
Aalborg Universitet

Active Learning of Markov Decision Processes for System Verification

Chen, Yingke; Nielsen, Thomas Dyhre

Published in:
International Conference on Machine Learning and Applications (ICMLA)

DOI (link to publication from Publisher):
10.1109/ICMLA.2012.158

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Chen, Y., & Nielsen, T. D. (2012). Active Learning of Markov Decision Processes for System Verification. In
International Conference on Machine Learning and Applications (ICMLA) (pp. 289-294)
https://doi.org/10.1109/ICMLA.2012.158

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1109/ICMLA.2012.158
https://vbn.aau.dk/en/publications/0f547760-8844-4599-9cfd-f3eb70f6f53a
https://doi.org/10.1109/ICMLA.2012.158

Active Learning of Markov Decision Processes for System Verification

Yingke Chen and Thomas Dyhre Nielsen
Department of Computer Science, Aalborg University

Aalborg, Denmark
{ykchen, tdn}@cs.aau.com

Abstract—Formal model verification has proven a powerful
tool for verifying and validating the properties of a system.
Central to this class of techniques is the construction of
an accurate formal model for the system being investigated.
Unfortunately, manual construction of such models can be
a resource demanding process, and this shortcoming has
motivated the development of algorithms for automatically
learning system models from observed system behaviors.
Recently, algorithms have been proposed for learning Markov
decision process representations of reactive systems based
on alternating sequences of input/output observations. While
alleviating the problem of manually constructing a system
model, the collection/generation of observed system behaviors
can also prove demanding. Consequently we seek to minimize
the amount of data required. In this paper we propose an
algorithm for learning deterministic Markov decision processes
from data by actively guiding the selection of input actions. The
algorithm is empirically analyzed by learning system models of
slot machines, and it is demonstrated that the proposed active
learning procedure can significantly reduce the amount of data
required to obtain accurate system models.

Index Terms—Active learning; verification; Markov decision
processes; statistical learning;

I. INTRODUCTION

Model checking is becoming increasingly popular for
validating and verifying the behavior of a software system by
comparing a formal model of the system with its specification
or intended behavior. Unfortunately, establishing an accurate
formal model representation of a complex software system
can be a tedious and time consuming process that is often
seen as a hindrance for the practical deployment of otherwise
powerful formal model-based verification techniques. This is
e.g. the case for systems consisting of multiple embedded and
interacting software components, some of which may rely
on 3rd party systems with limited detailed and up-to-date
documentation. In order to address this issue, methods have
been proposed for automatically learning a formal system
model based on observations of the (black-box) system under
consideration. After a formal model has been established,
existing model checking procedures and other model driven
development techniques can then be deployed using the
learned model.

Learning non-probabilistic systems has been addressed in,
e.g. [1]. However, non-probabilistic systems are often not
sufficiently flexible for modeling the behavior of complex
software systems whose behavior are influenced by e.g.
unpredictable user inputs, interactions with the surrounding
environment, and randomized algorithms. To alleviate these
shortcomings, methods for learning probabilistic system

models have recently been developed [2], [3], [4]. In particular,
based on the Alergia algorithm [5] for learning probabilistic
finite automata, [6] proposed the IOALERGIA algorithm for
learning deterministic Markov decision processes (MDPs)
based on data consisting of alternating input/output symbols.
These types of models are used for modeling reactive systems,
where the input actions are chosen non-deterministically
(representing e.g. user interactions or interfaces to other
components) and the output is determined probabilistically
conditioned on the input [7]. By using MDPs we can establish
models of individual system components and model by
non-determinism the interaction with the environment and
the other components of the system. Model checking MDPs
therefore involve analyzing the behavior of the model under
all possible interactions with the environment.

Convergence results of the learning method by [6] guarantee
that, in the large sample limit, IOALERGIA will identify the
generating model up to bisimulation equivalence. For practical
applications, however, the available data is often limited as
the generation/collection of large amounts of data can be a
resource demanding task. Thus, it is important to find methods
for reducing the amount of data required for establishing
an accurate system model. One possible approach to reduce
the amount of data is to deploy active learning [8]. Rather
than selecting input actions randomly (as done in [6]), active
learning seeks to guide the selection of input actions in a
direction that is more likely to lead to accurate system models.

Active learning has previously been explored in the machine
learning community [9], [10] as well as in the verification
and model checking community. In the model checking
community, active learning has mainly been centered around
non-probabilistic models. Examples include membership and
equivalence queries [11] as well as co-evolutionary learning
[12] of deterministic finite automata (DFA). In the latter
approach, a set of candidate models are maintained, and a
new training instance is selected so as to cause maximal
disagreement among these models. In this paper we propose an
active learning method based on the IOALERGIA algorithm for
Markov decision processes. The performance of the algorithm
is analyzed by actively learning an MDP model for a slot
machine. The analysis is conducted by comparing the amount
of data required for learning an accurate system model
compared to the passive learning approach employed by the
original IOALERGIA algorithm. The model comparison is
conducted by analyzing the linear temporal logic properties
of the learned models as well as the maximum expect rewards
that can be obtained from the models.

The remainder of this paper is organized as follows:
Section II contains a formal specification of the background
material required for the learning algorithm; Section III
outlines the existing IOALERGIA algorithm, Section IV
describes the active learning framework, and section V
presents an experimental study of the algorithm. Finally,
section VI concludes the paper.

II. PRELIMINARY

A. Markov decision processes

The learning algorithm proposed in this paper is based on
labeled Markov decision processes.

Definition 1 (LMDP). A Labeled Markov Decision Processes
(LMDP) is a tuple M = (Q,ΣI ,ΣO, π, τ, L)

• Q is a finite set of states,
• ΣI is a finite input alphabet, and ΣO is a finite output

alphabet,
• π : Q → [0, 1] is an initial probability distribution such

that
∑
q∈Q π(q) = 1,

• τ : Q × ΣI × Q → [0, 1] is the transition probability
function such that for all q ∈ Q and all α ∈ ΣI ,∑
q′∈Q τ(q, α, q′) = 1, or

∑
q′∈Q τ(q, α, q′) = 0

• L : Q→ ΣO is a labeling function.

For a given set of atomic propositions AP , we define that
ΣO = 2AP . An input α ∈ ΣI is said to be enabled in state
q ∈ Q if and only if

∑
q′∈Q τ(q, α, q′) = 1, and the set of

enabled input actions in state q is denoted Act(q).
An LMDP is said to be deterministic if it contains a unique

starting state and if, for each state and input action, the possible
successor states are uniquely labeled. More formally:

Definition 2 (DLMDP). A LMDP is deterministic if
• There exists a state qs ∈ Q with π(qs) = 1,
• For all q ∈ Q, α ∈ ΣI and σ ∈ ΣO, there exists at most

one q′ ∈ Q with L(q′) = σ and τ(q, α, q′) > 0. We then
also write τ(q, i, σ) instead of τ(q, i, q′).

A labeled MDP M can be used for modeling reactive
systems, where the system makes a probabilistic move based
on the current state and a chosen input action. In order to
specify probabilities over events of M , we need to resolve the
non-probabilistic decisions in the model: A scheduler S for
an MDP M is a function that in any state q chooses an action
α ∈ ΣI , i.e, S : Q+ → ΣI such that S(q0q1 . . . qn) ∈ ΣI , for
all q0, q1, . . . , qn ∈ Q+. For an MDP M , a scheduler S thus
resolves the non-probabilistic choices of M , thereby turning
M into a Markov chain MS [13, Section 10.6].

A labeled Markov chain (LMC) MS induced by an LMDP
M and a scheduler S defines a probability measure PMS

on (ΣO)ω which is the basis for associating probabilities
with events in the LMC MS: the probability of a string
s = σ0σ1 . . . σn, σ ∈ ΣO is given by:

PMS
(s) =

n∏
i=1

τS(σ0σ1 . . . σi−1, σi).

B. Probabilistic LTL

Linear time temporal logic (LTL) [14] was proposed for
verifying the correctness of systems based on execution
sequences, what property specified by an LTL formula need
not only depend on the current state but can also relate to
future states.

Linear time temporal logic (LTL) is defined by the syntax

ϕ ::= a | ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ | ϕ1Uϕ2 a ∈ ΣO.

For better readability, we also use the derived temporal
operators � (always) and ♦ (eventually).

Let ϕ be an LTL formula. For s = σ0σ1 . . . ∈ (ΣO)ω ,
s[j . . .] = σjσj+1σj+2 . . . is the suffix of s starting with the
(j)st symbol σj . The LTL semantics for infinite words over
Σ are given as follows:
• s |= true
• s |= σ, iff σ = σ0

• s |= ϕ1 ∧ ϕ2, iff s |= ϕ1 and s |= ϕ2

• s |= ¬ ϕ, iff s 2 ϕ
• s |= © ϕ, iff s[1 . . .] |= ϕ
• s |= ϕ1Uϕ2, iff ∃j ≥ 0. s[j . . .] |= ϕ2 and s[i . . .] |=
ϕ1, for all 0 ≤ i < j

The syntax of probabilistic LTL (PLTL) is:

φ ::= P./r(ϕ) (./ ∈ ≥, ≤, =; r ∈ [0, 1]; ϕ ∈ LTL).

A labeled Markov decision process M satisfies the PLTL
formula P./r(ϕ) iff PMS

(ϕ) ./ r for all schedulers of M ,
where PMS

is the probability distribution defined by the LMC
induced by the scheduler S of M , and PMS

(ϕ) is short for
PMS

(s|s |= ϕ, s ∈ (ΣO)ω).
The quantitative analysis of an MDP M against

specification ϕ amounts to establishing the lower and upper
probability bounds that can be guaranteed when ranging over
all possible schedulers. This corresponds to computing

Pmax
M (ϕ) = sup

S

PMS
(ϕ) and Pmin

M (ϕ) = inf
S
PMS

(ϕ),

where the infimum and the supremum are taken over all
schedulers for M .

III. LEARNING DETERMINISTIC LABELED MDPS

In this section we will briefly describe the IOALERGIA
algorithm presented in [6] and which form the basis for the
active learning algorithm proposed in the paper.

A. Passive data generation

The data used by the IOALERGIA algorithm is assumed
to consist of multiple sequences of alternating input/output
symbols, where each sequence is produced by observing the
behavior of a system modeled by an DLMDP M : the data
generation is initiated by observing the label of the initial
state of M . At each point in time thereafter an input action
α ∈ ΣI is randomly chosen (independently of the current
state) causing the system to either i) make a probabilistic
transition to a successor state for which the state label is
observed if α is enabled or ii) stay in the current state and

output a special error symbol err if α is not enabled. Using
this data generation procedure, an observed data sequence will
consist of an initial output symbol followed a sequence of
input/output pairs σ0α1σ1 . . . αnσn, where αi ∈ ΣI , σj ∈
ΣO ∪ {err}. The length n of the sequence is assumed to be
randomly determined according to a geometric distribution and
the sequences in the data set are assumed to be independent.

For some models, there may exist a uniquely labeled
absorbing state, which can be identified by its state label (e.g.,
a failure state from which the system cannot recover). When
prior knowledge is available, observations can be stopped
when such a state is encountered.

B. The IOAlergia algorithm

Given a dataset S generated according to the above
procedure, the IOALERGIA algorithm proceeds in two steps.
Firstly, a so-called input/output frequency prefix tree acceptor
(IOFPTA)1 is constructed as a representation of the data. An
IOFPTA T is a directed tree structure, where each node is
labeled by an output symbol and each link is labeled by an
input symbol. A path from the root qr of T to a node qi
corresponds to a prefix of a string in S defined by the labels
on the nodes and the links on the path.2 Each node s in
the tree is furthermore annotated with a transition frequency
function f(q, α, σ) (α ∈ ΣI , σ ∈ ΣO) which is the number of
strings in S with prefix qασ and f(q, α) =

∑
σ∈ΣO

f(q, α, σ).
Given an input action and an output symbol at a node in an
IOFPTA, the next state/node can be uniquely determined. An
IOFPTA can be transformed to a DLMDP by normalizing the
frequencies f(s, α, ·) to τ(s, α, ·).

A

A

B

BA B

A

β:1

A

B A

B

A B

A
β:5

α:18

β:15β:5α:1
β:0.25

β:0.75

α:0.5

α:0.5 α:2 α:3

α:7 α:8

α:3 α:4

α:4

β:1 β:3

qr

q1

q2
A

A

B

(b)(a)

Fig. 1. (a) A DLMDP over ΣO = {A,B} and ΣI = {α, β}; (b) An
IOFPTA representation of data generated from the DLMDP in (a).

Example 1. The IOFPTA in Fig. 1(b) is constructed from
sample sequences generated by the DLMDP M in Fig. 1(a).
The root node (double circled) is labeled by A. From the root
node, given different input actions α and β, different successor
nodes can be reached by strings with the prefixes AαA AαB,
and AβA. For the root node qr we,e.g., have the frequencies
fqr (A, β,A) = 5 and fqr (A, β,B) = 15, which specified that

1The term is adopted from [5] on which the algorithm is based.
2Since there is a one-to-one correspondence between a node q in T and a

string s in S, we will sometimes use the terms interchangeably.

there are 5 and 15 sequences with prefix AαA and AαB,
respectively.

Given an IOFPTA representation of the data, the
IOALERGIA algorithm proceeds by iteratively merging nodes
that pass a compatibility test. Intuitively, two nodes are merged
if they can be mapped to the same state in the generating
model. More formally, two nodes, q1 and q2 are said to be
ε-compatible, if it holds that:

1) L(q1) = L(q2);
2) For all α ∈ ΣI and σ ∈ ΣO,

∣∣∣ f(q1,α,σ)
f(q1,α) −

f(q2,α,σ)
f(q2,α

∣∣∣
< (
√

1
f(q1,α) +

√
1

f(q2,α)) ·
√

1
2 · ln

2
ε ;

3) The successor nodes q1ασ and q2ασ of q1 and q2 are
ε-compatible, for all α ∈ ΣI , and σ ∈ ΣO.

Condition 1) requires that the two nodes have the same
label. Condition 2), also known as Hoeffding test [15], bounds
the allowed difference between the distributions of the two
nodes also taking the uncertainty about the distributions into
account. The last condition requires the compatibility to be
recursively satisfied for every pair of successors states. As an
example, consider the IOFPTA in Fig. 1(b), where the states q1

and q2 pass the compatibility test and are therefore be merged.
The merge procedure is illustrated in the example below.

A

A

B

BA B

A

A

B A

B

A B

A

β:5

α:18

β:15β:5

α:2 α:3

α:7 α:8

α:3 α:4

α:4

β:1 β:3

qr

q1

q2

(a)

A

A

B

BA B

A

A

B A

B

A B

A

β:5

α:18

β:15β:5

α:2 α:3

α:9 α:11

α:3 α:4

α:4

β:1 β:3

qr

q1

q2

(b)

q’q’

Fig. 2. The figure shows the process of merging states q1 and q2.

Example 2. Fig. 2 shows the merge procedure where node
q1 (shadowed) is merged with the node q2 (dashed). Firstly,
the transition from node q′ to q1 is redirected to q2. Then,
transitions from q1 to its successor nodes are folded into the
corresponding successor nodes of q2 and the frequencies are
updated. Finally, the nodes in the dashed box are removed
from the model.

IV. ACTIVE LEARNING

The IOALERGIA algorithm is based on an IOFPTA
representation T of the data. The basic idea of the algorithm
is to find an approximation of the generating model M by
grouping together states in T , which can be mapped to a
single state in M . For two nodes to be grouped together they
should be compatible. To test whether states are compatible the
Hoeffding test is deployed, which, roughly speaking, measures
the difference in the probability distributions defined at the
two states also taking our confidence about the distributions
into account (i.e, the amount of data used for estimating the
distributions).

Intuitively, in order to adapt the IOALERGIA algorithm to
an active learning setting we aim at (indirectly) reducing
the number of false compatibility tests by generating data
sequences minimizing the uncertainty about the IOFPTA
representation T , which, in turn, implies reducing the
uncertainty about the derived transition probabilities in T .3

For each state q in a DLMDP, the transition probabilities
P (ΣO|q, i,θ(q,i)) conditioned on a specific input action i
follow a multinomial distribution and is parameterized by
θ(q,i) = (θ

(q,i)
1 , ..., θ

(q,i)
|ΣO|). In order to express our uncertainty

about P (ΣO|q, i,θ(q,i)) we specify a density P (θ(q,i)) over
the possible parameter values θ(q,i). By making the standard
assumption of parameter independence we can specify the
joint density P (θ) over all parameters θ in the model by a
collection of local parameter densities. An appropriate prior
distribution over the parameters is the Dirichlet distribution,
which is the conjugate prior distribution for the multinomial
distribution [16] and is parameterized by the hyperparameters
(α

(q,i)
1 , ..., α

(q,i)
|ΣO|), α(q,i)

j ∈ R+. The hyperparameter α(q,i)
j can

be thought of as representing the number of times we have
observed the jth output symbol in state q after input action i.
If P (ΣO|q, i) is parameterized by θ(q,i), and p(θ(q,i)) follows
a Dirichlet distribution, then the probability of observing oj ∈
ΣO can be estimated as αj/α∗, where α∗ =

∑|ΣO]
j=1 α

(q,i)
j .

Furthermore, if qk is observed after action i in state q, then
the posterior distribution P (θ(q,i)) is still Dirichlet distributed
with hyperparameters (α

(q,i)
1 , . . . , α

(q,i)
k + 1, . . . , α

(q,i)
|ΣO|).

Since the actively learning procedure will incrementally
generate new data, the IOFPTA representation of the data
is not fixed but rather grows as more data is added. Thus, we
may think of the tree as consisting of an observed initial part
(corresponding to the data) as well as an unobserved/virtual
part. Special attention must be given to the unobserved part of
the T , i.e., the part of the IOFPTA for which no observations
have (yet) been made. For the nodes in this part of the
tree we shall a priori assume a uniform distribution over
ΣO, where the uncertainty about the parameter values is
modeled by a Dirichlet distribution with hyperparameters
(11, 12, . . . , 1|ΣO|).

With the specification above, our active learning algorithm
can now be stated as follows: on each state q with P (θ(q,·)),
select an action i ∈ ΣI and observe the resulting output
symbol oj ∈ ΣO. Based on the observation oj , update
the distribution P (θ(q,i)) to obtain the posterior distribution
P ′(θ(q,i)). In what follows we will derive a measure G(q, i)
for estimating the value of the different actions i in any given
state q.

The distribution P (θ) represents our current knowledge
about the parameters in T . When using the IOALERGIA
algorithm, we need to select a set of specific parameter values,
and for that we use the expected value of θ, which we denote
by θ̃. However, if the “true” parameters are θ∗ rather than θ̃

3The transition probabilities are obtained by normalizing the frequencies
of T thereby producing a DLMDP. In what follows we will, unless states
otherwise, also consider IOFPTAs with normalized frequencies.

we will incur a loss Loss(θ̃||θ∗) (to be defined below). The
goal is to minimize the loss through active learning, but since
we do not know θ∗ we will instead aim at minimizing the
expected loss (or risk):

Risk(P (θ)) = EΘ∼P (θ)Loss(Θ||θ̃)

=

∫
θ

Loss(θ||θ̃)P (θ)dθ,

where the expectation is taken wrt. our current belief P (θ)
about the value of θ∗. The risk of P (θ) can therefore be seen
as a measure of the quality of our model.

If P (θ|q, i, o) is the posterior distribution over the
parameters given a new pair of input and output symbols in
state q, then we define the expected posterior risk of input
action i as

ERisk(P (θ|q, i)) = EΘ∼P (θ)EO∼P (ΣO|q,i,Θ))Risk(P (θ|q, i, O)),

When evaluating an input action i in state q an immediate
approach is therefore to consider the expected reduction risk:

∆q,i = ERisk(P (θ|q, i))− Risk(P (θ)).

However, the input action i at state q not only reduces
the local uncertainty about the distribution over ΣO, but
it also influences which states can be visited next and
therefore the potential reduction in uncertainty of future states.
Thus, the expected uncertainty reduction of the possible
successor states should be taken into account as well. With the
assumption that the length of the sample sequences follow a
geometric distribution (see Section III-A), we have an identical
termination probability at every state. In other words, there is
fixed probability γ that the sample generation will terminate
at the next state, and we therefore define the gain of the input
action i at state q as:

G(q, i) =
∑
oj∈ΣO

P (oj |q, i)[∆q,i,oj + γ ·max
k

(G(qioj , k))],

where ∆q,i,oj = Risk(P (θ|q, i, oj)) − Risk(P (θ)) is the
local risk reduction and qioj is the (unique) state that is
reached from q by input i and output oj . Thus, G(q, i)
combines the immediate reduction in expected posterior risk
with the maximum expected posterior risk reduction at future
states (weighted with the probability of reaching these states).
Observe that γ also serves as a discounting factor ensuring that
the gain is always finite (assuming that the expected posterior
risk is finite).

Before specifying a bound for the recursion above, we first
need to consider a suitable loss function. For that we follow
[17] and define the loss Loss(θ̃||θ) as the Kullback-Leibler
divergence (KL) between the two distributions induced by θ̃
and θ:

KL(θ, θ̃) = Σo∈ΣO
P (o|θ) ln

(
P (o|θ)

P (o|θ̃)

)

With KL(θ, θ̃) = Loss(θ̃,θ) the local risk reduction ∆q,i,oj

can be calculated as

∆q,i,oj = Risk(P (θ)|q, i, oj)− Risk(P (θ))

= H

(
αo1
αo∗

, . . . ,
αon
αo∗

)
− H

(
α′o1
α′o∗

, . . . ,
α′on
α′o∗

)
,

where H is the entropy function, αo∗ =
∑

oi∈ΣO

αoi , and

n = |ΣO|. Furthermore, α′oi = αoi + 1 if oi = o and
α′oi = αoi otherwise; α′o∗ = αo∗ + 1. In particular, for any
non-visited state q we have that ∆q,i,o = ∆∗ = H([1,...,1]

n) −
H([1,...,2,...,1]

n+1) for all i ∈ ΣI , and the gain of any non-visited
state is therefore

G(q, i) =
1

1− γ
∆∗,

which also terminates the recursive definition of G(q, i). The
proof for the calculation above follow that given in [17] for
regular Bayesian network models.

In summary, the active learning procedure is initialized with
a virtual infinite IOFPTA with no symbols observed and with
uniform prior distributions over the output symbols. At each
state q, the input action i with highest gain G(q, i) is chosen
and the associated distribution over θ(q,i) is updated based on
the output symbol observed.

As a final comment concerning complexity we note that
when updating the distributions in the IOFPTA during active
learning, only the distributions associated with the nodes
that have been visited are updated. This also means that
when recalculating the gain G(q, ·) (after having completed
an iteration and returning to the initial state) we only need to
update the calculations in the part of the tree pertaining to the
nodes that were visited during the last iteration.

V. EXPERIMENTAL RESULTS

In this section, we are going to analyze the active learning
algorithm using a case study based on the slot machine model
originally presented in [18] and adapted in [6]. The slot
machine consists of 3 reels, where each reel has 4 symbols.
By paying one coin each real can be spun once, and for each
extra coin inserted the player gets one extra spin on any of
the three reels. The player can stop and collect a prize if
every reel has been spun at least once and if the current
configuration of the reels generates a prize. The prizes for
the various reel configurations are listed in Table I and the
probability distribution over the four symbols on the reels are
listed in Table II.

The active learning algorithm discussed previously has been
implemented to choose the input action (i.e., which of the
three reels to spin) at each step during the data collection
procedure. Based on the “true” slot machine model we have
generated datasets of different sizes using both active and
passive data generation. IOALERGIA was then applied for
learning a DLMDP based on the different datasets; the data
was also used to estimate the discounting factor γ. For all data
sets, we assume access to prior knowledge about the domain,

TABLE I
SLOT MACHINE PRIZES.

r1 r2 r3 Prz
bar bar bar 10

cherry cherry cherry 10
grapes grapes grape 10

? bar bar 5
cherry ? cherry 5
grapes grapes ? 5

? ? bar 2
? ? cherry 1

TABLE II
PROBABILITY OF SYMBOLS

FOR THE THREE REELS.

r1 r2 r3
lemon 0.25 0.4 0.4
grape 0.25 0.1 0.2
cherry 0.25 0.2 0.2

bar 0.25 0.3 0.2

which is simulated by initially generating (passively) a data
set with 1600 observation sequences. The prior knowledge is
used to provide the initial guidance to the active learner.

The learned models have been evaluated using three criteria.
First, we have calculated the log-likelihood of an independent
test set consisting of 300 sample executions. The result of this
experiment is shown in Fig. 3(a) for a slot machine allowing
4 spins in total. Observe that the log-likelihood of the test
data for the model learned using active learning is consistently
higher than the one learned from passively generated data. The
error bars are based on 10 iterations of data generation.

Secondly, we have considered the maximum and minimum
probabilities of eventually getting the different prizes listed
in Table I. These probabilities can be specified by the PLTL
formulas Pmax(♦L coins) and Pmin(♦L coins), where L∈
{0, 1, 2, 5, 10}. The results are summarized in Fig. 3(b), for a
slot machine allowing 4 spins, and shows the mean absolute
difference of these PLTL properties between the generating
model and the learned models. From the figure we see that the
model found using active learning has smaller mean absolute
difference compared to the one obtained using passively
generated data. The probabilities have been calculated using
the probabilistic model checker PRISM [19].

Thirdly, we have compared the learning approaches based
on the maximum expected reward specified by the generating
model and the models found using actively and passively
generated data. This property can be specified as Rmax(♦stop)
using PRISM notation, which denotes the maximal expected
reward of reaching the termination state in one gamble. As
shown in Fig. 3(c), both learning approaches overestimate the
expected reward, but the estimated values approaches the true
value as the amount of data increases and by using actively
generated data generally produce better results.

As a brief summary, Fig. 3 shows that the active learning
approach provides a better approximation than passive learning
in three different aspects. Another interpretation is that active
learning can obtaining the same level of accuracy (e.g. in
terms of PLTL properties) with less data. For example, in
Fig. 3(a) we see that models learned from 3000 actively
generate sequences provide the same level of accuracy as
models learned from 6400 passively generated data sequences.

In Fig. 4, a comparison of the amount of data required to
achieve similar performance for active and passive learning
is conducted. Each plot in the figure corresponds to one of
the three criteria above, and each point in a plot shows the

-7

-6

-5

-4

-3

-2

-1

100 1600 3200 6400 10000 12000

Lo
g-

lik
el

ih
oo

d(
10

3)

number of sequences
(a)

Passive learning
Active learning

0.02

0.03

0.04

0.05

0.06

100 1600 3200 6400 10000 12000

P
LT

L
P

ro
pe

rt
y

number of sequences
(b)

Passive learning
Active learning

2.4

2.6

2.8

3

3.2

3.4

100 1600 3200 6400 10000 12000

E
xp

ec
te

d
re

w
ar

d

number of sequences
(c)

Passive learning
Active learning

Generating model

Fig. 3. The figures show learning results for a slot machine with 4 spin chances and with 1600 passively generated sequences as prior knowledge. (a)
Log-likelihood of 300 passively generated sample executions as test data; (b) The absolute mean difference of a set of PLTL formulas between generating
models and learned models. (c) The maximal expected reward of both the generating and learned model. The errorbars are formed from 10 iterations of the
experiments.

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000 12000

A
ct

iv
e

le
ar

ni
ng

Passive learning
(a)

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000 12000

A
ct

iv
e

le
ar

ni
ng

Passive learning
(b)

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000 12000

A
ct

iv
e

le
ar

ni
ng

Passive learning
(c)

Fig. 4. Comparison between active learning and passive learning in terms of required data to achieve similar performance. A cross, triangle and circle
corresponds to a slot machine with 4, 6, and 8 spin chances, respectively. The performances are measured by (a) log-likelihood of independent test data, (b)
preservation of PLTL properties, and (c) maximal expected reward of each gamble.

amount of data required by passive and active learning to
achieve similar performance for slot machines allowing 4, 6,
and 8 spins. We observe that actively learning consistently
outperforms passively learning using also these slot machines.

VI. CONCLUSION

In this paper, we have proposed an active learning algorithm
for learning deterministic labeled Markov decision processes
(DLMDPs) for formal model checking. The learning algorithm
is based on data in the form of observed input/output behavior
of the system to be checked and relies on the IOALERGIA
algorithm [6]. The proposed algorithm attempts to guide the
generation of input actions in a direction that reduces the
discounted uncertainty about the local probability distributions
in the model. The algorithm is empirically analyzed using
a case study on slot machines. The difference between the
proposed active learning algorithm and the existing passive
learning procedure is compared in terms of their model
properties and the maximum expected rewards that they can
return. The experimental results show that the active learning
algorithm can significantly reduce the amount of data required
for learning accurate system models.

REFERENCES

[1] F. Aarts and F. W. Vaandrager, “Learning I/O automata,” in CONCUR,
pp. 71–85, 2010.

[2] K. Sen, M. Viswanathan, and G. Agha, “Learning continuous time
Markov chains from sample executions,” in QEST, pp. 146–155, 2004.

[3] H. Mao, Y. Chen, M. Jaeger, T. D. Nielsen, K. G. Larsen, and
B. Nielsen, “Learning probabilistic automata for model checking,” in
QEST, pp. 111–120, 2011.

[4] Y. Chen, H. Mao, M. Jaeger, T. D. Nielsen, K. G. Larsen, and B. Nielsen,
“Learning Markov models for stationary system behaviors,” in NFM,
pp. 216–230, 2012.

[5] R. C. Carrasco and J. Oncina, “Learning stochastic regular grammars
by means of a state merging method,” in ICGI, pp. 139–152, 1994.

[6] H. Mao, Y. Chen, M. Jaeger, T. D. Nielsen, K. G. Larsen, and B. Nielsen,
“Learning Markov decision processes for model checking,” in QFM,
2012, to appear.

[7] H. Hermanns and L. Zhang, “From concurrency models to numbers
- performance and dependability,” in Software and Systems Safety -
Specification and Verification, pp. 182–210, 2011.

[8] B. Settles, Active Learning. Morgan & Claypool, 2012.
[9] S. Tong, Active learning: theory and application. PhD thesis, Stanford

University, 2001.
[10] B. Anderson and A. Moore, “Active learning for hidden Markov models:

Objective functions and algorithms,” in ICML, pp. 9–16, 2005.
[11] B. Steffen, F. Howar, and M. Merten, “Introduction to active automata

learning from a practical perspective,” in Formal Methods for Eternal
Networked Software Systems, vol. 6659, pp. 256–296, 2011.

[12] J. Bongard and H. Lipson, “Active coevolutionary learning of
deterministic finite automata,” Journal Machine Learning Research.,
vol. 6, pp. 1651–1678, Dec. 2005.

[13] C. Baier and J.-P. Katoen, Principles of model checking. MIT Press,
2008.

[14] A. Pnueli, “The temporal logic of programs,” in FOCS, 1977.
[15] H. Wassily, “Probability inequalities for sums of bounded random

variables,” Journal of the American Statistical Association, vol. 58,
no. 58, pp. 13–30, 1963.

[16] M. H. DeGroot, Optimal Statistical Decisions. Wiley-Interscience, 2004.
[17] S. Tong and D. Koller, “Active learning for parameter estimation in

Bayesian networks,” in NIPS, pp. 647–653, 2000.
[18] D. N. Jansen, “Probabilistic UML statecharts for specification and

verification a case study,” in Critical Systems Development with UML –
Proc. of the UML’02 workshop, pp. 121–132, 2002.

[19] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in CAV, pp. 585–591, 2011.

