
Aalborg Universitet

Intrinsic Information Conveying for Network Coding Systems

Heide, Janus; Pedersen, Morten Videbæk; Fitzek, Frank; Zhang, Qi

Published in:
I E E E V T S Vehicular Technology Conference. Proceedings

DOI (link to publication from Publisher):
10.1109/VETECF.2011.6093005

Publication date:
2011

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Heide, J., Pedersen, M. V., Fitzek, F., & Zhang, Q. (2011). Intrinsic Information Conveying for Network Coding
Systems. I E E E V T S Vehicular Technology Conference. Proceedings, 1-5.
https://doi.org/10.1109/VETECF.2011.6093005

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1109/VETECF.2011.6093005
https://vbn.aau.dk/en/publications/c35600bb-5f19-447c-91fb-f1c8ad2b1961
https://doi.org/10.1109/VETECF.2011.6093005

Intrinsic Information Conveying

for Network Coding Systems

Janus Heide, Morten V. Pedersen and Frank H.P. Fitzek

Aalborg University, Aalborg, Denmark

Email: [jah|mvp|ff]@es.aau.dk

Qi Zhang

Aarhus school of Engineering, Aarhus, Denmark

Email: qz@cs.au.dk

Abstract—This paper investigated the possibility of intrinsic
information conveying in network coding systems. The infor-
mation is embedded into the coding vector by constructing the
vector based on a set of predefined rules. This information can
subsequently be retrieved by any receiver. The starting point
is Random Linear Network Coding (RLNC) and the goal is
to reduce the amount of coding operations both at the coding
and decoding node, and at the same time remove the need for
dedicated signaling messages. In a traditional RLNC system,
coding operation takes up significant computational resources
and adds to the overall energy consumption, which is particular
problematic for mobile battery-driven devices. In RLNC coding is
performed over a Finite Field (FF). We propose to divide this field
into sub fields, and let each sub field signify some information
or state. In order to embed the information correctly the coding
operations must be performed in a particular way, which we
introduce. Finally we evaluate the suggested system and find
that the amount of coding can be significantly reduced both at
nodes that recode and decode.

I. INTRODUCTION

Network Coding (NC) is a promising concept that breaks

with the existing store-and-forward paradigm in computer

networks, and has been shown to achieve capacity in any

communication network [1]. NC breaks with the end-to-end

approach of channel and source coding, as packets are no

longer treated as atomic entities, and data may be combined

and re-combined at any point in the network. This new

feature can provide advantages over traditional routing in

meshed networks, and be a powerful tool in mobile multi-hop

communication systems.

As an example consider the following cooperative scenario

where several mobile devices wish to receive the same data.

Each node is connected to a global overlay network that it

receives data from, such as UMTS or LTE. In addition the

nodes are in close proximity and connected locally via WiFi.

The connection among the nodes can be direct links or realized

by relaying. If the mobile nodes want to share their data, the

mobile nodes can form a cluster where they exchange data

locally. NC can be very useful for the local exchange as it

can be used to overcome the coupon collector’s problem [2].

However, one remaining problem is how the packets should

be coded to ensure efficient cooperation.

With the COPE method introduced in [3], each node at-

tempts to combine packets based on what packets the neigh-

boring nodes need. When a node sends a packet it attempts

to identify a set of packets that its neighboring node needs,

code these packets together, and send the resulting coded

packet. Thus the sender can satisfy all receivers with one coded

packet. In broadcast systems this can only be achieved if all

nodes needs the same packet, otherwise the sent packet will

be useless for some of the receivers. One problem with this

approach is that all nodes must obtain knowledge about what

have been received by the other nodes in the cluster. In order

to obtain this knowledge some signaling may be necessary

which introduces overhead.

RLNC was introduced in [4] to remove the need to gather

information about neighboring nodes. With RLNC packets are

coded ”randomly” and if the used FF size is large enough, the

probability of generating linear dependent packets is small. On

the downside the computational complexity is much higher in

RLNC compared to COPE. Furthermore RLNC requires some

mechanism that determines when the nodes have received

enough packets. For instance, in the described cooperative

scenario, the nodes must know when to stop the local exchange

of packets, this require some form of signaling.

In RLNC a coded packet is a combination of all the

packets available at the coding node. The performed coding

is described by the coding vector. For RLNC this coding is

dense, as many packets are combined, and therefore the com-

putational complexity of the coding is high. If fewer packets

are combined, the density of the coding vector decreases, it

becomes more sparse. This, which decreases the computational

complexity of both encoding and decoding the packet. How-

ever, if it is not done carefully it can increase the amount of

linear dependent packets created. See [5] for an overview of

gossip approaches to reduce the coding complexity.

Therefore we advocate exploiting the coding vector to

gain knowledge about the packets received by neighboring

nodes and to identify when the cooperative exchange can be

stopped. Thus this necessary information can be distributed

in the cluster without additional signaling. To achieve this

we propose to dynamically and intelligently craft the coding

vectors based on the information available at the coding node.

The remainder of this paper is organized as follows; Sec-

tion II explains how information can be embedded into the

coding vector, and introduces an example of information that

can be embedded. In Section III we consider a cooperative

network topology and compare the amount of coding when

RLNC is used alone and in combination with conveyed intrin-

sic information. The final conclusions are drawn in Section IV.

II. DIVIDING THE FIELD

All coding operations are performed over a Finite Field

(FF), of size q, and thus the original data is represented by

a series of ⌈m
q
⌉ field elements, each of size q. In the same

way each coding vector is represented by g field elements of

size q, where each element in the coding vector describes the

operations performed on the corresponding symbol. Typically

the elements in the coding vector are drawn at random

from q. Instead we propose to divide this field into n sets

A1,A2, . . . ,An, where q = |A1|+ |A2|+ . . .+ |An|. Each subset

can be associated with some condition at the coding node, and

thus be used to embed information into the coding vector.

We use the following rules to illustrate the idea; a field

element in set A1 indicates that a pivot element has been

identified for the corresponding symbol at the sender, and a

field element in set A2 indicates that no pivot element has been

identified for that symbol. An additional set A0 = 0 indicates

nothing and is necessary for reasons we will return to. For

a sink each of the g symbols in a generation can be in one

of three states, unknown, no-pivot, or pivot. All sinks hold

this state information for each of the other sinks. Whenever

a sink receives a coded symbol it updates the g states that

corresponds to the sender, where transitions between the states

occur as illustrated on Figure 1.
A0

A0

A0 A1

A1

A1

A2

A2
Unknown No-pivot Pivot

Fig. 1: The three states and the possible transitions.

If a sink has not yet identified a pivot element for a symbol,

it needs a coded symbol that includes that particular symbol

to complete the decoding. Therefore indicating no-pivot for a

symbol can be interpreted as a request for that symbol. When

a node identifies a pivot element for a symbol, it may omit

that from future coding vectors to create more sparse packets.

This is done by setting the corresponding element to 0 in the

coding vector. Therefore a no-pivot indication followed by a 0

A0 indicate that a pivot has been identified. If pivot elements

for all symbols are available among the sinks in the cluster,

they will be able to decode the original data by exchanging

symbols. Thus if the sinks indicate for which symbols they

have a pivot element, this can be used to determine when the

entire cluster holds enough symbols to decode. Additionally

any receiver can determine the rank at the sender, simply by

counting the number of indicated pivot elements.

The reason we do not convey more precise information

such as, symbol decoded, and symbol not decoded, should

become apparent when we explain how this information can

be embedded when a symbol is coded. To understand how

the information can be embedded we need to take a closer

look at the available coding operations, encoding, decoding,

and recoding. Readers unfamiliar with NC can refer to [6]

for an introduction. Data to be transferred from the source to

the sinks is divided into packets of length m. The number of

original packets over which encoding is performed is typically

referred to as the batch size or generation size and denoted g.

Thus the g original data packets of length m are arranged in

the matrix M = [m1;m2; . . . ;mg], where mi is a column

vector. When a coded symbol is transmitted into the network,

it must be accompanied by a coding vector that describes the

operations performed to create the coded symbol. The coding

vector is used to decode or recode the symbol at other nodes

in the network that receive the symbol.

A. Encoding

Normally to encode a packet x at the source, M is

multiplied with a randomly generated coding column vector

g of length g, x = M × g. In this way we can construct

X = [x1;x2; . . . ;xg+r] that consists of g + r coded data

packets and G = [g1; g2; . . . ; gg+r] that contains g + r
randomly generated encoding vectors, where r is any number

of redundant packets.

In order to embed information into the coding vector, g

is not drawn randomly but instead, from one of the sets Ai

based on the defined conditions. With the suggested approach

all field elements for coding vectors generated at a source are

in A1. To allow sources to encode sparse packets, 0 /∈ A2,

as otherwise 0 would incorrectly indicate that the source has

no pivot element for that symbol. Note that when encoding

all elements in g can be chosen arbitrarily because the source

holds all original symbols, and thus all possible g are valid

encoding vectors. If a coding vector consists of all 0’s except

a single element that is 1, the coded packet is equal to an

original symbol and we say that it is trivially coded.

B. Decoding

When a coded symbol is received the embedded information

of the coding vector is first retrieved. The goal of decoding

is to transform the received coded symbols into the original

symbols and thus obtain the original data M . To complete

the decoding, g linear independent coded symbols and coding

vectors are needed. Decoding should be performed on-the-fly

in order to distribute the computational work and determine

the progress of the decoding. During decoding, it is more

convenient to consider the coded symbols and coding vectors

as row vectors. Thus all g′ received symbols are collected

in X̂
T

[x̂1, x̂2, . . . , x̂g′] where x̂i is a coded symbol. And

the corresponding coding vectors are collected in Ĝ
T

=

[ĝ1, ĝ2, . . . , ĝg′] where ĝi is a coding vector. We denote Ĝ
T

the decoding matrix as it holds the information necessary to

decode the received symbols in X̂
T

. To decode the original

data, Ĝ
T

is transformed into the identity matrix, by performing

row operations, that is simultaneously performed on X̂
T

. In

this way X̂
T

→ MT as Ĝ
T

→ I .

Equation (1) is an example of a part of a decoding matrix,

Ĝ
T

, for a node that has received four linear independent

symbols. In the attempt to bring Ĝ
T

to a reduced echelon form,

pivot elements have been identified for the indices 0,1,2, and

4. No pivot element has been identified for index 3, thus no

coding vector has been inserted into the corresponding rows.

Additionally ĝ5,3 = 0, as if this was not the case a pivot

element would have been identified for index 3. The remainder

of rows 0,1,2, and 4 can be any field elements.

Ĝ
T

=









1 0 0 ĝ3,0 0 ĝ5,0 · · ·
0 1 0 ĝ3,1 0 ĝ5,1 · · ·
0 0 1 ĝ3,2 0 ĝ5,2 · · ·
0 0 0 0 0 0 · · ·
0 0 0 0 1 ĝ5,4 · · ·









(1)

C. Recoding

Recoding is similar to encoding so we represent the symbols

and coding vectors as column vectors. It is more complicated

to embed information into the coding vector during recoding

compared to encoding. The reason is that the vector used to

recode, we denote this h, is not the vector that is transmitted

together with the resulting coded symbol. Any node that has

received g′ > 1 linear independent packets, can recode and

thus create new coded symbols. All received g′ symbols are

held in the matrix X̂ = [x̂1x̂2 . . . x̂g′] and all coding vectors

are in the matrix Ĝ = [ĝ1ĝ2 . . . ĝg′]. To recode a symbol Ĝ

and X̂ are multiplied with a randomly generated vector h of

length g′, g̃ = Ĝ× h, x̃ = X̂ × h. Note that h is only used

locally and that there is no need to distinguish between coded

and recoded symbols.

We reuse the example from Equation (1) to compute a new

coding vector, g̃, to illustrate the problem. Note that any h

is valid as long as hi = 0 for every index where no pivot

element has been identified in Ĝ
T

.

Ĝ
︷ ︸︸ ︷













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

ĝ3,0 ĝ3,1 ĝ3,2 0 0
0 0 0 0 1

ĝ5,0 ĝ5,1 ĝ5,2 0 ĝ5,4
...

...
...

...
...














×

h
︷ ︸︸ ︷








h0

h1

h2

0
h4









=

g̃
︷ ︸︸ ︷













h0

h1

h2

σ3

h4

σ5

...














(2)

where : σj = h0 · ĝj,0 + h1 · ĝj,1 + h2 · ĝj,2 + h4 · ĝj,4

In the created coding vector g̃, each index for which an

pivot element has been identified in Ĝ
T

is equal to the index

in h. However for indices where no pivot element has been

identified in Ĝ
T

, the result is a sum of products. Thus g′ of

the indices in g̃ can be easily specified, whereas the remaining

g − g′ cannot.

D. Drawing Recoding Vectors and Linear Dependency

The simplest approach to insure that all g− g′ elements are

in A2 is to draw all elements in h randomly from A1. If one of

the resulting elements in g̃ is in A1 the embedded information

is incorrect, h is discarded, and a new h generated. The

elements ĝ are in q and thus if g′ is not very low, we can

assume that the resulting g− g′ σ’s are uniformly distributed.

The probability that one resulting index is in A2 is
|A2|
q

and

thus the probability that all g − g′ are not in A2 is.

Pdiscard = 1−

(
|A2|

q

)g−g′

(3)

The probability Pdiscard is highest when g′ is low. In

particular the mean Pdiscard is of interest, this is system

dependent as it dependent on when recoding is performed.

Specifically the distribution of g′ must be known to calculate

the mean Pdiscard exact. However, recoding will most likely

not be performed when g′ is very low as this would mean that

the recoding node hold little information. Thus we assume that

g′ ≥ g/2. However, when |A2| is increased, |A1| is decreased

which in particular impacts coding at a source.

Additionally consider the case where a node has only

received trivial coded packets. In this case all valid h’s are

0 for the indices where the node has received no symbols,

and thus g̃ will also be zero for these indices. Thus 0 /∈ A1,

and we have established that 0 /∈ (A1 ∪ A2) is required.

When a coded symbol is received there is a non-zero

probability that the symbol is a linear combination of the

already received symbols. A source that knows nothing about

the symbols of a receiver, must code packets at random and

hope that the sent symbol is useful at the receiver. In this

case, the probability that a symbol is linear dependent at a

receiving node is a function of the field size, q, and the rank

deficiency at the receiving node, g − g′ [7]. As a source has

pivot elements for all symbols, the usable field size is reduced

from q to |A1|.

Pdependent =
1

|A1|g−g′
(4)

In particular the mean Pdependent is of interest. Again the

distribution of g′ is necessary to calculate this value exact.

However, if A1 ≥ 2, 2 is also the minimal field size, and the

generation size g is not very low, this overhead is small [8]. If

the sender does not hold all symbols uncoded, rank(Ĝ
T

) < g
this probability is less straight forward and depends on the

correlation of the symbols at the sender and receiver.

Both Equation (4) and (3) should be low and hence there

is a trade-off between |A1| and |A2|. Ff q is not limited both

probabilities can be arbitrary small. If q = 232 it is possible

to choose |A1| and |A2|, such that both mean Pdiscard and

Pdependent are extremely small regardless of g, and thus we

can neglect them. If q = 28, g = 128, and we choose |A1| = 2
then Pdiscard for g′ = g/2 = 64 is 53%. If we assume that g′ is

uniformly distributed between g/2 and g the mean Pdiscard is

30%. See [9] for a small script to calculate these probabilities.

Notice that recoding should first performed only be performed

on the coding vector, and subsequently on the symbol only if

the coding vector is usable. In this way the computational

overhead from generating an unusable coded packet is very

small.

III. SYSTEM EXAMPLE & PERFORMANCE

To illustrate how intrinsic information in the coding vector

could be used in a real system, we consider the following

wireless cooperative scenario. N nearby sinks want to down-

load the same data from some service provider. Each sink has a

cellular link and a local wireless link. With the cellular link the

node is connected to a Base Station (BS) that provides access

to the service. We assume that a systematic random approach

is used at the BS to reduce the computational overhead [8]. All

sinks are interconnected via the local wireless link. In order

to improve the download speed, conserve cellular bandwidth,

conserve energy, etc. the sinks cooperate on downloading the

data [10].

If the cellular links are orthogonal the BS should split the

content into N parts and transmit each part to one sink. As

each sink receives unique symbols from the BS these symbols

should be forwarded to the rest of the sinks in the cluster. As

the BS is unicasting data to each sink, it is straightforward to

ensure that the cluster combined receives all the symbols.

If the cellular links are non-orthogonal, the sinks cannot

know if they hold unique symbols without signalling, as other

sinks could also have received the symbols. Thus when a

symbol is received from the BS it is only stored. In this case

the BS is broadcasting the data to the cluster and therefore

it is more complicated to ensure that each symbol has been

received by at least one sink in the cluster. There exists several

approaches, and we assume that such an approach is used.

In both cases erasures on the broadcast link causes each sink

to hold a subset of the original symbols, and potentially some

coded symbols. Furthermore we assume that each symbol has

been received by at least one sink in the cluster. Hence the

cluster can cooperate locally and exchange symbols until all

sinks can decode the data. In this local repair phase the intro-

duced intrinsic idea can be used to reduce the computational

complexity.

Initially each sink knows nothing about what the other sinks

hold, as it has not received any symbols from them. If a

sink has no information about the other sinks, it is necessary

to fall back to the traditional RLNC approach. However, as

intrinsic information is embedded into the coding vector, the

sink simultaneously communicates what it has and does not

have. Thus a sink starts to code more intelligently when it has

received one coding vector from each of the other sinks in the

cluster.

Based on the knowledge of what the other sinks need, each

sink can create coded symbols that are useful for all other

sinks. The coding sink identifies, for each of the other sinks,

a symbol that is needed by that sink and for which the coding

sink has a pivot element. In the worst case the coding sink

must choose a different symbol for each sink. In the best case

they all need the same symbol and the coding sink can simply

send that symbol. Whenever a sink receives a symbol from

another sink, it updates its local state information about the

sending node. To keep this information up to data the nodes

can transmit in round-robin fashion.

A. Computational Complexity

Here we consider the computational complexity as the num-

ber of row operations performed, where each row operation

is either multiply and add or multiply and subtract. As we

consider a binary extension field addition and subtraction is

identical.

Two things influence the computational complexity in this

system. One is the amount of coding needed to recode a

symbol at a sink, or alternatively how many symbols held

at the sinks that are combined. The other is the density of the

resulting coding vector, as this indicates the amount of work

necessary to decode the symbols at the receiver. The density

is the ratio of non-zero elements in a coding vector, and can

be calculated with Equation (5), for a coding vector h with a

generation size g.

D(h) =

∑g

k=1(hk 6= 0)

g
(5)

When a sink codes i symbols together, the first symbol is

multiplied with an element drawn from q and copied to a

buffer. For each subsequent symbol an element is drawn from

q and multiplied onto the symbol, the results is then added to

the buffer.

In a traditional RLNC, all received symbols are combined

every time, hence Equation (6). With the intrinsic approach the

number of combined symbols is at most equal to the number

of sinks, if a different symbol is coded for each sink. As one

sink is sending, the number of receivers is N − 1. In the best

case a single symbol can simply be forwarded, if there is a

symbol for which all receivers have no pivot element. This

gives the bound in Equation (7) and (8).

RRLNC = g′ (6)

Rintrinsic ≤ min(N − 1, g′) (7)

Rintrinsic ≥ 0 (8)

When a sink decodes it identifies the first non-zero element

in g̃. The coding vector and the coded symbol is then mul-

tiplied with this elements inverse to obtain a pivot element

in the coding vector. If the sink holds another coding vector

that has pivot element for the same index it is then subtracts,

the coding vector and coded symbol from the received coding

vector and symbol. This substitution is continued until the data

is decoded. Thus the computation complexity of coding and

decoding are comparable. For the traditional RLNC approach

all coded symbols are completely dense. For the intrinsic

approach the density is at worst equal to the sum of the rank

deficiency at the coding sink, and the number of symbols that

are coded together. The reason is that for all indices’ where

no pivot element has been identified, the result is a non-zero

index in g̃. The minimum density is similar but only a single

symbol is forwarded.

DRLNC = g (9)

Dintrinsic ≤ min(N − 1 + g − g′, g) (10)

Dintrinsic ≥ min(g − g′, g) (11)

B. Results

Thus we know the computational requirements for coding

a symbol, and decoding the symbol as a function of g′.
Decoding is completed when g′ = g and thus we can calculate

the number of operations needed to go from g′ to g, which

is done by calculating the survival function, or one minus

the cumulative distribution function. In particular the survival

function here specifies the number of expected remaining

operations that must be performed from an particular g′ until

decoding is completed. The normalized survival function is

plotted for g = 128 and n = 4 on Figure 2. On the x-

axis is g′ which indicates the starting point of the nodes g′.
If this number is divided by g it can be interpreted as the

Packet Error Probability (PEP) for the broadcast channel, e.g.

if g′ = g/2 then half of the g symbols was lost and thus

PEP=.5. Additionally g′ equal to g and 0 represent the extreme

cases of PEP=0% and 100% respectively. The latter case also

represent the case when a non-systematic code is used, as

no trivially coded packets are received. On the y-axis is the

survival function of the number of operations. Note that for

Cintrinsic and Dintrinsic the area between the upper and lower

bound is filled.

0 20 40 60 80 100 120 g
g' [-]

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 s

um
 o

f a
ll

fo
llo

w
in

g
co

di
ng

 o
pe

ra
tio

ns
 [-

]

0.75 ·g

DRLNC

RRLNC

Dintrinsic

Rintrinsic

Fig. 2: Number of operations needed to finish decoding as a

function of g′.

Figure 2 shows how the amount of coding operations

needed for recode and decode is significantly reduced, when

information is conveyed with the intrinsic approach. We have

marked the case where g′ = .75 · g, which corresponds to a

PEP of 0.25. For this case the coding complexity is decreased

by 96 %, and decoding complexity is decreased by 82 %.

If g′ is lower the numeric reduction in complexity is higher.

However the reduction in percent is lower. Unless g′ ≈ g
the reduction in amount of coding is very significant, and as

a result we expect the computational load to be decreased

considerably for both recoding and decoding nodes.

IV. CONCLUSION

We have proposed the idea of embedding information into

the coding vector that accompanies a coded symbol in a

random linear network coding system. We have also intro-

duced an approach for how this information can be embedded,

and retrieved in a practical system. To evaluate the idea we

have outlined a simple suggestion for what information could

be conveyed and how the system could operate in a simple

cooperative scenario. The results demonstrate that the amount

of coding performed can be significantly reduced when the

conveyed information is used during recoding of symbols.

Additionally the density of the coding vectors is reduced which

makes decoding at the receiver less computational demanding.

The outlined system is meant to demonstrate the idea, and

how it could be implemented in a practical system. However,

additional work is necessary to produce a complete system

and a working protocol. Furthermore such a system should

be evaluated in a realistic scenario, e.g. simulated with proper

channel models.

ACKNOWLEDGMENT

This work was partially financed by the CONE project

(Grant No. 09-066549/FTP) granted by Danish Ministry of

Science, Technology and Innovation, and the ENOC project

in collaboration with Renesas, Oulu.

REFERENCES

[1] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung, “Network
information flow,” IEEE Transactions on Information Theory, vol. 46,
no. 4, pp. 1204–1216, 2000.

[2] W. Feller, An Introduction to Probability Theory and Its Applications,

Volume 1. Wiley, 1968.
[3] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,

“Xors in the air: practical wireless network coding,” in Proceedings

of the 2006 conference on Applications, technologies, architectures, and

protocols for computer communications (SIGCOMM ’06). ACM Press,
September, 11-15 2006, pp. 243–254.

[4] T. Ho, R. Koetter, M. Medard, D. Karger, and M. ros, “The benefits
of coding over routing in a randomized setting,” in Proceedings of the

IEEE International Symposium on Information Theory, ISIT ’03, June 29
- July 4 2003. [Online]. Available: citeseer.ist.psu.edu/ho03benefits.html

[5] B. Haeupler, “Analyzing network coding gossip made easy,” CoRR, vol.
abs/1010.0558, 2010.

[6] C. Fragouli, J. Boudec, and J. Widmer, “Network coding: an instant
primer,” SIGCOMM Comput. Commun. Rev., vol. 36, no. 1, pp. 63–68,
2006.

[7] A. Eryilmaz, A. Ozdaglar, and M. Medard, “On delay performance gains
from network coding,” Information Sciences and Systems, 2006 40th

Annual Conference on, pp. 864–870, March 2006.
[8] J. Heide, M. V. Pedersen, F. H. Fitzek, and T. Larsen, “Network coding

for mobile devices - systematic binary random rateless codes,” in The

IEEE International Conference on Communications (ICC), Dresden,
Germany, 14-18 June 2009.

[9] M. V. Pedersen, J. Heide, and F. H. Fitzek. (2011, Jun.) The
cone project homepage. [Online]. Available: http://mobdevtrac.es.aau.
dk/cone/wiki/intrinsic

[10] F. Fitzek and M. Katz, Eds., Cooperation in Wireless Networks: Prin-

ciples and Applications – Real Egoistic Behavior is to Cooperate!, ser.
ISBN 1-4020-4710-X. Springer, April 2006.

