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Efficient Modelling of Wind Turbine Foundations

Lars Andersen and Johan Clausen
Aalborg University, Department of Civil Engineering

Denmark

1. Introduction

Recently, wind turbines have increased significantly in size, and optimization has led to very
slender and flexible structures. Hence, the Eigenfrequencies of the structure are close to the
excitation frequencies related to environmental loads from wind and waves. To obtain a
reliable estimate of the fatigue life of a wind turbine, the dynamic response of the structure
must be analysed. For this purpose, aeroelastic codes have been developed. Existing codes,
e.g. FLEX by Øye (1996), HAWC by Larsen & Hansen (2004) and FAST by Jonkman & Buhl
(2005), have about 30 degrees of freedom for the structure including tower, nacelle, hub and
rotor; but they do not account for dynamic soil–structure interaction. Thus, the forces on the
structure may be over or underestimated, and the natural frequencies may be determined
inaccurately.
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Fig. 1. From prototype to computational model: Wind turbine on a footing over a soil
stratum (left); rigorous model of the layered half-space (centre); lumped-parameter model of
the soil and foundation coupled with finite-element model of the structure (right).
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Andersen & Clausen (2008) concluded that soil stratification has a significant impact on the
dynamic stiffness, or impedance, of surface footings—even at the very low frequencies
relevant to the first few modes of vibration of a wind turbine. Liingaard et al. (2007)
employed a coupled finite-element/boundary-element model for the analysis of a flexible
bucket foundation, finding a similar variation of the dynamic stiffness in the frequency range
relevant for wind turbines. This illustrated the necessity of implementing a model of the
turbine foundation into the aeroelasic codes that are utilized for design and analysis of the
structure. However, since computation speed is of paramount importance, the model of
the foundation should only add few degrees of freedom to the model of the structure. As
proposed by Andersen (2010) and illustrated in Fig. 1, this may be achieved by fitting a
lumped-parameter model (LPM) to the results of a rigorous analysis, following the concepts
outline by Wolf (1994).
This chapter outlines the methodology for calibration and implementation of an LPM of
a wind turbine foundation. Firstly, the formulation of rigorous computational models of
foundations is discussed with emphasis on rigid footings, i.e. monolithic gravity-based
foundations. A brief introduction to other types of foundations is given with focus on their
dynamic stiffness properties. Secondly, Sections 2 and 3 provide an in-depth description of an
efficient method for the evaluation of the dynamics stiffness of surface footings of arbitrary
shapes. Thirdly, in Section 4 the concept of consistent lumped-parameter models is presented
and the formulation of a fitting algorithm is discussed. Finally, Section 5 includes a number of
example results that illustrate the performance of lumped-parameter models.

1.1 Types of foundations and their properties
The gravity footing is the only logical choice of foundation for land-based wind turbines
on residual soils, whereas a direct anchoring may be applied on intact rock. However, for
offshore wind turbines a greater variety of possibilities exist. As illustrated in Fig. 2, when the
turbines are taken to greater water depths, the gravity footing may be replaced by a monopile,
a bucket foundation or a jacket structure. Another alternative is the tripod which, like the
jacket structure, can be placed on piles, gravity footings or spud cans (suction anchors). The
latter case was studied by Senders (2005). In any case, the choice of foundation type is site
dependent and strongly influenced by the soil properties and the environmental conditions,
i.e. wind, waves, current and ice. Especially, current may involve sediment transport and
scour on sandy and silty seabeds, which may lead to the necessity of scour protection around
foundations with a large diameter or width.
Regarding the design of a wind turbine foundation, three limit states must be analysed in
accordance with most codes of practice, e.g. the Eurocodes. For offshore foundations, design
is usually based on the design guidelines provided by the API (2000) or DNV (2001). Firstly,
the strength and stability of the foundation and subsoil must be high enough to support the
structure in the ultimate limit state (ULS). Secondly, the stiffness of the foundation should
ensure that the displacements of the structure are below a threshold value in the serviceability
limit state (SLS). Finally, the wind turbine must be analysed regarding failure in the fatigue
limit state (FLS), and this turns out to be critical for large modern offshore wind turbines.
The ULS is typically design giving for the foundations of smaller, land-based wind turbines.
In the SLS and FLS the turbine may be regarded as fully fixed at the base, leading to a great
simplification of the dynamic system to be analysed. However, as the size of the turbine
increases, soil–structure interaction becomes stronger and due to the high flexibility of the
structure, the first Eigenfrequencies are typically below 0.3 Hz.
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(a) (b) (c) (d)

Fig. 2. Different types of wind turbine foundations used offshore a various water depths:
(a) gravity foundation; (b) monopile foundation; (c) monopod bucket foundation and
(d) jacket foundaiton.

An improper design may cause resonance due to the excitation from wind and waves, leading
to immature failure in the FLS. An accurate prediction of the fatigue life span of a wind turbine
requires a precise estimate of the Eigenfrequencies. This in turn necessitates an adequate
model for the dynamic stiffness of the foundation and subsoil. The formulation of such models
is the focus of such models. The reader is referred to standard text books on geotechnical
engineering for further reading about static behaviour of foundations.

1.2 Computational models of foundations for wind turbines
Several methods can be used to evaluate the dynamic stiffness of footings resting on
the surface of the ground or embedded within the soil. Examples include analytic,
semi-analytic or semi-empirical methods as proposed by Luco & Westmann (1971), Luco
(1976), Krenk & Schmidt (1981), Wong & Luco (1985), Mita & Luco (1989), Wolf (1994) and
Vrettos (1999) as well as Andersen & Clausen (2008). Especially, torsional motion of
footings was studied by Novak & Sachs (1973) and Veletsos & Damodaran Nair (1974) as
well as Avilés & Pérez-Rocha (1996). Rocking and horizontal sliding motion of footings was
analysed by Veletsos & Wei (1971) and Ahmad & Rupani (1999) as well as Bu & Lin (1999).
Alternatively, numerical analysis may be conducted using the finite-element method and the
boundary-element method. See, for example, the work by Emperador & Domínguez (1989)
and Liingaard et al. (2007).
For monopiles, analyses are usually performed by means of the Winkler approach in which
the pile is continuously supported by springs. The nonlinear soil stiffness in the axial direction
along the shaft is described by t–z curves, whereas the horizontal soil resistance along the shaft
is provided by p–y curves. Here, t and p is the resulting force per unit length in the vertical
and horizontal directions, respectively, whereas z and y are the corresponding displacements.
For a pile loaded vertically in compression, a similar model can be formulated for the tip
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resistance. More information about these methods can be found in the design guidelines by
API (2000) and DNV (2001).
Following this approach, El Naggar & Novak (1994a;b) formulated a model for vertical
dynamic loading of pile foundations. Further studies regarding the axial response were
conducted by Asgarian et al. (2008), who studied pile–soil interaction for an offshore jacket,
and Manna & Baidya (2010), who compared computational and experimental results. In
a similar manner, El Naggar & Novak (1995; 1996) studied monopiles subject to horizontal
dynamic excitation. More work along this line is attributed to El Naggar & Bentley (2000),
who formulated p–y curves for dynamic pile–soil interaction, and Kong et al. (2006), who
presented a simplified method including the effect of separation between the pile and the
soil. A further development of Winkler models for nonlinear dynamic soil behaviour was
conducted by Allotey & El Naggar (2008). Alternatively, the performance of mononpiles
under cyclic lateral loading was studied by Achmus et al. (2009) using a finite-element model.
Gerolymos & Gazetas (2006a;b;c) developed a Winkler model for static and dynamic analysis
of caisson foundations fully embedded in linear or nonlinear soil. Further research regarding
the formulation of simple models for dynamic response of bucket foundations was carried
out by Varun et al. (2009). The concept of the monopod bucket foundation has been described
by Houlsby et al. (2005; 2006) as well as Ibsen (2008). Dynamic analysis of such foundations
were performed by Liingaard et al. (2007; 2005) and Liingaard (2006) as well as Andersen et al.
(2009). The latter work will be further described by the end of this chapter.

2. Semi-analytic model of a layered ground

This section provides a thorough explanation of a semi-analytical model that may be applied
to evaluate the response of a layered, or stratified, ground. The derivation follows the original
work by Andersen & Clausen (2008). The fundamental assumption is that the ground may be
analysed as a horizontally layered half-space with each soil layer consisting of a homogeneous
linear viscoelastic material. In Section 3 the model of the ground will be used as a basis for
the development of a numerical method providing the dynamic stiffness of a foundation over
a stratum. Finally, in Section 5 this method will be applied to the analysis of gravity-based
foundations for offshore wind turbines.

2.1 Response of a layered half-space
The surface displacement in time domain and in Cartesian space is denoted u10

i (x1, x2, t) =
ui(x1, x2, 0, t). Likewise the surface traction, or the load on the free surface, will be denoted
p10

i (x1, x2, t) = pi(x1, x2, 0, t). An explanation of the double superscript 10 is given in the next
subsection. Here it is just noted that superscript 10 refers to the top of the half-space.
Further, let gij(x1 − y1, x2 − y2, t − τ) be the Green’s function relating the displacement at
the observation point (x1, x2, 0) to the traction applied at the source point (y1, y2, 0). Both
points are situated on the surface of a stratified half-space with horizontal interfaces. The
total displacement at the point (x1, x2, 0) on the surface of the half-space is then found as

u10
i (x1, x2, t) =

∫ t

−∞

∫ ∞

−∞

∫ ∞

−∞
gij(x1 − y1, x2 − y2, t − τ)p10

j (y1, y2, τ) dy1dy2dτ. (1)

The displacement at any point on the surface of the half-space and at any instant of time may
be evaluated by means of Eq. (1). However, this requires the existence of the Green’s function
gij(x1 − y1, x2 − y2, t − τ), which may be interpreted as the dynamic flexibility. Unfortunately,
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a closed-form solution cannot be established for a layered half-space, and in practice the
temporal–spatial solution expressed by Eq. (1) is inapplicable.
Assuming that the response of the stratum is linear, the analysis may be carried out in the
frequency domain. The Fourier transformation of the surface displacements with respect to
time is defined as

U10
i (x1, x2, ω) =

∫ ∞

−∞
u10

i (x1, x2, t)e−iωtdt (2)

with the inverse Fourier transformation given as

u10
i (x1, x2, t) =

1
2π

∫ ∞

−∞
U10

i (x1, x2, ω)eiωtdω. (3)

Likewise, a relationship can be established between the surface load p10
i (x1, x2, t) and its

Fourier transform P10
i (x1, x2, ω), and similar transformation rules apply to the Green’s

function, i.e. between gij(x1 − y1, x2 − y2, t − τ) and Gij(x1 − y1, x2 − y2, ω). It then follows
that

U10
i (x1, x2, ω) =

∫ ∞

−∞

∫ ∞

−∞
Gij(x1 − y1, x2 − y2, ω)P10

j (y1, y2, ω)dy1dy2, (4)

reducing the problem to a purely spatial convolution.
Further, assuming that all interfaces are horizontal, a transformation is carried out from the
Cartesian space domain description into a horizontal wavenumber domain. This is done by a
double Fourier transformation in the form

U
10
i (k1, k2, ω) =

∫ ∞

−∞

∫ ∞

−∞
U10

i (x1, x2, ω)e−i(k1x1+k2x2)dx1dx2, (5)

where the double inverse Fourier transformation is defined by

U10
i (x1, x2, ω) =

1
4π2

∫ ∞

−∞

∫ ∞

−∞
U10

i (k1, k2, ω)ei(k1x1+k2x2)dk1dk2. (6)

By a similar transformation of the surface traction and the Green’s function, Eq. (4) finally
achieves the form

U10
i (k1, k2, ω) = Gij(k1, k2, ω)P10

j (k1, k2, ω). (7)

This equation has the advantage when compared to the previous formulation in space and
time domain, that no convolution has to be carried out. Thus, the displacement amplitudes
in the frequency–wavenumber domain are related directly to the traction amplitudes for a
given set of the circular freqeuncy ω and the horizontal wavenumbers k1 and k2 via the
Green’s function tensor Gij(k1, k2, ω). When the load in the time domain varies harmonically
in the form p10

i (x1, x2, t) = Pi(x1, x2)eiωt, the solution simplifies, since no inverse Fourier
transformation over the frequency is necessary. Gij(k1, k2, ω) must only be evaluated at a
single frequency.
The main advantage of the description in the frequency–horizontal wavenumber domain is
that a solution for the stratum may be found analytically. In the following subsections, the
derivation of Gij(k1, k2, ω) is described. As mentioned above, the derivation is based on the
assumption that the material within each individual layer is linear elastic, homogeneous and
isotropic. Further, material dissipation is confined to hysteretic damping, which has been
found to be a reasonably accurate model for materials such as soil, even if the model is invalid
from a physical point of view.
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2.2 Flexibility matrix for a single soil layer
The stratum consists of J horizontally bounded layers, each defined by the Young’s modulus
Ej, the Poisson ratio νj, the mass density ρj and the loss factor η j. Further, the layers have the
depths hj, j = 1, 2, ..., J. Thus, the equations of motion for each layer may advantageously be
established in a coordinate system with the local x3-coordinate xj

3 defined with the positive

direction downwards so that xj
3 ∈ [0, hj ], see Fig. 3.

2.2.1 Boundary conditions for displacements and stresses at an interface
In the frequency domain, and in terms of the horizontal wavenumbers, the displacements at
the top and at the bottom of the jth layer are given, respectively, as

Uj0
i (k1, k2, ω) = Ui(k1, k2, xj

3 = 0, ω), Uj1
i (k1, k2, ω) = Ui(k1, k2, xj

3 = hj , ω). (8)

The meaning of the double superscript 10 applied in the definition of the flexibility or

Green’s function in the previous section now becomes somewhat clearer. Thus U10
i are the

displacement components at the top of the uppermost layer which coincides with the surface
of the half-space. The remaining layers are counted downwards with j = J referring to the
bottommost layer. If an underlying half-space is present, its material properties are identified
by index j = J + 1.
Similar to Eq. (8) for the displacements, the traction at the top and bottom of layer j are

Pj0
i (k1, k2, ω) = Pi(k1, k2, xj

3 = 0, ω), Pj1
i (k1, k2, ω) = Pi(k1, k2, xj

3 = hj, ω). (9)

The quantities defined in Eqs. (8) and (9) may advantageously be stored in vector form as

S
j0
=

[
Uj0

Pj0

]
, S

j1
=

[
Uj1

Pj1

]
, (10)

where Uj0
= Uj0

(k1, k2, ω) is the column vector with the components Uj0
i , i = 1, 2, 3, etcetera.

x1

x2

x3, xj
3

O

Oj

hjLayer j

Fig. 3. Global and local coordinates for layer j with the depth hj. The (x1, x2, x3)-coordinate
system has the origin O, whereas the local (x1, x2, xj

3)-coordinate system has the origin Oj.
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2.2.2 Governing equations for wave propagation in a soil layer
In the time domain, and in terms of Cartesian coordinates, the equations of motion for the
layer are given in terms of the Cauchy equations, which in the absence of body forces read

∂

∂xk
σ

j
ik(x1, x2, xj

3, t) = ρj ∂2

∂t2 uj
i(x1, x2, xj

3, t), (11)

where σ
j
ik(x1, x2, xj

3, t) is the Cauchy stress tensor. On any part of the boundary, i.e. on the top
and bottom of the layer, Dirichlet or Neumann conditions apply as defined by Eqs. (8) and
(9), respectively. Initial conditions are of no interest in the present case, since the steady state
solution is to be found.
Assuming hysteretic material dissipation defined by the loss factor η j, the dynamic stiffness of
the homogeneous and isotropic material may conveniently be described in terms of complex
Lamé constants defined as

λj =
νjEj

(
1 + i sign(ω)η j

)
(
1 + νj

) (
1 − 2νj

) , μj =
Ej

(
1 + i sign(ω)η j)

)
2
(
1 + νj

) . (12)

The sign function ensures that the material damping is positive in the entire frequency range
ω ∈ [−∞; ∞] involved in the inverse Fourier transformation (3).
Subsequently, the stress amplitudes σ̂

j
ik(x1, x2, xj

3, ω) may be expressed in terms of the dilation

amplitudes Δ̂j(x1, x2, xj
3, ω), and the infinitesimal strain tensor amplitudes ε̂

j
ik(x1, x2, xj

3, ω),

σ̂
j
ik(x1, x2, xj

3, ω) = λjΔ̂j(x1, x2, xj
3, ω)δik + 2μj ε̂

j
ik(x1, x2, xj

3, ω), (13)

where δij is the Kronecker delta; δij = 1 for i = j and δij = 0 for i �= j. Further, the following
definitions apply:

Δ̂j(x1, x2, xj
3, ω) =

∂

∂xk
Uj

k(x1, x2, xj
3, ω), (14)

ε̂
j
ik(x1, x2, xj

3, ω) =
1
2

(
∂

∂xi
Uj

k(x1, x2, xj
3, ω) +

∂

∂xk
Uj

i (x1, x2, xj
3, ω)

)
. (15)

It is noted that ∂/∂xj
3 = ∂/∂x3, since the local xj

3-axes have the same positive direction as the
global x3-axis.
Inserting Eqs. (12) to (15) into the Fourier transformation of the Cauchy equation given by
Eq. (11), the Navier equations in the frequency domain are achieved:

(
λj + μj

) ∂Δ̂j

∂xi
+ μj ∂2Uj

i
∂xk∂xk

= −ω2ρjUj
i . (16)

Applying the double Fourier transformation over the horizontal Cartesian coordinates as
defined by Eq. (5), the Navier equations in the frequency–wavenumber domain become

(
λj + μj

)
ikiΔ

j
+ μj

(
d2

dx2
3
− k2

1 − k2
2

)
U

j
i = −ω2ρjU

j
i , i = 1, 2, (17a)

(
λj + μj

) dΔ
j

dx3
+ μj

(
d2

dx2
3
− k2

1 − k2
2

)
Uj

3 = −ω2ρjUj
3, (17b)
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where Δ
j
= Δ

j
(k1, k2, xj

3, ω) is the double Fourier transform of Δ̂j(x1, x2, xj
3, ω) with respect to

the horizontal Cartesian coordinates x1 and x2. Obviously,

Δ
j
(k1, k2, xj

3, ω) = ik1Uj
1(k1, k2, xj

3, ω) + ik2Uj
2(k1, k2, xj

3, ω) +
dUj

3(k1, k2, xj
3, ω)

dx3
. (18)

Equations (17a) and (17b) are ordinary differential equations in x3. When the boundary values
at the top and the bottom of the layer expressed in Eqs. (8) and (9) are known, an analytical
solution may be found as will be discussed below.

2.2.3 The solution for compression waves in a soil layer
The phase velocities of compression and shear waves, or P- and S-waves, are identified as

cP =

√
λj + 2μj

ρj , cS =

√
μj

ρj , (19)

respectively. It is noted that the phase velocities are complex when material damping is
present. Further, in the frequency domain, the P- and S-waves in layer j are associated with
the wavenumbers kj

P and kj
S,

{kj
P}2 =

ω2

{cj
P}2

, {kj
S}2 =

ω2

{cj
S}2

. (20)

Introducing the parameters α
j
P and α

j
S as the larger of the roots to

{α
j
P}2 = k2

1 + k2
2 − {kj

P}2, {α
j
S}2 = k2

1 + k2
2 − {kj

S}2, (21)

Eqs. (17a) and (17b) may conveniently be recast as

(
λj + μj

)
ikiΔ

j
+ μj

(
d2Uj

i

dx2
3

− {α
j
S}2Uj

i

)
= 0, i = 1, 2, (22a)

(
λj + μj

) dΔ
j

dx3
+ μj

(
d2Uj

3
dx2

3
− {α

j
S}2Uj

3

)
= 0. (22b)

Equation (22a) is now multiplied with iki and Eq. (22b) is differentiated with respect to x3.
Adding the three resulting equations and making use of Eq. (18), an equation for the dilation
is obtained in the form(

λj + μj
)(

d2

dx2
3
− k2

1 − k2
2

)
Δ

j
+ μj

(
d2

dx2
3
− {α

j
S}2

)
Δ

j
= 0 ⇒

(
λj + 2μj

)(
d2

dx2
3
− k2

1 − k2
2

)
Δ

j
+ μj

(
k2

1 + k2
2 − {α

j
S}2

)
Δ

j
= 0 ⇒

(
λj + 2μj

)(
d2

dx2
3
− k2

1 − k2
2

)
Δ

j
+ μj{kj

S}2Δ
j
= 0. (23)
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The last derivation follows from Eq. (21). Further, Eqs. (19) and (20) involve that

μj{kj
S}2 =

(
λj + 2μj

)
{kj

P}2. (24)

Inserting this result into Eq. (23), and once again making use of Eq. (21), we finally arrive at
the ordinary homogenous differential equation

d2Δ
j

dx2
3
− {α

j
P}2Δ

j
= 0, (25)

which has the full solution
Δ

j
= aj

1eα
j
Pxj

3 + aj
2e−α

j
Pxj

3 . (26)

Here aj
1 and aj

2 are integration constants that follow from the boundary conditions. Physically,
the two parts of the solution (26) describe the decay of P-waves travelling in the negative and
positive x3-direction, respectively, i.e. P-waves moving up and down in the layer.

2.2.4 The solution for compression and shear waves in a soil layer
Insertion of the solution (26) into Eqs. (22a) and (22b) leads to three equations for the
displacement amplitudes:

d2Uj
i

dx2
3

− {α
j
S}2Uj

i = −
(

λj

μj + 1

)
iki

(
aj

1eα
j
Pxj

3 + aj
2e−α

j
Pxj

3

)
, i = 1, 2, (27a)

d2Uj
3

dx2
3

− {α
j
S}2Uj

3 = −
(

λj

μj + 1

)
α

j
P

(
aj

1eα
j
Pxj

3 − aj
2e−α

j
Pxj

3

)
. (27b)

Solutions to Eqs. (27a) and (27b) are found in the form

Uj
1 = Uj

1,c + Uj
1,p = bj

1eα
j
Sxj

3 + bj
2e−α

j
Sxj

3 + bj
3eα

j
Pxj

3 + bj
4e−α

j
Pxj

3 , (28a)

Uj
2 = Uj

2,c + Uj
2,p = cj

1eα
j
Sxj

3 + cj
2e−α

j
Sxj

3 + cj
3eα

j
Pxj

3 + cj
4e−α

j
Pxj

3 , (28b)

Uj
3 = Uj

3,c + Uj
3,p = dj

1eα
j
Sxj

3 + dj
2e−α

j
Sxj

3 + dj
3eα

j
Pxj

3 + dj
4e−α

j
Pxj

3 , (28c)

where the subscripts c and p denote the complimentary and the particular solutions,
respectively. These include S- and P-wave terms, respectively. Like aj

1 and aj
2, cj

1, cj
2, etc. are

integration constants given by the boundary conditions at the top and the bottom of layer j.
Apparently, the full solution has fourteen integration constants. However, a comparison of
Eqs. (18) and (26) reveals that

Δ
j
(k1, k2, xj

3, ω) = ik1Uj
1 + ik2Uj

2 +
dUj

3
dx3

= aj
1eα

j
Pxj

3 + aj
2e−α

j
Pxj

3 . (29)

By insertion of the complementary solutions, i.e. the first two terms in Eqs. (28a) to (28c), into
Eq. (29) it immediately follows that

dj
1 = −

(
ik1

α
j
S

bj
1 +

ik2

α
j
S

cj
1

)
, dj

2 =
ik1

α
j
S

bj
2 +

ik2

α
j
S

cj
2. (30)
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functions of different powers are orthogonal. A further reduction of the number of integration
constants is achieved by insertion of the particular solutions into the respective differential
equations (27a) and (27b). Thus, after a few manipulations it may be shown that

bj
3 = − ik1

{kj
P}2

aj
1, cj

3 = − ik2

{kj
P}2

aj
1, dj

3 = − α
j
P

{kj
P}2

aj
1, (31a)

bj
4 = − ik1

{kj
P}2

aj
2, cj

4 = − ik2

{kj
P}2

aj
2, dj

4 = +
α

j
P

{kj
P}2

aj
2, (31b)

where use has been made of the fact that

λj + μj

μj
(
{α

j
S}2 − {α

j
P}2

) =
{cj

P}2 − {cj
S}2

{cj
S}2

(
{kj

P}2 − {kj
S}2

) =
{kj

S}2 − {kj
P}2

{kj
P}2

(
{kj

P}2 − {kj
S}2

) = − 1

{kj
P}2

,

which follows from the definitions given in Eqs. (19) to (21). Thus, eventually only six of
the original fourteen integration constants are independent, namely aj

1, aj
2, bj

1, bj
2, cj

1 and

cj
2. As already mentioned, the terms including aj

1 and aj
2 represent P-waves moving up and

down in layer j. Inspection of Eqs. (28a) to (28c) reveals that the bj
1 and bj

2 terms represent
S-waves that are polarized in the x1-direction and which are moving up and down in the
layer, respectively. Similarly, the cj

1 and cj
2 terms describe the contributions from S-waves

polarized in the x2-direction and travelling up and down in the layer, respectively. It becomes
evident that the previously defined quantities α

j
P and α

j
S may be interpreted as exponential

decay coefficients of P- and S-waves, respectively. When k1 and k2 are both small, α
j
P and α

j
S

turn into “wavenumbers”, as they become imaginary, cf. Eq. (21).
Once the displacement field is known, the stress components on any plane orthogonal to the
xj

3-axis may be found from Eq. (13) by letting index k = 3. The full solution for displacements,

Uj, and traction, Pj, may then be written in matrix form as

S
j
=

[
Uj

Pj

]
= AjEjbj, bj =

[
aj

1 bj
1 cj

1 aj
2 bj

2 cj
2

]T
, (32)

where Ej is a matrix of dimension (6 × 6). Only the diagonal terms

Ej
11 = eα

j
Pxj

3 , Ej
22 = Ej

33 = eα
j
Sxj

3 , Ej
44 = e−α

j
Pxj

3 , Ej
55 = Ej

66 = e−α
j
Sxj

3 , (33)

are nonzero. Aj is a matrix of dimension (6 × 6), the components of which follow from
Eqs. (28) to (31) and (13). The computation of matrix Aj is further discussed below. Finally,
the displacements and the traction at the two boundaries of layer j may be expressed as

S
j0
= Aj0bj, Aj0 = Aj, (34a)

S
j1
= eα

j
Phj

Aj1bj, Aj1 = Aj0Dj. (34b)

Here Dj a (6 × 6) matrix with the nonzero components

Dj
11 = 1, Dj

22 = Dj
33 = e(α

j
S−α

j
P)hj

, Dj
44 = e−2α

j
Phj

, Dj
55 = Dj

66 = e−(α
j
P+α

j
S)hj

, (35)
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found by evaluation of the matrix e−α
j
Pxj

3 Ej at xj
3 = hj. Equations (34a) and (34b) may be

combined in order to eliminate vector bj which contains unknown integration constants. This
provides a transfer matrix for the layer as proposed by Thomson (1950) and Haskell (1953),

S
j1
= eα

j
Phj

Aj1[Aj0]−1S
j0, (36)

forming a relationship between the displacements and the traction at the top and the bottom
of a single layer.
The derivation of Eq. (36) has been based on the assumption that ω > 0. When a static load
is applied, the circular frequency is ω = 0, whereby the wavenumbers of the P- and S-waves,
i.e. kj

P and kj
S defined by Eq. (20), become zero and the integration constants bj

3 etc. given in
Eq. (31) are undefined. Hence, the solution given in the previous section does not apply in the
static case. However, for any practical purposes a useful approximation can be established for

the static case by employing a low value of ω in the evaluation of S
j1.

2.3 Assembly of multiple layers
At an interface between two layers, the displacements should be continuous and there should

be equilibrium of the traction. This may be expressed as S
j0

= S
j−1,1, j = 2, 3, ..., J, i.e. the

quantities at the top of layer j are equal to those at the bottom of layer j− 1. Proceeding in this
manner, Eq. (36) for the single layer may be rewritten for a system of J layers,

S
J1
= eΣαAJ1[A10]−1AJ−1,1[AJ−1,0]−1 · · · A11[A10]−1S

10, Σα =
J

∑
j=1

α
j
Phj. (37)

Introducing the transfer matrix T defined as

T =

[
T11 T12
T21 T22

]
= AJ1[AJ0]−1AJ−1,1[AJ−1,0]−1 · · · A11[A10]−1, (38)

Equation (37) may in turn be written as SJ1
= eΣαTS10, or[

UJ1

PJ1

]
= eΣα

[
T11 T12
T21 T22

] [
U10

P10

]
, Σα =

J

∑
j=1

α
j
Phj. (39)

This establishes a relationship between the traction and the displacements at the free surface
of the half-space and the equivalent quantities at the bottom of the stratum as originally
proposed by Thomson (1950) and Haskell (1953).

2.4 Flexibility of a homogeneous or stratified ground
A stratified ground consisting of multiple soil layers may overlay bedrock. On the surface of
the bedrock, the displacements are identically equal to zero and thus, by insertion into Eq. (39),[

UJ1

PJ1

]
=

[
0

PJ1

]
= eΣα

[
T11 T12
T21 T22

] [
U10

P10

]
. (40)

The first three rows of this matrix equation provide the identity

U10
= GrfP10, Grf = −T−1

11 T12. (41)
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Grf = Grf(k1, k2, ω) is the flexibility matrix for a stratum over a rigid bedrock. It is
observed that the exponential function of the power Σα, defined in Eq. (39), vanishes in the
formulation provided by Eq. (41). This is a great advantage from a computational point of
view, since eΣα becomes very large for strata of great depths, which may lead to problems on
a computer—even when double precision complex variables are employed.
Alternatively to a rigid bedrock, a half-space may be present underneath the stratum
consisting of J layers. In this context, the material properties etc. of the half-space will be
assigned the superscript J + 1. The main difference between a semi-infinite half-space and a
layer of finite depth is that only an upper boundary is present, i.e. the boundary situated at
xJ+1

3 = 0. Since the material is assumed to be homogeneous, no reflection of waves will take
place inside the half-space. Further assuming that no sources are present in the interior of the
half-space, only outgoing, i.e. downwards propagating, waves can be present. Dividing the
matrices Aj and Ej for a layer of finite depth, cf. Eq. (32), into four quadrants, and the column
vector bj into two sub-vectors,

Aj =

[
Aj

11 Aj
12

Aj
21 Aj

22

]
, Ej =

[
Ej

11 Ej
12

Ej
21 Ej

22

]
, bj =

[
bj

1
bj

2

]
, (42)

it is evident that only half of the solution applies to the half-space, i.e.

S
J+1

=

[
UJ+1

PJ+1

]
=

[
AJ+1

12
AJ+1

22

]
EJ+1

22 bJ+1
2 , bJ+1

2 =
[

aJ+1
2 bJ+1

2 cJ+1
2

]T
. (43)

The terms including the integration constants aJ+1
1 , bJ+1

1 and cJ+1
1 are physically invalid as

they correspond to waves incoming from xJ+1
3 = ∞, i.e. from infinite depth.

From Eq. (43), the traction on the interface between the bottommost layer and the half-space
may be expressed in terms of the corresponding displacements by solution of

UJ+1
= AJ+1

12 [AJ+1
22 ]−1PJ+1. (44)

The matrix EJ+1
22 reduces to the identity matrix of order 3, since all the exponential terms are

equal to 1 for xJ+1
3 = 0.

Firstly, if no layers are present in the model of the stratum, J = 0 and it immediately follows
from Eq. (44) that Eq. (7), written in matrix form, becomes

U10
= GhhP10, Ghh = A10

12[A
10
22]

−1, (45)

where it is noted that the flexibility matrix for the homogeneous half-space Ghh =
Ghh(k1, k2, ω) is given in the horizontal wavenumber–frequency domain.
Secondly, when J layers overlay a homogeneous half-space, continuity of the displacements,
equilibrium of the traction and application of Eq. (44) provide

UJ1
= UJ+1,0

= AJ+1
12 [AJ+1

22 ]−1PJ+1,0
= AJ+1

12 [AJ+1
22 ]−1PJ1. (46)

Insertion of this result into Eq. (39) leads to the following system of equations:[
UJ1

PJ1

]
=

[
AJ+1

12 [AJ+1
22 ]−1PJ1

PJ1

]
= eΣα

[
T11 T12
T21 T22

] [
U10

P10

]
. (47)
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From the bottommost three rows of the matrix equation, an expression of PJ1 is obtained
which may be inserted into the first three equations. This leads to the solution

U10
= GlhP10, (48)

where the flexibility matrix for the layered half-space Glh = Glh(k1, k2, ω) is given by

Glh =
(

AJ+1
12 [AJ+1

22 ]−1T21 − T11

)−1 (
T12 − AJ+1

12 [AJ+1
22 ]−1T22

)
. (49)

Again the exponential function disappears. In the following, no distinction is made between
Grf, Ghh and Glh. The common notation G will be employed, independent of the type of
subsoil model.

2.5 Optimising the numerical evaluation of the Green’s function
In order to obtain a solution in Cartesian space, a double inverse Fourier transformation over
the horizontal wavenumbers is necessary as outlined by Eq. (6). A direct approach involves
the evaluation of G for numerous combinations of k1 and k2, leading to long computation
times. However, as described in this subsection, a considerable reduction of the computation
time can be achieved.

2.5.1 Computation of the matrices Aj0 and Aj1

The computation of the transfer matrix T involves inversion of the matrices Aj0, j = 1, 2, ..., J.
Further, the flexibility matrix G(k1, k2, ω) has to be evaluated for all combinations (k1, k2)
before the transformation given by Eq. (6) may be applied. However, as pointed out by
Sheng et al. (1999), the evaluation of Aj, and therefore also the Green’s function matrix G,
is particularly simple along the line defined by k1 = 0. To take advantage of this, a coordinate
transformation is introduced in the form⎡⎣k1

k2
x3

⎤⎦ = R(ϕ)

⎡⎣ γ
α
x3

⎤⎦ , R(ϕ) =

⎡⎣ sin ϕ cos ϕ 0
− cos ϕ sin ϕ 0

0 0 1

⎤⎦ . (50)

This corresponds to a rotation of (k1, k2, x3)-basis by the angle ϕ − π/2 around the x3-axis as
illustrated in Fig. 4. It follows from Eq. (50) that Rij(ϕ) = Rji(π − ϕ), which in matrix–vector
notation corresponds to {R(ϕ)}T = R(π − ϕ).
For any combination of k1 and k2, the angle ϕ is now defined so that γ = 0. The relationship
between the coordinates in the two systems of reference is then given by

k1 = α cos ϕ, k2 = α sin ϕ, α =
√

k2
1 + k2

2, tan ϕ =
k2

k1
, γ = 0. (51)

The computational advantage of this particular orientation of the (γ, α, x3)-coordinate system
is twofold. Firstly, the flexibility matrix may be evaluated along a line rather than over an
area, and for any other combination of the wavenumbers, the Green’s function matrix can be
computed as

G(k1, k2, ω) = R(ϕ)Ĝ{R(ϕ)}T or Gik(k1, k2, ω) = Ril(ϕ)ĜlmRkm(ϕ). (52)
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k1

k2

x3

γ

α

ϕ

Fig. 4. Definition of the (k1, k2, x3)- and (γ, α, x3)-coordinate systems.

Here Ĝ = Ĝ(α, ω) = G(0, α, ω). Secondly, the matrices Aj0 and Aj1—and therefore also AJ+1
12

and AJ+1
22 —simplify significantly when one of the wavenumbers is equal to zero. Thus, when

k1 = γ = 0, k2 = α and ω �= 0,

Âj0 = Aj0(0, α, ω) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 1 0
Âj0

21 0 1 Âj0
21 0 1

Âj0
31 0 Âj0

33 −Âj0
31 0 −Âj0

33
0 Âj0

42 0 0 −Âj0
42 0

Âj0
51 0 Âj0

53 −Âj0
51 0 −Âj0

53
Âj0

61 0 Âj0
63 Âj0

61 0 Âj0
63

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (53a)

where
Âj0

21 = −iα/{kj
P}2, Âj0

31 = −α
j
P/{kj

P}2, Âj0
33 = −iα/α

j
S, (53b)

Âj0
42 = α

j
Sμj, Âj0

51 = −2iμjα
j
Pα/{kj

P}2, Âj0
53 = μj(α2/α

j
S + α

j
S), (53c)

Âj0
61 = −μj

(
{kj

S}2 + 2{α
j
S}2

)
/{kj

P}2, Âj0
63 = −2iμjα. (53d)

At the bottom of the layer, the corresponding matrix is evaluated as Âj1 = Âj0Dj, where the
components of the matrix Dj are given by Eq. (35). A result of the many zeros in Âj0 and Âj0

0 is
that the matrices can be inverted analytically. This may reduce computation time significantly.
The inversion of Âj0 and Âj0

0 is straightforward and will not be treated further.

Especially, for a homogeneous half-space, possibly underlying a stratum, the matrices ÂJ+1,0
12

and ÂJ+1,0
22 are readily obtained from the leftmost three columns of Âj0, whereas Âj1 is

obtained as
Âj1 = Âj0Dj (54)

in accordance with Eq. (34b). Note that Dj is symmetric in the (k1, k2)-plane and that therefore
D̂j = Dj. This property follows from the definition of the exponential decay coefficients α

j
P

and α
j
S given in Eq. (21), or the definition of α given by Eq. (51), along with the definition of

Dj, cf. Eq. (35). In other words it may be stated that α
j
P and α

j
S are invariant to rotation around
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the x3-axis. As was the case with the matrices for a stratum, the inversion of the matrix ÂJ+1,0
22

can be expressed analytically. This mathematical exercise is left to the reader.

2.5.2 Interpolation of the one-dimensional wavenumber spectrum
As mentioned above, a direct evaluation of G involves a computation over the entire
(k1, k2)-space. Making use of the coordinate transformation, the problem is reduced by one

dimension, since Ĝ needs only be evaluated along the α-axis. The following procedure is
suggested:

1. Ĝ is computed for α = 0, Δα, 2Δα, ..., NΔα. Here Δα must be sufficiently small to ensure
that local peaks in the Green’s function are described. N must be sufficiently large so that

Ĝ(α, ω) ≈ 0 for α > NΔα.

2. The values of Ĝ(α, ω) for α =
√

k2
1 + k2

2 are computed by linear interpolation between the
values obtained at the N + 1 discrete points.

3. Before the double Fourier transformation given by Eq. (6) is carried out, the coordinate
transformation is applied.

In order to provide a fast computation of the inverse Fourier transformation it may be
advantageous to use N = 2n wavenumbers in either direction so that that an inverse
fast Fourier transformation (iFFT) procedure may be applied. The iFFT provides an

efficient transformation of the entire discrete field U10
i (k1, k2, ω) into the entire discrete field

U10
i (x1, x2, ω). Given that the wavenumber step is Δα, the area covered in Cartesian space

becomes 2π/Δα × 2π/Δα. Since the number of points on the surface in either coordinate
direction in the Cartesian space is identical to the number of points N in the wavenumber
domain, the spatial increment Δx = 2π/(NΔα).
In numerical methods based on a spatial discretization, e.g. the FEM, the BEM or finite
differences, at least 5-10 points should be present per wavelength in order to provide an
accurate solution. However, in the domain transformation method, the requirement is that
the Fourier transformed field is described with satisfactory accuracy in the wavenumber
domain. If the results in Cartesian coordinates are subsequently only evaluated at a few points
per wavelength, this will only mean that the wave field does not become visible—the few
responses that are computed will still be accurate. This is a great advantage when dealing
with high frequencies. It has been found that 2048 × 2048 wavenumbers are required in order
to give a sufficiently accurate description of the response Sheng et al. (1999). On the other
hand, if the displacements are only to be computed over an area which is much smaller than
the area spanned by the wavenumbers, say at a few points, it may be more efficient to use the
discretized version of Eq. (6) directly.

2.5.3 Evaluation of the response in cylindrical coordinates
As discussed on p. 10, the matrices Aj0 and Aj1 define a relationship between the tractions and
displacements at the top and bottom of a viscoelastic layer. The six columns/rows of these
matrices correspond to a decomposition of the displacement field into P-waves and S-waves
polarized in the x1- and x2-directions, respectively, and moving up or down through the layer.
Firstly, consider a vertical source or a horizontal source acting in the α-direction, i.e. along the
axis forming the angle ϕ − π/2 with the k1-axis around the x3-axis, see Fig. 4. This source
produces P- and SV-waves, i.e. S-waves polarised in the vertical direction. Secondly, if a
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source is applied in the transverse direction (the γ-direction) only SH-waves are generated,
i.e. S-waves polarised in the horizontal direction. These propagate in a stratum independently

of the two other wave types. Therefore, the Green’s function Ĝ(α, ω) simplifies to the form

Ĝ(α, ω) =

⎡⎢⎣Ĝ11 0 0

0 Ĝ22 Ĝ23

0 Ĝ32 Ĝ33

⎤⎥⎦ (55)

with the zeros indicating the missing interaction between SH-waves and P- and SV-waves.
This is exactly the result provided by Eqs. (45) and (49) for a homogeneous and stratified
half-space, respectively, after insertion of the matrices Âj0, Âj1

0 , etc.. Further, due to reciprocity

the matrix Ĝ(α, ω) is generally antisymmetric, i.e. Ĝ32 = −Ĝ23, cf. Auersch (1988). As

discussed above, G = RĜRT, where R = R(ϕ) is the transformation matrix defined in
Eq. (50). Hence, the displacement response in the horizontal wavenumber domain may be
found as

U
10
i = Rij(ϕ) Ĝjk(α, ω)Rlk(ϕ)P

10
l , (56)

where U10
i = U10

i (k1, k2, ω) = U10
i (α cos ϕ, α sin ϕ, ω) and a similar definition applies to P10

l .
Similarly to the transformation of the horizontal wavenumbers from (k1, k2) into (γ, α), the
Cartesian coordinate system is rotated around the x3-axis according to transformation⎡⎣x1

x2
x3

⎤⎦ = R

⎡⎣ q
r

x3

⎤⎦ , R = R(θ) =

⎡⎣ sin θ cos θ 0
− cos θ sin θ 0

0 0 1

⎤⎦ . (57)

The displacement amplitude vector in (q, r, x3)-coordinates is denoted Û(q, r, x3) and has
the components (Ûq, Ûr, Û3). Likewise, the load amplitudes are represented by the vector
P̂(q, r, x3) with components (P̂q, P̂r, P̂3). According to Eq. (57) the corresponding amplitudes
in the Cartesian (x1, x2, x3)-coordinates are given as

U(x1, x2, x3) = R(θ)Û(q, r, x3), P(x1, x2, x3) = R(θ)P̂(q, r, x3). (58)

For a given observation point (x1, x2, 0) on the surface of the half-space, the angle θ is now
selected so that q = 0, i.e. the point lies on the r-axis. Hence, the response to a load applied
over an area of rotational symmetry around the x3-axis may be evaluated in cylindrical
coordinates,

x1 = r cos θ, x2 = r sin θ, r =
√

x2
1 + x2

2, tan θ =
x2
x1

. (59)

Thus, at any given point Ûr(0, r, x3) is the radial displacement amplitude whereas Ûq(0, r, x3)
is the amplitude of the displacement in the tangential direction.
The coordinate transformations (50) and (57) are defined by two angles. Thus, ϕ defines the
rotation of the wavenumber (k1, k2) aligned with the Cartesian (x1, x2)-coordinates into the
rotated wavenumbers (γ, α). Likewise, a transformation of the Cartesian coordinates (x1, x2)
into the rotated (q, r)-coordinate frame is provided by the angle θ. However, in order to
simplify the analysis in cylindrical coordinates, it is convenient to introduce the angle

ϑ = π/2 + ϕ − θ (60)
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defining the rotation of the wavenumbers (γ, α) relative to the spatial coordinates (q, r). The
transformation is illustrated in Fig. 5. Evidently R(ϕ) = R(θ) R(ϑ), and the wavenumbers
(k1, k2) in the original Cartesian frame of reference may be obtained from the rotated
wavenumbers (γ, α) by either of the transformations⎡⎣k1

k2
x3

⎤⎦ = R(ϕ)

⎡⎣ γ
α
x3

⎤⎦ = R(θ) R(ϑ)

⎡⎣ γ
α
x3

⎤⎦ , R(ϑ) =

⎡⎣ sin ϑ cos ϑ 0
− cos ϑ sin ϑ 0

0 0 1

⎤⎦ . (61)

This identity is easily proved by combination of Eqs. (50), (57), (60) and (61).
Firstly, by application of the coordinate transformation (57) in Eq. (6), the response at the
surface of the stratum may be evaluated by a double inverse Fourier transform in polar
coordinates, here given in matrix form

Û10 =
1

4π2

∫ ∞

0

∫ 2π

0
R(ϑ) Ĝ {R(ϑ)}T P̂

10
eiαr sin ϑdϑ α dα, (62)

where αr sin ϑ = k1x1 + k2x2 is identified as the dot product of the two-dimensional vectors
with lengths α and r, respectively, and π/2 − ϑ is the plane angle between these vectors as
given by Eq. (60). In accordance with Eq. (58), the load amplitudes given in terms of x3
and the horizontal wavenumbers (kq, kr) are found from the corresponding load amplitudes
in (k1, k2, x3)-space by means of the transformation P̂(kq, kr, x3) = {R(θ)}TP(k1, k2, x3).
Furthermore, transformation of the displacement amplitudes from (q, r, x3)-coordinates into
(x1, x2, x3)-coordinates provides the double inverse Fourier transformation

U10 =
1

4π2 R(θ)
∫ ∞

0

∫ 2π

0
R(ϑ) Ĝ {R(ϑ)}T {R(θ)}T P10 eiαr sin ϑdϑ α dα. (63)

The component form of Eq. (63) reads

U10
i =

Rik(θ)

4π2

∫ ∞

0

∫ 2π

0
Rkl(ϑ) Ĝlm(0, α, ω) Rnm(ϑ) Rjn(θ) P10

j eiαr sin ϑdϑ α dα. (64)

If summation is skipped over index j, this defines the displacement in direction i at a point
(x1, x2, 0) on the surface of the stratified or homogeneous ground due to a load applied in

x1, k1

x2, k2

x3

q, kq

r, kr

γ

α

ϕ
θ

ϑ

Fig. 5. Definition of the three angles ϕ, θ and ϑ.
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direction j over an area of rotational symmetry and centred around (0, 0, 0). In the general
case, P10 depends on both the angle ϑ and the wavenumber α. However, if the complex
amplitudes of the load are independent of ϑ, i.e. if the load is applied with rotational
symmetry around the point (0, 0, 0), the vector P10 may be taken outside the integral over
ϑ in Eq. (63), thus reducing computation time in numerical algorithms considerably:

U10 =
1

2π
R(θ)

∫ ∞

0
G̃ [R(θ)]T P10

α dα, (65a)

G̃ =
1

2π

∫ 2π

0
R(ϑ) Ĝ [R(ϑ)]T eiαr sin ϑdϑ. (65b)

Examples of the analytical evaluation of axisymmetric loads are given in Subsection 2.6.
Apparently Eq. (64) seems more complicated than the corresponding inverse Fourier
transform in Cartesian coordinates given by Eq. (6). However, the integrals over each of
the components with respect to ϑ, i.e. the nine integrals involved in the computation of
G̃kn(α, r, ω) are identified as Hankel transforms which may be evaluated by means of Bessel
functions:

1
2π

∫ 2π

0
eiαr sin ϑdϑ = J0(αr),

1
2π

∫ 2π

0
sin2 ϑ eiαr sin ϑdϑ = J0(αr)− 1

αr
J1(αr), (66a)

1
2π

∫ 2π

0
sin ϑ eiαr sin ϑdϑ = i J1(αr),

1
2π

∫ 2π

0
cos2 ϑ eiαr sin ϑdϑ =

1
αr

J1(αr). (66b)

Here, Jn(αr) is the Bessel function of the first kind and order n. Series expansions of these
functions were given by Abramowitz & Stegun (1972), and routines for their evaluation are
available in MATLAB and FORTRAN. Alternatively, the integrals may be given in terms
of modified Bessel functions or Hankel functions. Note that the remaining kernels of the
integrals in Eq. (65b) are odd functions of ϑ on the interval [−π; π]. Therefore these integrals
vanish.
Application of the Bessel functions in accordance with Eq. (66) and further taking into account

that the Green’s function tensor is skew symmetric with Ĝ12 = Ĝ13 = Ĝ21 = Ĝ31 = 0, see
Eq. (55), the components of the integral in Eq. (65b) become

G̃11(α, r, ω) =

(
J0(αr)− 1

αr
J1(αr)

)
Ĝ11 +

1
αr

J1(αr) Ĝ22, (67a)

G̃22(α, r, ω) =
1
αr

J1(αr) Ĝ11 +

(
J0(αr)− 1

αr
J1(αr)

)
Ĝ22, (67b)

G̃12(α, r, ω) = G̃13(α, r, ω) = G̃21(α, r, ω) = G̃31(α, r, ω) = 0, (67c)

G̃23(α, r, ω) = −G̃32(α, r, ω) = iJ1(αr) Ĝ23, G̃33(α, r, ω) = J0(αr) Ĝ33. (67d)

Hence, the numerical integration involved in the double inverse Fourier transformation (65a)
is reduced to a line integral with respect to α. The relations listed in Eq. (67) were established
by Auersch (1994). As α r → 0 the terms G̃11(α, r, ω) and G̃22(α, r, ω) approach the limit

lim
αr→0

G̃11(α, r, ω) = lim
αr→0

G̃22(α, r, ω) =
Ĝ11 + Ĝ22

2
. (68)
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2.6 Analytical evaluation of loads in the Fourier domain
In order to establish the solution for the displacements in the wavenumber domain, the
surface load must first be Fourier transformed over the horizontal Cartesian coordinates.
This may be done numerically by application of, for example, an FFT algorithm. However,
the computation speed may be improved if the Fourier transformations are carried out
analytically. In this subsection, the load spectrum in wavenumber domain is derived for
selected surface load distributions.

2.6.1 A vertical point force on the ground surface
The load on the surface of the half-space is applied as a vertical point force with the magnitude
P0 and acting at the origin of the frame of reference. With δ(x) denoting the Dirac delta
function, the amplitude function may be expressed in Cartesian coordinates as

P10
3 (x1, x2, ω) = P0 δ(x1) δ(x2). (69a)

Double Fourier transformation with respect to the horizontal coordinates provides the load
spectrum in wavenumber domain:

P10
3 (k1, k2, ω) =

∫ ∞

−∞

∫ ∞

−∞
P10

3 (x1, x2, ω) e−i(k1x1+k2x2) dx1 dx2 = P0. (69b)

Thus, the load simply reduces to a constant in the wavenumber domain. While this load
spectrum is very simple, it is not very useful seen in a perspective of numerical computation.
A decrease in the kernel of the plane integral with respect to k1 and k2 is present due to the
nature of the Green’s function tensor. However, as illustrated in the following subsections, a
stronger decay is achieved by distributing the load over a finite area, and a very strong and
monotonous decay is observed for a traction applied on the entire ground surface but with
diminishing contributions away from the centre point of the loaded area.

2.6.2 A vertical circular surface load
The vertical surface load is now applied over a circular area with radius r0 and centred at the
origin of a cylindrical frame of reference. The load is applied axisymmetrically and in phase
with the amplitude function P10

3 (r, ω) given as

P10
3 (r, ω) =

{
P0/(πr2

0) for r ≤ r0
0 else.

(70a)

Double Fourier transformation with respect to the polar coordinates (r, θ) yields

P10
3 (α, ω) =

∫ ∞

0

∫ 2π

0
P10

3 (r, ω)e−iαr sin ϑ dϑ rdr =
P0

πr2
0

∫ r0

0
2π J0(αr) rdr =

2 P0

α r0
J1(αr0). (70b)

Here, α is the radial wavenumber and ϑ = π/2+ ϕ − θ is the angle between the wavenumber
and the radius vectors in polar coordinates (α, ϕ) and (r, θ), respectively. As discussed above,
αr sin ϑ is the scalar product between the vectors with lengths α and r, respectively.
Clearly, the load spectrum decays rapidly with α which is present both in the denominator of
the fraction and in the argument of the Bessel function of the first kind and order 1. The decay
rate increases if the load is distributed over a large area in spatial domain, i.e. if r0 is large.
However, at α = 0, the spectrum has a strong singularity.

www.intechopen.com



20 Will-be-set-by-IN-TECH

2.6.3 A vertical “bell-shaped” surface load
Finally, applying a Gaussian distribution of P10

3 (r, ω) leads to a “bell-shaped” load on the
surface of the half-space. In polar coordinates, a vertical load of this kind is expressed as

P10
3 (r, ω) =

P0

4πr2
0

e
−
(

r
2r0

)2

. (71a)

A small value of r0 (the standard deviation) defines a nearly concentrated force. In the limit
as r0 → 0, the “bell-shaped” load approaches the delta spike discussed in the first example.
Double Fourier transformation of P10

3 (r, ω) with respect to the polar coordinates (r, θ) yields

P10
3 (α, ω) =

∫ ∞

0

∫ 2π

0
P10

3 (r, ω)e−iαr sin ϑ dϑ rdr = P0e−α2r2
0 , (71b)

where the usual interpretation of αr sin ϑ as a scalar product between two vectors applies. The
definition of the angle ϑ is given in Fig. 5.
Hence, in the spatial domain, the “bell-shaped” load is subject to an exponential decay with
increasing radius r and decreasing standard deviation r0. In the wavenumber domain, there is

an exponential decay of P10
3 (α, ω) with respect to α as well as r0 squared. This results in a load

that is adequate for numerical evaluation of the inverse Fourier transform of the response in
wavenumber domain. A further discussion can be found in the next section.

3. Dynamic stiffness of rigid surface footings of arbitrary shape

Independent of its shape, a rigid footing has three translational and three rotational degrees of
freedom as shown in Fig. 6. In the frequency domain, these are related to the corresponding
forces and moments via the impedance matrix Z(ω),

Z(ω)V(ω) = F(ω), (72a)

V(ω)
[

V1 V2 V3 Θ1 Θ2 Θ3
]T , (72b)

F(ω)
[

Q1 Q2 Q3 M1 M2 M3
]T . (72c)

In the most general case, the impedance matrix Z(ω) is full, i.e. all the rigid-body motions of
the footing are interrelated. However, in the present case the footing rests on the surface
of a horizontally layered stratum. Further, assuming that the stress resultants act at the

x1 x1

x2x2

x3x3

Θ1

Θ2 Θ3

V1

V2 V3
M1

M2 M3

Q1

Q2 Q3

(a) (b)

Fig. 6. Degrees of freedom for a rigid surface footing in the frequency domain:
(a) displacements and rotations, and (b) forces and moments.
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centre of the soil–foundation interface, the torsional and vertical displacements are completely
decoupled from the remaining degrees of freedom. Thus, the impedance matrix simplifies to

Z(ω) =

⎡⎢⎢⎢⎢⎢⎢⎣

Z11 Z12 0 Z14 Z15 0
Z12 Z22 0 Z24 Z25 0
0 0 Z33 0 0 0
Z14 Z24 0 Z44 Z45 0
Z15 Z55 0 Z45 Z55 0
0 0 0 0 0 Z66

⎤⎥⎥⎥⎥⎥⎥⎦. (73)

A further simplification of Z(ω) is obtained if the moment of inertia around a given horizontal
axis is invariant to a rotation of the footing around the z-axis. This is the case for the gravitation
foundations that are typically utilised for wind turbines, i.e. circular, square, hexagonal and
octagonal footings. With reference to Fig. 7, the moments of inertia are Ix1 = Ix2 = Iξ = Iζ ,
where ζ is an arbitrary horizontal axis. As a result of this, Z11 = Z22, Z44 = Z55 and Z15 =
−Z24, and the coupling between sliding in the x1-direction and rocking in the x2-direction
(and vice versa) vanishes, i.e.

x1 x1

x1x1

x2x2

x2x2

ξ

ξ
ξ

ζ

ζ

ζ
ζ

R0

R0

R0

R0

(a) (b)

(c) (d)

Fig. 7. Definition of axes for different geometries of a footing: (a) circular, (b) square,
(c) hexagonal, and (d) octagonal footing. The horizontal plane is considered, and all the
footings have the same characteristic length, R0.
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Z(ω) =

⎡⎢⎢⎢⎢⎢⎢⎣

Z11 0 0 0 −Z24 0
0 Z22 0 Z24 0 0
0 0 Z33 0 0 0
0 Z24 0 Z44 0 0

−Z24 0 0 0 Z55 0
0 0 0 0 0 Z66

⎤⎥⎥⎥⎥⎥⎥⎦. (74)

3.1 Evaluation of the dynamic stiffness based on the flexibility of a layered ground
In order to compute the nonzero components of the impedance matrix Z(ω), the distribution
of the contact stresses at the interface between the footing and the ground due to given rigid
body displacements has to be determined. However, Eq. (63) provides the displacement
field for a known stress distribution. Generally this implies that the problem takes the form
of an integral equation. For the particular case of a circular footing on a homogeneous
half-space, Krenk & Schmidt (1981) derived a closed-form solution for the vertical impedance.
Yong et al. (1997) proposed that the total contact stress be decomposed into a number of
simple distributions obtained by a Fourier series with respect to the azimuthal angle and a
polynomial in the radial direction, e.g.

P10
r (r, ϑ, ω) =

M

∑
m=1

N

∑
n=1

amnrn cos(mϑ) (75)

for the component in the r-direction and a symmetric contact stress distribution. Similar
expressions were given for the components in the q- (or ϑ-) and x3-direction and for the
antisymmetric case. The response to each of the contact stress distributions can be computed,
and the coefficients amn are determined so that the prescribed rigid body displacements are
obtained.
However, for arbitrary shapes of the footing it may be difficult to follow this idea. Hence, in
this study a different approach is taken which has the following steps:

1. The displacement corresponding to each rigid body mode is prescribed at N points
distributed uniformly at the interface between the footing and the ground.

2. The Green’s function matrix is evaluated in the wavenumber domain along the α-axis, and
Eq. (65b) is evaluated by application of Eq. (67).

3. The wavenumber spectrum for a simple distributed load with unit magnitude and
rotational symmetry around a point on the ground surface is computed. As discussed
in Example 2.6.3, a “bell-shaped” load based on a double Gaussian distribution has the
advantage that the wavenumber spectrum is a monotonic decreasing function of α.

4. The response at point n to a load centred at point m is calculated for all combinations of
n, m = 1, 2, ..., N. This provides a flexibility matrix for the footing.

5. The unknown magnitudes of the loads applied around each of the points are computed.
Integration over the contact area provides the impedance.

The discretization of the soil–foundation interface into N points and the employment of the
“bell-shaped” load distribution are visualized in Fig. 8 for a hexagonal footing.
In particular, if the surface traction vector in the wavenumber–frequency domain takes the

form P10
i (k1, k2, ω) = D(k1, k2) P̃i(ω), i = 1, 2, 3, where D(k1, k2) is a stress distribution with

unit magnitude and P̃i(ω) is an amplitude, Eq. (65a) may be computed as
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(a) (b)

x1

x2

x3

m

1
23

Pm
3

Footing

Fig. 8. Discretization of the soil–foundation interface for a hexagonal footing. The vertical
component of the “bell-shaped” load at point m is shown.

U10 = R(θ) Ĝ [R(θ)]T P̃, Ĝ = Ĝ(r, ω) =
1

2π

∫ ∞

0
G̃ D̂ α dα. (76)

Here it is noted that D̂ = D̂(α) = D(0, α), since an axisymmetric distribution is assumed.
The choice of contact stress distribution and various discretization aspects are discussed
below. Alternatively, a boundary element model based on the Green’s function for the layered
half-space may be employed. However, this involves some additional work, since the Green’s
function for traction has to be evaluated.

3.2 Discretization considerations
In order to achieve an accurate and efficient computation of the impedance matrix for a footing
with the present method, a number of issues need consideration:

1. Equation (76) has to be evaluated numerically. This requires a computation of Ĝ(α, ω)
for a number of discrete wavenumbers. All peaks in the wavenumber spectrum must
be represented well, demanding a fine discretization in the low wavenumber range—in
particular for a half-space with little material damping.

2. No significant contributions may exist from the products D̂(α) Ĝij(α, ω), i, j = 1, 2, 3, for
wavenumbers beyond the truncation point in the numerical evaluation of the integral in
Eq. (76).

3. Enough points should be employed at the soil–structure interface in order to provide a
good approximation of the contact stress distribution.

Concerning item 1 it is of paramount importance to determine the wavenumber below which
the wavenumber spectrum may have narrow-banded peaks. Here use can be made of the
fact that the longest wave present in a homogeneous half-space is the Rayleigh wave. An
approximate upper limit for the Rayleigh wavenumber is provided by the inequality αR =
ω/cR < 1.2 ω/cS for ν ∈ [0; 0.5]. For a stratum with J layers overlaying a homogeneous
half-space, the idea is now to determine the quantity

α1 = 2 ω/ min
{

c1
S , c2

S, ..., cJ+1
S

}
. (77)

where index J + 1 refers to the underlying homogeneous half-space. In a stratum, waves with
wavenumbers higher than α1 are generally subject to strong material dissipation since they
arise from P- or S-waves being reflected multiple times at the interfaces between layers. Only
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if the loss factor is η j = 0 for all layers, undamped Love waves may exist; but this situation is
not likely to appear in real soils where typical values are η j ≈ 0.01 to 0.1.
Concerning item 2 it has been found by numerical experiments that the integral of Eq. (76)
may be truncated beyond the wavenumber α2 determined as

α2 = max {5 α1, 20 α0} , α0 = 2π/R0. (78)

Here R0 is a characteristic length of the foundation, e.g. the diameter of a circular footing. For
strata with η j

> 0.01 for all layers it has been found that accurate results are typically obtained
by Simpson integration with 2000 points in the wavenumber range α ∈ [0; α1] and 500 points
in the range α ∈ [α1; α2]. As discussed above, the numerical evaluation of the integral in
the range α ∈ [α1; α2] is particularly efficient for the “bell-shaped” load distribution, since

D̂(α) Ĝij(α, ω), i, j = 1, 2, 3, are all monotone functions beyond α1.
Finally, concerning item 3, U10 must be evaluated for all combinations of receiver and source
points, which involves a high number of computations if Ĝ(r, ω) is to be evaluated directly for
each value of r. Instead, an alternative approach is suggested. Firstly, Ĝ(r, ω) is determined at
a number of points on the r-axis from r = 0 to r = 2R0. Subsequently U10 is found by Eq. (76)
using linear interpolation of Ĝ(r, ω). It has been found that 250 points in this discretization
provides a fast solution of satisfactory accuracy.

4. Consistent lumped-parameter models for wind-turbine foundations

Dynamic soil–structure interaction of wind turbines may be analysed by the finite-element
method (FEM), the boundary-element method (BEM) or the domain-transformation method
(DTM) described in the previous sections. These methods are highly adaptable and may be
applied to the analysis of wave-propagation problems involving stratified soil, embedded
foundations and inclusions or inhomogeneities in the ground. However, this comes at the
cost of great computation times, in particular in the case of time-domain analysis of transient
structural response over large periods of time. Thus, rigorous numerical models based on the
FEM, the BEM, or the DTM, are not useful for real-time simulations or parametric studies in
situations where only the structural response is of interest.
Alternatively, soil–structure interaction may be analysed by experimental methods. However,
the models and equipment required for such analyses are expensive and this approach
is not useful in a predesign phase. Hence, the need arises for a computationally
efficient model which accounts for the interaction of a wind turbine foundation with the
surrounding/underlying soil. A fairly general solution is the so-called lumped-parameter model,
the development of which has been reported by Wolf (1991a), Wolf & Paronesso (1991), Wolf
(1991b), Wolf & Paronesso (1992), Wolf (1994), Wolf (1997), Wu & Lee (2002), and Wu & Lee
(2004). The present section is, to a great extent, based on this work.
The basic concept of a lumped-parameter model is to represent the original problem by
a simple mechanical system consisting of a few so-called discrete elements, i.e. springs,
dashpots and point masses which are easily implemented in standard finite-element models
or aero-elastic codes for wind turbines. This is illustrated in Fig. 1 for a surface footing on
a layered ground. The computational model consists of two parts: a model of the structure
(e.g. a finite-element model) and a lumped-parameter model (LPM) of the foundation and the
subsoil. The formulation of the model has three steps:

1. A rigorous frequency-domain model is applied for the foundation (in this case a footing on
a soil stratum) and the frequency response is evaluated at a number of discrete frequencies.
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2. A lumped-parameter model providing approximately the same frequency response is
calibrated to the results of the rigorous model.

3. The structure itself (in this case the wind turbine) is represented by a finite-element model
(or similar) and soil–structure interaction is accounted for by a coupling with the LPM of
the foundation and subsoil.

Whereas the application of rigorous models like the BEM or DTM is often restricted to the
analysis in the frequency domain—at least for any practical purposes—the LPM may be
applied in the frequency domain as well as the time domain. This is ideal for problems
involving linear response in the ground and nonlinear behaviour of a structure, which may
typically be the situation for a wind turbine operating in the serviceability limit state (SLS).
It should be noted that the geometrical damping present in the original wave-propagation
problem is represented as material damping in the discrete-element model. Thus,
no distinction is made between material and geometrical dissipation in the final
lumped-parameter model—they both contribute to the same parameters, i.e. damping
coefficients.
Generally, if only few discrete elements are included in the lumped-parameter model, it
can only reproduce a simple frequency response, i.e. a response with no resonance peaks.
This is useful for rigid footings on homogeneous soil. However, inhomogeneous or flexible
structures and stratified soil have a frequency response that can only be described by a
lumped-parameter model with several discrete elements resulting in the presence of internal
degrees of freedom. When the number of internal degrees of freedom is increased, so is the
computation time. However, so is the quality of the fit to the original frequency response. This
is the idea of the so-called consistent lumped-parameter model which is presented in this section.

4.1 Approximation of soil–foundation interaction by a rational filter
The relationship between a generalised force resultant, f (t), acting at the foundation–soil
interface and the corresponding generalised displacement component, v(t), can be
approximated by a differential equation in the form:

k

∑
i=0

Ai
div(t)

dti =
l

∑
j=0

Bj
dj f (t)

dtj . (79)

Here, Ai, i = 1, 2, . . . , k, and Bj, j = 1, 2, . . . , l, are real coefficients found by curve fitting to the
exact analytical solution or the results obtained by some numerical method or measurements.
The rational approximation (79) suggests a model, in which higher-order temporal derivatives
of both the forces and the displacements occur. This is undesired from a computational
point of view. However, a much more elegant model only involving the zeroth, the first
and the second temporal derivatives may be achieved by a rearrangement of the differential
operators. This operation is simple to carry out in the frequency domain; hence, the first step
in the formulation of a rational approximation is a Fourier transformation of Eq. (79), which
provides:

k

∑
i=0

Ai(iω)iV(ω) =
l

∑
j=0

Bj(iω)jQ(ω) ⇒

Q(ω) = Ẑ(iω)V(ω), Ẑ(iω) =
∑

k
i=0 Ai(iω)i

∑
l
j=0 Bj(iω)j

, (80)
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where V(ω) and F(ω) denote the complex amplitudes of the generalized displacements
and forces, respectively. It is noted that in Eq. (80) it has been assumed that the reaction
force F(ω) stems from the response to a single displacement degree of freedom. This is
generally not the case. For example, as discussed in Section 3, there is a coupling between the
rocking moment–rotation and the horizontal force–translation of a rigid footing. However,
the model (80) is easily generalised to account for such behaviour by an extension in the form
Fi(ω) = Ẑij(iω)Vj(ω), where summation is carried out over index j equal to the degrees of
freedom contributing to the response. Each of the complex stiffness terms, Ẑij(iω), is given
by a polynomial fraction as illustrated by Eq. (80) for Ẑ(iω). This forms the basis for the
derivation of so-called consistent lumped-parameter models.

4.2 Polynomial-fraction form of a rational filter
In the frequency domain, the dynamic stiffness related to a degree of freedom, or to the
interaction between two degrees of freedom, i and j, is given by Z̃ij(a0) = Z0

ijSij(a0) (no

sum on i, j). Here, Z0
ij = Zij(0) denotes the static stiffness related to the interaction of the

two degrees of freedom, and a0 = ωR0/c0 is a dimensionless frequency with R0 and c0
denoting a characteristic length and wave velocity, respectively. For example, for a circular
footing with the radius R0 on an elastic half-space with the S-wave velocity cS, a0 = ωR0/cS
may be chosen. With the given normalisation of the frequency it is noted that Z̃ij(a0) =
Zij(c0a0/R0) = Zij(ω).
For simplicity, any indices indicating the degrees of freedom in question are omitted in the
following subsections, e.g. Z̃(a0) ∼ Z̃ij(a0). The frequency-dependent stiffness coefficient
S(a0) for a given degree of freedom is then decomposed into a singular part, Ss(a0), and a
regular part, Sr(a0), i.e.

Z̃(a0) = Z0S(a0), S(a0) = Ss(a0) + Sr(a0), (81)

where Z0 is the static stiffness, and the singular part has the form

Ss(a0) = k∞ + ia0c∞. (82)

In this expression, k∞ and c∞ are two real-valued constants which are selected so that Z0Ss(a0)
provides the entire stiffness in the high-frequency limit a0 → ∞. Typically, the stiffness
term Z0k∞ vanishes and the complex stiffness in the high-frequency range becomes a pure
mechanical impedance, i.e. Ss(a0) = ia0c∞. This is demonstrated in Section 5 for a two
different types of wind turbine foundations interacting with soil.
The regular part Sr(a0) accounts for the remaining part of the stiffness. Generally, a
closed-form solution for Sr(a0) is unavailable. Hence, the regular part of the complex
stiffness is usually obtained by fitting of a rational filter to the results obtained with a
numerical or semi-analytical model using, for example, the finite-element method (FEM), the
boundary-element method (BEM) or the domain-transformation method (DTM). Examples
are given in Section 5 for wind turbine foundations analysed by each of these methods.
Whether an analytical or a numerical solution is established, the output of a frequency-domain
analysis is the complex dynamic stiffness Z̃(a0). This is taken as the “target solution”, and the
regular part of the stiffness coefficient is found as Sr(a0) = Z̃(a0)/Z0 − Ss(a0). A rational
approximation, or filter, is now introduced in the form

Sr(a0) ≈ Ŝr(ia0) =
P(ia0)

Q(ia0)
=

p0 + p1(ia0) + p2(ia0)
2 + . . . + pN(ia0)

N

q0 + q1(ia0) + q2(ia0)2 + . . . + qM(ia0)M . (83)
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The orders, N and M, and the coefficients, pn (n = 0, 1, . . . , N) and qm (m = 0, 1, . . . , M), of
the numerator and denominator polynomials P(ia0) and Q(ia0) are chosen according to the
following criteria:

1. To obtain a unique definition of the filter, one of the coefficients in either P(ia0) or Q(ia0)
has to be given a fixed value. For convenience, q0 = 1 is chosen.

2. Since part of the static stiffness is already represented by Ss(0) = k∞, this part of the
stiffness should not be provided by Sr(a0) as well. Therefore, p0/q0 = p0 = 1 − k∞.

3. In the high-frequency limit, S(a0) = Ss(a0). Thus, the regular part must satisfy the
condition that Ŝr(ia0) → 0 for a0 → ∞. Hence, N < M, i.e. the numerator polynomial
P(ia0) is at least one order lower than the denominator polynomial, Q(ia0).

Based on these criteria, Eq. (84) may advantageously be reformulated as

Sr(a0) ≈ Ŝr(ia0) =
P(ia0)

Q(ia0)
=

1 − k∞ + p1(ia0) + p2(ia0)
2 + . . . + pM−1(ia0)

M−1

1 + q1(ia0) + q2(ia0)2 + . . . + qM(ia0)M . (84)

Evidently, the polynomial coefficients in Eq. (84) must provide a physically meaningful filter.
By a comparison with Eqs. (79) and (80) it follows that pn (n = 1, 2, . . . , M − 1) and qj (m =
1, 2, . . . M) must all be real. Furthermore, no poles should appear along the positive real axis
as this will lead to an unstable solution in the time domain. This issue is discussed below.
The total approximation of S(a0) is found by an addition of Eqs. (82) and (84) as stated in
Eq. (81). The approximation of S(a0) has two important characteristics:

• It is exact in the static limit, since S(a0) ≈ Ŝ(ia0) + Ss(a0) → 1 for a0 → 0.

• It is exact in the high-frequency limit. Here, S(a0) → Ss(a0) for a0 → ∞, because Ŝr(ia0) →
0 for a0 → ∞.

Hence, the approximation is double-asymptotic. For intermediate frequencies, the quality
of the fit depends on the order of the rational filter and the nature of the physical problem.
Thus, in some situations a low-order filter may provide a very good fit to the exact solution,
whereas other problems may require a high-order filter to ensure an adequate match—even
over a short range of frequencies. As discussed in the examples given below in Section 5, a
filter order of M = 4 will typically provide satisfactory results for a footing on a homogeneous
half-space. However, for flexible, embedded foundations and layered soil, a higher order of
the filter may be necessary—even in the low-frequency range relevant to dynamic response of
wind turbines.

4.3 Partial-fraction form of a rational filter
Whereas the polynomial-fraction form is well-suited for curve fitting to measured or
computed responses, it provides little insight into the physics of the problem. To a limited
extent, such information is gained by a recasting of Eq. (84) into partial-fraction form,

Ŝr(ia0) =
M

∑
m=1

Rm

ia0 − sm
, (85)

where sm, m = 1, 2, . . . , M, are the poles of Ŝr(ia0) (i.e. the roots of Q(ia0)), and Rj are the
corresponding residues. The conversion of the original polynomial-fraction form into the
partial-fraction expansion form may be carried out in MATLAB with the built-in function
residue.
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The poles sm are generally complex. However, as discussed above, the coefficients qm must
be real in order to provide a rational approximation that is physically meaningful in the time
domain. To ensure this, any complex poles, sm, and the corresponding residues, Rm, must
appear as conjugate pairs. When two such terms are added together, a second-order term
with real coefficients appears. Thus, with N conjugate pairs, Eq. (85) can be rewritten as

Ŝr(ia0) =
N

∑
n=1

β0n + β1nia0

α0n + α1nia0 + (ia0)2 +
M−N

∑
n=N+1

Rn

ia0 − sn
, 2N ≤ M. (86)

The coefficients α0n, α1n , β0n and β1n , n = N + 1, N + 2, . . . , M − N, are given by

α0n = {s	n }2 + {s
n }2, α1n = −2s	n , β0n = −2(R	
n s	n + R


n s
n ), β1n = 2R	
n , (87)

where s	n = 	(sn) and s
n = 
(sn) are the real and imaginary parts of the complex conjugate
poles, respectively. Similarly, the real and imaginary parts of the complex conjugate residues
are denoted by R	

n = 	(Rn) and R

n = 
(Rn), respectively.

By adding the singular term in Eq. (82) to the expression in Eq. (85), the total approximation
of the dynamic stiffness coefficient S(a0) can be written as

Ŝ(ia0) = k∞ + ia0c∞ +
N

∑
n=1

β0n + β1nia0

α0n + α1nia0 + (ia0)2 +
M−N

∑
n=N+1

Rn

ia0 − sn
. (88)

The total approximation of the dynamic stiffness in Eq. (88) consists of three characteristic
types of terms, namely a constant/linear term, M − 2N first-order terms and N second-order
terms. These terms are given as:

Constant/linear term: k∞ + ia0c∞ (89a)

First-order term:
R

ia0 − s
(89b)

Second-order term:
β1ia0 + β0

α0 + α1ia0 + (ia0)2 . (89c)

4.4 Physical interpretation of a rational filter
Now, each term in Eq. (89) may be identified as the frequency-response function for a
simple mechanical system consisting of springs, dashpots and point masses. Physically, the
summation of terms (88) may then be interpreted as a parallel coupling of M − N + 1 of
these so-called discrete-element models, and the resulting lumped-parameter model provides
a frequency-response function similar to that of the original continuous system. In the
subsections below, the calibration of the discrete-element models is discussed, and the
physical interpretation of each kind of term in Eq. (89) is described in detail.

4.4.1 Constant/linear term
The constant/linear term given by Eq. (89a) consists of two known parameters, k∞ and c∞,
that represent the singular part of the dynamic stiffness. The discrete-element model for the
constant/linear term is shown in Fig. 9.
The equilibrium formulation of Node 0 (for harmonic loading) is as follows:

κU0(ω) + iωγ
R0

c0
U0(ω) = P0(ω) (90)
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P0 U0

κ γ R0
c0

0

Fig. 9. The discrete-element model for the constant/linear term.

Recalling that the dimensionless frequency is introduced as a0 = ωR0/c0, the equilibrium
formulation in Eq. (90) results in a force–displacement relation given by

P0(a0) = (κ + ia0γ)U0(a0). (91)

By a comparison of Eqs. (89a) and (91) it becomes evident that the non-dimensional
coefficients κ and γ are equal to k∞ and c∞, respectively.

4.4.2 First-order terms with a single internal degree of freedom
The first-order term given by Equation (89b) has two parameters, R and s. The layout of the
discrete-element model is shown in Fig. 10a. The model is constructed by a spring (−κ) in
parallel with another spring (κ) and dashpot (γ R0

c0
) in series. The serial connection between

the spring (κ) and the dashpot (γ R0
c0

) results in an internal node (internal degree of freedom).
The equilibrium formulations for Nodes 0 and 1 (for harmonic loading) are as follows:

Node 0 : κ
(
U0(ω)− U1(ω)

)− κU0(ω) = P0(ω) (92a)

Node 1 : κ
(
U1(ω)− U0(ω)

)
+ iωγ

R0

c0
U1(ω) = 0. (92b)

After elimination of U1(ω) in Eqs. (92a) and (92b), it becomes clear that the force–displacement
relation of the first-order model is given as

P0(a0) =
− κ2

γ

ia0 +
κ
γ

U0(a0). (93)

By comparing Eqs. (89b) and (93), κ and γ are identified as

κ =
R
s

, γ = − R
s2 . (94)

0 0

1
1

P0 P0U0 U0

U1
U1

−κ
κ

γ L
c

γ L
c

−γ L
c

γ2

�

� L2

c2

(a) (b)

Fig. 10. The discrete-element model for the first-order term: (a) Spring-dashpot model;
(b) monkey-tail model.
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It should be noted that the first-order term could also be represented by a so-called
“monkey-tail” model, see Fig. 10b. This turns out to be advantageous in situations where
κ and γ in Eq. (94) are negative, which may be the case when R is positive (s is negative). To
avoid negative coefficients of springs and dashpots, the monkey-tail model is applied, and
the resulting coefficients are positive. By inspecting the equilibrium formulations for Nodes 0
and 1, see Fig. 10b, the coefficients can be identified as

γ =
R
s2 , � = − R

s3 . (95)

Evidently, the internal degree of freedom in the monkey-tail model has no direct physical
meaning in relation to the original problem providing the target solution. Thus, at low
frequencies the point mass may undergo extreme displacements, and in the static case the
displacement is infinite. This lack of direct relationship with the original problem is a general
property of the discrete-element models. They merely provide a mechanical system that leads
to a similar frequency response.

4.4.3 Second-order terms with one or two internal degrees of fredom
The second-order term given by Eq. (89c) has four parameters: α0, α1, β0 and β1. An example
of a second-order discrete-element model is shown in Fig. 11a. This particular model has two
internal nodes. The equilibrium formulations for Nodes 0, 1 and 2 (for harmonic loading) are
as follows:

Node 0 : κ1
(
U0(ω)− U1(ω)

)− κ1U0(ω) = P0(ω) (96a)

Node 1 : κ1
(
U1(ω)− U0(ω)

)
+ iωγ1

R0

c0

(
U1(ω)− U2(ω)

)
= 0 (96b)

Node 2 : κ2U2(ω) + iωγ2
R0

c0
U2(ω) + iωγ1

R0

c0

(
U2(ω)− U1(ω)

)
= 0. (96c)

After some rearrangement and elimination of the internal degrees of freedom, the
force-displacement relation of the second-order model is given by

P0(a0) =
−κ2

1
γ1+γ2
γ1γ2

ia0 − κ2
1κ2

γ1γ2

(ia0)2 +
(

κ1
γ1+γ2
γ1γ2

+ κ2
γ2

)
ia0 +

κ1κ2
γ1γ2

U0(a0). (97)

0 0

1
1

2

P0 P0U0 U0

U1

U1
U2

γ L
c

γ L
c

γ1
L
c

γ2
L
c

−γ L
c−κ1 +

γ2

�

κ1 κ1

−κ1

κ2

κ2 � L2

c2

(a) (b)

Fig. 11. The discrete-element model for the second-order term: (a) Spring-dashpot model
with two internal degrees of freedom; (b) spring-dashpot-mass model with one internal
degree of freedom.
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By a comparison of Eqs. (89c) and (97), the four coefficients in Eq. (97) are identified as

κ1 = − β0

α0
, γ1 = − α0β1 − α1β0

α2
0

, (98a)

κ2 =
β0

α2
0

(−α0β1 + α1β0)
2

α0β2
1 − α1β0β1 + β2

0
, γ2 =

β2
0

α2
0

−α0β1 + α1β0

α0β2
1 − α1β0β1 + β2

0
. (98b)

Alternatively, introducing a second-order model with springs, dampers and a point mass, it
is possible to construct a second-order model with only one internal degree of freedom. The
model is sketched in Fig. 11b. The force–displacement relation of the alternative second-order
model is given by

P0(a0) =
2
(

κ1 γ
� + γ3

�2

)
ia0 − κ2

1
� + (κ1+κ2)γ2

�2

(ia0)2 + 2 γ
� ia0 +

κ1+κ2
�

U0(a0). (99)

By equating the coefficients in Eq. (99) to the terms of the second-order model in Eq. (89c),
the four parameters κ1, κ2, γ and � can be determined. In order to calculate �, a quadratic
equation has to be solved. The quadratic equation for � is

a�2 + b� + c = 0 where a = α4
1 − 4α0α2

1, b = −8α1β1 + 16β0, c = 16
β2

1
α2

1
. (100)

Equation (100) results in two solutions for �. To ensure real values of �, b2 − 4ac ≥ 0 or
α0β2

1 − α1β0β1 + β2
0 ≥ 0. When � has been determined, the three remaining coefficients can

be calculated by

κ1 =
�α2

1
4

− β1
α1

, κ2 = �α0 − κ1, γ =
�α1
2

. (101)

4.5 Fitting of a rational filter

In order to get a stable solution in the time domain, the poles of Ŝr(ia0) should all reside in
the second and third quadrant of the complex plane, i.e. the real parts of the poles must all
be negative. Due to the fact that computers only have a finite precision, this requirement may
have to be adjusted to sm < −ε, m = 1, 2, . . . , M, where ε is a small number, e.g. 0.01.
The rational approximation may now be obtained by curve-fitting of the rational filter Ŝr(ia0)
to the regular part of the dynamic stiffness, Sr(a0), by a least-squares technique. In this
process, it should be observed that:

1. The response should be accurately described by the lumped-parameter model in the
frequency range that is important for the physical problem being investigated. For
soil–structure interaction of wind turbines, this is typically the low-frequency range.

2. The “exact” values of Sr(a0) are only measured—or computed—over a finite range of
frequencies, typically for a0 ∈ [0; a0max] with a0max = 2 ∼ 10. Further, the values of
Sr(a0) are typically only known at a number of discrete frequencies.

3. Outside the frequency range, in which Sr(a0) has been provided, the singular part of the
dynamic stiffness, Ss(a0), should govern the response. Hence, no additional tips and
dips should appear in the frequency response provided by the rational filter beyond the
dimensionless frequency a0max.
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Firstly, this implies that the order of the filter, M, should not be too high. Experience shows
that orders about M = 2 ∼ 8 are adequate for most physical problems. Higher-order filters
than this are not easily fitted, and lower-order filters provide a poor match to the “exact”
results. Secondly, in order to ensure a good fit of Ŝr(ia0) to Sr(a0) in the low-frequency range,
it is recommended to employ a higher weight on the squared errors in the low-frequency
range, e.g. for a0 < 0.2 ∼ 2, compared with the weights in the medium-to-high-frequency
range. Obviously, the definition of low, medium and high frequencies is strongly dependent
on the problem in question. For example, frequencies that are considered high for an offshore
wind turbine, may be considered low for a diesel power generator.
For soil-structure interaction of foundations, Wolf (1994) suggested to employ a weight of
w(a0) = 103 ∼ 105 at low frequencies and unit weight at higher frequencies. This should
lead to a good approximation in most cases. However, numerical experiment indicates that
the fitting goodness of the rational filter is highly sensitive to the choice of the weight function
w(a0), and the guidelines provided by Wolf (1994) are not useful in all situations. Hence, as
an alternative, the following fairly general weight function is proposed:

w(a0) =
1(

1 + (ς1a0)
ς2
)ς3

. (102)

The coefficients ς1, ς2 and ς3 are heuristic parameters. Experience shows that values of about
ς1 = ς2 = ς3 = 2 provide an adequate solution for most foundations in the low-frequency
range a0 ∈ [0; 2]. This recommendation is justified by the examples given in the next section.
For analyses involving high-frequency excitation, lower values of ς1, ς2 and ς3 may have to
be employed.
Hence, the optimisation problem defined in Table 1. However, the requirement of all poles
lying in the second and third quadrant of the complex plane is not easily fulfilled when an
optimisation is carried out by least-squares (or similar) curve fitting of Ŝr(ia0) to Sr(a0) as
suggested in Table 1. Specifically, the choice of the polynomial coefficients qj, j = 1, 2, . . . , m,
as the optimisation variables is unsuitable, since the constraint that all poles of Ŝr(ia0) must
have negative real parts is not easily incorporated in the optimisation problem. Therefore,
instead of the interpretation

Q(ia0) = 1 + q1(ia0) + q2(ia0)
2 + . . . + qM(ia0)

M, (103)

an alternative approach is considered, in which the denominator is expressed as

Q(ia0) = (ia0 − s1)(ia0 − s2) · · · (ia0 − sM) =
M

∏
m=1

(ia0 − sm). (104)

In this representation, sm, m = 1, 2, . . . , M, are the roots of Q(ia0). In particular, if there are N
complex conjugate pairs, the denominator polynomial may advantageously be expressed as

Q(ia0) =
N

∏
n=1

(ia0 − sn) (ia0 − s∗n) ·
M−N

∏
n=N+1

(ia0 − sn) . (105)

where an asterisk (∗) denotes the complex conjugate. Thus, instead of the polynomial
coefficients, the roots sn are identified as the optimisation variables.
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A rational filter for the regular part of the dynamic stiffness is defined in the form:

Sr(a0) ≈ Ŝr(ia0) =
P(ia0)

Q(ia0)
=

1 − k∞ + p1(ia0) + p2(ia0)
2 + . . . + pM−1(ia0)

M−1

1 + q1(ia0) + q2(ia0)2 + . . . + qM(ia0)M .

Find the optimal polynomial coefficients pn and qm which minimize the object function F(pn, qm) in a
weighted-least-squares sense subject to the constraints G1(pn, qm), G2(pn, qm), . . . , GM(pn, qm).

Input: M : order of the filter
p0

n, n = 1, 2, . . . , M − 1,
q0

m, m = 1, 2, . . . , M,
a0j, j = 1, 2, . . . , J,

Sr(a0j), j = 1, 2, . . . , J,
w(a0j), j = 1, 2, . . . , J.

Variables: pn, n = 1, 2, . . . , M − 1,
qm, m = 1, 2, . . . , M.

Object function: F(pn, qm) = ∑
J
j=1 w(a0j)

(
Ŝr(ia0j)− Sr(a0j)

)2
.

Constraints: G1(pn, qm) = 	(s1) < −ε,
G2(pn, qm) = 	(s2) < −ε,

...
GM(pn, qm) = 	(sM) < −ε.

Output: pn, n = 1, 2, . . . , M − 1,
qm, m = 1, 2, . . . , M.

Here, p0
n and q0

m are the initial values of the polynomial coefficients pn and qm, whereas Sr(a0j) are the
“exact” value of the dynamic stiffness evaluated at the J discrete dimensionless frequencies a0j. These
are either measured or calculated by rigourous numerical or analytical methods. Further, Ŝr(ia0j) are
the values of the rational filter at the same discrete frequencies, and w(a0) is a weight function, e.g. as
defined by Eq. (102) with ς1 = ς2 = ς3 = 2. Finally, sm are the poles of the rational filter Ŝr(ia0),
i.e. the roots of the denominator polynomial Q(ia0), and ε is a small number, e.g. ε = 0.01.

Table 1. Fitting of rational filter by optimisation of polynomial coefficients.

Accordingly, in addition to the coefficients of the numerator polynomial P(ia0), the variables
in the optimisation problem are the real and imaginary parts s	n = 	(sn) and s
n = 
(sn) of
the complex roots sn, n = 1, 2, . . . , N, and the real roots sn, n = N + 1, N + 2, . . . , M − N.
The great advantage of the representation (105) is that the constraints on the poles are
defined directly on each individual variable, whereas the constraints in the formulation
with Q(ia0) defined by Eq. (103), the constraints are given on functionals of the variables.
Hence, the solution is much more efficient and straightforward. However, Eq. (105) has two
disadvantages when compared with Eq. (103):

• The number of complex conjugate pairs has to be estimated. However, experience shows
that as many as possible of the roots should appear as complex conjugates—e.g. if M is
even, N = M/2 should be utilized. This provides a good fit in most situations and
may, at the same time, generate the lumped-parameter model with fewest possible internal
degrees of freedom.
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A rational filter for the regular part of the dynamic stiffness is defined in the form:

Sr(a0) ≈ Ŝr(ia0) =
P(ia0)

Q(ia0)
=

1 − k∞ + p1(ia0) + p2(ia0)
2 + . . . + pM−1(ia0)

M−1

∏
N
m=1 (ia0 − sm) (ia0 − s∗m) · ∏

M−N
m=N+1 (ia0 − sm)

.

Find the optimal polynomial coefficients pn and the poles sm which minimise the object function
F(pn, sm) subject to the constraints G0(pn, sm), G1(pn, sm), . . . , GN(pn, sm).

Input: M : order of the filter
N : number of complex conjugate pairs, 2N ≤ M
p0

n, n = 1, 2, . . . , M − 1,
s	0

m , m = 1, 2, . . . , N,
s
0

m , m = 1, 2, . . . , N,
s0

m, m = 1, 2, . . . , M − N,
a0j, j = 1, 2, . . . , J,

Sr(a0j), j = 1, 2, . . . , J,
w(a0j), j = 1, 2, . . . , J.

Variables: pn, n = 1, 2, . . . , M − 1,
s	m, m = 1, 2, . . . , N, s	m < −ε,
s
m, m = 1, 2, . . . , N, s
m > +ε,
sm, m = N + 1, 2, . . . , M − N, sm < −ε.

Object function: F(pn, sm) = ∑
J
j=1 w(a0j)

(
Ŝr(ia0j)− Sr(a0j)

)2
.

Constraints: G0(pn, sm) = 1 − ∏
M
1 (−sm) = 0,

Gk(pn, sm) = ζs	k + s
k < 0, k = 1, 2, . . . , N.

Output: pn, n = 1, 2, . . . , M − 1,
s	m, m = 1, 2, . . . , N,
s
m, m = 1, 2, . . . , N,
sm, m = N + 1, 2, . . . , M − N.

Here, superscript 0 indicates initial values of the respective variables, and Ŝr(ia0j) are the values of
the rational filter at the same discrete frequencies. Further, ζ ≈ 10 ∼ 100 and ε ≈ 0.01 are two real
parameters. Note that the initial values of the poles must conform with the constraint G0(pn, sm). For
additional information, see Table 1.

Table 2. Fitting of rational filter by optimisation of the poles.

• In the representation provided by Eq. (103), the correct asymptotic behaviour is
automatically ensured in the limit ia0 → 0, i.e. the static case, since q0 = 1.
Unfortunately, in the representation given by Eq. (105) an additional equality constraint
has to be implemented to ensure this behaviour. However, this condition is much easier
implemented than the constraints which are necessary in the case of Eq. (103) in order to
prevent the real parts of the roots from being positive.

Eventually, instead of the problem defined in Table 1, it may be more efficient to solve the
optimisation problem given in Table 2. It is noted that additional constraints are suggested,
which prevent the imaginary parts of the complex poles to become much (e.g. 10 times) bigger
than the real parts. This is due to the following reason: If the real part of the complex pole
sm vanishes, i.e. s	m = 0, this results in a second order pole, {s
m}2, which is real and positive.
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Evidently, this will lead to instability in the time domain. Since the computer precision is
limited, a real part of a certain size compared to the imaginary part of the pole is necessary to
ensure a stable solution.
Finally, as an alternative to the optimisation problems defined in Table 1 and Table 2, the
function S(ia0) may be expressed by Eq. (86), i.e. in partial-fraction form. In this case, the
variables in the optimization problem are the poles and residues of S(ia0). In the case of the
second-order terms, these quantities are replaced with α0, α1, β0 and β1. At a first glance,
this choice of optimisation variable seems more natural than pn and sm, as suggested in
Table 2. However, from a computational point of view, the mathematical operations involved
in the polynomial-fraction form are more efficient than those of the polynomial-fraction form.
Hence, the scheme provided in Table 2 is recommended.

5. Time-domain analysis of soil–structure interaction

In this section, two examples are given in which consistent lumped-parameter models
are applied to the analysis of foundations and soil–structure interaction. The first
example concerns a rigid hexagonal footing on a homogeneous or layered ground and
was first presented by Andersen (2010). The frequency-domain solution obtained by the
domain-transformation method presented in Sections 2–3 is fitted by LPMs of different orders.
Subsequently, the response of the original model and the LPMs are compared in frequency and
time domain.
In the second example, originally proposed by Andersen et al. (2009), LPMs are fitted to the
frequency-domain results of a coupled boundary-element/finite-element model of a flexible
embedded foundation. As part of the examples, the complex stiffness of the foundation in the
high-frequency limit is discussed, i.e. the coefficients k∞ and c∞ in Eq. (82) are determined for
each component of translation and rotation of the foundation. Whereas no coupling exists
between horizontal sliding and rocking of surface footings in the high-frequency limit, a
significant coupling is present in the case of embedded foundations—even at high frequencies.

5.1 Example: A footing on a homogeneous or layered ground
The foundation is modelled as a regular hexagonal rigid footing with the side length r0, height
h0 and mass density ρ0. This geometry is typical for offshore wind turbine foundations.

x1

x2

x3

r0

h0
Free surface

Layer 1

Layer 2

Half-space

Fig. 12. Hexagonal footing on a stratum with three layers over a half-space.
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As illustrated in Fig. 12, the centre of the soil–foundation interface coincides with the origin
of the Cartesian coordinate system. The mass of the foundation and the corresponding mass
moments of inertia with respect to the three coordinate axes then become:

M0 = ρ0h0 A0, J1 = J2 = ρ0h0I0 +
1
3

ρ0h3
0 A0, J3 = 2ρ0h0I0, (106a)

where A0 is the area of the horizontal cross-section and I0 is the corresponding geometrical
moment of inertia,

A0 =
3
√

3
2

r2
0, I0 =

5
√

3
16

r4
0. (106b)

It is noted that I0 is invariant to rotation of the foundation around the x3-axis. This property
also applies to circular or quadratic foundations as discussed in Section 3.

5.1.1 A footing on a homogeneous ground
Firstly, we consider a hexagonal footing on a homogeneous visco-elastic half-space. The
footing has the side length r0 = 10 m, the height h0 = 10 m and the mass density
ρ0 = 2000 kg/m3, and the mass and mass moments of inertia are computed by Eq. (106).
The properties of the soil are ρ1 = 2000 kg/m3, E1 = 104 kPa, ν1 = 0.25 and η1 = 0.03.
However, in the static limit, i.e. for ω → 0, the hysteretic damping model leads to a complex
impedance in the frequency domain. By contrast, the lumped-parameter model provides a
real impedance, since it is based on viscous dashpots. This discrepancy leads to numerical
difficulties in the fitting procedure and to overcome this, the hysteretic damping model for
the soil is replaced by a linear viscous model at low frequencies, in this case below 1 Hz.
In principle, the time-domain solution for the displacements and rotations of the rigid footing
is found by inverse Fourier transformation, i.e.

vi(t) =
1

2π

∫ ∞

−∞
Vi(ω)eiωtdω, θi(t) =

1
2π

∫ ∞

−∞
Θi(ω)eiωtdω, i = 1, 2, 3. (107)

The displacements, rotations, forces and moments in the time domain are visualised in
Fig. 13. In the numerical computations, the frequency response spectrum is discretized and
accordingly, the time-domain solution is found by a Fourier series.
According to Eqs. (72) and (74), the vertical motion V3(ω) as well as the torsional motion
Θ3(ω) (see Fig. 6) are decoupled from the remaining degrees of freedom of the hexagonal
footing. Thus, V3(ω) and Θ3(ω) may be fitted by independent lumped-parameter models.

x1 x1

x2x2

x3x3

θ1

θ2 θ3

v1

v2 v3
m1

m2 m3

q1

q2 q3

(a) (b)

Fig. 13. Degrees of freedom for a rigid surface footing in the time domain: (a) displacements
and rotations, and (b) forces and moments.
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In the following, the quality of lumped-parameter models based on rational filters of different
orders are tested for vertical and torsional excitation.
For the footing on the homogeneous half-space, rational filters of the order 2–6 are tested.
Firstly, the impedance components are determined in the frequency-domain by the method
presented in Section 2. The lumped-parameter models are then fitted by application of the
procedure described in Section 4 and summarised in Table 2. The two components of the
normalised impedance, S33 and S66, are shown in Figs. 14 and 16 as functions of the physical
frequency, f . It is noted that all the LPMs are based on second-order discrete-element models
including a point mass, see Fig. 11b. Hence, the LPM for each individual component of the
impedance matrix, Z(ω), has 1, 2 or 3 internal degrees of freedom.
With reference to Fig. 14, a poor fit of the vertical impedance is obtained with M = 2
regarding the absolute value of S33 as well as the phase angle. A lumped-parameter model
with M = 4 provides a much better fit in the low-frequency range. However, a sixth-order
lumped-parameter model is required to obtain an accurate solution in the medium-frequency
range, i.e. for frequencies between approximately 1.5 and 4 Hz. As expected, further analyses
show that a slightly better match in the medium-frequency range is obtained with the
weight-function coefficients ς1 = 2 and ς2 = ς3 = 1. However, this comes at the cost of a
poorer match in the low-frequency range. Finally, it has been found that no improvement is
achieved if first-order terms, e.g. the “monkey tail” illustrated in Fig. 10b, are allowed in the
rational-filter approximation.
Figure 16 shows the rational-filter approximations of S66, i.e. the non-dimensional torsional
impedance. Compared with the results for the vertical impedance, the overall quality of the fit
is relatively poor. In particular the LPM with M = 2 provides a phase angle which is negative
in the low frequency range. Actually, this means that the geometrical damping provided
by the second-order LPM becomes negative for low-frequency excitation. Furthermore, the
stiffness is generally under-predicted and as a consequence of this an LPM with M = 2 cannot
be used for torsional vibrations of the surface footing.
A significant improvement is achieved with M = 4, but even with M = 6 some discrepancies
are observed between the results provide by the LPM and the rigorous model. Unfortunately,
additional studies indicate that an LPM with M = 8 does not increase the accuracy beyond
that of the sixth-order model.
Next, the dynamic soil–foundation interaction is studied in the time domain. In order to
examine the transient response, a pulse load is applied in the form

p(t) =
{

sin(2π fct) sin(0.5π fct) for 0 < t < 2/ fc
0 otherwise. (108)

In this analysis, fc = 2 Hz is utilised, and the responses obtained with the lumped-parameter
models of different orders are computed by application of the Newmark β-scheme proposed
by Newmark Newmark (1959). Figure 15 shows the results of the analysis with q3(t) = p(t),
whereas the results for m3(t) = p(t) are given in Fig. 17.
In the case of vertical excitation, Fig. 15 shows that even the LPM with M = 2 provides
an acceptable match to the “exact” results achieved by inverse Fourier transformation of
the frequency-domain solution. In particular, the maximum response occurring during the
excitation is well described. However, an improvement in the description of the damping is
obtained with M = 4. For torsional motion, the second-order LPM is invalid since it provides
negative damping. Hence, the models with M = 4 and M = 6 are compared in Fig. 17.
It is clearly demonstrated that the fourth-order LPM provides a poor representation of the
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torsional impedance, whereas an accurate prediction of the response is achieved with the
sixth-order model.
Subsequently, lumped-parameter models are fitted for the horizontal sliding and rocking
motion of the surface footing, i.e. V2(ω) and Θ1(ω) (see Fig. 6). As indicated by Eqs. (72)
and (74), these degrees of freedom are coupled via the impedance component Z24. Hence,
two analyses are carried out. Firstly, the quality of lumped-parameter models based on
rational filters of different orders are tested for horizontal and moment excitation. Secondly,
the significance of coupling is investigated by a comparison of models with and without the
coupling terms.
Similarly to the case for vertical and torsional motion, rational filters of the order 2–6 are
tested. The three components of the normalised impedance, S22, S24 = S42 and S44, are shown
in Figs. 18, 20 and 22 as functions of the physical frequency, f . Again, the lumped-parameter
models are based on discrete-element model shown in Fig. 11b, which reduces the number
of internal degrees of freedom to a minimum. Clearly, the lumped-parameter models with
M = 2 provide a poor fit for all the components S22, S24 and S44. However, Figs. 18 and 22
show that an accurate solution is obtained for S22 and S44 when a 4th model is applied, and
the inclusion of an additional internal degree of freedom, i.e. raising the order from M = 4 to
M = 6, does not increase the accuracy significantly. However, for S24 an LPM with M = 6 is
much more accurate than an LPM with M = 4 for frequencies f > 3 Hz, see Fig. 20.
Subsequently, the transient response to the previously defined pulse load with centre
frequency fc = 2 Hz is studied. Figure 19 shows the results of the analysis with q2(t) = p(t),
and the results for m1(t) = p(t) are given in Fig. 21. Further, the results from an alternative
analysis with no coupling of sliding and rocking are presented in Fig. 23. In Fig. 19 it is
observed that the LPM with M = 2 provides a poor match to the results of the rigorous
model. The maximum response occurring during the excitation is well described by the
low-order LPM. However the damping is significantly underestimated by the LPM. Since the
loss factor is small, this leads to the conclusion that the geometrical damping is not predicted
with adequate accuracy. On the other hand, for M = 4 a good approximation is obtained with
regard to both the maximum response and the geometrical damping. As suggested by Fig. 18,
almost no further improvement is gained with M = 6. For the rocking produced by a moment
applied to the rigid footing, the lumped-parameter model with M = 2 is useless. Here, the
geometrical damping is apparently negative. However, M = 4 provides an accurate solution
(see Fig. 21) and little improvement is achieved by raising the order to M = 6 (this result is
not included in the figure).
Alternatively, Fig. 23 shows the result of the time-domain solution for a lumped-parameter
model in which the coupling between sliding and rocking is disregarded. This model is
interesting because the two coupling components S24 and S42 must be described by separate
lumped-parameter models. Thus, the model with M = 4 in Fig. 23 has four less internal
degrees of freedom than the corresponding model with M = 4 in Fig. 21. However, the
two results are almost identical, i.e. the coupling is not pronounced for the footing on the
homogeneous half-space. Hence, the sliding–rocking coupling may be disregarded without
significant loss of accuracy. Increasing the order of the LPMs for S22 and S44 from 4 to 8 results
in a model with the same number of internal degrees of freedom as the fourth-order model
with coupling; but as indicated by Fig. 23, this does not improve the overall accuracy. Finally,
Fig. 20 suggests that the coupling is more pronounced when a load with, for example, fc = 1.5
or 3.5 Hz is applied. However, further analyses, whose results are not presented in this paper,
indicate that this is not the case.
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Fig. 14. Dynamic stiffness coefficient, S33, obtained by the domain-transformation model (the
large dots) and lumped-parameter models with M = 2 ( ), M = 4 ( ), and M = 6
( ). The thin dotted line ( ) indicates the weight function w (not in radians), and the
thick dotted line ( ) indicates the high-frequency solution, i.e. the singular part of S33.
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Fig. 15. Response v3(t) obtained by inverse Fourier transformation ( ) and
lumped-parameter model ( ). The dots ( ) indicate the load time history.
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Fig. 16. Dynamic stiffness coefficient, S66, obtained by the domain-transformation model (the
large dots) and lumped-parameter models with M = 2 ( ), M = 4 ( ), and M = 6
( ). The thin dotted line ( ) indicates the weight function w (not in radians), and the
thick dotted line ( ) indicates the high-frequency solution, i.e. the singular part of S66.
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Fig. 17. Response θ3(t) obtained by inverse Fourier transformation ( ) and
lumped-parameter model ( ). The dots ( ) indicate the load time history.
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Fig. 18. Dynamic stiffness coefficient, S22, obtained by the domain-transformation model (the
large dots) and lumped-parameter models with M = 2 ( ), M = 4 ( ), and M = 6
( ). The thin dotted line ( ) indicates the weight function w (not in radians), and the
thick dotted line ( ) indicates the high-frequency solution, i.e. the singular part of S22.
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Fig. 19. Response v2(t) obtained by inverse Fourier transformation ( ) and
lumped-parameter model ( ). The dots ( ) indicate the load time history.
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Fig. 20. Dynamic stiffness coefficient, S24, obtained by the domain-transformation model (the
large dots) and lumped-parameter models with M = 2 ( ), M = 4 ( ), and M = 6
( ). The thin dotted line ( ) indicates the weight function w (not in radians), and the
thick dotted line ( ) indicates the high-frequency solution, i.e. the singular part of S24.
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Fig. 21. Response θ1(t) obtained by inverse Fourier transformation ( ) and
lumped-parameter model ( ). The dots ( ) indicate the load time history.
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Fig. 22. Dynamic stiffness coefficient, S44, obtained by the domain-transformation model (the
large dots) and lumped-parameter models with M = 2 ( ), M = 4 ( ), and M = 6
( ). The thin dotted line ( ) indicates the weight function w (not in radians), and the
thick dotted line ( ) indicates the high-frequency solution, i.e. the singular part of S44.
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Fig. 23. Response θ1(t) obtained by inverse Fourier transformation ( ) and
lumped-parameter model ( ). The dots ( ) indicate the load time history.
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In conclusion, for the footing on the homogeneous soil it is found that an LPM with two
internal degrees of freedom for the vertical and each sliding and rocking degree of freedom
provides a model of great accuracy. This corresponds to fourth-order rational approximations
for each of the response spectra obtained by the domain-transformation method. Little
improvement is gained by including additional degrees of freedom. Furthermore, it is
concluded that little accuracy is lost by neglecting the coupling between the sliding and
rocking motion. However, a sixth-order model is necessary in order to get an accurate
representation of the torsional impedance.

5.1.2 Example: A footing on a layered half-space
Next, a stratified ground is considered. The soil consists of two layers over homogeneous
half-space. Material properties and layer depths are given in Table 3. This may correspond
to sand over a layer of undrained clay resting on limestone or bedrock. The geometry and
density of the footing are unchanged from the analysis of the homogeneous half-space.
The non-dimensional vertical and torsional impedance components, i.e. S33 and S66, are
presented in Figs. 24 and 26 as functions of the physical frequency, f . In addition to the
domain-transformation method results, the LPM approximations are shown for M = 2,
M = 6 and M = 10. Clearly, low-order lumped-parameter models are not able to describe the
local tips and dips in the frequency response of a footing on a layered ground. However, the
LPM with M = 10 provides a good approximation of the vertical and torsional impedances
for frequencies f < 2 Hz. It is worthwhile to note that the lumped-parameter models of the
footing on the layered ground are actually more accurate than the models of the footing on
the homogeneous ground. This follows by comparison of Figs. 24 and 26 with Figs. 14 and 16.
The time-domain solutions for an applied vertical force, q3(t), or torsional moment, m3(t), are
plotted in Fig. 25 and Fig. 27, respectively. Evidently, the LPM with M = 6 provides an almost
exact match to the solution obtained by inverse Fourier transformation—in particular in the
case of vertical motion. However, in the case of torsional motion (see Fig. 27), the model with
M = 10 is significantly better at describing the free vibration after the end of the excitation.
Next, the horizontal sliding and rocking are analysed. The non-dimensional impedance
components S22, S24 = S42 and S44 are shown in Figs. 28, 30 and 32 as functions of the
frequency, f . Again, the LPM approximations with M = 2, M = 6 and M = 10 are
illustrated, and the low-order lumped-parameter models are found to be unable to describe
the local variations in the frequency response. The LPM with M = 10 provides an acceptable
approximation of the sliding, the coupling and the rocking impedances for frequencies f <

2 Hz, but generally the match is not as good as in the case of vertical and torsional motion.
The transient response to a horizontal force, q2(t), or rocking moment, m1(t), are shown in
Figs. 29 and 31. Again, the LPM with M = 6 provides an almost exact match to the solution
obtained by inverse Fourier transformation. However, the model with M = 10 is significantly
better at describing the free vibration after the end of the excitation. This is the case for the
sliding, v2(t), as well as the rotation, θ1(t).

Layer no. h (m) E (MPa) ν ρ (kg/m3) η

Layer 1 8 10 0.25 2000 0.03
Layer 2 16 5 0.49 2200 0.02
Half-space ∞ 100 0.25 2500 0.01

Table 3. Material properties and layer depths for layered half-space.
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Fig. 24. Dynamic stiffness coefficient, S33, obtained by the domain-transformation model (the
large dots) and lumped-parameter models with M = 2 ( ), M = 6 ( ), and M = 10
( ). The thin dotted line ( ) indicates the weight function w (not in radians), and the
thick dotted line ( ) indicates the high-frequency solution, i.e. the singular part of S33.
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Fig. 25. Response v3(t) obtained by inverse Fourier transformation ( ) and
lumped-parameter model ( ). The dots ( ) indicate the load time history.
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Fig. 26. Dynamic stiffness coefficient, S66, obtained by the domain-transformation model (the
large dots) and lumped-parameter models with M = 2 ( ), M = 6 ( ), and M = 10
( ). The thin dotted line ( ) indicates the weight function w (not in radians), and the
thick dotted line ( ) indicates the high-frequency solution, i.e. the singular part of S66.
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Fig. 27. Response θ3(t) obtained by inverse Fourier transformation ( ) and
lumped-parameter model ( ). The dots ( ) indicate the load time history.
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Fig. 28. Dynamic stiffness coefficient, S22, obtained by the domain-transformation model (the
large dots) and lumped-parameter models with M = 2 ( ), M = 6 ( ), and M = 10
( ). The thin dotted line ( ) indicates the weight function w (not in radians), and the
thick dotted line ( ) indicates the high-frequency solution, i.e. the singular part of S22.
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Fig. 29. Response v2(t) obtained by inverse Fourier transformation ( ) and
lumped-parameter model ( ). The dots ( ) indicate the load time history.
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Fig. 30. Dynamic stiffness coefficient, S24, obtained by the domain-transformation model (the
large dots) and lumped-parameter models with M = 2 ( ), M = 6 ( ), and M = 10
( ). The thin dotted line ( ) indicates the weight function w (not in radians), and the
thick dotted line ( ) indicates the high-frequency solution, i.e. the singular part of S24.
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Fig. 31. Response θ1(t) obtained by inverse Fourier transformation ( ) and
lumped-parameter model ( ). The dots ( ) indicate the load time history.
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Fig. 32. Dynamic stiffness coefficient, S44, obtained by the domain-transformation model (the
large dots) and lumped-parameter models with M = 2 ( ), M = 6 ( ), and M = 10
( ). The thin dotted line ( ) indicates the weight function w (not in radians), and the
thick dotted line ( ) indicates the high-frequency solution, i.e. the singular part of S44.
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Fig. 33. Response θ1(t) obtained by inverse Fourier transformation ( ) and
lumped-parameter model ( ). The dots ( ) indicate the load time history.
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Finally, in Fig. 33 the results are given for the alternative LPM, in which the coupling between
sliding and rocking has been neglected. It is observed that the maximum response occurring
during loading is predicted with almost the same accuracy as by the model in which the
coupling is accounted for. However, the geometrical damping is badly described with regard
to the decrease in magnitude and, in particular, the phase of the response during the free
vibration. Hence, the response of the footing on the layered ground cannot be predicted
with low order models, and an LPM with 3–5 internal degrees of freedom is necessary for
each nonzero term in the impedance matrix, i.e. rational approximations of the order 6–10 are
required. In particular, it is noted that the impedance term providing the coupling between
sliding and rocking is not easily fitted by an LPM of low order, i.e. orders below six. The
maximum response is well predicted without the coupling term; however, if the coupling is
not accounted for, the geometrical damping is poorly described. This may lead to erroneous
conclusions regarding the fatigue lifespan of structures exposed to multiple transient dynamic
loads, e.g. offshore wind turbines.

5.2 Example: A flexible foundation embedded in viscoelastic soil
In this example, a skirted circular foundation, also known as a bucket foundation, is analysed
using the coupled finite-element method (FEM) and boundary-element method (BEM). The
bucket has the radius r0 = 10 m and the skirt length h0 = 12 m, see Fig. 34. The lid has a
thickness of tlid = 0.50 m, whereas the thickness of the skirt is tskirt = 50 mm. The bucket
consists of steel, and the material properties are given in Table 4. The model of the lid is
unrealistic and the real structure may be lighter and stiffer than the solid plate but with a
complex geometry not easily modelled.

Material E (MPa) ν ρ (kg/m3) η

Soil 20 0.25 2000 0.03
Steel (bucket) 200.000 0.30 7850 0.01

Table 4. Material properties of the bucket foundation and the subsoil.

r0

h0

r1

Fig. 34. Coupled finite-element/boundary-element model of skirted foundation: Geometry
(left) and discretization (right). Only half the foundation is discretized, utilising the
symmetry of the problem.
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A thorough introduction to the FEM and BEM is beyond the scope of the present text. The
reader is referred to the text books by Bathe (1996) and Petyt (1998) for a detailed explanation
of the FEM, whereas information about the BEM can be found, for example, in the work by
Brebbia (1982) and Domínguez (1993). The coupling of BEM and FEM schemes has been
discussed by, among others, Mustoe (1980), von Estorff & Kausel (1989), Stamos & Beskos
(1995), Jones et al. (1999), Elleithy et al. (2001) and Andersen (2002).
In the present example, a closed boundary-element (BE) domain is applied for the soil inside
the bucket and an open BE domain is utilised for the remaining half-space. In either case,
quadratic spatial interpolation is applied of the displacement and traction fields on the
boundaries discretized by boundary elements, i.e. elements with nine nodes are applied.
Finally, the lid and the skirt of the bucket foundation are discretized using shell finite elements.
Again, quadrilaterals with nine nodes are used.
With ρ, cP and cS denoting the mass density, the P-wave velocity and the S-wave velocity of
the soil, respectively, the high-frequency limit of the impedance components are given as

c∞
33 = ρcP Alid + ρcS Askirt, (109a)

c∞
66 = 2ρcSIlid + ρcS Askirtr

2
0, (109b)

c∞
22 = ρcS Alid +

1
2
(ρcS + ρcP) Askirt, (109c)

c∞
24 = c∞

42 = − 1
2
(ρcS + ρcP) Askirt

h0

2
= −c∞

15 = −c∞
51, (109d)

c∞
44 = c∞

55 = ρcPIlid +
1
2
(ρcS + ρcP) Iskirt +

1
2

ρcS Askirtr
2
0, (109e)

where Alid = πr2
0 and Askirt = 4πr0h0 are the areas of the lid and the skirt, respectively. The

latter accounts for the inside as well as the outside of the skirt; hence, the factor 4 instead of
the usual factor 2. Further, Ilid and Iskirt are the geometrical moments of inertia of the lid and
the skirt around the centroid of the lid, defined as

Ilid =
π

4
r4

0, Iskirt =
4π

3
r0h3

0. (110)

Again, the contributions from both sides of the skirt are included and it is noted that the
torsional moment of inertia of the lid is simply 2Ilid.
In the following, an explanation is given of the terms in Eq. (109). Firstly, the vertical
impedance is given as the sum of a contribution from the P-waves emanating from the bottom
of the lid, represented by the first term in Eq. (109a), and a second contribution from the
S-waves produced at the exterior and interior surfaces of the skirt when the foundation moves
up and down as a rigid body. This may be an overestimation of the impedance for a flexible
foundation and alternatively a high-frequency solution with no contributions from the skirt
may be proposed.
Secondly, the torsional impedance provided by Eq. (109b) contains a contribution from the
S-waves generated at the bottom of the lid, whereas the second term represents the S-waves
stemming from the rotation of the skirt around the vertical axis. Thirdly, the horizontal
impedance given by Eq. (109c) is composed of three terms. The first term represent S-waves
initiated at the bottom of the lid, whereas the second term is due to the S- and P-waves
arising at the skirt. Only S-waves are generated at the vertical lines at the “sides” of the
foundation, and only P-waves are produced at the vertical lines on the “back” and “front”
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 35. Response in phase with the load for the skirted foundation. On the left, the results
are shown for a unit-magnitude harmonic vertical force acting at the centre of the foundation
at the frequencies (a) f = 2 Hz, (b) f = 4 Hz and (c) f = 6 Hz. The displacements are scaled
by a factor of 109 and the light and dark shades of grey indicate positive and negative
vertical displacements. On the right, the results are shown for a unit-magnitude harmonic
torsional moment acting around the centre of the foundation at the frequencies (a) f = 2 Hz,
(b) f = 4 Hz and (c) f = 6 Hz. The displacements are scaled by a factor of 1010 and the light
and dark shades of grey indicate positive and negative displacements in the direction
orthogonal to the plane of antisymmetry.

of the bucket. However, at all other vertical lines, a combination of P- and S-waves are
emitted. A formal mathematical proof of Eq. (109c) follows by integration along the perimeter
of the skirt. However, by physical reasoning one finds that half the area Askirt emits P-waves,
concentrating around the “back” and “front” of the foundation, whereas the other half of
Askirt, i.e. the “sides”, emits S-waves. A similar reasoning lies behind the derivation of c∞

24,
and as indicated by Eq. (109d) there are no contributions from the lid to the sliding–rocking
coupling at high frequencies.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 36. Response in phase with the load for the skirted foundation. On the left, the results
are shown for a unit-magnitude harmonic horizontal force acting at the centre of the
foundation at the frequencies (a) f = 2 Hz, (b) f = 4 Hz and (c) f = 6 Hz. The displacements
are scaled by a factor of 109 and the light and dark shades of grey indicate positive and
negative vertical displacements. On the right, the results are shown for a unit-magnitude
harmonic rocking moment acting around the centre of the foundation at the frequencies
(a) f = 2 Hz, (b) f = 4 Hz and (c) f = 6 Hz. The displacements are scaled by a factor of 1010

and the light and dark shades of grey indicate positive and negative vertical displacements.

Finally, the rocking impedance provided by Eq. (109e) consists of three parts. The first one
stems from P-waves originating from the bottom of the lid and the next term is a mixture
of P- and S-waves generated at the skirts. However, only the S-waves polarised in the
horizontal direction are included in the second term of Eq. (109e); but the rocking motion
of the foundation also induces S-waves polarised in the vertical direction, in particular at
the “back” and “front” of the bucket. Again, a strict proof follows by integration over the
surface of the skirts, but a by physical reasoning it is found the half the area contributes to the
generation of such S-waves.
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The response of the bucket foundation is computed at 31 discrete frequencies from 0 to
6 Hz using the coupled boundary-element–finite-element model. The results for vertical
and torsional excitation and three different frequencies are shown in Fig. 35, whereas the
corresponding results for horizontal sliding and rocking are given in Fig. 36. It is noted that
the light and dark shades of grey indicate vertical displacements upwards and downwards,
respectively, in the plots for the vertical, horizontal and rocking-moment excitation. However,
in the case of torsional excitation, no vertical displacements are generated. Hence, in this
particular case the light/dark shades indicate horizontal displacements away from/towards
the plane of symmetry.
Figures 37 to 40 show the frequency-domain solution obtained by the coupled
finite-element–boundary-element scheme for the different impedance components, excluding
the vertical impedance. The results of the corresponding lumped-parameter models of orders
2, 6 and 10 are plotted in the same figures. Clearly, the low-order models with M = 2,
and having only a single internal degree-of-freedom, are inadequate. A similar conclusion
can be made for the vertical impedance that is not shown here. However, the sixth-order
lumped-parameter model provide a good fit to the FE–BE model in the low-frequency range
and only an insignificant improvement is obtained by increasing the order of the LPMs to 10.
It is of particular interest that the high-order LPM with M = 10 does not lead to a better fit
at higher frequencies than the sixth-order model. Instead, wiggling occurs at low-frequencies
with the tenth-order model, i.e. non-physical tips and dips arise in the results from the LPM
between frequencies at which the target FE-BE solution has been computed. This behaviour
should be avoided and thus the sixth-order model is preferred. In order to obtain a better fit
without wiggling, a smaller frequency step should be applied in the FE-BE solution.
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Fig. 37. Dynamic stiffness coefficient, S66, obtained by finite-element–boundary-element (the
large dots) and lumped-parameter models with M = 2 ( ), M = 6 ( ), and M = 10
( ). The thin dotted line ( ) indicates the weight function w (not in radians), and the
thick dotted line ( ) indicates the high-frequency solution, i.e. the singular part of S66.
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Fig. 38. Dynamic stiffness coefficient, S22, obtained by finite-element–boundary-element (the
large dots) and lumped-parameter models with M = 2 ( ), M = 6 ( ), and M = 10
( ). The thin dotted line ( ) indicates the weight function w (not in radians), and the
thick dotted line ( ) indicates the high-frequency solution, i.e. the singular part of S22.
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Fig. 39. Dynamic stiffness coefficient, S24, obtained by finite-element–boundary-element (the
large dots) and lumped-parameter models with M = 2 ( ), M = 6 ( ), and M = 10
( ). The thin dotted line ( ) indicates the weight function w (not in radians), and the
thick dotted line ( ) indicates the high-frequency solution, i.e. the singular part of S24.
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Fig. 40. Dynamic stiffness coefficient, S44, obtained by domain-transformation (the large
dots) and lumped-parameter models with M = 2 ( ), M = 6 ( ), and M = 10
( ). The thin dotted line ( ) indicates the weight function w (not in radians), and the
thick dotted line ( ) indicates the high-frequency solution, i.e. the singular part of S44.

6. Summary

This chapter discusses the formulation of computational models that can be used for an
efficient analysis of wind turbine foundations. The purpose is to allow the introduction of a
foundation model into aero-elastic codes without a dramatic increase in the number of degrees
of freedom in the model. This may be of particular interest for the determination of the fatigue
life of a wind turbine.
After a brief introduction to different types of foundations for wind turbines, the particular
case of a rigid footing on a layered ground is treated. A formulation based on the so-called
domain-transformation method is given, and the dynamic stiffness (or impedance) of the
foundation is calculated in the frequency domain. The method relies on an analytical solution
for the wave propagation over depth, and this provides a much faster evaluation of the
response to a load on the surface of the ground than may be achieved with the finite element
method and other numerical methods. However, the horizontal wavenumber–frequency
domain model is confined to the analysis of strata with horizontal interfaces.
Subsequently, the concept of a consistent lumped-parameter model (LPM) has been presented.
The basic idea is to adapt a simple mechanical system with few degrees of freedom to the
response of a much more complex system, in this case a wind turbine foundation interacting
with the subsoil. The use of a consistent LPM involves the following steps:

1. The target solution in the frequency domain is computed by a rigorous model, e.g. a
finite-element or boundary-element model. Alternatively the response of a real structure
or footing is measured.
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2. A rational filter is fitted to the target results, ensuring that nonphysical resonance is
avoided. The order of the filter should by high enough to provide a good fit, but low
enough to avoid wiggling.

3. Discrete-element models with few internal degrees of freedom are established based on
the rational-filter approximation.

This procedure is carried out for each degree of freedom and the discrete-element models
are then assembled with a finite-element, or similar, model of the structure. Typically,
lumped-parameter models with a three to four internal degrees of freedom provide results of
sufficient accuracy. This has been demonstrated in the present chapter for two different cases,
namely a footing on a stratified ground and a flexible skirted foundation in homogeneous soil.
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