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Sparse Approximation and the Pursuit of

Meaningful Signal Models with Interference

Adaptation
Bob L. Sturm, Member, IEEE, John J. Shynk*, Senior Member, IEEE

Abstract

In the pursuit of a sparse signal model, mismatches between the signal and the dictionary, as well as

atoms poorly selected by the decomposition process, can diminish the efficiency and meaningfulness of

the resulting representation. These problems increase the number of atoms needed to model a signal for

a given error, and they obscure the relationships between signal content and the elements of the model.

To increase the efficiency and meaningfulness of a signal model built by an iterative descent pursuit,

such as matching pursuit (MP), we propose integrating into its atom selection criterion a measure of

interference between an atom and the model. We define interference and illustrate how it describes the

contribution of an atom to modeling a signal. We show that for any nontrivial signal, the convergent

model created by MP must have as much destructive as constructive interference, i.e., MP cannot avoid

correction in the signal model. This is not necessarily a shortcoming of orthogonal variants of MP,

such as orthogonal MP (OMP). We derive interference-adaptive iterative descent pursuits and show how

these can build signal models that better fit the signal locally, and reduce the corrections made in a

signal model. Compared with MP and its orthogonal variants, our experimental results not only show

an increase in model efficiency, but also a clearer correspondence between the signal and the atoms of

a representation.
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I. INTRODUCTION

Sparse approximation emphasizes the importance of describing a signal using few terms selected from

an overcomplete set (dictionary) of functions (atoms) [1]–[5]. The goal is to construct the nth-order

model of a signal x ∈ CK (n� K)

x =
n−1∑
i=0

aihi + r(n) = H(n)a(n) + r(n) (1)

where H(n) ∆= [h0|h1| · · · |hn−1] is a matrix of n atoms selected from a dictionary DN ∆= {di ∈ CK :

||di||2 = 1}Ni=1 of N � K atoms (unless otherwise stated, we assume span{DN} = CK), a(n) is

a column vector of n weights, and r(n) is the nth-order residual signal. (The notation [·|·] denotes a

concatenation of column vectors into a matrix.) One criterion with which to build this model is the

minimization of a residual (error) subject to a constraint on the number of terms used:

min
Hn⊂DN

∣∣∣∣x−H(n)a(n)
∣∣∣∣2

2
subject to n� K (2)

where Hn is a subset of n atoms from DN . In other words, find a signal model with small error using a

number of terms much smaller than the dimension of the signal. Solving this problem is combinatorially

complex in general because it involves examining many n-tuples of DN . For this reason, other more

tractable methods have been proposed to find suboptimal but useful solutions to (2). These include

convex optimization principles such as basis pursuit (BP) [3], and greedy iterative descent methods such

as matching pursuit (MP) [1], orthogonal MP (OMP) [6] (alluded to in [1]), and optimized OMP (OOMP)

[7] (previously presented as orthogonal least squares [8], as well as MP with pre-fitting [9]).

Consider the signals shown as insets in Fig. 1, each of which has been decomposed using MP, OMP,

and OOMP, and an overcomplete dictionary of Gabor atoms (modulated Gaussian windows) and Dirac

spikes (unit impulses). Each plot shows the residual energy decay as a function of the pursuit iteration.

Of the three pursuits, OOMP produces models with the smallest error (the norm in (2)) in nearly all

iterations. For this reason we claim that for each of these signals, the models produced by OOMP are

more efficient than the others because they use fewer atoms to reach the same level of error. What is

not evident from the residual energy decay, however, is that a model can contain “artifacts” — roughly,
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(b) Bimodal
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(c) Sine
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(d) Realization of White Gaussian Noise (WGN)
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Fig. 1. Normalized residual energy as a function of pursuit iteration for four signals (inset) using MP, OMP, and OOMP

(labeled). The dictionary is a union of Gabor atoms and Dirac spikes.

atoms placed where they should not be — due to (i) the process of decomposition in the pursuit, and

(ii) mismatches between the model and the signal [10]–[17].

These artifacts become readily apparent when observing the wivigram of a representation, which is a

superposition of each atom’s Wigner-Ville time-frequency distribution [1], [18]. For example, the model

of Attack created by OMP shown in Fig. 2(a) has many atoms over a time where the data is zero. Since

these atoms serve only to correct the signal model, we claim that they are of little use for describing the

signal, and thus carry little meaning about the signal. Figure 2(b) reveals that OOMP models Bimodal

with one large-scale atom, and a smaller-scale atom removes the large overshoot introduced to the residual

by subtraction of the first atom. Arguably, this model is less efficient and meaningful than one using two

Gabor atoms with scales the size of each individual mode. These two examples clearly show that atoms

can exist solely to correct the errors introduced by other atoms. This behavior diminishes the efficiency

and meaningfulness of a signal model, and consequently limits its use in any application requiring clear

and accurate correspondences between the signal and its model.

Others have noted and addressed these problems of iterative descent approaches to sparse approxima-

tion, but with solutions that increase the computational complexity of the decomposition or constrain the

choice of the dictionary. The high-resolution pursuit algorithm in [10], [11] specifically attempts to address

“non-features” introduced by MP by proposing an atom selection criterion based upon minimizing the
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(b) Bimodal, OOMP
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Fig. 2. Top: wivigrams (superposition of the Wigner-Ville time-frequency energy distributions) of atoms in the model created

from the dictionary used in Fig. 1. Bottom: time-domain envelopes of atoms (black) overlaid onto original signal (thick gray).

(Height of atom envelope is proportional to the square root of its energy in the model.)

worst fit of smaller-scale atoms — which decreases the frequency resolution of the pursuit, and requires

specially constructed dictionaries with each atom being a linear combination of smaller atoms (e.g., B-

splines). Other approaches construct dictionaries with elements that are more similar to the signal content

of interest, for example, modeling asymmetric structures with damped sinusoids [12]. And molecular MP

(MMP) [19] considers two different dictionaries for the transient and tonal portions of audio signals.

A completely different approach in [13] averages the results of many pursuits of the same signal to

facilitate its accurate characterization for analysis; but this does not provide a solution to (2). With all

these methods, however, the same problems of correction and model mismatch can occur, though to

different extents. In this paper, we address the problem of detecting and avoiding such errors in the

iterative descent pursuit of a signal model, without imposing constraints on the dictionary, and while

maintaining the simple iterative structure of MP, OMP, and OOMP [17]. Our resulting signal models

show an increase in efficiency — fewer atoms required to reach a given error — and meaningfulness —

clearer correspondence between features of a signal and its model — especially for models created by

OMP and OOMP.

The rest of this paper is organized as follows. In Section II, we present some notation and briefly review

the methods of MP, OMP, and OOMP. In Section III, we formally define the concept of interference, and

demonstrate how it reveals useful information about a signal model, as well as the dictionary and the

decomposition process. This provides a means to gauge how an atom contributes to modeling a signal

(and its meaningfulness), as well as the performance of a pursuit both locally and globally. Finally, we

prove that any convergent signal model created by MP has as much destructive as constructive interference
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(unless the signal is a trivial composition of nonoverlapping atoms from the dictionary). In Section IV, we

describe how to integrate interference into the atom selection criteria of MP, OMP, and OOMP to create

interference-adaptive iterative descent pursuits. Several computer simulations are provided in Section V.

Finally, Section VI summarizes the conclusions of this paper and ongoing work.

II. NOTATION AND REVIEW OF PURSUITS

For two vectors in the K-dimensional complex vector space x,y ∈ CK , we use the following notation

to denote an inner product: 〈x,y〉 ∆= yHx, where H is conjugate transpose. All vectors are column vectors

and are denoted using lower-case bold roman letters; [w]i refers to the ith element of w. All matrices

are denoted with upper-case bold roman letters; the ith element in the jth column of A is denoted by

[A]ij . Finally, the `p-norm of x ∈ CK for p ≥ 1 is ||x||pp ∆=
∑K

i=1

∣∣[x]i
∣∣p, and thus the `2-norm is given

by ||x||22 =
∑K

i=1

∣∣[x]i
∣∣2 = 〈x,x〉 = xHx.

The nth-order representation of the signal x ∈ CK is denoted by Xn =
{
H(n),a(n), r(n)

}
, which

produces the nth-order model in (1). MP [1] updates Xn according to:

Xn+1 =


H(n+ 1) = [H(n)|hn],

a(n+ 1) = [aT (n)|〈r(n),hn〉]T ,
r(n+ 1) = x−H(n+ 1)a(n+ 1)

 (3)

using the atom selection criterion

hn = arg min
d∈DN

||r(n)− 〈r(n),d〉d||22 (4)

= arg min
d∈DN

||r(n)||22 + |〈r(n),d〉|2||d||22 − 2|〈r(n),d〉|2

= arg min
d∈DN

||r(n)||22 − |〈r(n),d〉|2

= arg max
d∈DN

|〈r(n),d〉| (5)

where ||d||2 = 1 for all elements of the dictionary DN . The last expression shows that minimizing a

specific error is equivalent to maximizing a magnitude correlation with the residual. MP guarantees that

the nth atom and the nth residual are orthogonal, i.e., 〈r(n),hn−1〉 = 0. OMP [6] uses the same atom

selection criterion in (5), but updates the representation according to:

Xn+1 =


H(n+ 1) = [H(n)|hn],

a(n+ 1) = H†(n+ 1)x,

r(n+ 1) = x−H(n+ 1)a(n+ 1)

 (6)
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where the pseudoinverse H†(n) ∆= [HH(n)H(n)]−1HH(n) pre-multiplying x gives the optimal weights

for the least-squares (LS) projection of x onto span{Hn}. OOMP [7] updates Xn using (6), but its atom

selection takes into account the LS projection of the signal onto the updated representation:

hn = arg min
d∈DN

∣∣∣∣∣∣x− [H(n)|d]
(
[H(n)|d]H [H(n)|d]

)−1
[H(n)|d]Hx

∣∣∣∣∣∣2
2

= arg min
d∈DN

∣∣∣∣∣
∣∣∣∣∣x−

(
xHn

+

〈
r(n),dH⊥n

〉
||dH⊥n ||2

dH⊥n
||dH⊥n ||2

)∣∣∣∣∣
∣∣∣∣∣
2

2

= arg min
d∈DN

∣∣∣∣∣
∣∣∣∣∣r(n)−

〈
r(n),dH⊥n

〉
||dH⊥n ||2

dH⊥n
||dH⊥n ||2

∣∣∣∣∣
∣∣∣∣∣
2

2

(7)

= arg max
d∈DN

∣∣〈r(n),dH⊥n
〉∣∣∣∣∣∣dH⊥n ∣∣∣∣22 (8)

where xHn

∆= H(n)H†(n)x, and dH⊥n
∆= d − dHn

= d −H(n)H†(n)d. Essentially, OOMP is MP with

the additional step that every element of the dictionary is made orthogonal to the approximation and

renormalized before the next atom is selected [20]. OMP and OOMP guarantee, unlike MP, that the nth

residual is orthogonal to the first n atoms of the model, i.e., HH(n)r(n) = HH(n)[x− xHn
] = 0. This

implies that the new residual is orthogonal to the new approximation as well, i.e., 〈r(n),xHn
〉 = 0. MP,

OMP, and OOMP all provide suboptimal but “good” solutions to (2) without combinatorial complexity,

which means the solutions may not be the sparsest possible but are beneficial to some desired application.

As long as the dictionary spans the space of the signal, the models created by MP, OMP, and OOMP

will be convergent, which means that limn→∞ ||x−H(n)a(n)||22 = 0. (In the case of OMP and OOMP,

this limit is K because at each iteration they select an atom that is linearly independent of all others

in the model.) One performance measure of the signal model in (1) is its signal-to-residual energy ratio

(SRR), defined as

SRR(n) ∆=
||x||22

||x−H(n)a(n)||22
. (9)

Two signal models with the same SRR but different orders differ in their efficiency. For example in

Fig. 1, the models generated by OOMP are much more efficient than those produced by MP since the

OOMP model orders are smaller than those of MP for the same SRR. (Note that −10 log10[SRR(n)] is

plotted in Fig. 1.) Finally, a signal model is meaningful when its atoms directly and clearly correspond

to features or structures in the signal. In Fig. 2(a), for example, the atoms to the right of the signal onset

correspond to the frequency and mean envelope of the signal, while those to the left pertain to nothing

real in the signal. In the next section, we define ways to quantify the efficiency and meaningfulness of

a signal model by using a measure of interference.
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III. INTERFERENCE

Ultimately, we want to determine how an atom of Xn directly reflects some aspect of x, and measure

how much it corrects the signal model [14]–[17]. Considering the various effects in the models shown

in Fig. 2, one measure of correction is suggested by the energy difference caused by incorporating a

new atom into the model. If it removes parts of other atoms, e.g., those preceding the onset seen in

Fig. 2(a), then the energy it “imparts” to the model should be less than what is expected if the atom

is orthogonal to the other atoms already in the representation. Two vectors h,g ∈ CK constructively

interfere if ||h+g||22 > ||h||22 + ||g||22, and they destructively interfere if ||h+g||22 < ||h||22 + ||g||22. Thus,

the difference ||h + g||22 −
(
||h||22 + ||g||22

)
quantifies the amount h and g interfere with each other, and

the sign determines the type of interference.

Definition 1 (Interference): The interference associated with the mth atom hm ∈ Hn of the nth-order

representation Xn = {H(n),a(n), r(n)} of x for m = 0, 1, . . . , n− 1 is

∆(m) ∆=
1
2

[
||x̂(n)||22 −

(
||x̂(n\m)||22 + ||amhm||22

)]
(10)

= Real {a∗m〈x̂(n\m),hm〉} (11)

where x̂(n) ∆= H(n)a(n), x̂(n\m) ∆= x̂(n) − amhm (the nth-order approximation of x excluding the mth

atom), and am is the (m+ 1)th element of a(n) (also denoted by [a(n)]m+1). �

Since none of the weights are presumed to be zero (otherwise the atom should be excluded from the

representation), we see that a sufficient condition for ∆(m) = 0 is 〈hl,hm〉 = 0∀{hl,hm}l 6=m ∈ Hn, i.e.,

hm is orthogonal to all other atoms in the set of vectors Hn. However, when DN is overcomplete, it can

also be the case that while hm is not orthogonal to all other atoms, it is orthogonal to x̂(n)−amhm. Thus,

the necessary condition for zero interference associated with the mth atom in Xn is 〈x̂(n\m),hm〉 = 0,

i.e., it is orthogonal to the linear combination of the n− 1 other atoms of the model.

The significance of interference becomes clear when we use it to divide the atoms of a representation.

Figure 3 shows how the atoms of the models seen in Fig. 2 are distributed according to the sign of

the interference. For Attack, all atoms with peak amplitudes that precede the signal onset appear in

the destructively interfering (∆(m) < 0) partial representation. These atoms may be well-matched to

errors in the model, but are not well-matched to the signal. Surprisingly, almost the entire representation

created by OOMP for Bimodal appears in the destructively interfering representation, which means that

the contribution of these atoms to the model is reliant on how other atoms correct their contribution.
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Fig. 3. Models from Fig. 2 partitioned into two submodels based on the sign of the interference ∆(m). Wivigrams are

shown above the time-domain atom envelopes for positive and negative interference. Original signal is the thick gray line in the

time-domain plots. Arrows denote first atom selected.

This suggests that few atoms in the model contribute in a constructive and clear manner to represent the

signal.

To obtain a performance measure for the whole representation, e.g., whether the trend of a representation

is more constructive or destructive, we propose a cumulative measure of interference.

Definition 2 (Cumulative Interference): The cumulative interference of the mth-order model from the

nth-order representation Xn = {H(n),a(n), r(n)} of x for m = 1, 2, . . . , n is

∆Σ(m) ∆=
m−1∑
l=0

∆(l) =
m−1∑
l=0

Real {a∗l 〈x̂(n\l),hl〉} . (12)
�

For each of the representations of the signals in Fig. 1, the corresponding cumulative interference

is shown in black in Fig. 4. The thick gray lines above and below zero show how the positive and

negative interference accumulate, respectively. Observe that the model for Sine created by OMP has

atoms that on average constructively interfere more than they destructively interfere, while the opposite

occurs for the model created by OOMP. For Bimodal, both models from OMP and OOMP have negative

cumulative interference, with the model from OOMP having the most extreme values. When the atoms

of a representation are ordered according to the iteration at which they are found, cumulative interference

provides a historical record of the pursuit. For example, the MP decomposition of Sine is constructive
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Fig. 4. Cumulative interference ∆Σ(m) (12) (black) for the representations in Fig. 1 using MP, OMP, and OOMP. Thick gray

line above zero is cumulative sum of ∆(m) > 0, and that below zero is cumulative sum of ∆(m) < 0. (Note changes in the

axes ranges.)

until about the 13th iteration. The OOMP model of Bimodel is extremely destructive, which is also seen

in Fig. 3(b). This model is built mostly from destructively interfering atoms; the extent of this is given

by the total interference.

Definition 3 (Total Interference): The total interference of the nth-order representationXn = {H(n),a(n), r(n)}
of x is the sum of all interference terms:

∆Σ(n) =
n−1∑
m=0

∆(m) = ||x̂(n)||22 − ||a(n)||22 (13)

where x̂(n\m) has been substituted into (12). �
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The cumulative interference for the models from Fig. 1 is asymptotic to a total interference in each

case, as seen in Fig. 4, and for MP it appears to converge to zero. These results are explained in the

following theorem.

Theorem 1: The total interference of any convergent additive model of x ∈ CK in (1) is the difference

between the energy of x and the `2-norm of the representation weights, i.e.,

lim
n→∞

∆Σ(n) = ||x||22 − lim
n→∞

||a(n)||22. (14)

Furthermore, every convergent model produced by MP will have zero total interference:

lim
n→∞

∆Σ(n) = 0. (15)
�

Proof: By definition, limn→∞ ||x−H(n)a(n)||p = limn→∞ ||r(n)||p = 0 for a convergent model,

which implies that limn→∞ ||x̂(n)||p = ||x||p. Substituting this into (13) yields (14) when taken to

convergence. Now, by the energy conservation property of MP [1],

||x||22 = ||r(n)||22 + ||a(n)||22 (16)

for all iterations n ≥ 0. Substituting ||x||22 − limn→∞ ||r(n)||22 for limn→∞ ||a(n)||22 into (13) yields

lim
n→∞

∆Σ(n) = ||x||22 − ||x||22 + lim
n→∞

||r(n)||22

= lim
n→∞

||r(n)||22 = 0, (17)

thus completing the proof. Since (16) does not hold for OMP or OOMP in general, (15) does not apply

to the models they produce.

Theorem 1 demonstrates that for any convergent model of x ∈ CK built by MP, regardless of the

contents of the dictionary (as long as it spans CK), its total interference must converge to zero. This

implies there will be equal amounts of positive (constructive) interference and negative (destructive)

interference in the signal model of x, which explains the behavior seen in Fig. 4 for the models of MP.

Thus, we cannot expect MP to find a convergent signal model in which atom correction does not play as

much a role as constructive modeling of the signal (unless the atoms are mutually orthogonal, which is

a trivial scenario). On the other hand, for any other convergent model built by a pursuit for which (15)

does not hold, such as OMP and OOMP where it is possible that limn→∞ ||a(n)||22 6= ||x||22, its total

interference can be skewed more toward constructive interference than destructive interference, but only

by an amount strictly less than the energy of the signal ||x||22 because ||a(n)||22 > 0. In other words,

∆Σ(n) < ||x||22 for all n for OMP and OOMP, but it is not necessarily zero.

September 22, 2009 DRAFT



IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. #, NO. #, MONTH 2009 11

Theorem 1 motivates us to consider which kind of total interference — positive (constructive) or

negative (destructive) — is “better” in a signal model. Though OOMP is capable of decomposing Bimodal

to 60 dB SRR using only 34 atoms, as seen in Fig. 1(b), the resulting model appears to consist mostly

of corrections to the few initial atoms selected greedily, as seen in Fig. 3(b). A large amount of negative

interference indicates correction due to mismatches between the model and the signal, as well as poor

atom selections by the decomposition process. It is thus reasonable to claim that a good signal model

lacks terms that require correction through destructive interference — thus maintaining a meaningful

correspondence to signal content — and a good pursuit avoids selecting such terms.

We have thus far shown that interference can be useful to study the structure of a sparse approximation.

Next we employ interference in the atom selection criterion of a greedy iterative descent pursuit, and

demonstrate that the efficiency and meaningfulness of the resulting signal models can be improved.

IV. INCORPORATING INTERFERENCE INTO PURSUITS

Our goal is to build a sparse signal model having small error and large positive total interference.

Thus, instead of an optimization as in (2), consider the joint minimization of the nth-order model error

energy and its total negative interference:

min
Hn⊂DN

||x−H(n)a(n)||22 − γ∆Σ(n)

= min
Hn⊂DN

||x−H(n)a(n)||22 + γ
(
||a(n)||22 − ||H(n)a(n)||22

)
(18)

where the weight −∞ < γ < ∞ determines the influence of total interference on the solution, we

have substituted (13), and we implicitly emphasize that n � K such that x̂(n) → x quickly. For an

overcomplete dictionary, there will exist many Hn ⊂ DN such that ||x − x̂(n)||2 ≈ 0, and of these

we want the one that has the largest difference ||x̂(n)||22 − ||a(n)||22 when γ > 0. The solution to this

formulation maximizes the energy of the approximation of x onto the span of Hn, and the difference

between its energy and that in a “transformed domain,” e.g., ||H†(n)x||22 in the case of OMP and OOMP.

When γ > 0, we seek a signal model that is on average more constructive than destructive, and vice

versa for γ < 0 (for γ = 0, (18), of course, reduces to (2)).

Finding a subset of n � K dictionary atoms using (18) leaves us, as before, with a combinatorial

algorithm. We want a solution that “points” near x, but does so using n � K atoms working together

in a constructive manner. Thus, as is done in MP, OMP, and OOMP where an iterative descent approach

is used to find a “good” solution to (2) (but not necessarily the best), we will do the same for (18) by
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incorporating interference into the atom selection criteria of MP, OMP, and OOMP [17]. Toward this

end, consider augmenting the atom selection of MP and OMP (4) as follows:

hn = arg min
d∈DN

∣∣∣∣r(n)− 〈r(n),d〉d
∣∣∣∣2

2
+ γ(n)[−∆d] (19)

where ∆d is the interference associated with d ∈ DN if it augments the nth-order model in (1), and

(potentially time-varying) −∞ < γ(n) < ∞ weights the influence and type of interference in the atom

selection. With this criterion, the algorithm seeks an atom that minimizes the squared error, and at the

same time constructively interferes with the rest of the model when γ(n) > 0, or destructively interferes

when γ(n) < 0. We similarly change the atom selection criterion of OOMP in (7) to

hn = arg min
d∈DN

||r(n)− rd(n)||22 + γ(n)[−∆d] (20)

where rd(n) is the LS projection of the residual onto the orthogonal complement to Hn of the dictionary

atom d, i.e.,

rd(n) ∆=

〈
r(n),dH⊥n

〉∣∣∣∣dH⊥n ∣∣∣∣2
dH⊥n∣∣∣∣dH⊥n ∣∣∣∣2 . (21)

Observe that this selection criterion, and the approach in (18), are similar to the technique of regu-

larization used in optimization theory [21]; here, however, the second term can be negative. The type

of interference weighting γ(n) will control the performance of these pursuits, but for simplicity in the

computer simulations presented in Section V, we set the interference weighting to be constant γ(n) = γ.

A. Interference of a New Atom

To employ the atom selection criteria in (19) and (20), we must first find an expression for ∆d —

the interference of the new atom with the rest of the model. We see that the interference measure in

(10) depends on the signal model order, and with the addition of a new atom, the interference associated

with each atom in the model can change. We will now find this change for MP, OMP, and OOMP.

Define the column vector ∆(n) ∆= [∆(0),∆(1), . . . ,∆(n − 1)]T . The following propositions show how

the interference of each atom in Xn changes with the addition of hn in the representation update of MP

(22), and of OMP and OOMP in (26).

Proposition 1: The interference of the atoms in a representation updated by MP is

∆(n+ 1) =

∆(n)

0

+ Real

anAH(n)HH(n)hn

a∗n〈x̂(n),hn〉

 (22)

where A(n) ∆= diag[a(n)] and an
∆= 〈r(n),hn〉. �
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Proof: From the definition of interference for Xn+1 in (11) for m = 0, 1, . . . , n, the new interference

of the mth atom, denoted by ∆′(m), is given by

∆′(m) = Real{a∗m〈x̂(n+ 1\m),hm〉} =

Real{a∗m〈x̂(n\m) + anhn,hm〉}, m = 0, . . . , n− 1

Real{a∗n〈x̂(n+ 1\n),hn〉}, m = n

(23)

where x̂(n+1\m) = x̂(n\m) for MP for m < n. Observe that when m = n, Real{a∗n〈x̂(n+1\n),hn〉} =

∆(n), i.e., the interference of the new atom. For atoms m = 0, 1, . . . , n− 1,

Real{a∗m〈x̂(n\m) + anhn,hm〉} = Real{a∗m〈x̂(n\m),hm〉}+ Real{ana∗m〈hn,hm〉} (24)

where the first term is just ∆(m), or the old interference. The argument of the second term can be

expressed as

ana
∗
m〈hn,hm〉 = an[a(n)]∗m+1

[
HH(n)hn

]
m+1

= an[AH(n)HH(n)hn]m+1. (25)

Combining these into a column vector gives (22) and completes the proof.

Proposition 1 shows that the interference associated with each atom in the updated representation Xn+1

created by MP is a concatenation of the interference associated with the new atom, and an additive factor

applied to all other atoms based on how they interfere with the new atom.

Proposition 2: The interference of the atoms in a representation updated by OMP and OOMP is

∆(n+ 1) =

 ∆(n)

Real{a∗n〈x̂(n),hn〉}

+ Real

anCH(n)bn − a∗nR(n)b∗n

−|an|2||hn,Hn
||22

 (26)

where bn
∆= H†(n)hn, hn,Hn

∆= H(n)bn, C(n) ∆= A(n)−andiag [bn], an
∆= 〈r(n),hn〉/

∣∣∣∣hn,H⊥n ∣∣∣∣22 [6], and

R(n) ∆= diag{
[
〈x̂(n\0),h0〉, 〈x̂(n\1),h1〉, . . . , 〈x̂(n\n− 1),hn−1〉

]
} (27)

is a diagonal matrix of inner product terms. �

Proof: The new interference of the mth atom (m < n) in the updated representation Xn+1 from

(11) is

∆′(m) = Real{[a(n+ 1)]∗m+1〈x̂(n+ 1\m),hm〉}. (28)

Let us first express x̂(n+ 1\m) in terms of x(n\m) for m = 0, 1, . . . , n− 1. The coefficient update rule

of OMP is [6]

a(n+ 1) ∆=

a(n)− anbn
an

 . (29)
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This yields

x̂(n+ 1\m) = x̂(n+ 1)− [a(n+ 1)]m+1hm

= [H(n)|hn]

 a(n)− anbn
an


− [a(n+ 1)]m+1hm

= H(n)a(n)− an(H(n)bn − hn)

− [a(n+ 1)]m+1hm

= x̂(n)− an(hn,Hn
− hn)

− [a(n)− anbn]m+1hm

= x̂(n\m) + an(hn,H⊥n + hm[bn]m+1) (30)

where x̂(n\m) = x̂(n)− [a(n)]m+1hm has been used. The inner product of this expression and the mth

atom hm is

〈x̂(n+ 1\m),hm〉 = 〈x̂(n\m),hm〉+ an〈hn,H⊥n ,hm〉

+ an[bn]m+1||hm||22

= 〈x̂(n\m),hm〉+ an[bn]m+1, (31)

which simplifies because hn,H⊥n is orthogonal to all unit-norm atoms in Hn. Substituting this expression

into (28) yields

∆′(m) = Real
{[

a(n)− anbn
]∗
m+1

×
(
〈x̂(n\m),hm〉+ an[bn]m+1

)}
= ∆(m)− Real

{
[anbn]∗m+1〈x̂(n\m),hm〉

+ an

[
a(n)− anbn

]∗
m+1

[bn]m+1

}
= ∆(m)− Real

{
a∗n [R(n)b∗n]m+1

+ an
[
CH(n)bn

]
m+1

}
(32)

where ∆(m) = Real{[a(n)]∗m+1〈x̂(n\m),hm〉}. This result creates the first row of (26).
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The interference associated with the new atom is

∆(n) = Real{a∗n〈x̂(n+ 1\n),hn〉}

= Real{a∗n〈x̂(n+ 1)− anhn,hn〉}

= Real{a∗n〈x̂(n+ 1),hn〉} − |an|2. (33)

Substituting x̂(n+ 1) = H(n+ 1)a(n+ 1) yields

∆(n) = Real

a∗n
〈

[H(n)|hn]

a(n)− anbn
an

 ,hn〉
− |an|2

= Real
{
a∗n〈x̂(n),hn〉 − |an|2〈hn,Hn

,hn〉
}

= Real {a∗n〈x̂(n),hn〉} − |an|2||hn,Hn
||22. (34)

This gives the last row of (26) and completes the proof.

Proposition 2 shows that for OMP and OOMP, augmenting the representation by a new atom involves

a nontrivial modification to previous interference values, which is caused by the LS projection in (6).

B. Interference Adaptation in MP, OMP, and OOMP

The propositions above provide expressions for ∆d, the interference associated with any atom of the

dictionary if it is selected to be part of the model, and allows us to incorporate interference adaptation

into MP, OMP, and OOMP. Considering a real signal and real dictionary for simplicity, the atom selection

criterion in (19) becomes

hn = arg min
d∈DN

∣∣∣∣r(n)
∣∣∣∣2

2
− |〈r(n),d〉|2 + γ(n)[−〈r(n),d〉〈x̂(n),d〉]

= arg max
d∈DN

|〈r(n),d〉|2 + γ(n)〈r(n),d〉〈x̂(n),d〉 (35)

where we have substituted d for hn in the last row of (22) to produce ∆d = 〈r(n),d〉〈x̂(n),d〉, and

converted (19) to an equivalent maximization problem. Similarly the criterion in (20) becomes

hn = arg min
d∈DN

||r(n)||22 −
|
〈
r(n),dH⊥n

〉
|2∣∣∣∣dH⊥n ∣∣∣∣42

+ γ(n)

(
−〈r(n),dH⊥n 〉
||dH⊥n ||22

〈x̂(n),d〉+
|〈r(n),dH⊥n 〉|2
||dH⊥n ||42

||dHn
||22

)

= arg max
d∈DN

|
〈
r(n),dH⊥n

〉
|2∣∣∣∣dH⊥n ∣∣∣∣42 + γ(n)

(
〈r(n),dH⊥n 〉
||dH⊥n ||22

〈x̂(n),d〉 − |〈r(n),dH⊥n 〉|2
||dH⊥n ||22

||dHn
||22

||dH⊥n ||22

)
(36)
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where we have substituted d for hn in the last row of (26), defined an
∆= 〈r(n),dH⊥n 〉/||dH⊥n ||22 as in

(26), and again converted (20) to an equivalent maximization problem. Finally, we ignore the last term

of (36) by assuming that ||dHn
||22 ≈ 0, and consequently ||dH⊥n ||22 ≈ 1, until ||r(n)||22 becomes small, so

that the criterion becomes

hn = arg max
d∈DN

|〈r(n),dH⊥n 〉|2 + γ(n)〈r(n),dH⊥n 〉〈x̂(n),d〉∣∣∣∣dH⊥n ∣∣∣∣22 . (37)

This is done for the following reasons. First, we are interested more in the sign and the approximate value

of the interference than in its exact value because we want to stress finding an atom that is positively

correlated with the residual and the approximation. Second, we want an expression that is similar in form

to the selection criterion for MP and OMP in (35), with the only difference being the emphasis on the

space orthogonal to span{Hn}.
Though atoms are now selected differently, their weights are still computed using (3) for MP, and (6)

for OMP and OOMP, simply because we still want to reduce the error as much as possible given the

selected atom (in the case of MP), or the selected set of atoms (in the case of OMP and OOMP). Thus, the

only change to the pursuits is the atom selection criterion. Compared to their original formulations, the

proposed MP/OMP atom selection criterion in (35) and that for OOMP in (37) require only the additional

step of finding {〈x̂(n),d〉 : d ∈ DN} — i.e., the inner products of the current approximation and each

element in the dictionary. Depending on the construction of the dictionary, several ways exist for reducing

the complexity of this procedure, such as using the frequency-domain techniques in [17], [22]. We can

also apply the optimization procedure proposed in [1] using the pre-computed Gramian of the dictionary

because 〈x̂(n),d〉 = [dTH(n)]a(n), which is just a linear combination of values from that matrix. The

additional computational complexity, however, becomes less of an issue when the interference-adaptive

pursuit finds a good model in fewer iterations than the unmodified approaches.

When γ(n) = 0, the selection criteria in (35) and (37) reduce, of course, to (5) and (8), respectively.

When γ(n) > 0, atoms that constructively interfere with those in Xn have an advantage over other atoms;

and when γ(n) < 0, atoms that destructively interfere with those in Xn have the advantage. Figure 5

shows a simple diagram of how an interference-adaptive pursuit behaves. After the first iteration, standard

MP, OMP, and OOMP select the atom that has the largest projection onto the residual r(1) (and, in the

case of OOMP, the atom that points least in the direction of the first atom). As seen in the figure, this

atom might be nearly orthogonal to the original signal x, in which case one could argue that it serves

as a correction to the contribution of the first atom. With γ(1) 6= 0, atom selection is influenced by the

approximation as well as the residual. Any atom with a large positive projection onto the residual will
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x

x̂(1)
d1

d2
r(1)

d3

h0

γ(1)

Fig. 5. Geometric interpretation of an interference-adaptive pursuit. x ∈ R2 is modeled by three dictionary elements

{d1,d2,d3} (gray arrows). First atom selected is d3, becoming h0 in H1, which creates the first-order approximation

x̂(1) = H(1)a(1) and the residual r(1) = x− x̂(1). Selection of the second atom is influenced by the interference weight: for

γ(1) > 0, the pursuit begins to favor d2 over d1, which is nearly orthogonal to x.

have a small projection onto the approximation, and vice versa, the importance of which depends on the

magnitude of γ(1). In effect, a positive weighting for the interference in (35) and (37) makes the residual

appear closer to the original signal x than does the original atom selection criterion in (5) and (8). Thus,

instead of selecting d1 in this example, the pursuit will select d2; and if using the update rule for OMP

and OOMP in (6), the model will converge.

When the interference weight is large and positive, e.g., γ(n) � ||x||2, the interference term will

dominate the atom selection. For MP and OMP, the atom selection in (35) becomes

lim
γ(n)→∞

[
arg max

d∈DN

|〈r(n),d〉|2 + γ(n)〈r(n),d〉〈x̂(n),d〉
]

= arg max
d∈DN

〈x− x̂(n),d〉〈x̂(n),d〉

= arg max
d∈DN

〈x,d〉〈x̂(n),d〉 − |〈x̂(n),d〉|2 (38)

and for OOMP, the atom selection in (37) becomes

lim
γ(n)→∞

[
arg max

d∈DN

|〈r(n),dH⊥n 〉|2 + γ(n)〈r(n),dH⊥n 〉〈x̂(n),d〉∣∣∣∣dH⊥n ∣∣∣∣22
]

= arg max
d∈DN

〈x,d〉〈x̂(n),d〉 − |〈x̂(n),d〉|2∣∣∣∣dH⊥n ∣∣∣∣22 . (39)

In both of these results, we see that the algorithm attempts to select an atom that lies between the original

signal x and the current approximation x̂(n), but not so much that it is colinear with x̂(n). When the
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interference weight is small and negative, e.g., γ(n) � −||x||2, then these two scenarios are reversed,

and (38) and (39) become

arg max
d∈DN

|〈x̂(n),d〉|2 − 〈x,d〉〈x̂(n),d〉 (40)

and

arg max
d∈DN

|〈x̂(n),d〉|2 − 〈x,d〉〈x̂(n),d〉∣∣∣∣dH⊥n ∣∣∣∣22 , (41)

respectively. From these expressions, it is clear that the algorithm will find an atom pointing in a direction

opposite to either x or x̂(n), i.e., an atom that contributes to the model by destructively interfering with it.

These behaviors at the two extremes of γ(n) clearly embody the notions of constructive and destructive

interference.

Another way to interpret the atom selection procedures in (35) and (37) is in terms of maximum a

posteriori estimation, where an atom is selected based on the following principle:

max
d∈DN

logP{r(n)|d ∈ Xn+1}+ logP{d ∈ Xn+1} (42)

where P{r(n)|d ∈ Xn+1} is a conditional probability of the nth-order residual, and P{d ∈ Xn+1} is the

a priori probability of d belonging to Xn+1. The first term can be likened to the first term in (35) and

(37), where the atom d most correlated with the residual is emphasized; and the second term functions

like the second term in (35) and (37). Each pursuit begins with no information about the model, and thus

P{d ∈ X1} is uniform in the dictionary. With successive updates of the model, the prior P{d ∈ Xn}
should show a larger probability mass for atoms that are positively correlated with the signal model, and

a smaller probability mass for atoms that negatively interfere with the signal model (and zero probability

for atoms already selected). Of course, we cannot directly interpret the second component of (35) and

(37) as a probability because it can be negative, but this alternative viewpoint helps illuminate how the

pursuit of a signal model can be informed by interference.

V. COMPUTER SIMULATIONS

We tested the interference-adaptive algorithms for the signals in Fig. 1 (except WGN) using the same

dictionary of Gabor atoms and Dirac spikes. Figure 6 shows the number of atoms found by OMP and

OOMP as a function of the interference weight γ for specific SRRs. We observed significant degradation

in the models produced by MP using constant interference adaptation (γ constant), so we do not include

those results. Models produced using interference-adaptive OMP and OOMP, however, can become much

more efficient. For Attack in Fig. 6(a), the OMP model order at SRR = 60 dB decreases from 65 with
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(b) Attack, OOMP

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

!

40
30

50

20
10

SRR = 60 dB

(c) Bimodal, OMP
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(d) Bimodal, OOMP
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(e) Sine, OMP
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(f) Sine, OOMP
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Fig. 6. Number of atoms to reach a specific SRR as function of γ for three signals in Fig. 1 modeled by OMP and OOMP

using the same dictionary but with interference adaptation. Interference adaptation is not used when γ = 0. (Note changes in

axes ranges.)

no interference adaptation (γ = 0) to 42 atoms when γ = 0.28; and the OOMP model order for Bimodal

in Figure 6(d) decreases from 33 with no interference adaptation to 24 when γ = 0.04. On the other

September 22, 2009 DRAFT



IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. #, NO. #, MONTH 2009 20

hand, we see a lack of improvement in efficiency in models produced by OMP for Bimodal and Sine

in Figs. 6(c) and 6(e), where the number of atoms required to reach SRR = 60 dB is not reduced by

interference adaptation. However, in the case of Sine in Fig. 6(e), we do see improvement at lower SRRs.

For example, at SRR = 40 dB the model order decreases from 46 to 38 when γ > 0.48. This leads us to

posit that in building a signal model interference adaptation can become a hindrance, at which time γ(n)

can be set to zero. (Indeed, later experiments revealed that if interference adaptation is considered only

in the initial steps of an MP decomposition and then turned off, some of the resulting models show an

increase in efficiency.) It is also clear from Fig. 6 that the nonlinear decompositions of these unit-norm

signals (||x||22 = 1) are much more sensitive to interference adaptation when γ is small.

Though a model produced by OMP or OOMP with interference adaptation can show a lack of

improvement in efficiency, it might still better reflect the structures of the signal. Figure 7 shows three

models produced by OMP with interference adaptation at small model orders and three values of γ. For

Attack in Fig. 7(a), all the atoms appearing before the signal onset disappear, and we see a short-scale

atom at the time of the onset, and atoms of longer scales in the decay. For Bimodal in Fig. 7(b), the

model changes from one of much destructive interference to a more constructive solution using several

smaller scale atoms. And for Sine in Fig. 7(c), although in Fig. 6(e) there is only a slight decrease in the

number of atoms when γ > 0.48 at SRR < 40 dB, we argue that the new model is improved because

it consists of nearly constant-amplitude half-period sinusoids that are overlapped and windowed in the

middle region — which is what one expects for the most efficient and meaningful model of a stationary

sinusoid using modulated symmetric windows. We also observe that the signal envelope is more uniform

when using interference adaptation.

In each of these representations, the parameters of the first atom selected must be the same except for

its weight. The difference with each pursuit, however, is how that first atom contributes to the modeling

of the signal. Observe that for Attack and Bimodal, the amplitude of this atom becomes attenuated with

order. The interference adaptive pursuit comes to “view” it as less constructive than other atoms; and

with the augmentation of the signal model, the LS projection reduces the contribution of this first atom.

In other words, this atom gradually becomes less relevant to the model. A post-processing step to remove

such atoms is currently being considered [23].

Finally, Fig. 8 shows the wivigrams of the signal models in Fig. 7 but to the order where SRR = 60

dB. Observe in Fig. 8(a) for OMP that the time-frequency distribution of energy shows a model that

more directly reflects features of the signal: a sharp onset and a slow decay at a well-defined frequency.

In the model of Bimodal shown in Fig. 8(b) for OMP, the two modes are resolved into two more time-
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Fig. 7. Atom envelopes (black) of nth-order models created using OMP for three signals in Fig. 1, but with various values

of γ in (35). Interference adaptation has no affect when γ = 0. Reconstructed signals are thick gray in background. Envelope

heights are proportional to the square-root of the atom energy. Arrows point to first atom selected.

localized regions of energy. The wivigram of Sine using OMP in Fig. 8(c) shows a clearer image of the

signal without the multitude of spurious atoms that appear in the representation created by OMP without

interference adaptation, and without the effects around the signal edges.
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Fig. 8. Wivigrams of signal models seen in Fig. 7 created using OMP and interference adaptation for various values of γ.

Interference adaptation has no affect when γ = 0.

VI. CONCLUSION

We have presented the concept of interference in the sparse approximation of signals, and have

demonstrated that its incorporation in the atom selection criterion of an iterative descent pursuit can

increase the efficiency and meaningfulness of the resulting signal models. The interference of an atom

in a representation describes how and to what extent it contributes to the modeling of the signal: atoms

with positive interference can be viewed as representative of the signal and working in concert with other

elements of the model, while atoms with negative interference can be viewed as being more “corrective”

of the model than representative of the signal. Furthermore, we have proven that any convergent model

created by MP must have equal amounts of destructive and constructive interference. Even though other
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iterative descent approaches to sparse approximation do not suffer from this result (e.g., OMP and OOMP),

there still exists a limit on the amount of constructive interference possible in an additive model of the form

in (1). It makes sense that to increase the efficiency of a signal model, we should minimize the amount of

correction that occurs in the decomposition. We proposed interference-adaptive iterative descent pursuits,

which our computer simulations clearly show increase not only the efficiency, but also the meaningfulness

of the resulting signal models, especially for those found using OMP and OOMP.

Our current work aims for a clearer understanding of the role of the interference weighting γ(n),

and we are developing algorithms to adapt it to the signal, or to particular content of interest within

the signal. We also expect that pruning a representation of atoms that do not contribute to the signal

model will increase its efficiency; various pruning strategies are currently under investigation [23]. We are

also investigating the applicability of interference outside the realm of iterative descent pursuit methods,

such as to the convex optimization principle of BP [3]. Finally, we are investigating the possibility of

using interference to aid in the learning of dictionaries, for example, employing OMP with interference

adaptation in K-SVD [24].
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