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Abstract 
The determination of the design wave height (often given as the significant wave height) is usually 
based on statistical analysis of long-term extreme wave height measurement or hindcast. The result 
of such extreme wave height analysis is often given as the design wave height corresponding to a 
chosen return period. Sometimes confidence band of the design wave height is also given in order 
to include sample variability and measurement/hindcast error. 

In the reliability based design of coastal structures, encounter probability, defined as the exceedence 
probability of the design wave height within the structure lifetime, is preferred. 

Return period can be converted to encounter probability by several theoretical formulae . The 
paper gives the derivation of these formulae. It is found that in the normal design situations all 
formulae give almost the same results. 

However, confidence band related to return period cannot be directly interpreted in terms of 
encounter probability, for which reason it is difficult to choose a certain design confidence band . 
The paper discusses determination of the design wave height corresponding to a certain encounter 
probability, taking into consideration the statistical vagrancy of nature, the sample variability 
and the measurement/ hindcast error. The First Order Reliability Method (FORM) is used for 
this purpose. By comparing with the conventional return period approach, e.g. including 80% 
confidence band, it is found that the conventional approach is misleading because such an upper 
bound of the band corresponds to a much lower encounter probability than specified in the design 
level. Hence structures designed accordingly are too much on the conservative side. 

The influence of the inclusion of sample variability and measurement/hindcast error on the design 

wave height for a given encounter probability is demonstrated by a practical example. 

1 Introduction 

The determination of the design wave height (often given as the significant wave 
height ) is usually based on statistical analysis of long-term extreme wave height 
measurement or hindcast. The sources of uncertainty contributing to the uncer­
tainty of the design wave height are (Burcharth 1986): 

1) Statistical vagrancy of nature, i.e. the extreme wave height X rs a 
random variable 

2) Sample variability due to limited sample size 
3) Errors related to measurement, visual observation or hindcast 
4) Choice of distribution as a representative of the unknown true long­

term distribution 

5) Variability of algorithms (choice of threshold, fitting method etc. ) 
6) Climatological changes 

The sources 1, 2 and 3 and their influence on the design wave height are discussed 
in this paper. 

An example is used to demonstrate how the design wave height is conventionally 
determined. The data consist of 17 significant wave heights corresponding to the 
peaks of the 17 most severe storms in a period of 20 years for a deep water location 
in the Mediterranean Sea. Fig.1 shows the data set and a Gumbel distr ibution fitted 
to the data. 

2 



Significant wave height x1 (m) 

15 

10 

5 

1 10 

x100 (m) 

Normol 
distribution 

Gum bel 
distribution 

17 extreme data in 20 years 

100 1000 

Return period T (years) 

Fig.l. Example of extreme distribution of the significant wave height. 

If the design level for the design wave height is a return period of 100 years, i.e. 
T = 100, according to Fig.1 the design wave height is x100 = 12.2 m. This means 
that on average the 12.2 m design wave height will be exceeded once in every 100 
years. 

In the reliability based design of coastal structures it is more meaningful to use en­
counter probability, i.e. the probability that the design wave height will be exceeded 
within the structure lifetime. For example, if the structure lifetime L is 25 years , 
the encounter probability of the design wave height x100 is 

p = 1 - exp (- ~) = 22% (1) 

Eq (1) is derived as eq (12) in section 2. 

This means that the 12.2 m design wave height will be exceeded with 22% probability 
within a structure lifetime of 25 years. 

If the sample variability is included, the design wave height x100 becomes a random 
variable. The distribution of the design wave height x 100

, which is usually assumed 
to follow the normal distribution, can be obtained by numerical simulation, cf. Fig.1. 
The upper bound of the 80% confidence band is often suggested as the design level. 
In that case the design wave height is 14.8 m. Note t he significant increase of t he 
design wave height after the sample variability is included. 

Measurement/hindcast error has been considered in the same way and its significant 
influence on the design wave height has also been observed (Le Mehaute et al. 1984). 

However, the exceedence probability of the 14.8 m design wave height within the 
structure lifetime is unknown. 

In this paper the First Order Reliability Method (FORM) is used to determine the 
design wave height corresponding to a certain exceedence probability within the 
structure lifetime (encounter probability). This includes the statistical vagrancy of 
nature, sample variability and the uncertainty due to measurement/ hindcast error. 
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The results reveal that the application of the 80% confidence band as illustrated in 
Fig.l is misleading because the upper bound of the confidence band corresponds to 
a much lower encounter probability than specified in the design. In other words the 
structures designed according to the confidence band are too much on the conser­
vative side. 

A practical example shows that in normal design situations the inclusion of sample 
variability and measurement/ hindcast error has a significant influence on the design 
wave height given the same encounter probability. 

In the case where only the statistical vagrancy of nature is considered, there are 
several encounter probability formulae. The paper gives the basic assumptions and 
the derivation of each formula and provides a comparison of the formulae as well as 
a recommendation. 

2 Encounter p robability related to the statistical vagrancy of nature 

Even if we had an infinite quantity of historic true wave data and knew the related 
distribution precisely, there would still be uncertainty as to the largest wave which 
will occur during any period of time - simply due to the statistical vagrancy of 
nature. 

In the case where only the statistical vagrancy of nature is considered , the encounter 
probability of design wave height can be calculated by one of several encounter 
probability formulae. 

In order to discuss the various encounter probability formulae it is convenient to 
star t with the definition of return period. 

R eturn period 

The following notation is used 

X Significant wave height , which is a random variable due to the statis-
tical vagrancy of nature. 

x Realization of X. 
F(x) Cumulative distribution function of X, F(x) = Prob(X s; x) . 
t Number of years of observation of X. 
N Number of observations in a period oft. 
A Sample intensity, A= Njt. 

Fig.2 illustrates t he cumulative distribution function of X. The non-exceedence 
probability of xis F (x), or the exceedence probability of x is (1 - F(x)). In other 
words with (1 - F( x)) probability an observed significant wave height will be larger 
than x. 
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Fig.2. Cumulative distribution function of X. 

If the total number of observations is N, the expected number of observations where 
(X> x) is 

k = N ( 1 - F( X) ) = t ,\ ( 1 - F( X) ) (2) 

The return period T of x is defined as 

T = t I k= 1 = ,\ ( 1 -
1 

F (X) ) (3) 

i.e. on average x will be exceeded once in every T years. 

Encounter probability formula 1 

Based on the fact that on average x will be exceeded once in every T years, it is 
assumed that the exceedence probability of x in 1 year is 1/T. Therefore 

non-exceedence probability of x in 1 year Prob(X ::; x) 1 - ~ 

non-exceedence probability of x in 2 years Prob(X ::; x) 

non-exceedence probability of x in L years Prob(X ::; x) 

and the encounter probability, i.e. the exceedence probability of x within a structure 
lifetime of L years is 

p = 1- (1 - ~)L (4) 

Note that eq ( 4) cannot be used in the case T < 1. In the case of large T , say 
T > 20 years, eq ( 4) can be approximated by 

(5) 

Encounter probability formula 2 
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Assume that the number of the extreme events is N within the structure lifetime L . 
X 1 denotes the maximum value in these N independent trials. Then the distribution 
function of X 1 is 

(6) 

Note that F x1 can be interpreted as the non-occurrence of the event (X > x) in any 
of N independent trials. 

Assuming that the number of the extreme events N = >..L, where ).. is the sample 
intensity, and inserting the definition of return period T (eq (3)) into eq (6) is 
obtained 

( - 'IT) >-L Fx1 (x) = (Fx(x ))>.L = 1 A (7) 

The encounter probability of x is 

( - 'lT)AL p = 1 - Fxt(x) = 1 - 1 A (8) 

Note that eq (8) cannot be used in the case >..T < 1. In the case of large >..T , say 
>..T > 20, eq (8) can also be approximated by eq (5) 

Encounter probability formula 3 

This formula treats the number of the extreme events within the structure lifetime 
as a random variable. N is usually assumed to follow the Poisson distribution 

(>..L)n 
P(N = n) = -

1
- exp(->..L) n = 0, 1, 2, · · · 

n. 

The probability of the event (X1 < x) within the structure lifetime is 

00 

Fxt(x) = P(X1 <x) = l:)P(N =n)Fxt(x,n)] 
n=O 

E [ (>..~)n exp( ->..L) ( Fx(x) t ] 

exp( ->..L) E [ (>.. L :~(x) )n l 
exp( ->.. L) exp(>.. L Fx(x) ) 

exp[>.. L ( Fx(x) - 1)] 

6 

(9) 
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Inserting eq (3) into eq (10) is obtained 

Fx1(x) = exp ( -~) (11) 

The encounter probability of x is 

p = 1- Fx1(x) = 1- exp(-~) (12) 

Note that this encounter probability formula is identical to the approximation of 
the formulae 1 and 2; eq (5). 

Concluding remarks on encounter probability formula e 

From the above deriYation of the 3 encounter probability formulae it can been seen 
that, beside the general assumption of independency among extreme events, each 
formula has its own special assumption. 

In normal situations, the encounter probability formula 3 is the approximation of 
the formulae 1 and 2. Therefore all the formulae give almost the same result s. 

Outside the usual case the formula 2 deviates from the formulae 1 and 3, see Fig.3 
where a very low sample intensity(>.) value is applied. 

Structure lifetime L (years) 

200 

150 

100 

p= 0.8 "=0.1 1 

-formula 1 

· · formula 2 

-- formula 3 

100 1000 

Return period T (years) 

Fig.3. Comparison of encounter probability formulae (p = 0.81 ). = 0.1 ) 

It is recommended that the encounter probability formula 3 (eq (12)) be applied, 
because it is most simple and the extra assumption inYolved seems most reasonable. 
Moreover, it can be used to determine the encounter probability of the design wave 
height corresponding to T < 1 or ).T < 1. 
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3 Encounter probability related to the statistical vagrancy of nature, 
sample variability and measurement/ hindcast error 

When other uncertainties are involved , the encounter probability cannot be ana­
lytically expressed, but can be estimated by the First Order Reliability Method 
(FORM). To exemplify the discussion, it is assumed that t he extreme wave height 
follows the Gumbel distri bution 

F = Fx(x) = P(X<x) = exp(-exp(-(x~B))) (13) 

where X is the extreme wave height which is a random variable, x a realization of 
X, and A and B the Gumbel distribution parameters. 

PTinciple 

Due to the sample variability and measurement/hindcast error, the Gumbel dis­
tribution parameters A and B become random variables, and the maximum wave 
height within the structure lifetime, X 1

, becomes a conditional random variable 
X 1 [A,B . The probability of X 1 ~ Xo within the structure lifetime is 

(14) 

Now consider the failure function 

g(x\ a, b) 
{ 

< 0 failure 

Xo - X 1
[A,B = 0 limit state 

> 0 no failure 

(15) 

It can be seen that the failure probability of the failure function is actually t he 
exceedence probability of the design wave height x 0 within the structure lifetime. 

By the use of the Rosenblatt transformation, the Hasofer and Lind reliability index 
/3 for t he failure function can be estimated by the First Order Reliability Theory 
(FORM), and the failure probability, i.e. the probability of X 1 ~ x0 within the 
structure lifetime, is calculated by 

(16) 

where <I> is the st andard normal distribution. The procedure for the calculation of 
/3 is detailed in t he Appendix. 

Numerical simulation of the distribution of A and B 

The only unknown in the calculation of /3 is the distribution of the Gumbel distri­
bution parameters A and B. 

Due to the sample variability, i.e. the influence of limited number of data , the 
Gumbel distribution parameters A and B, estimated from a sample, are subject to 
uncertainty. 

Wave data set contains measurement/hindcast error. Measurement error is from 
malfunction and non-linearity of instruments, such as accelerometers and pressure 
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cells, while hindcast error occurs when the often limited and uncertain sea-level 
atmospheric pressure fields are converted to wind data and further to wave data. 
The accuracy of such conversion depends on the quality of the pressure data and 
on the technique which is used to synthesize the data into the continous wave field. 
Burcharth (1986) gives an overview on the variational coefficient C (standard devi­
ation over mean value) of measurement/hindcast error. Table 1 is excerpted from 
Burcharth (1986). 

Table 1. variational coefficient of extreme data C 

Methods of Accelerometer buoy Horizontal radar Hind cast Hind cast Visual 
determination Pressure cell by SPM by numerical 

Vertical radar model 

Variational Coef. 0.05-0.1 0.15 0.12-0.2 0.1-0.2 0.2 

In order to account the sample variability and measurement/hindcast error, A and B 
are assumed to follow the normal distribution. The mean values /-lA and f.LB and the 
standard deviations a-A and O"B are obtained by numerical simulations, t aking into 
account the sample variability and the measurement/hindcast error, as explained in 
the following. 

A sample with size N, obtained by measurement or hindcast is fitted to the Gumbel 
distribution 

(17) 

The obtained Gumbel distribution parameters A1rue and B 1r u e are assumed to be the 
true values. Numerical simulation is applied to get the mean values and the standard 
deviations of the estimators A and B , taking into account the sample variability 
corresponding to the sample size N. The numerical procedure is as follows: 

1) Generate a random number between 0 and 1. Let the non­
exceedence probability F1 equal to that number. The single extreme 
data x is obtained by 

(18) 

2) Repeat step 1) N times . T hus we obtain a sample belonging to the 
distribution of eq (17) for sample size N . 

3) Fit the sample to the Gumbel distribution and get the new esti­
mated distribution parameters A and B. 

4) Repeat steps 2) and 3), say, 10,000 times. Thus we get 10,000 
values of A and B. 

5) Calculate the mean values (t-tA and f-lB), the standard deviations 
(a-A and O'B) and the correlation coefficient p between A and B. 

In order to include the measurement/hindcast error an extra step can be added after 
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step 1). This step is to modify each extreme data x generated by step 1), based on 
the assumption that the hindcast error follows the normal distribution, cf. Fig.4 

1 *) Generate a random number between 0 and 1. Let the non­
exceedence probability F2 equal to that number. The modified 
extreme data Xmodified is obtained by 

(19) 

where <I> is the standard normal distribution and C is the coefficient 
of variation of the measurement/hindcast error. C ranges usually 
from 0.05 to 0.2, cf. Table 1. 

F(x) 
Gumbel distribution 

Normal distribution 

F 1 , F, : random number 

between 0 and 1 

X 
X X modified 

Fig.4. Simulated wave height taking into account measurement/hindcast error. 

4 Examples 

The deep water wave data presented in Fig.1 is used as an example to demonstrate 
the determination of the design wave height and the influence of sample variability 
and measurement/hindcast error. The sample intensity is A = 17/20. 

By fitting the extreme data to the Gumbel distribution we obtain the Gumbel dis­
tribution parameters A = 1.73 and B = 4.53. The fitting is shown in Fig.l. By 
inserting the definition of return period (eq (3)) into the Gumbel distribution (eq 
(13)), we obtain the design wave height corresponding to a certain return period T 

xT = A (- ln (- ln ( 1 - A~))) + B (20) 

If only the statistical vagrancy of nature is considered, i.e. A and Bare exact values, 
by eq (20) the design wave height corresponding to a return period of 100 years is 
x100 = 12.2 m, which, by eq (12), corresponds to 22% exceedence probability within 
a structure lifetime of 25 years, 

Conventional design wave height based on confidence band 

If sample variability is included, the design wave height x 100 becomes a random 
variable. The distribution of the design wave height x 100

, which is usually assumed 
to follow the normal distribution, can be obtained by numerical simulat ion, cf. Fig.5. 
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Prob. density 

0 .3 
Gum bel distribution (A= 1. 73, 8=4.53) 
Sample size N= 17 
Total number of X100 15000 

Fig.5. Simulated distribution of x100 (sample variability). 

In order to account sample variability, an 80% confidence band is often applied. 
It is found that the design wave height is 14.8 m if the upper bound of the 80% 
confidence band is taken as the design level. 

Encounter probability including sample variability 

Taking into account the sample variability, the Gumbel distribution parameters A 
and B become random variables. Their mean and standard deviation are obtained 
by the numerical simulation and given in Table 2. Fig.6 shows an example of the 
distribution. 

Table 2. !vfean value and standard deviation of A and B. 

Sample size N J.,LA a A J.,LB aB Correlation coefficient p 

10 

17 

25 

50 

100 

1000 

1.72 0.54 4.61 0.50 

1.72 0.42 4.56 0.45 

1.73 0.35 4.56 0.37 

1.73 0.25 4.55 0.26 

1.73 0.18 4.54 0.19 

1.73 0.06 4.54 0.06 

Numerical simulation on the Gumbel distribution with A=1.73, 8=4.53 

Sample size N=17 Total number of simulations 15000 

Correlation coefficient between A and B P =0.163 

0. 173 

0. 163 

0.160 

0.129 

0.1 26 

0.121 

Probability density Probability density 

1.0 1.0 

O.B 

O.B 

0.4 

0.2 

/Jo,t,=1.72 

<T,t, =0.419 

O.B 

0.6 

0.4 

0.2 

JJ.e =4.56 
<r8 -0.449 

0.0 .J--..:::.....--L--.J---~----' 
3 4 5 6 7 

Gumbel distribution parameter B 
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Fig.6. DistTibution of A and B due to sample vaTiability (sample size N=1'l). 

The probability density and the non-exceedence probability of the maximum signif­
icant wave height within 25 years can be estimated by the First Order Reliability 
Method, cf. Fig. 7, which includes also the case without sample variability obtained 
by use of eq (12). 

Long-term Hs follows the Gumbel distribution with A=1.73, 8=4.53 
Statistical vagrancy 

--- Statistical vagrancy + sample variability (sample size N=17) 

Probability density 

0.3 

Non-exceedence probability 

1.0 

0.2 

0.1 

20 22 

Max. Hs in 25 years (m) 

0.6 

0.4 

0.2 

18 20 22 

Max. Hs in 25 years (m) 

Fig. 'l. DistTibution of maximum significant wave height (sample size N = 1 'l). 

If the design level is the significant wave height corresponding to 22% exceedence 
probability within 25 years (i.e. T = 100 years), Fig.7 shows that the design wave 
height with inclusion of sample variability is 12.7 m, which is a lit tle larger than 
that without sample variability (12.2 m). 

It can also be seen that the design wave height of 14.8 m ( which corresponds to the 
upper bound of 80% confidence band of Hs with p = 22%, cf. Fig.5) corresponds 
to 9% exceedence probability within 25 years. This exceedence probability is much 
lower than the 22% exceedence probability as specified in t he design level. In ot her 
words, the design wave height, chosen based on the 80% confidence band, corre­
sponds to a much smaller encounter probability than that specified in the design 
level. This example shows that the design level should be expressed in terms of 
encounter probability rather than in terms of confidence band of the return values, 
because the upper bound of the confidence band cannot be direct ly interpreted in 
terms of encounter probability. 

In the case of a bigger sample size, there is almost no difference between the design 
wave height with and without sample variability, cf. Fig.8. For comparison the same 
). value is applied. 
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Table 5. Influence of sample variability and hindcast error 
on design significant wave height. 

Encounter probability p 
within L = 25 years 0.8 0.5 0.2 0.1 

Return period T (years) 16 36 112 237 

Significant wave height (m) 

Statistical vagrancy of nature 8.9 10.4 12.4 13.7 

statistical vagrancy of nature 
+ sample variability (N= 17) 8.6 10.4 12.9 14.6 

statistical vagrancy of nature 
+sample variability (N=17) 
+ hindcast error (C= 0.05) 8.6 10.4 12.9 14.6 

statistical vagrancy of nature 
+sample variability (N= 17) 
+ hindcast error (C=0.10) 8.7 10.6 13.2 14.9 

statistical vagrancy of nature 
+ sample variability (N = 17) 
+ hindcast error (C=0.20) 9.0 11.1 13.9 15.8 

statistical vagrancy of nature 
+ sample variability (N = 17) 
+ hindcast error (C=0.50) 10.6 13.7 17.9 20.7 

0.05 

487 

15.0 

16.2 

16.2 

16.6 

17.6 

23.4 

Long - term Hs f ollows the Gum bel distribution wit h A= 1. 73, 8=4.53 
Sample size N= 17. Observation period 20 years 

Coefficient of variation of hindcast error: C 

Statistical vagrancy 
Statistical vagrancy + sample variability 
Statistical vagrancy + sample variability + hindcast error 

Non-exceedence Prob. 

1.00 

0.80 

0.60 

0.40 

0.20 

0.00 
6 8 10 14 16 18 20 22 

Max. Hs in 25 years (m) 
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Fig.9. Distribution of maximum significant wave height. 

It can be seen from Table 5 and Figure 9 that the influence of the hindcast error 
on the design wave height depends very much on the C values and the encounter 
probability. 

In practice, a return period of 100 years is often chosen. This corresponds to app. 
20% encounter probability for a structure lifetime of 25 years . The variational 
coefficient of measurement/hindcast error is usually not larger than 0.20, cf. Table 
1, it is shown in Table 5 that the inclusion of hindcast error gives 2% and 8% 
increase in the design significant wave height, corresponding to C = 0.1 and C = 0.2, 
respectively. 

5 Conclusions 

The paper concentrates on t he determination of encounter probability, i.e. excee­
dence probability of the design wave height within the structure lifetime. 

If only the statistical vagrancy of the nature is included, encounter probability can be 
analytically expressed by several formulae. The paper gives the detailed derivation 
of each formula and their assumptions. It is recommended to use the following 
encounter probability formula 

When both sample variability and measurement/hindcast error are considered, the 
following can be concluded: 

1) The First Order Reliability Method (FORM) can be applied to 
determine the encounter probability. 

2) A practical example shows that the design level should be expressed 
in terms of encounter probability rather than in terms of confidence 
band of the return values, because the upper bound of the confi­
dence band cannot be directly interpreted in terms of encounter 
probability. 

3) A practical example shows that, in the normal design condition, 
the inclusion of sample variability has limited influence (less than 
5%) on the design wave height, and the influence of the measure­
ment/hindcast error on the design wave height can be up to ap­
proximately 8%. Keep in mind the importance of the design wave 
height in the design of coastal structures, a large sample size with 
good quality of data is desired in order to reduce the uncertainty 
related to the design significant wave height. 

It should be stressed that even though the example is demonstrated with the Gum bel 
distribution, the method applies also to other distribution. The application of the 
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method with the Weibull distribution to other practical data has drawn the same 
conclusions. 
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8 Appendix: E stimat ion of reliability index f3 
The followings explain the procedure for the calculation of {3 . 

Eq (10) gives the distribution function of the maximum significant wave height 
within the structure lifetime as the function of the distribution function of significant 
wave height Fx, sample intensity >. and the structure lifetime L . 

Fx1(x1
) = exp [>- L ( Fx(x1

) - 1)] 

which can be rewritten as 

F ( 1 ) = 1 ln F x 1 ( x 
1

) 
X X + ).L (21) 

Insert the Gumbel distribution 
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into eq (21) and solve for x1 we obtain 

(22) 

X 1 can be converted to the standard normal distributed random variable U1 by 

(23) 

where <1? is the distribution function of the standard normal distributed random 
variable. Inserting eq (23) into eq (22) is obtained 

(24) 

The failure function is defined by 

The normal random variables A and B are converted into the standard normal 
distributed random variables u2 and u3 respectively 

A- f.LA B - f.LB 

O"B 

Insert eq (26) into eq (25) is obtained 

g(u1,u2 ,u3) = xo - (f.LA + O"A u2) [ - ln ( -ln ( 1 + ln~iu1)))] 

The differentiations of the failure function are 

[ ( ( 
ln<l?(u1)))] -O"A -ln -ln 1 + )..L 

og 
= - O"B 

ou3 

where <P is the density function of the standard normal distribution. 

The iterative procedure for calculation of f3 is 

18 
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(28) 



1) Select trial values : u* = ( u~, u;, u;) . 

2) Insert u* into eq (28) and get (a1, a2 , a3 ). 

3) Determine a better estimate of u* by 

3 

L (aiui) - 9 lu• 

* U· t 
i=l ai .:........;: __ 3 ___ _ 

L a[ 
i=l 

4) Repeat steps 2) and 3) to achieve convergence. 

5) Calculate (3 by 
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9 Notation 

A, B 

c 

F(x) 

Fx1 (x) 

g 

L 

N 

p 

T 

t 

ui 

Ui 

X 

Xl 

X 

XT 

,\ 

fJ 

f.LA' f.LB 

O"A, CTB 

ci> 

4> 

Gumbel distribution parameters. 

Variational coefficient (standard deviation over mean) of mea­
sured/hindcast extreme data due to measurement/hindcast error. 

Cumulative distribution function of X, F(x) = Prob(X:::; x). 

Cumulative distribution function of X\ Fx1 (x) = Prob(X1 
:::; x ). 

Failure function. 

Structure lifetime (in years). 

Number of observations in a period oft. 

Encounter probability, i.e. exceedence probability of the design wave 
height within a structure lifetime. 

Return period (in years). 

Number of years of observation of X. 

Standard normal distributed random variable 

Realization of Ui. 

Significant wave height, which is a random variable. 

Maximum significant wave height within a structure lifetime, which is 
a random variable. 

Realization of X or X 1 . 

Return value of X corresponding to a return period of T. 
Sample intensity, ,\ = Njt. 

Hasofer and Lind reliability index. 

Mean values of A and B respectively. 

Standard deviations of A and B respectively. 

Standard normal distribution. 

Standard normal density function. 
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