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Quantification of Uncertainty in Predicting Building 
Energy Consumption: A Stochastic Approach

H. Brohus1, C. Frier1, P. Heiselberg1 and F. Haghighat2

1Department of Civil Engineering, Aalborg University, Aalborg, Denmark (hb@civil.aau.dk)
2Department of Building, Civil and Environmental Engineering

Concordia University, Montreal, Quebec, Canada (haghi@cbs-engr.bcee.concordia.ca)

ABSTRACT
Traditional building energy consumption calculation methods are characterised by rough 
approaches providing approximate figures with high and unknown levels of uncertainty. Lack 
of reliable energy resources and increasing concerns about climate change call for improved 
predictive tools. 

A new approach for the prediction of building energy consumption is presented. The approach 
quantifies the uncertainty of building energy consumption by means of stochastic differential 
equations. The approach is applied to a general heat balance for an arbitrary number of loads 
and zones in a building to determine the dynamic thermal response under random conditions. 
Two test cases are presented. 

The approach is found to work well, although computation time may be rather high. The 
results indicate that the impact of a stochastic description compared with a deterministic 
description may be modest for the dynamic thermal behaviour of buildings. However, for air 
flow and energy consumption it is found to be much more significant due to less “damping”.

Probabilistic methods establish a new approach to the prediction of building energy 
consumption, enabling designers to include stochastic parameters like inhabitant behaviour, 
operation, and maintenance to predict the performance of the systems and the level of 
certainty for fulfilling design requirements under random conditions.

Keywords: Stochastic differential equation, uncertainty quantification, building thermal 
behaviour, occupants’ behaviour, net-zero energy buildings, building simulation tool.

Highlights:
New approach to improved prediction of building energy consumption
Quantification of uncertainty using stochastic differential equations
Determination of the mean value process and the standard deviation process 
Probabilistic method providing uncertainty variation as a function of time
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Introduction 
 
Traditional building energy consumption calculation methods are usually characterised by 
rough estimates providing only an approximate figure with high and unknown levels of 
uncertainty. This approach has previously been justified by low energy prices and ignorance 
of emission impact. However, lack of useful energy resouces and increasing concern for 
climate change calls for new and improved methods for the prediction of building energy 
consumption. This is especially important in design of new-built and refurbishment of low 
energy and net-zero energy buildings where there are high uncertainties in the estimation of 
collected energy and used energy.   
 
The building energy consumption is influenced strongly by varying loads due to weather and 
occupants’ behaviour. Thus, it is impossible by nature to determine a fixed number 
representing the exact energy consumption. In stead the energy consumption should be 
determined as a probability distribution or at the least as a mean value and a standard 
deviation. In that way the uncertainty may be quantified providing improved decision support 
during the design phase due to an increased and improved level of knowledge. This approach 
could provide a scientific base for selection of a safety factor. 
 
Building energy simulation tool have been utilized to forecast and analyze building energy 
consumption and describe building energy use patterns, in order to benefit the design and 
operation of energy efficient buildings [1,2]. The existing simulation program such as Energy 
Plus, DOE-2 and BLAST consider the dynamic thermal behaviour of building to be 
deterministic and ignores the rapid variations in the weather conditions and other factors such 
as occupants’ behaviour. This was mainly due to the fact that mechanically ventilated massive 
buildings are highly “damped” and shielded from these external and internal random loads. 
These types of buildings control the influence of these loads effectively by means of the 
BEMS (Building Energy Management System) and the HVAC system. Thus, the influence of 
randomness on indoor environment parameters like variation of the internal heat generation 
and/or infiltration on the indoor air temperature becomes quite modest.  
 
This assumption may not be valid in the case of lighter constructions that are naturally or 
hybrid ventilated or in the design of nearly net energy buildings. In this case the indoor air 
temperature is very sensitive to the variations in loads and the building will not be able to 
dampen out the rapidly varying swings immediately. Accurate estimation of the performance 
of these buildings, nearly net zero energy buildings, become very complicated and difficult 
since it requires precise knowledge of the energy delivered by active solar and wind systems: 
it is not deterministic. 
 
The increase in interest in design of these types of buildings, nearly zero net energy buildings 
or high performance building, either as new-built or retrofit, stresses the importance of 
developing more accurate tools that could into account fluctuation in the input parameters 
(weather condition, internal loads, usage, etc.).  A logical approach is to use a stochastic 
model to describe the physical process [3,4,5]. In a stochastic model, the parameters, the input 
and even the initial condition are treated in stochastic term.  
 
In a deterministic model, a numerical value, usually the mean value from various observations 
is specified to study the behaviour of building and indoor environment. In practise, there is 
always some uncertainty (randomness) associated with the specification of these parameters. 
Also, there are additional sources of randomness in the model specification of an appropriate 
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model. Representation of randomness in the model specification may be a simplification of a 
complex physical process such as infiltration in building load calculation. Haghighat et al. 
[6,7] reported the impact of fluctuating wind speed on the building change rates using 
spectrum analysis. They showed the effect of fluctuating infiltration is especially significant 
when the mean pressure differences across openings are low while their turbulent components 
are large. Building occupants’ behaviour also significantly impacts the building energy 
performance. It is very difficult to deterministically represent their behaviour due to its 
temporal (usage of a specific appliance) or spatial (usage of a specific room) stochastic nature 
[8,9]. Wang et al. [10] developed a model to simulate the occupant movement process based 
on the Markov chain. Randomness is also present in the input to the model, for example, solar 
radiation, radiative and convective heat transfer coefficients, etc.  
 
This paper reports the development a new methodology for simulating and predicting the 
indoor environment and energy performance of buildings. It first describes the theory of 
stochastic differential equations (SDE) through the application of a model to a building in 
order to determine the dynamic thermal behaviour under random conditions.  The aim is to 
calculate the internal air temperature as well as the temperatures of the building structure and 
surface zones subject to external loads (solar gain and external temperature) and internal loads 
(people, lighting, equipment, etc.). Both mean values and standard deviations will be 
discussed. It is possible to calculate the loads and the heat losses deterministically or 
stochastically. Randomness both in the input (i.e, solar radiation, internal heat generation, 
etc.) as well as the model coefficients (i.e, convective heat transfer coefficient) is considered.  
 
The first case study represents a conventional mechanically ventilated building with fixed 
heat losses between the building and the external environment and between the various 
building zones. The second case study is a naturally ventilated atrium, where the heat loss 
between the building zone and the external environment - and, thus, the air flow rate - is 
assumed to be driven by air density differences through the openings in the enclosure (stack 
effect). This case represents a simple example of a coupling between a thermal model and an 
air flow model. A simple probabilistic model for natural ventilation is derived, which is 
coupled with the SDE thermal model.  
 
 
Deterministic Building Model 
 
The model outlined in Figure 1 comprises a general heat balance for an arbitrary number of 
zones, and buildings components. There are n nodes with an unknown temperature and m 
nodes with a known temperature; the latter are denoted boundary nodes. 
 
For node i the following energy balance can be made, assuming that the heat capacity is 
concentrated in the nodes (lumped parameter approach), see Figure 1.  
 
For the system of n equations 
 

n
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dt
td

C
i

1 1 1
)()()()()()()(

)(
,  i = 1, 2, … , n  (1) 

 



Page 4 of 47

Acc
ep

ted
 M

an
us

cri
pt

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 4 

where the first term on the right hand side represents the heat transfer between nodes with 
unknown temperature, the second term represents heat transfer between unknown temperature 
nodes and boundary nodes, and the last term is the internal heat generation. 
 
b  =  Boundary condition (specified temperature) 
ki  =  Number of specified heat fluxes attached to node i 
m  =  Number of nodes with specified temperatures 
n  =  Number of nodes with unknown temperature 
t  =  Time (s) 
Ci  =  Effective thermal capacity of the zone representing node i (J/K) 

ijH  =  Specific heat loss (W/K). Due to symmetry ijH  = jiH   

i   =  Temperature (°C) 

ij  =  Internal heat generation (W) 
 
 
 The conventional approach is to consider Equation 1 as deterministic differential equation 
systems, which can be solved using a numerical approach. In practice the outdoor conditions 
and indoor parameters are random in nature:  the outdoor environment (outdoor air temperature, humidity, wind speed, wind direction, solar radiation, etc.)  and indoor environment (occupants behavior and activity) are random in nature suggesting that 
Equation 1 is a stochastic differential equation system. 
 
 
Stochastic Building Model 
 
Stochastic Differential Equation System 
 
The most commonly used stochastic differential equations for continuous processes have 
proved to be those involving Wiener processes or Brownian motion [11]. Thus, the loads are 
modelled as stochastic processes each comprising a time-varying mean value function and a 
stochastic part described as a white noise process scaled by a time-varying standard deviation 
function. The close connection between the white noise process and the Wiener process is 
outlined in Appendix A. 
 
Building Model 
It is assumed that one or several of the following load variables, b

j , ijH , b
ijH  and ij , are 

stochastic. Each one acts as input to the building model. The following stochastic process 
describes each quantity, here denoted by z 
 

)()()()(')()( twtttzttz zzzz                   (2) 
 
where 
 

z  =  Mean value 
'z   =  Fluctuating part 
z  =  Standard deviation 

zw  =  White noise process  
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In Equation (2) the quantities are assumed to be independent. Haghighat et al. [12] discusses 
how to obtain stochastic load models in more detail. By insertion of equation (2) into equation 
(1), a system of stochastic differential equations  (SDE) is established. All parameters except 
the heat capacity, Ci, are assumed functions of time, t. 
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Using the relationship between the white noise process, w(t), and the Wiener increment, dW(t) 
(See Appendix A), and ignoring terms in equation (4) containing w(t)2, as they are 
insignificant compared with the other terms [12], the equation can be expressed as 
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 i = 1, 2, … , n                             (5) 
 
The system of equations is linear and can be expressed as  
 

k

VAR

k

kk dWdtd
1

][][ bBaA                              (6) 

 
where VAR is the number of load variables 
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otherwise1
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The components of the matrices, Bk, and the vectors, bk, depend on the variable in question 
and expressions for the different variable types in equation (5) are: 
 
For the variables b

k ,  k = 1, 2, … , m, the following is obtained 
 

0
b
k
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For the variables klH ,  k = 1, 2, … , l-1,  l = 1, 2, … , n, and using that lkkl HH , the 
following is obtained 
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ib    i = 1, 2, … , n                        (12) 
 
For the variables b

klH ,  k = 1, 2, … , n,  l = 1, 2, … , m, the following is obtained 
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otherwise0

for1 kji
Cb b

kl
b
l

b
kl H

i
H
i      i,  j = 1, 2, … , n         (14) 

 
and for the variables kl ,  k = 1, 2, … , n,  l = 1, 2,  … , kk, the following is obtained 
 

0kl
ijB                  i,  j = 1, 2, … , n         (15) 

otherwise0

for1 ki
Cb klkl

ii        i,  j = 1, 2, … , n         (16) 

 
Equation (6) can also be written as 
 

WGf dtdttd ),(),(                         (17) 
 
where 
 

aAf ),( t                             (18) 
 

][),( 11 VARVARt bBbBG                         (19) 
 

][ 1
T

VARdWdWdW                         (20) 
 
Equation (17) represents the conventional way of writing a stochastic differential equation 
system. 
 
The unknown zone temperatures , i.e. the building model output, are not necessarily given 
on a form similar to equation (2) as the thermal capacities Ci introduce damping into the 
system and, thus, time-dependence into the fluctuating part of the process. In the following 
two different solution techniques are outlined in order to solve equation (17).  
 
 
Moment Equation Approach 
 
The stochastic differential equation system (17) has an infinite number of solutions, 
corresponding to all possible realisations of the standard Wiener processes defining the SDE. 
Thus, instead of directly solving (17), the statistics of the time-varying zone temperatures are 
obtained. The first and second-order statistical moments of the zone temperatures are derived, 
defining the mean value function and the covariance function respectively. These provide 
important information regarding the general zone temperature level and the corresponding 
variability, respectively.  
 
By means of Itô’s formula, see for instance [13], the following holds for a general scalar 
function ),( t . In the following, it is implicitly assumed that f and G, given by (17), are 
functions of  and t. 
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By taking the mean value one obtains 
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Now, it is chosen that 
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, where 
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1
 is the order of the moment for unknown 

temperature node, i .  
 
If a building model with two unknown temperature nodes, 1  and 2 , is considered, two first 
order moment equations are introduced using 
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Similarly, three second order equations are formulated 
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Moment equations can be formulated for any higher order, but this will not be considered 
here. Now equation (23) can be rewritten as 
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The equation for the first order moment can be found by inserting 1
1

n

i
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]E[]E[]E[ aAf
dt

d                          (27) 
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The equation for the second order moment is found by inserting 2
1

n

i
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]E[ TGG                    (28) 

 
The quantity ijji ff  corresponds to component i, j in TT ff  due to the fact that 
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Equation (27) can be rewritten as 
 

TTTTTTTTT ][][ aAaAaAaAff               (30) 
 
By taking the mean value one obtains 
 

TTTTTTT ]Ε[]Ε[]Ε[]Ε[]Ε[ aAaAff               (31) 
 

TGG  is further examined 
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The corresponding mean value is 
 

VAR

k

kkkkkkkk

1

TTTTTTT ])()(]E[)](E[)](E[[]E[ bbBbbBBBGG         (33) 

 
By considering (27) and by inserting (31) and (33) into (27) the following deterministic 
differential equations for the first and second order moments of  can be determined [13] 
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                                (34) 
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          (35) 

 
In this way, the stochastic equations are turned into deterministic equations. Instead of an 
instantaneous value, the solution provides statistical quantities, i.e. first and second-order 
statistical moments. The first-order statistical moments correspond to the mean value of the 
unknown node temperatures, corresponding to a deterministic calculation, whereas the 
second-order equations include the variability. The conventional numerical techniques could 
be used to solve the system of ordinary differential equations. 
 
Monte Carlo Simulation Approach 
 
The alternative approach of Monte Carlo Simulation uses realisations of the stochastic input 
processes generated according to their joint density functions. The corresponding output is 
then calculated from a deterministic model, which expresses the response of the building 
model. If the procedure is repeated a large number of times the resulting output data can be 
treated statistically. 
 
In order to solve for a realisation of a stochastic linear differential equation a stochastic 
version of the fourth-order Runge-Kutta method is available [14]. Figure 2 shows the 
principle for calculating 1n  using four calculation points within the time step. 
 
The time series is divided into a number of equal time increments. The Runge-Kutta method 
then propagates the solution of the zone temperatures by 
 

1321032101 )22()22(
6
1

nnn h WGGGGffff             (36) 

 
where 
 

),(0 nn tff                                  (37) 
 

),(0 nn tGG                                 (38) 
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hth nniini 2
1

112
1

12
1 ,WGfff  i = 1, … ,3                   (39) 

 
hth nniini 2

1
112

1
12

1 ,WGfGG   i = 1, … , 3                  (40) 
 

nnn WWW 11                            (41) 
 

11 nnn ttth                            (42) 
 
The Wiener process increment, Wn+1, is drawn from a normal distribution, N(0, 1nt ). 
 
 A realisation of the solution process can be generated by means of equation (36). These 
equations are also applied in the solution of the two statistical moment equations (34) and 
(35). In that case, Wn+1 is replaced by the zero vector and f is replaced with the right hand 
side of equations (34) and (35). 
 
 
Results 
 
Two case studies have been chosen in order to demonstrate and evaluate the method, and to 
investigate the influence of inclusion of the stochastic elements in the differential equations 
that govern the problem.  
 
The first test case comprises office rooms in a typical mechanically ventilated building 
exposed to internal and external loads. It has been chosen to focus on a design load period of 
one warm week during summer. The second test case is a naturally ventilated atrium, where 
the heat loss between the atrium and the external environment is stack (temperature) driven. A 
simple probabilistic model for stack-driven natural ventilation is presented and coupled with 
the SDE approach enabling the determination of the time-varying mean and standard 
deviation of the specific heat loss. 
 
 
Case Study 1 
 
Figure 3 shows the first case study which comprises a two-zone building, e.g. an office 
building. Each zone may represent either one single room or a number of closely related 
rooms in proper contact. The number of unknown temperatures is six.  

 
In theory, the number of zones (unknown temperatures) may be increased arbitrarily 
depending on the objectives of simulation, computer power and stability of the numerical 
solution of an increasingly large number of differential equations. As an example, it should be 
noted that when the statistical moments are determined, the number of differential equations 
is 27 in this case; six for the first moment and 21 for the second moment. 
 
For each zone, three unknown temperatures are to be determined (internal air, surface layer, 
and structure), i.e. 1 - 3 for Zone I and 4 - 6 for Zone II. By means of the specific heat loss 
coefficient between Zone I and Zone II, H14, mutual energy exchange between the zones is 
allowed. This could be due to transmission heat loss as well as ventilation heat loss.  
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The thermal capacity of each zone is selected corresponding to a medium-weight building. 
The ventilation corresponds to an air change rate of approximately 3 h-1 expressed in terms of 
Hvent. 
 
The two main zones are surrounded by three adjacent zones A, B, and C, where C is shared. 
The mean temperature and the standard deviation for the three adjacent zones are given in 
Table B-1 in Appendix B.  The simulations are performed for a warm week in mid-August. 
Load profiles are employed based on the Danish Design Reference Year (DRY) [15]. 
 
In the simulation, two 24-hour load profiles – one for each zone - for the mean value of the 
internal sensible heat load are applied as step profiles. The sensible heat is divided into 50% 
convective heat, conv , supplied to the internal air nodes, and 50% radiative heat, rad , 
supplied to the surface layer nodes. The standard deviation of the internal load is assumed to 
be 0.3-times the mean value as a rough estimate. The 24-hour internal load profiles are 
repeated when the simulation exceeds 24 hours. Appendix B shows the mean value and the 
95% confidence interval for the outdoor temperature, internal load and solar radiation. It also 
provides input parameters used for this case study, See Table B-1, as well as initial values. 
The covariance, 

ji
Cov , and thereby the standard deviation of the parameters are then equal 

to zero as 
 

]]E[E[-]E[Cov jijiji
                     (44) 

 
Figure 4 shows results from the deterministic solution for the two internal air temperatures, 1 
and 4. 
 
If the two curves in Figure 4 are compared, it is found that the highest temperatures occur in 
Zone II, where the facade faces south and the internal heat load is the highest, see Figures in 
Appendix B. Another interesting point is that the two zones achieve almost periodic stationary 
conditions after approximately 2 – 3 days. 
 
Figure 5 shows the mean value process for the internal air and the wall surface temperature of 
Zone I. In addition the 95% confidence interval is shown corresponding to ±1.96 times the 
standard deviation process. The standard deviation is derived by solving equations (34) and 
(35) simultaneously. 
  
Figure 6 shows three realisations of the stochastic process together with the 95% confidence 
interval for the same temperatures as in Figure 5. Only 5.5 hours of the entire week is 
presented in order to show the stochastic fluctuations as clearly as possible.  
 
If the confidence intervals of the two temperatures are compared it is found that their sizes are 
of the same order of magnitude. However, if the fluctuations are observed it is easily seen that 
the overall stochastic behaviour of the two temperatures differ. The internal air temperature, 

1, obviously fluctuates rapidly, whereas the surface layer temperature, 2, behaves more 
damped. Expressed in statistical terms, the autocorrelation of 2 is higher than the 
autocorrelation of , which corresponds very well with the physics of the problem. This 
message is not conveyed by the statistical moment approach, where only the mean value and 
the standard deviation are calculated. 
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The moment approach can be expanded to include third-order moments (in theory arbitrarily 
high orders are possible) in which case the skewness as a function of time is included [12]. 
However, this approach is extremely expensive in computer power and it still lacks 
information about the autocorrelation. 
  
Monte Carlo Simulation, i.e. statistical treatment of a very high number of realisations as 
illustrated in Figure 6, is another promising way to obtain further information of the output 
processes, among others skewness, kurtosis, and autocorrelation. 
 
 
Case Study 2 
 
Description of case study 
This case study comprises a naturally ventilated atrium surrounded by building parts exposed 
to internal and external loads, see Figure 7. The thermal capacity of the atrium corresponds to 
a medium-weight building. The atrium is naturally ventilated with two equally sized openings 
without control.  
 
The calculations are performed for a warm week in summer (Aug 15 – 21) and for a cold 
week in winter (Feb 15 – 21), which can be thought of as a kind of design load periods. The 
simulations are started three days earlier in order to avoid unrealistic values due to the initial 
guess. The external air temperature and the direct and diffuse solar radiation are modelled 
using the probabilistic models given in Brohus et al. [16]. 
 
An assumed 24-hour load profile for the mean value of the internal sensible heat load is 
applied in the simulation as shown in figure C-1 (see Appendix C). This appendix also 
provides information for the other input parameters. The sensible heat is divided into 50% 
convective heat, conv, and 50% radiative heat, rad. The convective heat flow is assumed to 
influence the internal air, i.e. 1, and the radiative heat flow is assumed to influence the 
surface layer, i.e. 2.  
 
In equation (1) some of the specific heat losses, H, account for the ventilation heat loss. In the 
previous work this parameter has been assumed - and in practice prescribed as a fixed mean 
value and standard deviation. Now, this approach is expanded by coupling the thermal model 
to a simple air flow model for natural ventilation.  
 
Natural ventilation heat loss 
The heat loss due to ventilation, Hvent, can be estimated by (See Appendix D): 
 

2/1

12/1

15.273
)(

ext

ext
Dpvent hgACcH                      (45) 

 
 
If the 2/1

1 ])15.273()([ extext  term in equation (50) is introduced directly in equation 
(1) the system of differential equations becomes nonlinear in  and cannot be solved by 
means of the techniques as described earlier.  In order to avoid nonlinearity, the values of 1 
and ext are adapted throughout the simulations from the previous time step. Thus, the air flow 
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model and the thermal model must be coupled. Hvent is found by assuming a constant value for 
the term 42/1 106)( hgACc Dp  W/K during the simulations. 
  
 
Taylor series expansion 
The heat loss due to natural ventilation, Hvent, must be modelled as a time-varying stochastic 
process in order to use the model, equation (45), together with the SDE approach. The 
deterministic part of Hvent is modelled by a time-varying mean value function,

ventH , and a 
time-varying standard deviation function, 

ventH , is used to represent the fluctuating part.  It is 
observed, that Hvent is a nonlinear function of the temperatures, 1 and ext, which can be 
regarded as input quantities, whose statistics, 

1
, 

1
, 

ext
 and 

ext
, at a given time, are 

available from the previous time step.  
 
In order to obtain an approximation of the requested statistics, a first-order Taylor series 
expansion of Hvent based on the mean value vector, = [

1
 

ext
]T,  is conducted. 

 

)()()(),(
11

1
1 extext

ext

ventvent
ventextvent d

dH
d

dH
HH              (46) 

 
The mean value, 

ventH , and the standard deviation, 
ventH , are obtained by conducting mean 

value and variance operations on the linearised equation (45) [17] 
 

)(

)()()(E

)],(E[

11
1

1
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ventvent
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H

H
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            (47) 
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    (48) 
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where Cov  is the covariance matrix of the vector, = [ 1  ext]T. 
 
By assuming zero correlation between 1 and ext, the covariance matrix is a diagonal matrix 
with the variances of the input processes in the diagonal, and the following expression is 
obtained (admittedly, this is a crude assumption which is, however, necessary to avoid 
considering a rather complex correlation between input and output parameters in the present 
model) 
 

2
2

2

1

22
1

ext

ventvent
H d

dH
d

dH
extvent

                      (49) 

 
Thus, the derivatives of equation (45) with respect to the temperatures, 1 and ext, must be 
obtained in order to calculate the variance of the specific heat loss due to natural ventilation.  
 
Hvent can also be written as 
 

2/1
1

2/1
12/1)(

ext

ext

ext

ext
Dpvent consthgACcH             (50)

     
where i = i + 273.15 is the absolute temperature and const is a constant value. 
 
The derivative of Hvent with respect to 1 is then 
 

2
1

2/1

1

1

1

11 2
1

2
extextextext

extventvent constconst
d
d

d
dH

d
dH           (51) 

 
The derivative of Hvent with respect to  ext is  
 

43
1

1
2

1

2/1

1

1

22
extextext

ext

ext

ext

ext

vent

ext

vent constconst
d
d

d
dH

d
dH          (52) 

 
Thus, the mean value and the standard deviation of Hvent are obtained by inserting the 
equations (51) – (52) into the equations (47) and (48). 
  
 
Coupling of thermal models and air flow models 
Heat transfer and airflow in buildings are closely related physical processes, which are 
strongly coupled according to the Navier-Stokes equations and the energy equation. In order 
to obtain a solution it is necessary to solve the entire set of partial differential equations, for 
instance, by means of Computational Fluid Dynamics. This approach, however, is rather 
cumbersome and at present is too expensive in terms of computer power if long-term dynamic 
simulations are needed. 
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Therefore, modellers most often treat heat transfer and mass transfer separately in order to 
create simpler and easy-to-use formulas. When the interaction between heat and mass transfer 
is to be considered various kinds of methods for coupling can be applied, see Figure 8. 
 
The most simple and basic model for coupling of thermal and air flow models is the so-called 
sequential coupling [18]. As indicated in the figure, the air flow rates are calculated with 
assumed temperatures first. Then the result is applied in the heat transfer model without any 
feedback. 
 
Feedback between the models is used in the two other coupling methods “ping-pong” and 
“onions”. In case of “ping-pong”, the feedback from the heat transfer models is fed into the 
air flow models for the next time step. The “onions” coupling method uses mutual feedback 
until convergence is reached for each time step. In case of sequential coupling and “ping-
pong” it is possible to reverse the coupling, in which case the heat balance is calculated in 
advance of the mass balance.  
 
The choice of method depends on the required accuracy. “Onions” is the most 
computationally expensive method, but at the same time, the most accurate one. “Ping-pong” 
should be applied with care if the time steps are long and the physical coupling is strong [19]. 
 
 
Results 
Figure 9 shows the mean value process for the internal air during the winter week (left) and 
during the summer week (right). In addition the 95% confidence interval is shown 
corresponding to the mean value process ±1.96 times the standard deviation process. Due to a 
considerable air change rate, see Figure 10, the internal temperature is only slightly higher 
than the external air temperature, e.g. 3–6 C. 
 
In this paper, the SDE approach is applied on a heat balance in order to examine the thermal 
behaviour of a relatively heavy building. However, if the approach is applied on a mass 
balance in order to determine for instance the contaminant concentration in a relatively light 
and hybrid or naturally ventilated building it is expected that randomness would play a more 
significant role. 
 
 
Conclusions 
 
A new approach to the prediction of building energy consumption is presented. The approach 
quantifies the uncertainty of building energy consumption by means of stochastic differential 
equations (SDE). The SDE approach is applied to a general heat balance for an arbitrary 
number of loads and zones in a building to determine the dynamic thermal response under 
random conditions. Randomness in input as well as in the model coefficients (specific heat 
losses) is considered.  
 
Two test cases are presented comprising a mechanically ventilated office building (case 1) 
and a naturally ventilated atrium (case 2). Solar radiation and external air temperature are 
applied as external loads. Stepwise sensible heat load profiles, divided into radiative and 
convective heat flow, are used as internal loads. For test case 1, all specific heat losses are 
prescribed in advance. 
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In test case 2, the specific heat loss between the atrium and the external environment is related 
to stack-driven natural ventilation and is thus a function of the temperature difference between 
the building and the environment. Thus, an air flow model is coupled with the thermal model 
in order to also include the influence of natural ventilation on the dynamic thermal behaviour. 
The “ping-pong” coupling method is applied based on a Taylor series expansion approach. 
 
The approach is found to work well, although the computation time is rather high (several 
hours on an Athlon 1 GHz PC). However, there are several possibilities for reducing the 
computation time. A simulation of an entire year may take more than a week. 
 
The results indicate that the impact of a stochastic description compared with a deterministic 
description may be modest for the dynamic thermal behaviour of buildings. However, for air 
flow and energy consumption it is expected that consideration of randomness will be much 
more significant due to less “damping” in the governing equations. 
 
One important future improvement of the SDE approach is to improve the description of the 
loads. Inclusion of wind (in the model for natural ventilation) would be a very important step 
forward. The internal load could be improved, for example, by means of a model for window 
opening in the form of a distribution function. 
 
In order to be able to use the white noise assumption, which is applied in the SDE approach, 
the fluctuating parts of the processes are assumed independent with respect to both mutual 
correlation and individual correlation in time, i.e. auto correlation. In reality, the processes 
will to some extent be correlated both in time and mutually. Future modelling may include 
auto correlation functions, describing the time-dependence of the parameters, and cross 
correlation functions, describing the mutual dependence. 
 
Probabilistic methods establish a new approach to the prediction of building energy 
consumption, which, apart from more realistic modelling, enable designers to include 
stochastic parameters like inhabitant behaviour, operation, and maintenance to predict the 
performance of the systems and the level of certainty for fulfilling design requirements under 
random conditions. 
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Appendix A

Wiener Processes, white noise, stochastic differential equation and Itô’s formula
A standard Wiener process 0),( ttWW on [0,T], is a process with stationary 
independent increments such that for any Ttt 210 , the increment W(t2) – W(t1) is a 
Gaussian (i.e. normally distributed) random variable with zero mean and variance equal to 
t2 – t1, , see [14];  i.e.

0][)()(E 12 WEtWtW (A.1)

tttWVartWtW 1212 ][)()(Var (A.2)

10)0(P W (A.3)

Then the following holds for two independent Wiener processes, iW and jW , with 
infinitesimal increments, idW and jdW :

jidtdWE

jidWdWE

i

ji

,][

,0][
2

(A.4)

As a Gaussian process, the Wiener process has the important feature that the two first 
moments, i.e. the mean and the covariance, completely define the probability law. 

The autocovariance function of a standard Wiener process is

),min(),(CovWW tsts (A.5)

where min(.,.) is defined as the smallest value of the two arguments.

The Wiener process belongs to a class of processes whose behaviour during any time interval 
is independent of their behaviour during any non-overlapping time interval. Thus the 
evolution of the process after any time > 0 is independent of the time history up to and 
including . The properties of a Wiener process are that W(0) = 0, the mean value at any time 
is zero, and that the variances increases with t. Figure A.1 sketches two realisations of a 
standard Wiener process.

Gaussian white noise is a very important concept in the theory of stochastic differential 
equations. Although the derivative of the so-called Wiener process does not exist, it is often 
heuristically convenient to assume that it actually does [14]. The symbol w(t) is used for this 
“derivative” denoted white noise and 0),( ttww on [0, T].  

)()( tdWdttw (A.6)

The moments of a white noise process are derived from the Wiener process [11]:

0)(E tw (A.7)



Page 2� of 47

Acc
ep

ted
 M

an
us

cri
pt

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

21

)(),(Covww stts (A.8)

where (a) is Dirac’s delta function, thus (a) = 0 (a 0) and (0) = + , and

1)( daa (A.9)

A linear first order stochastic differential equation involving n output variables, 
nii ,,1, , and input properties defined by m Wiener processes, mkdWk ,,1, can be 

written as in (17):

dWGfθ ),(),( tdttd (A.10)

In the following, it is implicitly assumed that f and G, given by (A.10), are functions of and 
t, which can then be written in component form as:

k

m

k
ikii dWgdtfd

1
(A.11)

By means of Itô’s formula, see for instance [13], the following holds for a general scalar 
function ),( t :

WGGG ddtf
t

d
n

i

n

j ji
ij

n

i i
i

T

1 1

2
T

1
)(

2
1 (A.12)

A formal proof of Itô’s formula can be found in [14]. An heuristic explanation goes as 
follows. By applying a second order Taylor series expansion of the scalar function, the 
following is obtained:

ji

n

ji ji
i

n

i i
i

n

i i

dddtd
t

dt
t

ddt
t

d
1,

2

1

2
2

2

2

1 2
1

2
1

2
1 (A.13)

When expressing deterministic differential equations, only first order variations are 
considered, as the second order terms vanish, as 0id and 0dt , and the differential 
equation would only consist of the first two terms. 

However, when id and jd are substituted in (A.13) with the stochastic differential 

equation (A.11), then it turns out that terms involving 2)( id may not be disregarded when 
setting up the differential as 2

kdW acts as dt due to (A.4) and thus only the second and third 
terms in (A.13) vanish:
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dWgdtfdWgdtf

dWgdtfdt
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ddddt
t
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2
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2
1

(A.14)

Terms involving ji dWdW and 2dt but not 2
idW can be excluded, leading to Itô’s formula :

k

m

k
ik

n

i i

n

i

k
j

m

k

k
i

n

ji jii
i

k

m

k
ik

n
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m
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i i

dWgdtggf
t

dWgdWtgdttfdt
t

d

111 11,

2

2

11,

2

11

2
1

2
1),(),(

(A.15)

which is identical to (A.12).
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APPENDIX B 
The mean value and the 95 % confidence interval for the two load internal profiles are shown 
in Figures B-1 and B-2 for the entire simulation. (Mean value +/- 1.96 times standard 
deviation assuming a Gaussian distribution) 
 
The external climate is shared with respect to the external air temperature; see Figure 3 in 
text, whereas the solar radiation depends on the orientation of the windows. The Zone I 
facade faces north and the Zone II facade faces south. Mean value processes and standard 
deviation processes for the external temperature as well as the solar radiation (direct and 
diffuse) are modelled by means of time series analysis of the Danish Design Reference Year 
(DRY), see [15], as explained in Brohus et al. [16]. The external air temperature for the week 
in question is shown in Figure B-3 as the mean value and the 95 % confidence interval. 
 
The solar heat gain depends on the type of glass, shading factors, window orientation etc., and 
is given as a function of the direct and the diffuse solar radiation. A probabilistic model for 
the solar heat gain, sun, is also presented in [16]. Figures B-4 and B-5 show the mean value 
and the corresponding 95 % confidence intervals for the two zones. 
 
In Figure B-4, the second peak of the daily solar gain - in the afternoon - is caused by 
approximations in the model and it is obviously not a physical phenomenon. However, in the 
present simulations this inaccuracy of the model presumably only has a small influence. 
 
The parameters applied in Test Case 1 are summarised in Table B-1. 
 
The following starting conditions are used 
 

20)]([ 0ttE i  °C, i = 1, … , 6                    
 

400]E[ 00 tttt ji  °C2,  i  = 1, … , 6,  j  =  i, … , 6            
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APPENDIX C 
 
Table C-1 presents the parameters applied in Case Study 2. 
 
An assumed 24-hour load profile for the mean value of the internal sensible heat load is 
applied in the simulation as shown in Figure C-1. The sensible heat is divided into 50% 
convective heat, conv, and 50% radiative heat, rad. The convective heat flow is assumed to 
influence the internal air, i.e. 1, and the radiative heat flow is assumed to influence the 
surface layer, i.e. 2.  
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APPENDIX D 
 
The specific heat loss due to ventilation can be calculated by; 
 

qcH pvent                           (D-1) 
 
where  is the density, cp is the specific heat, and q is the volumetric air flow rate. It has been 
chosen to implement a simple model for stack-driven natural ventilation, q.  
 
If we have two columns of air with different densities, see Figure D-1, the pressure difference 
between two openings, p, separated by a vertical distance of h is found by [20] 
 

hghgp
ext 15.273

                   (D-2) 

 
where p and h are the pressure difference and vertical distance between two openings,   
is the corresponding temperature difference, which in the present application happens to be 
the difference between the internal air temperature, 1, and the external air temperature, ext, 
see Figure D-1. 
 
The air flow rate through a large opening is given by  
 

2/1

1
2/1

15.273
22

ext

ext
DD hgACpACq               (D-3) 

 
where CD is the discharge coefficient and A is the opening area. Instead of a single opening 
the present model has two openings with areas A1 and A2, respectively. The two serial 
openings can be replaced by means of one “effective” opening with the same discharge 
coefficient [21] 
 

m
AA

1
1                           (D-4) 

 
where A1 is the smaller opening. Assuming turbulent flow, m is expressed as  
 

2

2

1

A
Am                                (D-5) 

 
In the test A1 equals A2. Thus, m equals 1 and 
 

2/1
12/1

15.273
)(

ext

ext
Dpvent hgACcH                 (D-6) 
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Table B-1 Parameters applied in Test Case 1. Symbols refer to Figure 3. 
Parameter Unit Mean value Standard deviation Stochastic ? 

1 - 6 °C Unknown Unknown Yes 
ext °C See Figure B-3 See Figure B-3 Yes 
A °C 20 2 Yes 
B °C 26 2 Yes 
C °C 18 1 Yes 

C1, C4 J/K 75,000 0 No  
C2, C5 J/K 1,250,000 0 No  
C3, C6 J/K 3,750,000 0 No  
HventI, HventII  W/K 60 15 Yes 
HextI, HextII W/K 15 0 No 
H1A, H4B W/K 20 0 No 
H1C, H4C W/K 25 0 No 
H14 W/K 100 30 Yes 
HsurfI, HsurfII W/K 300 0 No 
HstrucI, HstrucII W/K 1000 0 No 

convI W See Figure B-1 See Figure B-1 Yes 
convII W See Figure B-2 See Figure B-2 Yes 
radI W See Figure B-1 See Figure B-1 Yes 
radII W See Figure B-2 See Figure B-2 Yes 
sunI  (north) W See Figure B-4 See Figure B-4 Yes 
sunII (south) W See Figure B-5 See Figure B-5 Yes 

 
  

 
 
Table C-1 Parameters applied in  Case Study 2. Symbols refer to Figure 7. 
Parameter Unit Mean value Standard deviation Stochastic  

1, 2, 3 °C Output Output Yes 
ext , sun °C, W Data from Danish DRY Data from Danish DRY Yes 
adj °C 20 2 Yes 

C1, C2, C3 J/K 6 105,  1 107,  3 107 0 No 
Hvent W/K Calculated Calculated Yes 
Hext W/K 800 0 No 
Hadj W/K 150 45 Yes 
Hsurf , Hstruc W/K 1400,  4800 0 No 

conv, rad W Assumed data sets 0.3 times mean value Yes 
 
 

Table(s) with Caption(s)
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Figure 1 Building calculation model with one internal air temperature for each zone, e.g. 1, assuming fully 
mixed conditions. On the surfaces and inside the structures an arbitrary number of nodes are possible, e.g. 2  

and 3 . Boundary nodes like the adjacent zone temperature, b
1 , and the external temperature, b

2 , prescribe 

the loads together with convective heat flow supplied to the air, e.g. 11 and 12 , and radiation heat flow 

supplied to surfaces, e.g. 21. The unknown nodes are interconnected via specific heat losses, e.g. 12H  and 

23H , and connected to the boundary nodes via another set of specific heat losses, e.g. bH11  and bH12 . The 
specific heat losses may also include heat transfer due to ventilation. The effective thermal heat capacities, e.g. 
C1, C2, and C3 are applied as “lumped masses” in the nodes.  
 
 
Figure 2 Principle of the Runge-Kutta update. yn+1 is calculated using yn from the previous time step and the 
intermediate points 2-3. The dashed line represents the “true” solution and the short solid lines the derivatives at 
yn and the intermediate points.  
 
 
Figure 3 Case Study 1 building model: Two zones surrounded by three adjacent zones and the external climate. 
The external temperature, ext, is shared by Zone I and Zone II. 
 
 
Figure 4 Internal air temperature mean value in Zone I, 1, (dark colour) and internal air temperature mean 
value in Zone II, 4, (light colour) both for Test Case 1. 
 
 
Figure 5 Internal air temperature in Zone I, 1, and surface layer temperature in Zone I, 2, both for Test Case 
1. The figure shows the mean values (dark colour) and the 95% confidence intervals (light colour). 
 
 
Figure 6 Three stochastic realisations (thin lines) of internal air temperature in Zone I, 1, and surface layer 
temperature in Zone I, 2, both for Test Case 1. The figure also shows the 95% confidence intervals (thick light 
lines). In order to illustrate the stochastic fluctuations clearly the plot is limited to show the first 5.5 hours of the 
week. 
 
 
Figure 7 Case Study 2. An atrium surrounded by an adjacent zone and the external climate. Three unknown 
temperatures are to be determined, i.e. 1 - 3. The surface-layer accounts for one-fourth of the building thermal 
mass and the “structure” accounts for the rest.  
 
 
Figure 8 Methods for coupling of thermal models and air flow models (adapted from Orme, 1999). When the 
governing equations for heat transfer and air flow are solved simultaneously, the method of coupling may be 
termed  “full integration”. 
 
 
Figure 9 Internal air temperature in the atrium, 1, for a week during winter (left) and during summer (right). 
The figure shows the mean value (dark colour) and the 95% confidence interval (light colour). 
 
 
Figure 10 Mean air change rate (dark colour) and standard deviation (light colour) during a winter week (left) 
and a summer week (right).  
 

List of Figure Captions
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Figure A.1 Two realisations of a standard Wiener process. 
 
 
Figure B-1 Load profile for internal sensible heat Zone I. The mean value (dark colour) and 
the 95% confidence interval (light colour) are shown. 
 
 
Figure B-2 Load profile for internal sensible heat Zone II. The mean value (dark colour) and 
the 95% confidence interval (light colour) are shown. 
 
 
Figure B-3 External air temperature applied during the simulations in Test Case 1. The mean 
value (dark colour) and the 95% confidence interval (light colour) are shown. 
 
 
Figure B-4 Solar heat gain in Zone I where the facade faces north. The mean value (dark 
colour) and the 95% confidence interval (light colour) are shown. 
 
 
Figure B-5  Solar heat gain in Zone II where the facade faces south. The mean value (dark 
colour) and the 95% confidence interval (light colour) are shown. 
 
 
Figure C-1  Load profiles for internal sensible heat. The mean value (dark colour) and the 
95% confidence interval (light colour) are shown. 
 
 
Figure D-1  Natural ventilated atrium with two openings. 
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Figure 1 Building calculation model with one internal air temperature for each zone, e.g. 1, assuming fully 
mixed conditions. On the surfaces and inside the structures an arbitrary number of nodes are possible, e.g. 2  

and 3 . Boundary nodes like the adjacent zone temperature, b
1 , and the external temperature, b

2 , prescribe 

the loads together with convective heat flow supplied to the air, e.g. 11 and 12 , and radiation heat flow 

supplied to surfaces, e.g. 21. The unknown nodes are interconnected via specific heat losses, e.g. 12H  and 

23H , and connected to the boundary nodes via another set of specific heat losses, e.g. bH11  and bH12 . The 
specific heat losses may also include heat transfer due to ventilation. The effective thermal heat capacities, e.g. 
C1, C2, and C3 are applied as “lumped masses” in the nodes. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure(s)
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Figure 2 Principle of the Runge-Kutta update. yn+1 is calculated using yn from the previous time step and the 
intermediate points 2-3. The dashed line represents the “true” solution and the short solid lines the derivatives at 
yn and the intermediate points.  
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Figure 3 Case Study 1 building model: Two zones surrounded by three adjacent zones and the external climate. 
The external temperature, ext, is shared by Zone I and Zone II. 
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Figure 4 Internal air temperature mean value in Zone I, 1, (dark colour) and internal air temperature mean 
value in Zone II, 4, (light colour) both for Test Case 1. 
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Figure 5 Internal air temperature in Zone I, 1, and surface layer temperature in Zone I, 2, both for Test Case 
1. The figure shows the mean values (dark colour) and the 95% confidence intervals (light colour). 
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Figure 6 Three stochastic realisations (thin lines) of internal air temperature in Zone I, 1, and surface layer 
temperature in Zone I, 2, both for Test Case 1. The figure also shows the 95% confidence intervals (thick light 
lines). In order to illustrate the stochastic fluctuations clearly the plot is limited to show the first 5.5 hours of the 
week. 
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Figure 7 Case Study 2. An atrium surrounded by an adjacent zone and the external climate. Three unknown 
temperatures are to be determined, i.e. 1 - 3. The surface-layer accounts for one-fourth of the building thermal 
mass and the “structure” accounts for the rest.  
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Figure 8 Methods for coupling of thermal models and air flow models (adapted from Orme, 1999). When the 
governing equations for heat transfer and air flow are solved simultaneously, the method of coupling may be 
termed  “full integration”. 
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Figure 9 Internal air temperature in the atrium, 1, for a week during winter (left) and during summer (right). 
The figure shows the mean value (dark colour) and the 95% confidence interval (light colour). 
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Figure 10 Mean air change rate (dark colour) and standard deviation (light colour) during a winter week (left) 
and a summer week (right).  
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Figure A.1 Two realisations of a standard Wiener process. 
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Figure B-1 Load profile for internal sensible heat Zone I. The mean value (dark colour) and 
the 95% confidence interval (light colour) are shown. 
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Figure B-2  Load profile for internal sensible heat Zone II. The mean value (dark colour) 
and the 95% confidence interval (light colour) are shown. 
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Figure B-3 External air temperature applied during the simulations in Test Case 1. The mean 
value (dark colour) and the 95% confidence interval (light colour) are shown. 
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Figure B-4 Solar heat gain in Zone I where the facade faces north. The mean value (dark 
colour) and the 95% confidence interval (light colour) are shown. 
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Figure B-5  Solar heat gain in Zone II where the facade faces south. The mean value (dark 
colour) and the 95% confidence interval (light colour) are shown. 
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Figure C-1  Load profiles for internal sensible heat. The mean value (dark colour) and the 
95% confidence interval (light colour) are shown. 
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Figure D-1  Natural ventilated atrium with two openings. 
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 New approach to improved prediction of building energy consumption 
 Quantification of uncertainty using stochastic differential equations 
 Determination of the mean value process and the standard deviation process  
 Probabilistic method providing uncertainty variation as a function of time 

 

*Highlights


