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Advanced modeling of large-scale 
oxy-fuel combustion processes

Chungen Yin

Department of Energy Technology, Aalborg University, DK-9220 Aalborg, Denmark, chy@et.aau.dk

Introduction

Oxy-fuel combustion is a promising carbon capture and
storage technology and has gained increasing concerns
worldwide. Combustion under oxy-fuel conditions is
inherently different from conventional air-fuel combustion,
among which radiative heat transfer and combustion
chemistry are two of the fundamental issues. Efforts are
made in both the aspects in this paper.

Methodology

Model development and verification;

Model implementation into CFD simulations of various oxy-
fuel combustion processes and experimental validation.

Result

• A new weighted-sum-of-gray-gases model (WSGGM)
applicable to oxy-fuel combustion derived, validated and
demonstrated: extending applicability to oxy-fuel,
introducing a scaling temperature for an improved
WSGGM data-fitting, and covering more representative
conditions to better account for the variations in
H2O/CO2 molar ratio in oxy-fuel flames (Yin et al., 2010).

• Various combustion mechanisms implemented in CFD of
oxy-fuel combustion & recommendations made in the
light of experimental validation (Yin et al., 2011).

• Non-gray vs. Gray calculation of the Yin et al. (2010) oxy-
fuel WSGGM vs. Gray calculation of the Smith et al.
(1982) WSGGM in oxy-fuel combustion (Yin, 2012).
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Table 1. The three global mechanisms: “WD”, “WD_refined”, “JL_refined”.

No Reactions Rate equations  [kmol/(m3·s)] A b E

WD: Westbrook & Dryer 2-step mechanism
1 5.01×1011 0 2.0×108

2 2.24×1012 0 1.7×108

WD_refined: refined Westbrook & Dryer 2-step mechanism for oxy-fuel combustion
1 5.03×1011 0 2.0×108

2 2.24×106 0 4.2×107

3 1.10×1013 -1 3.3×108

JL_refined: refined Jones & Lindstedt 4-step mechanism
1 4.4×1011 0 1.3×108

2 3.0×108 0 1.3×108

3 5.7×1011 0 1.5×108

4 2.8×109 0 8.4×107

OH2COO5.1CH 224 

22 COO5.0CO 

      8.0
2

7.0
4

)/(CH
OCH4   RTEb

dt
d

eAT

     25.0
2

)/(CO OCO  RTEb
dt

d eAT

OH2COO5.1CH 224 

22 COO5.0CO 

      8.0
2

7.0
4

)/(CH
OCH4   RTEb

dt
d

eAT

22 O5.0COCO 

       5.0
2

25.0
2

)/(CO OHOCO  RTEb
dt

d eAT

       25.0
2

5.0
22

)/(CO
OOHCO2   RTEb

dt
d

eAT

224 H2COO5.0CH 

224 H3COOHCH 

OHO5.0H 222 

222 HCOOHCO 

      25.125.0
4

)/(CH
OCH4   RTEb

dt
d

eAT

    OHCH 24
)/(CH4   RTEb

dt
d

eAT

     5.0
22

)/(H
OH2   RTEb

dt
d

eAT

    OHCO 2
)/(CO   RTEb

dt
d eAT

1700

1900

2100

2300

2500

2700

2900

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Te
m

pe
ra

tu
re

 [
K
]

Radial distance [m], at 142cm downstream of the burner

measured WD WD_refined JL_refined JL_refined (new)

0

0.03

0.06

0.09

0.12

0.15

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

O
2
vo

lu
m

e 
fr

ac
tio

n 
(d

ry
)

Radial distance [m], at 142cm downstream of the burner

measured WD WD_refined JL_refined JL_refined (new)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

C
O

 v
ol

um
e 

fr
ac

tio
n 

(d
ry

)

Radial distance [m], at 142cm downstream of the burner

measured WD WD_refined JL_refined JL_refined (new)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

H
2
vo

lu
m

e 
fr

ac
tio

n 
(d

ry
)

Radial distance [m], at 142cm downstream of the burner

measured JL_refined JL_refined (new)

Figure 1. CFD of IFRF 0.8MW oxy-NG furnace, using different mechanisms
& gaseous radiative property models [Smith et al. (1982) WSGGM by default,
Yin et al. (2010) WSGGM as “new”; both gray calculations].

Conclusions

1. The original WD 2-step over-predicts flame temperature &
largely under-predicts CO level;

2. The refined WD 2-step & JL 4-step reasonably predict the
high CO level in oxy-fuel. The refined JL 4-step also
reasonably predicts H2 & flame temperature;

3. Applied to small-scale oxy-fuel combustion modeling (L < a
few meters), different WSGGMs make negligible difference.

Case Model for radiative properties Sub-models in common

Case-0 The Smith et al. (1982)  WSGGM, gray cal. Fine structured mesh, standard
k-ε, DO (2×2×8 directions), 
refined WD 2-step / EDC.

Case-1 The Yin et al. (2010) WSGGM, gray calculation

Case-2 The Yin et al. (2010) WSGGM, non-gray cal.

Figure 2. CFD results of a 1500MW (thermal input) utility boiler assumed to
be operating under oxy-fuel condition with dry flue gas recycle.

4. Gray/non-gray of the same WSGGM make distinct difference,
more remarkable than that between gray calculation of
different WSGGMs;

5. Gray calculation over-predicts radiative HT to furnace walls,
under-predicts gas temperature in furnace, and results in a
higher CO prediction;

6. The demonstrated nongray-gas effects also apply for air-fuel
conditions; may be compromised in solid-fuel combustion.


