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a b s t r a c t

An increasing number of (semantic) web applications store a very large number of

(subject, predicate, object) triples in specialized storage engines called triple-stores.

Often, triple-stores are used mainly as plain data stores, i.e., for inserting and retrieving

large amounts of triples, but not using more advanced features such as logical inference,

etc. However, current triple-stores are not optimized for such bulk operations and/or do

not support OWL Lite. Further, triple-stores can be inflexible when the data has to be

integrated with other kinds of data in non-triple form, e.g., standard relational data. This

paper presents 3XL, a triple-store that efficiently supports operations on very large

amounts of OWL Lite triples. 3XL also provides the user with high flexibility as it stores

data in an object-relational database in a schema that is easy to use and understand. It is,

thus, easy to integrate 3XL data with data from other sources. The distinguishing features

of 3XL include (a) flexibility as the data is stored in a database, allowing easy integration

with other data, and can be queried by means of both triple queries and SQL, (b) using a

specialized data-dependent schema (with intelligent partitioning) which is intuitive and

efficient to use, (c) using object-relational DBMS features such as inheritance, (d) efficient

loading through extensive use of bulk loading and caching, and (e) efficient triple query

operations, especially in the important case when the subject and/or predicate is known.

Extensive experiments with a PostgreSQL-based implementation show that 3XL performs

very well for such operations and that the performance is comparable to state-of-the-art

triple-stores.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

The increasing popularity of (semantic) web applications
means that very large amounts of semantic web data, e.g., from
ontologies, need to be managed. Most semantic web data is
somehow based on the Resource Description Framework (RDF)
[1], a family of World Wide Web Consortium (W3C) specifications
for conceptual description/modeling of web resource informa-
tion. Recently, the Web Ontology Language (OWL), a semantic

markup language recommended by W3C for publishing and
sharing ontologies on the WWW has gained popularity [2]. OWL
is layered on top of RDF. Even the least expressive of the three
OWL layers (OWL Lite) offers class hierarchies and constraints
features, and is very useful for thesauri and other taxonomies.
OWL (and RDF) data takes the form of (subject, predicate, object)
triples. These triples are typically stored in specialized storage
engines called triple-stores.

Our initial motivation for this work was the European
Internet Accessibility Observatory (EIAO) project [3] where
tens of millions of triples describing test results about the
accessibility of web pages for people with various kinds
of disabilities, e.g., blind people using a screen reader,
were generated in the W3C standard EARL RDF language.
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Here, and in other projects, we have seen that the triple-
stores are used mainly as specialized bulk data stores, i.e., for
inserting and retrieving large amounts of triples (bulk
operations). More advanced features such as logical infer-
ence, etc., are often not used. Additionally, for the basic
storage of data about OWL instances, we found that even a
subset of the OWL Lite features was enough, namely classes,
subclasses, object properties, data properties, domains,
ranges, restrictions, onProperty, and maxCardinality. A
well-known example of such data is the data generated
by the data generator for the de facto industry standard OWL
data management benchmark Lehigh University Benchmark
(LUBM) [4].

Similarly to many other projects, the EIAO project
involved later integration of the collected EARL RDF data
with other non-RDF data when a data warehouse (DW) was
built to enable easy analysis of the accessibility results. To
integrate data from triples with other kinds of data from
relational databases, flat files, XML, etc. can be difficult. In
the EIAO case, an extract-transform-load (ETL) application
was hand-coded to execute triple queries, interpret triple
results and do the many needed transformations to integrate
the data into a relational DW. Thus, it was a design criteria
for 3XL to allows easy integration with non-triple data.

In this paper, we present the 3XL triple-store that, unlike
most current OWL Lite triple-stores, is specifically designed to
support bulk data management operations (load and retrieval)
on very large OWL Lite triple-stores and provide the user with
flexibility in retrieving the data. The ‘‘3’’ refers to triples, and the
‘‘XL’’ part to ‘‘eXtra Large’’ and ‘‘fLeXible’’ (‘‘3XL’’ is also the
largest standard t-shirt size in Europe). 3XL’s approach has a
number of unique characteristics. First, 3XL stores data in a
relational database meaning that the user has flexibility as
queries can be expressed either in triples or in SQL. Second, for
the database schema, 3XL uses a specialized data-dependent

schema derived from the OWL ontology for the data to store,
meaning that the schema is easy to navigate and understand
and that an ‘‘intelligent partitioning’’ of data is performed. Third,
3XL uses advanced object-relational features of the underlying
ORDBMS, namely table inheritance and the possibility to have
arrays as in-lined attribute values. Fourth, 3XL makes extensive
use of a number of bulk-loading techniques and caching to speed
up bulk insertions significantly. Finally, 3XL is specifically
designed to support efficient bulk retrieval for queries where
the subject and/or the predicate is known, as such queries are
the most important for most bulk data management applica-
tions. 3XL is implemented on top of the PostgreSQL ORDBMS.

Extensive performance experiments with both real-world
and synthetic data show that 3XL has load and query perfor-
mance comparable to the best (file-based) triple-stores, and that
3XL outperforms other DBMS-based triple-stores. We believe
this positions 3XL in a unique spot: performance comparable to
the best file-based triple-stores combined with the high degree
of flexibility in accessing and integrating non-triple data offered
by a DBMS-based triple-store.

The rest of the paper is structured as follows. Section 2
introduces the 3XL system in general, explains how to generate
a 3XL database schema from an input OWL ontology, and finally
describes triple addition and queries. Section 3 presents experi-
ments. Section 4 presents related work. The last section
concludes and provides ideas for future work.

2. The 3XL system

2.1. Overview

First, we informally describe the general idea about
generating a specialized database schema for an OWL
ontology in PostgreSQL. The descriptions give an intuition
about how 3XL works before this is described in detail.

To build the database to store the data in, an OWL
ontology is read. This ontology should define all classes,
their parent–child relationships and their properties
(including domains and ranges). In the database, a class

table is created for each class. The class table for the class C

directly inherits from any class tables for the parent classes
of C. This means that if the class table for C’s parent P has the
attributes a,b,c then the class table for C has at least the
attributes a,b,c.

Two attributes are needed for each instance of any class:
an ID and a URI. To have these available in all tables, all class
tables – directly or indirectly – inherit from a single root
class table that represents the OWL class owl:Thing that all
other OWL classes inherit from. The class table for owl:

Thing has the columns ID and URI. All the ID values are for
convenience unique integers drawn from the same database
sequence (this is explained later).

If the class C has a DataProperty d with maxCardin-

ality 1, the table for C has a column d with a proper
datatype. For a multiproperty without a maxCardinality,1

there is a special multiproperty table. This multiproperty
table has a column that holds the attribute values and a
column that holds the IDs for the instances the property
values apply to. The ID attribute acts like a foreign key, but it
is not declared (this is explained below). We here denote this
as a loose foreign key. Note that a multiproperty table does
not inherit from the class table for owl:Thing since multi-
property tables are not intended to represent instances, but
only values for instances. A multiproperty has only one
multiproperty table for a class C and not one for each
subclass of C.

Instead of using multiproperty tables, the class tables can
have columns that hold arrays. In this way it is possible to
represent several property values for an instance in the
single row that represents the instance in question.

An owl:ObjectProperty is handled similarly to how
an owl:DataProperty is handled. If the object property
has owl:maxCardinality 1, a column for the property is
created in the appropriate class table. This column holds IDs
for the referenced objects. If the property is a multiproperty,
the value column in the multiproperty table holds ID values.

Example 1. We now introduce the running example used in
the rest of the paper. To save space we do not use URIs but
intuitive names for classes and properties.

Assume that there are three classes:Document,HTMLVersion,

and HTMLDocument, where HTMLDocument is a subclass of

Document. Document has the properties title and keyword. The

property keyword is the only multiproperty in this example.

HTMLVersionhas the properties version and approvalDate. Apart

1 OWL Lite only allows maxCardinality to be 0, 1, or unspecified.
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from the inherited properties, HTMLDocument has the property

usedVersion. The property usedVersion is an owl:Object-

Property with owl:range HTMLVersion. The remaining

properties are all of kind owl:DataProperty.

This results in the database schema drawn in Fig. 1.

Inheritance is shown with arrows as in UML. A loose foreign

key is shown as a dotted arrow. For now, ignore the map and

overflow tables which are explained later.

Note how easy the schema from Example 1 is to use in SQL
queries. This makes it easy to integrate the data with other data.
Further, the user can exploit all the advanced functionality that
the underlying DBMS (PostgreSQL) provides. The user can,
however, also choose to query the data by means of (single
or ‘‘chained’’) triples as will be explained later.

When triples are being inserted, 3XL has to find out which
class the subject belongs to. This decides which class table to
insert the data into. If the property name of the triple is unique
among classes, it is easy to decide. Otherwise, 3XL tries to
deduce the most specific class that the instance for sure belongs
to. The subject may, however, be an instance of a class that is not
described by the ontology used for the schema generation. In
that case, the triple is placed in the overflow table.

To be efficient, 3XL does not insert data from a triple into
the underlying database as soon the triple is added. Instead,
the data is held in a buffer until larger amounts of data can be
inserted quickly into the underlying database using bulk
load mechanisms. To keep data in a buffer for a while also has
the advantage that the type detection described above can
make a more precise guess. It is a requirement in OWL Lite
that there is a triple giving therdf:type for each individual.
Thus, a triple revealing the type should appear sooner or
later and has often appeared when the actual insertion into
the database takes place.

In Example 1 it may, however, happen that an instance i

of the class Document that has been written to the class table
for Document later turns out to actually be an instance of the
class HTMLDocument. In that case, it is easy to move the row
representing i from the class table for Document to the class
table for HTMLDocument. Here it is convenient only to have
one multiproperty table for keyword since no rows have to
moved from the multiproperty table. This also shows why

the foreign key from multiproperty tables has to be loose: It
is unknown which class table the referenced ID value is
located in. However, when querying for a specific ID value
for an instance of Document in Example 1, it is enough to use
the SQL expression SELECT ID FROM Document WHERE y.
PostgreSQL then automatically also looks in descendant
tables. This also shows why all IDs should be unique across
tables and therefore are drawn from the same sequence.

A drawback of the approach where a row representing an
instance is moved from one class table T to a class table for a
subclass S, is that the subclass may put amaxCardinality1
restriction on a property p that in the superclass is a
multiproperty. In this case, the multiproperty table for p is
not needed to represent data for S instances. It is then
possible to let p be represented by a column in S and not by
the multiproperty table that has a loose foreign key to T.
However, for simplicity we keep using the multiproperty
table for p if it already exists and do not add an extra column
for p to the class table for S.

When the triple-store is queried, it is done by issuing one or
several combined (subject, predicate, object) triples, called
point-wise queries and composite queries, respectively (in addi-
tion, the user has the possibility to use SQL queries as the data is
stored in a relational database). If a property is given in a point-
wise query, this can reveal which class table(s) to look into. If
only a subject or object is given, it is possible to look up the URI in
the owl:Thing class table. This is, however, potentially very
expensive, so 3XL, in addition to the previously mentioned class
tables, also has a map table that maps from a URI to the class
table that holds the instance with that URI. For each query triple,
the overflow table is also searched by 3XL. In comparison to
point-wise queries, composite queries are more expressive, as
they are conjunctive combinations of several point-wise query
triples.

In summary, the idea is to have the data spread over
many tables (with many columns). It is fast to find data when
the table to look in can be identified easily (‘‘intelligent
partitioning’’). The tables also have very good potential for
being indexed. Indexes may be added on attributes that are
often used in queries. We are now ready to give a detailed
description of how the specialized database schema of 3XL is
generated. After that, we describe how additions to the
triple-store are handled. This is followed by a description of
how queries are handled.

2.2. Schema generation

In the following, we describe the handling of the sup-
ported OWL constructs when the specialized database
schema is generated. To generate the database schema,
3XL reads an ontology and builds a model of the classes
including their properties and subclass relationships. Based
on the built model, SQL DDL statements to create tables are
generated and executed. Note that this SQL is not conform-
ing to the SQL standard since it uses PostgreSQL’s object-
oriented extensions (see more below). In the following, we
focus on the resulting schema.

Note that a database schema generated by 3XL always
has the table map(ID, URI, ct). As explained later, this
table is used to make it fast to find the table that represents a
given instance and the ID of the instance. The table

Fig. 1. A database schema generated by 3XL.
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overflow(ID, sub, pre, obj) is also created in each
generated schema. This table holds triples that do not fit
in the other tables.

We are now ready to describe how the constructs of OWL
Lite are handled in the generation of a specialized database
schema. We assume that a database schema D is being
generated for the OWL ontology O.

owl:Class: An owl:Class in O results in a table, called a
class table, in D. In the following, we denote by CX the class
table in D for the class X in O. CX is used such that for each
instance of X that is not an instance of a subclass of X and for
which data must be stored in the triple-store, there is exactly
one row in CX . Each represented instance has a URI and is
given a unique ID by 3XL.

The special class table Cowl:Thing for owl:Thing is
always created in D. This special class table does not inherit
from any other table and has two columns named ID (of type
INTEGER) and URI (of type VARCHAR). Any other class table
created in D always inherits from one or more other class
tables (see below) and always inherits – directly or indirectly
– from Cowl:Thing. This implies that the columns ID and URI
are available in each class table.

For other class tables than Cowl:Thing, other columns
may also be present: A class table for a class that is in the
rdfs:domain of some property P and is a subclass of a
restriction saying the owl:maxCardinality of the prop-
erty is 1, also has a column for P. This column is only
explicitly declared in the class table for the most general
class that is the domain of the property. But class tables
inheriting from that class table automatically also have the
column. For an example of this, refer to Example 1 where a
column for title is declared in the class table for Document.

rdfs:subClassOf: For classes X and Y in O where Y is a
subclass of X (i.e., the triple (Y, rdfs:subClassOf, X) exists
in O), there exist class tables CX and CY in D as explained
above. But CY is declared to inherit from CX and thus has at
least the same columns as CX . This resembles the fact that
any instance of Y is also an instance of X. So when rows are
read from CX to find data about X instances, PostgreSQL also
reads data from CY since the rows there represent data about
Y instances (and thus also X instances). In Example 1,
CHTMLDocument inherits from CDocument since HTMLDocument

is a subclass of Document.
Any class X defined in O that is not a subclass of another

class implicitly becomes a subclass of owl:Thing. Thus, if
no other parent is specified for X, CX inherits from Cowl:Thing
as do CDocument and CHTMLVersion in the running example.

owl:ObjectProperty and owl:DataProperty: A property
(no matter if it is an owl:ObjectProperty or owl:Data-
Property) results in a column in a table. If the property is an
owl:ObjectProperty, the column is of type INTEGER such
that it can hold the ID for the referenced instance. If the
property on the other hand is an owl:DataProperty,
the column is of a type that can represent the range of the
property, e.g., VARCHAR or INTEGER.

If the owl:maxCardinality is 1, the column is placed in
the class table for the most general class in the rdfs:do-

main of the property. Since there is at most one value for
each instance, this makes it efficient to find the data since no
joining is needed and one look-up in the relevant class table
can find many property values for one instance.

If no owl:maxCardinality is specified, there may be an
unknown number of property values to store for each
instance and the idea about storing one property value in
a column in the class table breaks. Instead, a column with an
array type can be used. Another solution is to create a
multiproperty table. Each row in the multiproperty table
represents one value for the property for a specific instance.
In a multiproperty table there are two columns: One to hold
the ID of the instance that the represented property value
applies to and one for the property value itself. This approach
is illustrated for the keyword property in Example 1. In 3XL, it
is left as a configuration choice if multiproperty tables or
array columns should be used for multiproperties.

rdfs:domain: The rdfs:domain for a property decides
which class table to place the column for the property in case
it has a owl:maxCardinality of 1 or in case that array
columns are used instead of multiproperty tables. In either
case, the column to hold the property values is placed in CT

where T is the domain.
If multiproperty tables are used and no owl:maxCar-

dinality is given, the rdfs:domain decides which class
table holds (directly or indirectly in a descendant table) the
instances for which the property values are given. In other
words, this decides where one of the IDs referenced by the
multiproperty table exists. Note that no foreign key is
declared in D. To understand this, recall that since there is
only one multiproperty table for the given property, the
most specific type of an instance that has this property may
be different from the most general. So although the property
has domain X, another class Y may be a subclass of X, and Y

instances can be referenced by a property with range X. An
example of this is seen in the running example, where
keyword is defined to have the domain Document, but an
HTMLDocument can also have keyword values. So in general
there is not only one class table representing the range.
Therefore we use a loose foreign key. A loose foreign key LFK‘

from CX to CY is a column ‘X in CX and a column ‘Y in CY with
the constraint that if a row in CX has the value v for ‘X , then at
least one row in CY or a descendant table of CY has the value v

in the column ‘Y . The crucial point here compared to a
normal foreign key, is that the referenced value does not
have to be in CY , but can instead be in one of CY ’s
descendants. Note that a loose foreign key is not enforced
by the DBMS; this is left to 3XL to do. If no domain is given in
O for the property, it is implicitly assumed to be owl:Thing.

rdfs:range: The rdfs:range is used to decide where to
find referenced instances for an owl:ObjectProperty and
to decide the data type of the column holding values for an
owl:DataProperty. So, similarly to the case explained
above, the range decides which table the other ID of a
multiproperty table for an object property references by a
loose foreign key. Further, when the range of a property p is
known, the object of a triple where the predicate is p, can
have its rdf:type inferred (although in OWL Lite, it also has
to be given explicitly).

owl:Restriction (including owl:onProperty and owl:-
maxCardinality): In OWL, the way to say that a class C

satisfies a certain condition, is to say that C is a subclass of Cu

where Cu is the class of all objects that satisfy the condition
[5]. The Cu class can be an anonymous class. To construct an
anonymous class for which conditions can be specified, the
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owl:Restriction construct is used. For an owl:Res-

triction, a number of things such as owl:maxCardin-

ality can be specified.
Following the previous explanations about classes and

subclasses this would lead to generating class tables for
anonymous restrictions when 3XL generates the database
schema. But since all instances of Cu (which is actually
anonymous) would also be instances of the non-anonymous
class C and CCu would thus be empty, this is more complex
than needed. Instead, when 3XL generates the database
schema, supported restrictions are ‘‘pulled down’’ to the
non-anonymous subclass. So if the restriction Cu of which C is
a subclass, defines theowl:maxCardinality to be 1 for the
property P by means of owl:onProperty, this means that P

can be represented by a column in CC and that no class table
is generated for Cu.

Currently, 3XL’s restriction support is limited as only
cardinality constraints are handled. As previously described,
an owl:maxCardinality of 1 results in a column in a class
table. Thus we assume that a property with max:Cardin-

ality 1 only occurs once for a given subject. This deviates
from the OWL semantics where it for a property p with
owl:maxCardinality 1 can be deduced that o1 and o2 are
equivalent if the both the triples (s,p,o1) and (s,p,o2) are
present.

The following table summarizes how OWL constructs
from the ontology O are mapped into the database schema D.

The construct y results in y

owl:Class a class table

rdfs:subClass the class table for the subclass inherits from

the class table for the superclass

owl:ObjectProperty or

owl:DataProperty

a column in a class table if the

owl:maxCardinality is 1 and in a

multiproperty table otherwise

rdfs:domain a column for the property in the class table

for the domain if the owl:maxCardinality is

1 and a loose foreign key from a

multiproperty table to a class table

otherwise.

rdfs:range a type for the column representing the

property

3XL thus supports a subset of OWL Lite. This subset is
enough to represent the real-life semantic data from the
EIAO project which served as our initial motivation for 3XL.
Later, support for more OWL Lite constructs can be added.
For example, we envision that support for owl:sameAs

could be implemented by representing sameAs-relation-
ships explicitly in a table (not a class table, but a table
managed by 3XL similarly to the map table). Queries would,
however, then have to be rewritten if they involve an
instance which is the sameAs another instance. Also, the
construct owl:equivalentClass could be supported by
letting 3XL maintain a mapping (likely in memory for
efficiency) between classes and the classes that are physi-
cally represented by a class table.

2.3. Addition of triples

We now describe how 3XL handles triples that are
inserted into a specific model M which is a database. M

has the database schema D which has been generated as
described above from the ontology OS with schematic data.
We assume that the triples to insert are taken from an
ontology OI which only contains data about instances, and
not schematic data about classes, etc. Note that OI can be
split up into several smaller sets such that OI ¼ OI1

[ � � � [ OIn

where each OIi
, i¼ 1, . . . ,n, is added at a different time. In

other words, unlike schema generation which happens only
once, addition of triples can happen many times.

First, we focus on the state of M after the addition of the
triples in OI to give an intuition for the algorithms that
handle this. Then, we present pseudocode in Algorithms
1–3 and explain the handling of triple additions in more
details.

If the subject of a triple is an instance of a class that is not
described by OS, the triple is represented in the overflow

table. Assume in the following that the subjects of the triples
to insert are instances of classes described by OS.

When a triple (s, p, o) is added to M, 3XL has to decide in
which class table and/or multiproperty table to put the data
from the triple. Typically, the data in a triple becomes part
of a row to be inserted into M. For each different s for
which a triple ðs,rdf:type,tÞ exists2 in OI and no triple
ðs,rdf:type,tuÞ where tu is more specific than t exists in OI,
a row Rs is inserted into Ct .

We now consider the effects of adding a triple (s, p, o)
where p is a property defined in OS. First, assume that p is
declared to have owl:maxCardinality 1. Then Rs’s col-
umn for p in Ct gets the value nðp,oÞwhich equals o if p is an
owl:DataProperty or equals the value of the ID attribute
in Ro if p is an owl:ObjectProperty. In other words, the
value of a data property is stored directly whereas the value
of an object property is not stored as a URI but as the (more
efficient) integer ID of the referenced object.

Now assume that no owl:maxCardinality is given for
p. As previously mentioned, such properties can be handled
in two ways. If array columns are used, the situation
resembles that of a property with a maximal cardinality
of 1. The only difference is that the column for p in Rs does
not get its value set to nðp,oÞ. Instead the value of nðp,oÞ is
added to the array in the column for p inRs. If multiproperty
tables are used, the row ði,nðp,oÞÞwhere i is the value of the
ID attribute inRs is added to the multiproperty table for p. In
other words, the row that is inserted into the multiproperty
table has a reference (by means of a loose foreign key) to the
row Rs. Further, it has a reference to the row for the
referenced object if p is an owl:ObjectProperty and
otherwise the value of the property.

So for properties defined in OS, the values they take in OI

are stored explicitly in columns in class tables and multi-
property tables. For other triples, information is not stored
explicitly by adding a row. If the predicate p of a triple (s, p, o)
is rdf:type, this information is stored implicitly since this
triple does not result in a row being added to M, but decides
in which class table Rs is put.

The pseudocode listed in Algorithms 1–3 shows how
addition of triples is handled. For a so-called value holder vh,
we denote by vh½x� the value that vh holds for x. We let the

2 Recall that the type must be explicitly given.
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value holders hold lists for multiproperties and denote by 3

the concatenation operator for a list.

Algorithm 1. AddTriple

Require: A triple (s,p,o)

1: vh’GetValueHolderðsÞ

2: if p is defined in OS then
3: if domain(p) is more specific than vh[rdf:type] then
4: vh½rdf:type�’domainðpÞ

5: if maxCardinalityðpÞ ¼ 1 then
6: vh½p�’Valueðp,oÞ

7: else
8: vh½p�’vh½p�3Valueðp,oÞ

9: else if p¼ rdf:type and o is more specific than vh½rdf:type� and
o is described by OS then

10:vh½rdf:type�’o

11:else
12:Insert the triple into overflow

Algorithm 2. GetValueHolder

Require A URI u for an instance

1: if the data buffer holds a value holder vh for u then
2: return vh

3: else
4: table’ The class table holding u (found from map)

5: if table is not NULL then
6: /� Read values from the database �/

7: vh’new ValueHolderðÞ

8: Read all values for u from table and assign them to vh.

9: Delete the row with URI u from table

10: for all multiproperty tables mp referencing table do
11: Read all property values in rows referencing the row for u

in table and assign these values to vh

12: Delete from mp the rows referencing the row with URI u in

table

13: Add vh to the data buffer

14: return vh

15: else
16: /� Create a new value holder �/

17: vh’new ValueHolderðÞ

18: vh½URI�’u

19: vh½ID�’ a unique ID

20: vh½rdf:type�’ owl:Thing

21: Add vh to the data buffer

22: return vh

Algorithm 3. Value

Require: A property p and an object o

1: if p is an owl:ObjectProperty then
2: res’ the ID of the instance with URI o (found from map)

3: if res is NULL then
4: res’ðGetValueHolderðoÞÞ½ID�

5: return res

6: else
7: /� It is an owl : DataProperty�/

8: return o

When triples are being added to M, 3XL may not
immediately be able to figure out which table to place the
data of the triple in. For this reason, and to exploit the speed
of bulk loading, data to add is temporarily held in a data

buffer. Data from the data buffer is then, when needed,
flushed into the database. This is illustrated in Fig. 2.

The data buffer does not hold triples. Instead it holds
value holders (see Algorithm 1, line 1 and Algorithm 2). So for

each subject s of triples that have data in the data
buffer, there is a value holder associated with it. In this
value holder, an associative array maps between property
names and values for these properties. In other words,
the associative array for s reflects the mapping p/nðp,oÞ.
Note that if the predicate p of a triple (s,p,o) is rdf:type,
p/o is also inserted into the associative array in the value
holder for s unless the associative array already maps
rdf:type to a more specific type than o. Actually, 3XL
infers triples of the form ðs,rdf:type,oÞ based on predicate
names, but only the most specialized type is stored
(Algorithm 1 lines 3–4). This type information is later
used to determine where to place the values held by the
value holder. For a multiproperty p, the associative array
maps p to a list of values (Algorithm 1, line 8) but for a
property q with a maximal cardinality of 1, the associative
array maps q to a scalar value (Algorithm 1, line 6). Further,
3XL assigns a unique ID to each subject which is also held by
the value holder (Algorithm 2, line 19 when the value holder
is created).

Example 2 (Data buffer). Assume that the following triples
are added to an empty 3XL model M for the running
example:

� (http://example.org/HTML-4.0, version, ‘‘4.0’’);
� (http://example.org/HTML-4.0, approvalDate, ‘‘1997-12-18’’);
� (http://example.org/programming.html, title, ‘‘How to

Code?’’);
� (http://example.org/programming.html, keyword, ‘‘Java’’);
� (http://example.org/programming.html, keyword, ‘‘program-

ming’’).

Before the triples are inserted into the underlying database
by 3XL, the data buffer has the following state.

http://example.org/HTML-4.0

ID / 1

rdf:type / HTMLVersion

version / 4.0

approvalDate / 1997-12-18

Data buffer

Value holder
Client

(a,b,c)
(d,e,f)
(g,h,i)

CSV files

class tables

Postgre SQLBerkeley DB

map

Fig. 2. Data flow in 3XL.
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http://example.org/programming.html

ID / 2

rdf:type / Document

title / How to Code?

keyword / [programming, Java]

Here the top row of a table shows which subject, the value
holder holds values for. The following rows show the
associative array. Note that the type for http://example.
org/programming.html is assumed to beDocument since this
is the most general class in the domains of title and keyword.

Now assume that the triple (http://example.org/program

ming.html, usedVersion, http://example.org/HTML-4.0) is

added to M. Then the type detection finds that http://

example.org/programming.html must be of type HTMLDo-

cument, so its value holder gets the following state.

http://example.org/programming.html

ID / 2

rdf:type / HTMLDocument

title / How to Code?

keyword / [programming, Java]

usedVersion / 1

Note how the value holder maps usedVersion to the ID value
for http://example.org/HTML-4.0, not to the URI directly. If
the required rdf:type triples now are inserted, this does
not change anything since the type detection has already
deduced the types.

Due to the definition of n described above, the value
holders and eventually the columns in the database hold IDs
of the referenced instances for object properties. But when
triples are added, the instances are referred to by URIs. So on
the addition of the triple (s,p,o) where p is an object property,
3XL has to find an ID for o, i.e., nðp,oÞ. If o is not already
represented in M, a new value holder for o is created
(Algorithm 3, line 4). Depending on the range of p, type
information about o may be inferred. If o on the other hand is
already represented in M, its existing ID should of course be
used. It is possible to search for the ID by using the query
SELECT id FROM Cowl:Thing WHERE uri = o. However, for a
large model with many class tables and many rows (i.e., data
about many instances) this can be an expensive query. To
make this faster, 3XL maintains a table map(uri, id, ct)
where uri and id are self-descriptive and ct is a reference
to the class table where the instance is represented. When-
ever an instance is inserted into a class table CX , the
instance’s URI and ID and a reference to CX are inserted into
map. By searching the data buffer and the map table, it is fast
to look up if an instance is already represented and to get its
ID if it is. Themap table exists in the PostgreSQL database, but
for performance reasons 3XL does not query/update the map
table in the database while adding triples. Instead, 3XL only
extracts all rows in the table once when starting a load of
triples and places them in a temporary BerkeleyDB database
[6] which acts like a cache. With BerkeleyDB it is possible to
keep a configurable amount of the data in memory and

efficiently and transparently write the rest to disk-based
storage.

Similarly, 3XL also needs to determine if the instance s is
already represented when adding a triple (s,p,o). Again the
map table is used. If s is not already represented, a new value
holder is created and added to the data buffer. If s on
the other hand is represented, a value holder is created in the
data buffer and given the values that can be read from
the class table referenced from map and thenRs and all rows
referencing it from multiproperty tables are deleted. In this
way, it is easy to get the new and old data for s written to the
database as data for s is just written as if it was all newly
inserted. This also helps, if it due to newly added data
becomes evident that s has a more specialized type than
known before. In our implementation, the deletions are not
done immediately as shown in the pseudocode. For a better
performance, we invoke one operation deleting several rows
before inserting new data.

When the data buffer gets full, a part of data in the data
buffer is inserted into the database. This is done in a bulk
operation where PostgreSQL’s very efficient COPY mechan-
ism is used instead of INSERT SQL statements. So the data
gets dumped from the data buffer to temporary files in
comma-separated values (CSV) format and the temporary
files are then read by PostgreSQL. The rdf:types read from
the value holders are used to decide which tables to insert
the data into. In case, no type is known, owl:Thing is
assumed. For unknown property values, NULL is inserted. If
multiproperty tables are used, values from a multiproperty
are inserted into these instead of a class table.

To exploit that the data might have locality such that
triples describing the same instance appear close to each
other, a partial-commit mechanism is employed, in which
the least recently used m% of the data buffer’s content
is moved to the database when the data buffer gets full
(the percentage m is user-configurable). This is illustrated in
Fig. 3. In this way, the system can in many cases avoid
reading in the data just written out to the database.

2.4. Triple queries

In this section, we describe the two types of queries,
point-wise queries and composite queries, which are imple-
mented in 3XL.

2.4.1. Point-wise queries

A point-wise query is a triple, i.e., Q ¼ ðs,p,oÞ. Any of the
elements in the query triple can take the special value � to
match anything. We consider how 3XL handles point-wise
queries on the triples in a model M. Since schematic
information given in OS (for which the specialized schema

Fig. 3. The data buffer.
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was generated) is fixed, we do not consider queries for
schematic information here. Instead we focus on queries for
instance data inserted into M, i.e., queries for data in OI. The
result of a query consists of those triples in M where all
elements match their corresponding elements in the query
triple. The special � value matches anything, but for all
elements in Q different from �, all corresponding elements in
a triple T 2 M must be identical for T to be included in the
result.

Example 3 (Point-wise query). Consider again the triples
that were inserted in Example 2 and assume that only those
(and the required triples explicitly giving the rdf:type)
were inserted into M. The result of the query ð�,keyword,�Þ is
the set holding the following triples:

� (http://example.org/programming.html, keyword, Java);
� (http://example.org/programming.html, keyword, pro-

gramming).

The result of the query (http://example.org/HTML-4.0, �,�) is
the set holding the following triples:

� (http://example.org/HTML-4.0, rdf:type, owl:Thing);
� (http://example.org/HTML-4.0, rdf:type, HTMLVersion);
� (http://example.org/HTML-4.0, approvalDate, 1997-12-

18);
� (http://example.org/HTML-4.0, version, 4.0);

i.e., the set containing all the knowledge about http://
example.org/HTML-4.0, including all its known types.

For each query, the overflow table is searched and the
result set of this is unioned with the results of searching the
class and multiproperty tables. The overflow table is con-
sidered with a single SQL statement where all overflow
triples with matching values are found. In the remaining
descriptions, we focus on how the class and multiproperty
tables are used to find the remaining triples of the result set.

As there are three elements in the query triple Q and each
of these can take an ordinary value or the special value �,
there are 23=8 generic cases to consider. We go through each
of them in the following. s, p, and o are all values different
from �. When we for a subject s say that the class table that
holds s is found, it is implicitly assumed that some class table
actually holds s. If this is not the case, the result is of course
just the empty set. Further, we assume that all data
(including map’s data) is inserted into the database before
the queries are executed.

Case (s, p, o): In this case, the query is for the query triple
itself, i.e., the result set is either empty or consists exactly of
the query triple. If p equals rdf:type, the result is found by
looking in the map table to see if the class table holding s is Co

or a descendant of Co. This is done by using the single SQL
query SELECT ct FROM map WHERE uri¼ s which can be
performed fast if there is an index on map(uri, ct). If s is
held by Co or a descendant of Co, Q is returned and otherwise
an empty result is returned.

If p is different from rdf:type, the result is found by
finding the ID for s (from now called s id) and the class table
where s is inserted (by means of map). If that class table has a

column or a multiproperty table for p, it is determined if the
property p takes the value o for s. To determine this, it is
necessary to look for nðp,oÞ in the database as an ID is stored
instead of a URI for an owl:ObjectProperty. If p takes the
value o for s, Q is returned, otherwise the empty result is
returned. So this requires an SQL query selecting the class
table (if p is represented by a column) or the ID (if p is
represented by a multiproperty table) from map and either
the query SELECT true FROM classtable WHERE id¼

sid AND pcolumn¼ nðp,oÞ (if p is not a multiproperty),
the query SELECT true FROM classtable where id¼

sid AND nðp,oÞ ¼ ANYðpcolumnÞ (if p is a multiproperty
represented by an array column), or the query
SELECT true FROM ptable WHERE id¼ sid AND value

¼ nðp,oÞ (if p is a multiproperty represented by a multi-
property table). In any case, only 2 SQL SELECT queries are
needed and – except when p is represented by an array
column – indexes on the ID and p columns can help to speed
up these queries.

Example 4 (Finding a specific triple). Let Q=(http://example.
org/programming.html, keyword, programming) be a query
given in the running example. To answer this query, 3XL
executes the following SQL queries since keyword is repre-
sented by a multiproperty table.

SELECT id FROM map WHERE uri= ‘http://example.org/
programming.html’
SELECT true FROM keywordTable WHERE id=$id AND
value=‘programming’

The result from the database is true so the triple exists in
the model and 3XL returns Q itself as the result.

Case ðs,p,�Þ: Also in this case, there is special handling of
the situation where p¼ rdf:type. Then, the map table is
used to determine the class table CX where s is located. The
result set consists of all triples (s, p, C) where C is the class X

or an ancestor class of X. So the only needed SQL query is
SELECT ct FROM map WHERE uri=s. Based on the result of
this and its knowledge about class inheritance, 3XL gen-
erates the triples for the result.

If p is an owl:DataProperty, the class table holding s is
found. From this, the row representing s is found and each
value for p is read. If p is a multiproperty and multiproperty
tables are used, the values for p are found in the multi-
property table instead by using the ID for s as a search
criterion. The result set consists of all triples (s, p, V) where V

is a p value for s. Again, only 2 SQL SELECTs are needed: One
querying map and one querying for the value(s) for p from
either the class table or the multiproperty table for p. Indexes
on (uri, ct) and (uri, id) in map and on the ids in the
class table/multiproperty table will help to speed up these
queries.

If p is anowl:ObjectProperty, special care has to be taken
as the URIs of the referenced objects should be found, not their
IDs. The first step is to find the class table CX holding s and the ID
of s by means of single SELECT on the map table. Assume WLOG
that the range of p is R. If p is represented by the column
pcolumn in CX , the query SELECT CR:uri FROM CX , CR WHERE

CX :pcolumn¼ CR:id AND CX :id¼ sid is used. If p is
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represented by a multiproperty table mp, CR is joined with mp

instead of CX . If p is a multiproperty represented by an array
column, CX and CR are still joined, but the condition to
use is WHERE CR:id¼ ANYðCX :pcolumnÞ AND CX :id¼ sid. The
result set holds all triples (s,p,U) where U ranges over the
selected URIs.

Case ðs,�,oÞ: In this case, the class table holding s is found.
Then all property values (including values in multiproperty
tables) are searched. The result set consists of all triples (s, P,
o) where P is a property that takes the value o for s. So by
iterating over the properties defined for the class that s

belongs to, the previous (s,p,o) case can be used to find the
triples to include. Note that also the special case
ðs,rdf:type,oÞ should be considered for inclusion in the
result set. So for this query type, an SQL query selecting the
class table and the ID frommap is needed. Further, the SQL query
SELECT true FROM mp WHERE ID¼ sid AND value¼ nðp,oÞ
is needed for each multiproperty table mp representing a
property p defined for s’s class as is the SQL query
SELECT true FROM classtable WHERE id¼ sid AND pc¼

nðp,oÞ for each column pc representing a property p for s in the
class table holding s.

Case ðs,�,�Þ In this case, the class table holding s is found
by using map. For each property P defined in OS, each of its
values V for s is found. The result set consists of all triples
(s, P, V) unioned with the triples in the result set of the query
ðs,rdf:type,�Þ.

In this case the following SQL queries are needed: One select-
ing the class table and ID from map, the query SELECT

p1column, . . . ,pncolumn FROM classtable WHERE id¼ sid

if there are columns representing data properties p1, . . . ,pn in
the class table holding s, and a query SELECT value FROM mp

WHERE id=sid for each multiproperty table mp representing a
data property defined for s’s class. Again, indexes on the id

attributes in the class tables and multiproperty tables speed up
the queries. Further, SQL to find the URIs for the values of object
properties is needed. So for each object property q defined for
the class that s belongs to and which is not represented by an
array column, the following query is used: SELECT

CR:uri FROM CR, F WHERE CR:id¼F:qcolumn AND F:id¼
sid. Here F is a multiproperty table for q or the class table
holding s and R is the range of q. Indexes on theidattributes will
again speed up the queries. If q is represented by an array
column, CR:id¼ ANYðF:qcolumnÞ should hold instead of
CR:id¼F:qcolumn.

Case ð�,p,oÞ: If p equals rdf:type, the class table Co is
found and all URIs are selected from it (including those
in descendant tables). The result set consists of all triples
(U, p, o) where U ranges over the found URIs. This requires
only 1 SQL query: SELECT uri FROM Co.

If p is different from rdf:type, 3XL must find the most
general class G for which p is defined. If p is represented by a
multiproperty table X, the tables X and CG are joined and
restricted to consider the rows where the column for p takes
the value nðp,oÞ and the URIs for these rows are selected
by the query SELECT uri FROM X, CG WHERE X:id¼

CG:id AND value¼ nðp,oÞ. If p is represented in a column
in CG, all URIs for rows that have the value nðp,oÞ in the column
for p (either as an element in case p is a multiproperty
represented by an array column or as the only value in case p

is not a multiproperty) are selected. This is done by using either

the query SELECT uri FROM CG WHERE pcolumn¼ nðp,oÞ
or the query SELECT uri FROM CG WHERE nðp,oÞ ¼ ANY
ðpcolumnÞ. The result set consists of all triples (U, p, o) where
U ranges over the selected URIs. The first of these queries
benefits from an index on the column holding data for p, but for
the latter a scan is needed as we are only looking for a particular
value inside an array.

Example 5 (Find subjects from a ð�,p,oÞ query). Consider the
running example and assume that 3XL is given the query
Q=(�, keyword, programming). The most general class
for which keyword is specified is Document so the SQL
query SELECT uri FROM keywordTable, CDocument

WHERE keywordTable:id ¼ CDocument:id AND value¼

‘ programming’ is executed. One URI is found by the
query, so the triple (http://example.org/programming.html,
keyword, programming) is returned by 3XL.

Case ð�,p,�Þ: If p in this case equals rdf:type, the result
set contains all triples describing types for all subjects in the
model. So for each class table CX , all its URIs (including those
in subtables) are found with the SQL query SELECT uri

FROM CX which performs a scan of CX and its descendants.
The result set consists of all triples (U, p, X) where U ranges
over the URIs selected from CX .

If p is a data property, 3XL handles this similarly to the
ð�,p,oÞ case described above with the exception that no
restrictions are made for the object (i.e., the parts concerning
nðp,oÞ are not included in the SQL) and the values in the
column representing p are also selected. Again special care
has to be taken if p is an object property. It is then needed to
join the class table or multiproperty table holding p values to
the class table for the range R of P. Further, the column
CR:uri should be selected instead of the column represent-
ing p (this is similar to the already described ðs,p,�Þ case). For
each row (U,O) in the SQL query’s result, a triple (U,p,O) is
included in 3XL’s result set.

Case ð�,�,oÞ: In this case, all triples with the given o as
object should be returned. Consider that o could be the name
of a class in which case type information must be returned
(note that we can ignore the possibility that o is, e.g.,
owl:ObjectProperty as we have assumed that there
are no queries for schematic data given in OS). We handle
this part as in the ð�,p,oÞ case (with p = rdf:type). But o

could also be any other kind of value that some property
defined in OS takes for some instance. To detect if o is another
instance, we use the query SELECT ID FROM map WHERE

URI=o. If the result is empty, we execute the query
q¼ SELECT � FROM CX WHERE dp1 ¼ o OR . . .OR dpn ¼ o for
each class X (the dpj’s are the columns holding X’s data
properties). If the result of the query towards the map table,
on the other hand, found an ID i, we append OR op= i for each
column op representing an object property in CX .

Case ð�,�,�Þ: In this case, all triples in M should be
returned. This can also be done by reusing some of the
previously described cases. More concretely the result set for
this query consists of a union of all type information triples
and the union of all result sets for the queries ð�,p,�Þwhere p

is a property defined in OS. Formally, the result set is given by
the following where Oða,b,cÞ denotes the result set for the
query ða,b,cÞ and P is the set of properties defined in
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S

p2POð�,p,�ÞÞ. In other words, this is
handled similarly to how the ð�,�,oÞ case is handled.

2.4.2. Composite queries

Composite queries are composed of a conjunction of
several query triples, each of the form (subject, predicate,
object). Unknown variables used for linking triples together,
are specified using a string starting with a question mark,
while known constants are expressed using their full URIs or
in an abbreviated form where prefixes can be replaced with
shorter predefined values. There are three different patterns
for linked query triples:

The first pattern is query triples ordered in a ‘‘chain’’ in
which the object of a triple is the subject of the next triple
(see Fig. 4). The second pattern is query triples in a ‘‘star’’
which share a common subject (see Fig. 5). The third is
the combination of the two others. Each query pattern is
characterized by paths which connect query triples together.
A node in the paths is a subject or an object, and an edge
connecting two nodes is a predicate. When the query
engine constructs SQL statements needed to answer a
composite query, a table join is produced for two adjacent
nodes if the property linking them is an object property
(if the property is a multiproperty, the multiproperty table
is also included in the join). If the property is a data
property, it can be processed similarly to the ways we have
discussed above for the point-wise queries whose predicates
are known.

After the SQL statement is generated, it is directly issued to
the underlying DMBS. The advantage of this approach is that,
by exploiting the DBMS, we can take advantage of its
sophisticated query evaluation and optimization mechan-
isms for free. Note that there are table joins between different
class tables and between class tables and multiproperty

tables. As all class tables and multiproperty tables are indexed
– typically, there are indices on all the ID columns and loose
foreign key columns – the joins are not expensive.

In the following, we give an example to illustrate how a
composite query is converted into SQL by the 3XL query
engine. The query is used to find all HTML documents with
the keyword Java and their corresponding versions.

Example 6 (Composite query). Consider the composite
query (?x, rdf:type, HTMLDocument) (?y, rdf:type,
HTMLVersion) (?x, keyword, Java) (?x, usedVersion, ?y) in
which keyword is a multiproperty of owl:DataProperty type,
and usedVersion is of owl:ObjectProperty type. When the
multiproperty is implemented as an array, the composite
query gets translated into:

SELECT CHTMLDocument:uri AS x,

CHTMLVersion:uri AS y FROM CHTMLDocument, CHTMLVersion WHERE

CHTMLDocument:usedVersion¼ CHTMLVersion:ID AND ‘Java’ ¼

ANYðCHTMLDocument:keywordÞ.

When the multiproperty is implemented as a multiprop-

erty table, the composite query gets translated into:

SELECT CHTMLDocument:uri AS x, CHTMLVersion:uri AS y FROM

CHTMLDocument, CHTMLVersion, keywordTable WHERE CHTMLDocument:

usedVersion¼ CHTMLVersion:ID AND CDocument:id¼

keywordTable:id AND keywordTable:keyword¼

‘ Java’ .

Fig. 6 shows the result of this composite query.

3. Performance evaluation

3.1. Experiment settings

We first conduct an experimental study to analyze the
effectiveness of the various optimizations we made in the
implementation. Then, we evaluate the loading and query
performance of 3XL in comparison with the two state-of-
the-art high performance triple-stores, BigOWLIM [7] and
RDF-3X [8]. BigOWLIM is a commercial tool which is
implemented in Java as a Storage and Inference Layer (SAIL)
for the Sesame RDF database. It supports full RDFS, different
OWL variants including most of OWL Lite. RDF-3X is an open
source RISC-style engine with streamlined indexing and
query processing which provides schema-free RDF data
storage and retrieval. Unlike 3XL, the reference systems
both use file-based storage. We note that it is not our goal to
necessarily be strictly faster than the reference systems,
but instead to provide comparable performance in
combination with the flexibility of a DBMS-based solution.
Finally, we compare the performance of 3XL to that of other
DBMS-based triple-stores.Fig. 5. ‘‘Star’’ pattern.

Fig. 4. ‘‘Chain’’ pattern.

Fig. 6. The result of the composite query.
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In the experiments, the following two datasets are used:

� EIAO dataset: This is a real-world dataset from the
European Internet Accessibility Observatory (EIAO) pro-
ject [3] which developed a tool for performing automatic
evaluation of accessibility of web sites. This project
serves as the design inspiration for the 3XL triple-store.
The EIAO dataset conforms to an OWL Lite ontology [9]
which contains 16 classes and 75 properties. Among the
properties, 18 are of type OWL:ObjectProperty, 57 are
of type OWL:DataProperty, and 29 are multiproperties.
� LUBM dataset: This is a synthetic dataset describing

fictitious universities from the Lehigh University Bench-
mark (LUBM) [4] which is the de facto industry bench-
mark for OWL repository scalability. For 3XL, we use an
ontology which is based on a subset of the published
LUBM ontology, but only uses the 3XL-supported con-
structs and makes implicit subclass relationships expli-
cit. Our ontology covers 20 classes and 20 properties.
Among the properties, 13 are of type OWL:ObjectProp-
erty, seven are of type OWL:DataProperty, and four
are multiproperties. The ontology allows datasets gen-
erated by the (unmodified) LUBM generator to be loaded
into 3XL. It is available from www.cs.aau.dk/�xiliu/
3xlsystem/.

We benchmark the performance when loading up to 100
million triples from each dataset (corresponding to 724
universities in the generated LUBM dataset). Before the
loading, the original datasets are converted to N-triples
format by the Redland RDF parser. All compared systems
read input data from the N-triples format. The time spent on
parsing is included in the overall loading time. In the query
performance study, 14 queries are studied on the LUBM
dataset, and 10 queries on the EIAO dataset. Both datasets
contain 25 million triples. To reduce caching effects, a query
is run 10 times with randomly generated query condition
values and the average time is calculated. For example, in the
performance study of the query ðs,p,�Þ, 10 different values of
s are used. Between each query execution, the DBMS is
restarted and all caches are cleared.

All experiments are conducted on a DELL D630 notebook
with a 2.2 GHz Intel(R) Core(TM)2 Duo processor, 3 GB main
memory, Ubuntu 10.04 with 64-bit Linux 2.6.32-22 kernel
and java-6-sun-1.6.0.20. All the experiments are done under
console mode, which all the unnecessary services are
disabled including Linux X server. The JVM options ‘‘-
Xms1024m -Xmx2500m -XX:-UseGCOverheadLimit -
XX:+UseParallelGC’’ are used for both 3XL and BigOWLIM.
PostgreSQL 8.3.5 is used as the RDBMS for 3XL with the
settings ‘‘shared_buffers=512 MB, temp_buffers=128 MB,
work_mem=56 MB, checkpoint_segments=20’’ and default
values for other configuration parameters. BigOWLIM 3.3 is
configured with Sesame 2.3.2 as its database, and with
the following runtime settings: ‘‘owlim:ruleset empty;
owlim:entity-index-size 5000,000; owlim:cache-memory
200M’’. This means that no reasoning is done during
data loading. The cache memory is calculated by using a
configuration spreadsheet included with the BIGOWLIM

distribution, and the other settings are as referenced in
[7]. For RDF-3X, we follow the setup from [8].

The source code for 3XL, the used datasets and queries,
instructions, etc. are available from www.cs.aau.dk/�xiliu/
3xlsystem/.

3.2. Loading time

We first study the effect of the various optimizations in
our implementation. To find the performance contribution
of each optimization, we measure the loading time of each
by using the LUBM dataset and compare with the non-
optimized result. We focus on four aspects: (1) bulk-loading,
(2) partial-commit, (3) using BDB to cache the map table, and
(4) their combination. Fig. 7 shows the results. First, we see
that the loading times grow linearly (with the slight excep-
tion of the two middle ones) with increasing dataset size, but
at very different rates. When loading without any optimiza-
tion, data is inserted into the map and class tables using SQL
INSERTs through JDBC. Before INSERTing, triples with the
same subject already existing in the database are removed
using DELETEs. Here, it takes a staggering 252 h to load
100 M triples (average speed = 65 triples/s). Using BDB (next
line) has little effect. Switching to buffering triples (by
means of value holders) and using JDBC batch INSERTs (next
line, in the lower part of the figure) is almost 30 times faster,
showing the effectiveness of the 3XL buffering. Adding the
partial commit (PC) optimization (line Insert, VH, PC.) is
about 13% faster (8.95 vs. 10.24 h) than using normal ‘‘full’’
commit. This is because partial commit takes advantage of
data locality to improve the buffer hit rate and thus reduces
the number of database accesses when generating value
holders (see Section 2).

The next big jump in performance comes from using
bulkload rather than batch INSERTs (line Bulkload, VH),
yielding a further 4–5 fold performance improvement. The
bulkload results are also shown in Fig. 8 for better read-
ability. Combining bulkload with a Berkeley DB cache for the
map table further contributes about 50% performance
improvement (line Bulkload, VH, BDB). This is due to two
reasons: first, the BDB map accelerates the identification
of the class table during value holder generation, and
second, 3XL saves the load time of map table data. In
our initial implementation, we maintained the map table

Fig. 7. Effect of optimizations.
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in the database like the class tables: buffer-CSV-

copy to database. In this scheme, loading 100 M triples
required 16 commit operations and used 200 min to load
the map table alone. In comparison, the current scheme only
needs 10 min to load the map table, so the optimized scheme
of maintaining separate map tables for loading and querying
is obviously better. Finally, adding partial commit (line All
opt.) yields another 15.5% improvement. In summary, the
optimization yielded a 202-fold performance improvement,
from 255 to 1.26 h, thus demonstrating the effectiveness of
the 3XL design and implementation choices.

We have performed experiments to find the optimal
configuration parameters, including (a) using two different
buffer schemes: caching class instances in class-specific
buffers vs. caching all instances in one common buffer,
(b) varying the value holder buffer size, (c) varying the
Berkeley DB buffer size, (d) varying the partial commit value,
and (e) using different cache algorithms including first in,

first out (FIFO), least recently used (LRU) and least frequently

used (LFU). We found that using one common buffer and the
LRU cache algorithm is best for loading performance.
The partial commit value depends on the data locality of
the dataset, i.e., a lower partial-commit value should be set
for a higher data locality, and vice versa. The best sizes for
the value holder buffer and BDB cache also depend on the
characteristics of the data and the hardware configuration.
In addition, using a memory-based file system (tmpfs) [10]
to cache the CSV files was tested, but the built-in OS file
caching works so well that explicitly using tmpfs did not
improve performance.

Using the full set of the optimizations, we now compare
3XL with the reference systems by loading 100 M triples
from each dataset. The sizes of EIAO and LUBM datasets in
N-Triples format are 18.5 and 16.6 GB respectively. How-
ever, a characteristic of the two datasets is that EIAO
contains many duplicated triples while LUBM contains only
distinct triples. Therefore, based on the above optimization
study, we set the partial-commit value to be 0.4 for the EIAO
dataset and 0.8 for the LUBM dataset. The value holder buffer
size is set to 150,000 and 300,000, respectively. The BDB
cache size is 300 MB for both datasets.

The loading results are shown in Table 1. For both datasets,
3XL with multiproperties represented in arrays (‘‘3XL-Array’’)
and 3XL with multiproperty tables (‘‘3XL-MP’’) rank between

BigOWLIM and RDF-3X. For the real-world EIAO dataset,
3XL-MP only uses 4% more time than the state-of-the-art
triple-store BigOWLIM while 3XL-Array only uses 9% more
time. For the synthetic LUBM datasets, 3XL-MP uses
36% more time than BigOWLIM and 3XL-Array uses 21%
more time. However, BigOWLIM is using a file-based data
store, which is reported [11] to have higher loading perfor-
mance than relational database-based stores in general.
RDF-3X has the slowest load performance, using 83% and
180% more time than BIGOWLIM for the EIAO and LUBM
datasets, respectively. For both datasets, the 3XL variants
consume less than half of the disk space BigOWLIM requires.
The RDF-3X DB size is the smallest, about 15% smaller than
the 3XL DB size. Further, 3XL offers a high degree of
flexibility in integrating the data with other (non-triple)
datasets as 3XL stores data in an intuitive relational data-
base. With this design goal in mind, it is thus very satisfying
to achieve a load-performance which is comparable to the
state-of-the-art triple-store BigOWLIM.

3XL takes longer time to load the EIAO dataset than the
LUBM dataset, although the datasets occupy nearly the same
amount of space when loaded. There are two reasons for this.
First, as the EIAO ontology has more classes and properties,
the loading process needs to operate on more class tables
and attributes in the database which takes more time.
Second, when processing the duplicated EIAO data, there
is a higher possibility that 3XL needs to fetch already
inserted data from the database. However, this possibility
has been reduced by using a least recently used (LRU) cache
algorithm and a lower partial-commit value. With the
current settings, loading 100 M EIAO triples still involves
207,183 database visits compared to zero when loading the
LUBM triples.

In addition to the comparisons with BigOWLIM and
RDF-3X, we have also compared with the popular Jena2
systems (filed-based and DBMS-based) [12] by using the
LUBM dataset. However, the loading performance of Jena2
systems was slow, and it took 32.6 and 20.4 h to import
100 M triples to Jena2(DBMS-based) and Jena2(file-based),
respectively. In an earlier experiment, we also tried this
testing on 3store, which uses a traditional giant triple table,
but it was not able to scale to load 100 M triples as it did not
finish in a reasonable amount of time.

RDF-3X does not exploit an OWL schema for loading the
data (as it is based on RDF, not OWL). Unlike 3XL, RDF-3X
does not support repeated loads. If data is loaded into an
existing database, the previous data will be overwritten.
BigOWLIM requires a known schema when doing reasoning
during the load. However, no schema is used in this

Fig. 8. Bulkload optimizations.

Table 1
The comparison on loading 100 M triples.

EIAO LUBM

Load time

(min)

DB size

(GB)

Load time

(min)

DB size

(GB)

3XL-Array 94.3 6.2 67.3 6.1

3XL-MP 90.0 6.2 75.9 6.1

BigOWLIM 86.5 13.0 55.5 13.0

RDF-3X 158.7 5.3 155.7 5.1
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experiment as no reasoning is done. 3XL, on the other hand,
exploits the schema for creating a specialized and intuitive
database schema. It is, however, still possible to load data
that is not described by the OWL schema by means of 3XL’s
overflow table, so 3XL supports the standard open world
assumption.

3.3. Comparison with other bulk-loading systems

In order to compare with DBMS-based triple-stores, we
refer to a bulk-loading study published by [7,11]. Table 2
(reproduced from [7,11]) summarizes the bulk-loading
speed rates of a number of tools.

It is of course difficult to compare the results exactly as the
datasets as well as the hardware configurations used vary
significantly. However, certain things can be deduced. First of all,
all the most recent results (2005 and onwards) are based on the
LUBM benchmark which is also used for 3XL. There are both file-
based (which have to implement their own transaction handling
etc.) and DBMS-based (called ‘‘db-based’’) triple-stores in the
table. As far as the performance of db-based triple-stores is
concerned, the Virtuoso triple-store and the Oracle bulk-loading
scheme (described in detail in [11]) have the best performance,
with loading speeds of 12,692 and 10,750 triples/s, respectively.
However, the Virtuoso scheme is run on much more powerful
hardware, meaning that the Oracle scheme is in fact the fastest
of the two. The file-based AllegroGraph stores 13,100 triples/s.
Virtuoso’s implementation has employed parallel loading tech-
niques and storage optimization like bitmap indexes, etc., while
the Oracle scheme has used the high-performance commercial
DBMS Oracle and made use of its bulk-loading utility SQLnLoa-

der. The paper [11] thus establishes the Oracle scheme as the
leading DBMS-based bulk-loading scheme. It is thus natural to
compare it with 3XL. However, the Oracle license explicitly
disallows us to publish performance figures without the consent
of Oracle, meaning that open and transparent comparisons are
impossible.

We can see that the hardware used for the two setups is
almost identical: our CPU is slower, but we have a little more
main memory. However, on this almost identical hardware,
we can see that 3XL is significantly faster than the Oracle
scheme. When loading the LUBM data, 3XL-Array and 3XL-
MP handle 24,765 and 21,959 triples/s, respectively. The
difference is so profound that we think we can safely claim
that 3XL outperforms the Oracle scheme (which handles
10,750 triples/s) for bulk-loading.

3.4. Query response time

We conduct the query testing on the EIAO dataset using 10
queries (Q1–Q10), and on the LUBM dataset using its standard
14 queries3 (LQ1–LQ14). Each dataset contains 25 M triples. The
queries are expressed in the form (subject, predicate, object)
(with possible ‘‘�’’-values) for 3XL, and in SPARQL [13] for
BigOWLIM and RDF-3X.4 For example, a point-wise query ðs,p,�Þ
with a given subject s and predicate p, can be converted into
SPARQL: select ?o where f/sS /pS ?o:g.

In 3XL, we have a specialized database schema for classes,
properties and different kinds of restrictions. It is thus
interesting to study the query performance for: (a) different
properties, i.e., owl:ObjectProperty and owl:Data-

Property, (b) storing multiproperties in arrays vs. in tables,
and (c) the difference between 3XL and the reference
systems. We study these by doing the queries on the EIAO
dataset, and present the results in Table 3. The queries Q1–
Q4 are all of the form ðs,p,�Þ, but with different types of the
predicates, namely single-valued object property, single-
valued data property, multi-valued object property, and
multi-valued data property, respectively. Overall, in 3XL the
queries on data properties are faster than queries on object
properties, e.g., Q2 vs. Q1 and queries on single-valued
properties are faster than on multiproperties, e.g., Q1 vs. Q3
and Q2 vs. Q4. No significant difference is observed between
3XL-Array and 3XL-MP except for Q3. We use the queries
Q5–Q9 to study the performance of point-wise queries
different from the ðs,p,�Þ form. Q10 is used to study the
performance of a composite query. As shown in the results,
3XL outperforms the two reference systems for Q1–Q4 and
Q7–Q8 where the subjects s are given. This is mainly due to
3XL’s ‘‘intelligent partitioning’’, where, given a particular
subject s, 3XL can very quickly locate the class table holding
the relevant data. For the composite query Q10, and the
point-wise queries Q5–Q6 with wildcard ‘‘�’’ in the subject
but with a given predicate p, all the systems take a longer
time than for the other queries as more results are returned.
For these three queries, 3XL ranks in the middle. In the case
of Q9 with only a given object o and with the subject and the
predicate using ‘‘�’’ to match anything, 3XL takes a longer

Table 2
Load performance comparison (repositories) [7,11].

RDF data (#Triples) RATE (triples/s) Configuration Tool (year)

Native 2,023,606 400 db-based Sun dual UltraSPARC-II 450 MHz 1G RAM RSSDB 2001

Native 279,337 418 db-based Apple Powerbook G4 1.125 GHz 1G RAM Jena(Mysql) 2004

Native 279,337 4170 file-based Apple Powerbook G4 1.25 GHz 1G RAM Jena(file) 2004

LUBM 6,890,933 151 db-based P4 1.80 GHz 256M RAM DLDB 2005

LUBM 1.06 Bill. 12,389 db-based 2xXeon 5130 2 GHz, 8 GB RAM, RAID 4xSATA OpenLink Virtuoso 2006

LUBM 1.06 Bill. 13,100 file-based AMD 64 2 GHz 16G RAM AllegroGraph 2007

LUBM 100 Mill. 10,750 db-based P4 3.0 GHz 2G RAM Oracle bulk-load scheme 2008

Synthetic RDF 235 Mill. 3840 file-based AMD Opteron 1 GHz, 64-bit JDK, no other info. KOWARI 2006

LUBM 70 Mill. 6481 file-based P4 2.8 GHz, 1 GB, Xmx800, JDK 1.5 Sesame’s Native Store 2008

Uniprot 262 Mill. 758 db-based No info. RDF Gateway

3 The LUBM queries are available from swat.cse.lehigh.edu/projects/

lubm/query.htm.
4 The SPARQL queries are available from www.cs.aau.dk/�xiliu/

3xlsystem.
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time as this query has to traverse all predicates pi. Here, we
note that 3XL is in fact specifically designed to be efficient for
queries with a subject.

We now proceed to make an evaluation by using the
LUBM dataset and its queries (LQ1–LQ14). These queries are
all composite queries which are more expressive and com-
plex than the point-wise queries we discussed above. Table 4
describes the test results of 3XL and the reference systems.
Overall, BigOWLIM has the highest completeness and sup-
ports all 14 queries, while RDF-3X only supports four queries
which is due to its lack of OWL inference. 3XL supports 10 of
the LUBM queries. Because of its use of an inheritance
database schema, 3XL has some semantic abilities and can
reason on the instances of a class and its subclasses. When
querying on a class table, all of its subclass tables are queried
as well. Therefore, 3XL does support queries that, e.q., query
a class and its subclasses. With regard to the query perfor-
mance, 3XL-MP, in general, outperforms 3XL-Array since the
multiproperty table is indexed. Neither of the systems is able
to outperform all other systems for all queries. For LQ1,
which selects instances of a given class which reference a
certain instance of another class, RDF-3X has the least
query response time while the times used by BigOWLIM
and 3XL-MP are quite similar. For LQ2, which selects
instances of three classes with a triangular pattern of
relationships between the involved instances, both the
3XL variants are more than two orders of magnitude faster
than the two reference systems. LQ3 is similar to LQ1 in both
query characteristics and results. LQ4 selects instances and
three property values from a class (with many subclasses)
based on an object property linking to another class and is

highly selective. 3XL-MP takes the least time for this query
closely followed by 3XL-Array. RDF-3X does not support this
query. LQ5 depends on rdfs:subPropertyOf which is not
supported by 3XL. LQ6 selects all instances from a given class
and its subclasses (an implicit subclass relationship was
made explicit in the modified LUBM ontology and the
timings for 3XL are therefore shown in parentheses). All
the systems take a longer time on this query, but the 3XL
variants both outperform BigOWLIM. LQ7 involves more
classes and properties, and is more selective than LQ6.
3XL-MP is the fastest followed by BigOWLIM. LQ8 is based
on LQ7 but adds one more property to increase the query
complexity. The 3XL variants almost have equal performance
which is lower than BigOWLIM’s. LQ9 involves a triangular
pattern of relationships between three classes. This query
takes much longer time than all the other queries in all
systems, but 3XL-MP has considerably better performance.
LQ10 selects instances from a class but depends on the same
implicit subclass relationship as does LQ6. The numbers
shown in parentheses show the time spent by 3XL when
the implicit relationship is given explicitly. LQ11, LQ12, and
LQ13 depend on inference not supported by 3XL or RDF-3X.
The last query LQ14 selects all instances of a given class
(without subclasses). This query is similar to LQ6, but uses a
subclass of the class used by LQ6. The 3XL variants are both
faster than the two reference systems.

In summary of the performance results on the EIAO
dataset, 3XL-Array and BigOWLIM both show the best
performance in 4 out of the 10 queries, 3XL-MP shows the
best performance in two queries, and RDF-3X shows the best
performance (actually a tie) for a single query. For the LUBM

Table 3
Query response time for the EIAO dataset with 25 M triples (ms).

Q1 ðs1 ,p1 ,�Þ Q2 ðs2 ,p2 ,�Þ Q3 ðs3 ,p3 ,�Þ Q4 ðs4 ,p4 ,�Þ Q5 ð�,p5 ,�Þ

3XL-Array 53 48 216 48 16,943

3XL-MP 69 26 78 58 17,255

BigOWLIM 87 85 321 85 2002

RDF-3X 59 81 591 91 99,369

Q6 (n,p6,o1) Q7 (s5,n,n) Q8 (s6,n,o2) Q9 (n,n,o3) Q10 (Comp.)

3XL-Array 8984 23 38 6333 38,243

3XL-MP 8934 68 75 3227 29,022

BigOWLIM 898 121 146 104 7398

RDF-3X 33466 46 38 225 139,951

Table 4
Query response time for the LUBM dataset with 25 M triples (ms).

LQ1 LQ2 LQ3 LQ4 LQ5 LQ6 LQ7

3XL-Array 531 627 1376 127 N/A (11,526) 2623

3XL-MP 139 576 661 114 N/A (11,459) 126

BigOWLIM 185 75,219 130 183 90 29,830 179

RDF-3X 35 36,096 74 N/A N/A N/A N/A

LQ8 LQ9 LQ10 LQ11 LQ12 LQ13 LQ14

3XL-Array 1675 56,835 (1390) N/A N/A N/A 8764

3XL-MP 1612 15,083 (137) N/A N/A N/A 8745

BigOWLIM 676 100,037 2 154 674 11,796 46,625

RDF-3X N/A N/A N/A N/A N/A N/A 17,006
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dataset, 3XL-MP shows the best performance for 6 out of the
14 queries while BigOWLIM has the best performance for
seven queries and RDF-3X has the best performance for the
remaining query.

In particular when querying triples with a shared subject,
3XL shows very good performance. 3XL has inference
capabilities on instances with an inheritance relationship
by means of its database schema. RDF-3X cannot answer
many of the considered LUBM queries as it has no schema
support and cannot do any inference.

In summary, the performance of 3XL is comparable to
that of the state-of-the-art file-based triple-stores. This
holds both for loading and querying. The performance of
3XL exceeds that of other DBMS-based triple-stores. 3XL is
designed to use a database schema which is flexible and easy
to use, and it is thus very satisfying that the solution achieves
a very good performance, while offering the flexibility of the
DBMS-based triple-store.

4. Related work

Different RDF and OWL stores have been described
before. In this section we describe the most relevant ones.
Note that terminology is used with different meanings in
different solutions. For example, ‘‘class table’’ is not meaning
the same in RDFSuite described below and in 3XL.

An early example of an RDF store can be found in RDFSuite

[14,15]. In the part of the work focusing on storing RDF data,
two different representations are considered: GenRepr

which is a generic representation that uses the same
database schema for all RDF schemas and SpecRepr which
creates a specialized database schema for each RDF schema.
It is found that the specialized representation performs
better than the generic representation.

In the generic representation, two tables are used. One for
resources and one for triples. In a specialized representation,
RDFSuite represents the core RDFS model by means of four
tables. Further, a specialized representation has a so-called
class table for each class defined in the RDFS. In contrast to
the class tables used by 3XL, RDFSuite’s class tables only
store the URIs of individuals belonging to the represented
class. Both RDFSuite and 3XL use the table inheritance
features of PostgreSQL for class tables. RDFSuite’s specia-
lized representation also has a so-called property table for
each property. This is different from 3XL’s approach where
multiproperty tables only are used if the cardinality for the
represented property is greater than 1. In RDFSuite, property
tables store URIs for the source and target of each repre-
sented property value. Alexaki et al. [15] also suggest (but do
not implement) a representation where single-valued prop-
erties with literal types as ranges are represented as
attributes in the relevant class tables. This is similar to the
approach taken by 3XL. In 3XL this is taken a step further and
also done for attributes with object values.

In Broekstra et al.’s solution for storing RDF and RDFS,
Sesame [16], different schemas can be used. Sesame is
implemented such that code for data handling is isolated
in a so-called Storage and Inference Layer (SAIL). It is then
possible to plug-in new SAILs. A generic SAIL for SQL92
compatible DBMSes only uses a single table with columns
for the subjects, predicates and objects. In a SAIL for

PostgreSQL, the schema is inspired by the schema for
RDFSuite and is dynamically generated. Again, a table is
created for each class to represent. Such a table has one
column for the URI. A table created for a class inherits from
the tables created for the parents of the class. Likewise, a
table is created for each property. Such a table for a property
inherits from the tables that represent the parents of the
property if it is a subproperty. This SAIL is reported [16] to
have a good query performance but disappointing insert
performance when tables are created.

In Wilkinson et al.’s [12] tool for RDF storage, Jena2, all
statements can be stored in a single table. In the statement
table, both URIs and literal values are stored directly.
Further, Jena2 allows so-called property tables that store
pairs of subjects and values. It is possible to cluster multiple
properties that have maximum cardinality 1 together in one
property table such that a given row in the table stores many
property values for a single subject. These can be compared
to 3XL’s class tables. An important difference is, however,
3XL’s use of table inheritance to reflect the class hierarchy.

Harris and Gibbins [17] suggest a schema with fixed tables
for their RDF triple-store, 3store. One table with columns for
subject, predicate and object holds all triples. To normalize the
schema, there are also tables for representing models, resources,
and literals. Each of these has two columns: one for holding an
integer hash value and one for holding a text string. The triple
table then references the integer values in these three tables.
This approach where all triples are stored in one table is different
from the approach taken by 3XL where the data to store is held
in many different tables.

Pan and Heflin [18] suggest the tool DLDB. The schema for
DLDB’s underlying database is similar to RDFSuite’s. DLDB
also defines views over classes. A class’s view contains data
from the class’s table as well as data from the views of
any subclasses. Instead of views, 3XL uses table-inheritance.
A DLDB version for OWL also exists.

Neumann and Weikum [8,19] suggest a scalable and general
solution for storing and querying RDF triples. The system, called
RDF-3X, does not use a DBMS, but a specialized storage system
which applies intensive indexing to enable fast querying.
A major difference between RDF-3X and 3XL is that 3XL uses
(a subset of) OWL Lite and supports OWL classes, object and data
properties, etc. and thus, unlike RDF-3X, can answer OWL
queries as most of those in the LUBM benchmark.

Abadi et al. [20] propose to use a two-column table
property(subject, object) for each unique property in
an RDF data set. This is implemented in both a column-store

which stores data by columns and in a more traditional row-

store which stores data by rows. The proposed schema is
reported to be about three times faster than a traditional
triple-store in a row-store while it is around 30 times faster
in a column-store. In a later evaluation paper, Sidirourgos
et al. [21], however, find that in a row-store, the simple
triple-store performs as well as the two-column approach if
the right indexes are in place. They also find that a column-
store provides good performance but that scalability
becomes a problem when there are many properties
(leading to many tables). 3XL is designed to be fast for
queries where the subject and/or predicate is known and
where many/all properties should be retrieved. Further, it
exploits the object-relational capabilities of the row-store
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PostgreSQL. We therefore believe that the best choice is to
group the single-valued properties of a class together in a
class table and allow multi-valued properties in special
property tables or arrays in the class table.

Zhou et al. [22] implement the Minerva OWL semantic
repository integrated with a DL reasoner and a rule inference
engine. The imported data is inferred based on a set of rules,
and the results are materialized to a DB2 database which has
an inference-based schema containing atomic tables, TBox
axiom tables, ABox fact tables and class constructor tables.

IBM SHER [23] is a reasoner that allows for efficient retrieval
of ABoxes stored in databases. It achieves the efficiency by
grouping the instances of a same class into a dramatically
simplified summary ABox, and doing queries upon this ABox.

Storage of RDF data has also found its way into commer-
cial database products. Oracle 10g and 11g manage storage of
RDF in a central, fixed schema [24]. This schema has a
number of tables, including one that has an entry for each
unique part of all the triples (i.e., up to three entries are made
for one triple) and a table with one entry for each triple to
link between the parts in the mentioned table. In a recent
paper [11], it describes how Oracle supports efficient bulk

loading by extensive use of SQL and a hash-based scheme for
mapping between values and IDs.

Unlike Minerva’s inference-based schema, SHER’s summary
ABox, and Oracle’s use of a variant generic schema representa-
tion, 3XL uses PostgreSQL’s object-oriented functionalities to
support its specialized data-dependent schema.

Other repositories designed for OWL also exist. DBOWL

[25] creates a specialized schema based on the ontology like
3XL does. There is a single table with three attributes to store
triples. For each class and property in the OWL ontology, a
view is created. 3XL differs from this, as data is partitioned
over several physical tables that may have many attributes.
OWLIM [26] is another solution. It is implemented as a SAIL
for Sesame. Two versions of OWLIM exist: (1) The free
SwiftOWLIM which is the fastest but performs querying and
reasoning in-memory and (2) the commercial BigOWLIM
which is file-based and scales to billions of triples. This is
different from 3XL that has its data in an underlying
PostgreSQL and exploits the results of decades of research
and development in the database community such as atom-
icity, concurrency control, and abstraction.

5. Conclusion and future work

In this paper, we present the 3XL triple-store. Unlike most
current triple-stores, 3XL is specifically designed to support
easy integration with non-RDF data and at the same time
support efficient data management operations (load and
retrieval) on very large OWL Lite triple-stores. 3XL’s
approach has a number of notable characteristics. First,
3XL is DBMS-based and uses a specialized data-dependent

schema derived from an OWL Lite ontology. In other words,
3XL performs an ‘‘intelligent partitioning’’ of the data which
is efficiently used by the system when answering triple
queries and at the same time intuitive to use when the user
queries the data directly in SQL. Second, 3XL uses advanced
object-relational features of the underlying ORDBMS (in this
case PostgreSQL), such as table inheritance and arrays as
‘‘in-lined’’ attribute values. The table inheritance represents

subclass relationships in a natural way to a user. Third, 3XL is
designed to be efficient for bulk insertions. It makes exten-
sive use of a number of bulk loading techniques that speed
up bulk operations significantly and is designed to use the
available main memory very efficiently, using specialized
caching schemes for triples and the map table. Fourth, 3XL
supports very efficient bulk retrieval for point-wise queries
where the subject and/or the predicate is known, as we have
found such queries to be the most important for most bulk
data management applications. 3XL also supports efficient
retrieval for composite queries. 3XL is motivated by our own
experiences from a project using very large amounts of
triples. Extensive experiments based on the real-world EIAO
dataset and the industry standard LUBM benchmark show
that 3XL has loading and query performance comparable
to the best file-based solutions, and outperforms other
DBMS-based solutions. At the same time, 3XL provides
flexibility as it is DBMS-based and uses a specialized and
intuitive schema to represent the data. 3XL thus bridges the
gap between efficient representations and flexible and
intuitive representations of the data. 3XL thus places itself
in a unique spot in the design space for triple-stores.

The overall lessons learnt can be summarized as follows:
(1) Using a specialized schema generated from an OWL
ontology is very effective. With this schema, it is fast to find
the relevant data which is intelligently partitioned into class
tables (and possibly also multiproperty tables). This results
in very good query performance. (2) An ORDBMS is a very
strong foundation for building such a specialized schema for
an OWL ontology. It provides the needed functionality (i.e.,
table inheritance) to represent class relationships and
efficient storage of multi-valued variables in arrays. It also
provides a query optimizer, index support, etc. for free.
Finally, it provides the user flexibility as it is easy to combine
the data with non-RDF data. (3) The right choice of caching
mechanisms is very important for the performance. In
particular, the often usedmap table should be cached outside
the DBMS. For a map table too big to fit in memory, an
external caching system based on BerkeleyDB is better than
using the DBMS. (4) When loading OWL data, using bulk-
loading in clever ways has a huge effect. In particular, instead
of bulk-loading all available data, only the oldest parts
should be loaded keeping the freshest data in memory.

There are a number of interesting directions for future
work. First of all, optimization will be continued, focusing on
performance improvement of data transferred from memory
to database, and supporting queries of form ð�,�,oÞ better.
Further, 3XL will be extended to support more of the OWL
features, in the first case all of OWL Lite. Finally, 3XL will be
integrated with a reasoner running on top of 3XL to allow
more reasoning than the class-subclass reasoning on
instances currently supported.

Acknowledgements

This work was partly supported by the Agile & Open
Business Intelligence (AOBI) project co-funded by the
Regional ICT Initiative under the Danish Council for Tech-
nology and Innovation under Grant no. 07-024511, the
European Internet Accessibility Observatory (EIAO) project

X. Liu et al. / Information Systems 36 (2011) 765–781780



funded by the European Commission under Contract no.
004526, and the eGovMon project co-funded by the
Research Council of Norway under the VERDIKT program
(project no. Verdikt 183392/S10).

References

[1] O. Lassila, R. Swick, Resource Description Framework (RDF) Model and
Syntax Specification, W3C Recommendation, 1999, Available at: /w3.
org/TR/REC-rdf-syntaxS as of 2010-10-18.

[2] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuinness,
P. Patel-Schneider, L. Stein, OWL Web Ontology Language Reference, W3C
Recommendation, 2004, Available at: /w3.org/TR/REC-rdf-syntaxS as of
2010-10-18.

[3] C. Thomsen, T.B. Pedersen, Building a web warehouse for accessibility
data, in: Proceedings of DOLAP, 2006, pp. 43–50.

[4] Y. Guo, J. Heflin, Z. Pan, LUBM: a benchmark for OWL knowledge base
systems, J. Web Sem. 3 (2) (2005) 158–182.

[5] G. Antoniou, F. van Harmelen, A Semantic Web Primer, MIT Press,
2004.

[6] D.B. Berkeley, Oracle Embedded Database, Available at: /oracle.com/
us/products/database/berkeley-dbS as of 2010-10-18.

[7] BigOWLIM—Semantic Repository for RDF(S) and OWL, Available at:
/www.ontotext.com/owlim/OWLIM_primer.pdfS as of 2010-10-18.

[8] T. Neumann, G. Weikum, RDF-3X: a RISC-style engine for RDF, in:
Proceedings of the VLDB Endow, 2008, pp. 647–659.

[9] EIAO Ontology, Available at: /www.cs.aau.dk/�xiliu/3xlsystem/
experiment/ontology/eiao.owlS as of 2010-10-18.

[10] P. Snyder, tmpfs: a virtual memory file system, in: Proceedings of
EUUG, 1990, pp. 241–248.

[11] S. Das, E. Chong, W. Zhe, M. Annamalai, J. Srinivasan, A scalable scheme
for bulk loading large RDF graphs into oracle, in: Proceedings of ICDE,
2008, pp. 1297–1306.

[12] K. Wilkinson, C. Sayers, H. Kuno, D. Reynolds, Efficient RDF storage and
retrieval in Jena2, in: Proceedings of SWDB, 2003, pp. 131–150.

[13] G. Prud’ Hommeaux, A. Seaborne, et al. SPARQL query language for
RDF, in: J. of W3C working draft, 2006.

[14] S. Alexaki, V. Chrisophides, G. Karvounarakis, D. Plexousakis, K. Tolle,
The ICS-FORTH RDFSuite: managing voluminous RDF description
bases, in: Proceedings of ISWC, 2001, pp. 1–13.

[15] S. Alexaki, V. Chrisophides, G. Karvounarakis, D. Plexousakis, On
storing voluminous RDF descriptions: the case of web portal catalogs,
in: Proceedings of WebDB, 2001, pp. 43–48.

[16] J. Broekstra, A. Kampman, F. van Harmelen, Sesame: a generic
architecture for storing and querying RDF and RDF schema, in:
Proceedings of ISWC, 2002, pp. 54–68.

[17] S. Harris, N. Gibbins, 3Store: efficient bulk RDF storage, in: Proceedings
of PSSS, 2003, pp. 1–15.

[18] Z. Pan, J. Heflin, DLDB: extending relational databases to support
semantic web queries, in: Proceedings of PSSS, 2003, pp. 109–113.

[19] T. Neumann, G. Weikum, Scalable join processing on very large RDF
graphs, in: Proceedings of SIGMOD, 2009, pp. 627–640.

[20] D.J. Abadi, A. Marcus, S.R. Madden, K. Hollenbach, Scalable semantic
web data management using vertical partitioning, in: Proceedings of
VLDB Endow, 2007, pp. 411–422.

[21] L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, S. Manegold, Column-store
support for RDF data management: not all swans are white, in: Proceedings
of the VLDB Endow, 2008, pp. 1553–1563.

[22] J. Zhou, L. Ma, Q. Liu, L. Zhang, Y. Yu, Y. Pan, Minerva: a scalable OWL
ontology storage and inference system, in: Proceedings of ASWC, 2006,
pp. 429–443.

[23] J. Dolby, A. Fokoue, A. Kalyanpur, A. Kershenbaum, E. Schonberg, K.
Srinivas, L. Ma, Scalable semantic retrieval through summarization
and refinement, in: Proceedings of AAAI, 2007, p. 299.

[24] Oracle Semantic Technologies Center, Available at: /oracle.com/
technology/tech/semantic_technologiesS as of 2010-10-18.

[25] J.S.S. Narayanan, T. Kurc. DBOWL: Towards Extensional Queries on a
Billion Statements Using Relational Databases, Technical Report, 2006,
Available at: /bmi.osu.edu/resources/techreports/osubmi.tr.2006.n3.
pdfS as of 2010-10-18.

[26] A. Kiryakov, D. Ognyanov, D. Manov. OWLIM—a pragmatic semantic
repository for OWL, in: Proceedings of SSWS, 2005, pp. 182–192.

X. Liu et al. / Information Systems 36 (2011) 765–781 781

w3.org/TR/REC-rdf-syntax
w3.org/TR/REC-rdf-syntax
w3.org/TR/REC-rdf-syntax
oracle.com/us/products/database/berkeley-db
oracle.com/us/products/database/berkeley-db
www.ontotext.com/owlim/OWLIM_primer.pdf
www.ontotext.com/owlim/OWLIM_primer.pdf
www.ontotext.com/owlim/OWLIM_primer.pdf
www.ontotext.com/owlim/OWLIM_primer.pdf
www.cs.aau.dk/&sim;xiliu/3xlsystem/experiment/ontology/eiao.owl
www.cs.aau.dk/&sim;xiliu/3xlsystem/experiment/ontology/eiao.owl
www.cs.aau.dk/&sim;xiliu/3xlsystem/experiment/ontology/eiao.owl
www.cs.aau.dk/&sim;xiliu/3xlsystem/experiment/ontology/eiao.owl
www.cs.aau.dk/&sim;xiliu/3xlsystem/experiment/ontology/eiao.owl
www.cs.aau.dk/&sim;xiliu/3xlsystem/experiment/ontology/eiao.owl
<ce:monospace>oracle.com/technology/tech/semantic</ce:monospace>_<ce:monospace>technologies</ce:monospace>
<ce:monospace>oracle.com/technology/tech/semantic</ce:monospace>_<ce:monospace>technologies</ce:monospace>
bmi.osu.edu/resources/techreports/osubmi.tr.2006.n3.pdf
bmi.osu.edu/resources/techreports/osubmi.tr.2006.n3.pdf

