus = ir_nedian 5? 5)

et EREEE]

B. Simulation Results

We have simulated a network composed of 10 beacon nodes
randomly deployed in a square room of 30mx30m, and a node
actually located in the center of the room, whose position
is to be estimated from measurements of distances to the
beacon nodes. These measurements are contaminated with
zero-mean Gaussian noise of standard deviation proportional
to the actual distance in meters (to simulate the effect of errors
in TOA-based distance estimations with limited bandwidth),
with a proportionality constant of 0.0648. Furthermore, we
have assumed that M randomly chosen malicious beacons are
supposed to declare false locations that are 20 m away from
their real positions. We have tested the estimations given by
the LS, LAD, LTS and LMS methods of (2), (3), (4) and
(5), respectively. For the LTS algorithm, we have chosen the
number of residual terms ¢ = 6.

The quality of the estimation is measured through statistics
of the “location error”, defined as

e= /(& —a)> +(j—y) (6)

where (x,y) and (Z, ¢) are the actual and estimated positions,
respectively. The location error is characterized by its cumu-
lative distribution function (CDF): F.(x) = P(e < z).

Some results are represented in Fig. 4, where we can see
that, when no attacks are present (M = 0), the LS, LAD,
LTS and LMS algorithms give approximately the same per-
formance. However, in the presence of two malicious beacons
(M = 2), the behavior of the LS method quickly deteriorates,
while the LAD approach is somewhat less affected by the
measurement biases, although its overall performance is poor.
On the other hand, the influence of the outliers introduced by
the compromised beacons on the LMS method is negligible
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(there are less than 50% malicious beacons), and also the LTS
performs very well, because the condition M < N — q is
fulfilled.

IV. CONCLUSION

The goal of this paper is to attract attention of researchers
to the issue of a source of inaccurate and unreliable location
information that can be easily overseen. And here we do
not mean inaccuracy of location estimation obtained by one
or another localization algorithm, but we consider location
information that becomes outdated while it is disseminated
in a network and thus becomes inuaccurate, and unreliable
estimation if an active attack is launched by e.g. modifying
beaconing messages. We have provided insights into both
problems. For the first problem a discussion of trade-off and
how different parameters influence each other is given; in the
second part we have reviewed localization techniques that are
robust towards the presence of malicious nodes.
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