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Abstract—One of the most awaited services promised by the
sixth generation (6G) of mobile communication technologies
is integrated sensing and communications (ISAC), which will
offer a wealth of new benefits and applications. One of the
most widely used waveforms for this purpose is orthogonal
time-frequency space (OTFS), which together with superimposed
training (ST) allows communication and target localization in the
delay-Doppler (DD) domain with zero overhead. The conventional
technique uses a threshold for the possible detection of a target.
However, the optimal choice of this threshold requires statistical
analysis of the received signal and prior knowledge of the
channel, which is initially unknown. To address this problem,
this paper proposes a target detection technique based on deep
learning (DL), which is able to assist in the detection of targets
without the need of a prior computation of any statistical pa-
rameter. The proposed deep neural network (DNN) outperforms
the conventional threshold decision method and approaches the
ideal performance.

Index Terms—OTFS, ISAC, deep learning, superimposed-
training, channel estimation

I. INTRODUCTION

The future Sixth Generation (6G) communications network
[1] will open up a wide range of possibilities by developing
innovative services in a variety of demanding environments. In
one of the most anticipated services, intelligent target detection
and broadband communications are synergistically combined
in what is called integrated sensing and communications
(ISAC). This integration will be essential in next-generation
high-mobility scenarios, such as vehicles, drones, etc., as it
will not only be able to transmit and receive data signals, but
also efficiently provide real-time localization information of
the surroundings using the available communication resources
[2].

One of the most interesting waveforms for high mobility
scenarios is orthogonal time-frequency space (OTFS) [3], [4].
Unlike orthogonal frequency division multiplexing (OFDM),
it allows to circumvent the time-varying effect caused by
the Doppler spread, as the data symbols are represented in
the delay-Doppler (DD) domain. For this reason, OTFS is
frequently considered for ISAC in the literature [5], [6]. How-
ever, in practical implementations, OTFS requires a large pilot
overhead, since each pilot must have a set of guard symbols
(zeros) surrounding it to avoid self-interference caused by the

data, what leads to a significant deterioration of the data rate
[7].

To address this pilot overhead problem, the use of
superimposed-training (ST) with OTFS, i.e. ST-OTFS, has
been recently proposed in the literature [8], [9]. ST consists in
superimposing the pilot signal over the data signal, and hence,
no resources are dedicated exclusively to the pilots, producing
a zero overhead. However, a self-interference induced by the
data symbols in the superposition process must be considered
at the receiver. The works [8] and [9] introduce innovative
methodologies for channel estimation in ST-OTFS systems.
These methodologies incorporate self-interference as an ad-
ditional interference and noise, which is partially eliminated
through iterative techniques that demand significant compu-
tational resources. Consequently, the accuracy of the channel
and sensing parameter estimates is confined to scenarios with
high signal-to-noise ratios (SNR).

As a possible solution to this, in our earlier work [10] we
propose an averaging technique in the DD domain, which
allows an effective filtering of the interference with an af-
fordable computational cost. First, the normalized delay and
Doppler shifts are estimated by performing a block averaging
of the received DD signal followed by a bank of correlators.
Then, the channel complex gains are accurately obtained by
using a two-step computationally efficient method. Thanks
to the filtering, this technique is more robust to noise and
interference, which results in better estimates.

In the latter approach, following the bank of correlators,
targets are detected utilizing a decision threshold, which plays
a pivotal role in determining the system’s overall performance.
Selecting an optimal threshold necessitates a statistical anal-
ysis of the problem and is contingent upon prior knowledge
about the channel, which remains unknown at the beginning.
Consequently, in this paper, we enhance the findings presented
in [10] by incorporating a deep neural network (DNN), which
detects the targets and estimates their respective delay and
Doppler shifts, eliminating the requirement for prior threshold
decisions.

Numerous studies in the field have shown the effectiveness
of incorporating deep learning (DL) into OTFS-based architec-
tures [11]–[14] for various applications. These investigations



have consistently revealed that employing DL-aided OTFS
schemes often surpasses the performance of traditional meth-
ods across multiple scenarios. In this paper, through exposure
to diverse scenarios and multiple channels during training, the
DNN acquires robustness against fluctuations in channel pa-
rameters, thereby reducing the necessity for repeated training.
The results indicate that the DNN successfully detects targets
without depending on prior assumptions, performing closely
to the ideal threshold case. We present the outcomes in terms
of detection probability and false alarm rates.

The remainder of the paper is organized as follows. Section
II presents the OTFS system model and Section III introduces
the channel estimation with ST-OTFS for ISAC proposed
in our earlier work [10]. Section IV describes the proposed
DNN technique for target detection and justifies its use as
an alternative to traditional detection methods in the radar
literature. In Section V, we present some results to evaluate
the performance of the DNN and compare it to the use of
the conventional threshold. Finally, we conclude the work in
Section VI.

Notation: in this work, matrices, vectors and scalar quanti-
ties are represented by boldface uppercase, boldface lowercase,
and normal letters, respectively. [A]𝑚,𝑛 denotes the element in
the 𝑚-th row and 𝑛-th column of A. [a]𝑛 represents the 𝑛-th
element of the vector a. [a] (𝑛) denotes the resulting vector
from right-shifting 𝑛 samples of vector a. I𝑀 is the identity
matrix of size (𝑀 × 𝑀). 1(𝑀×𝑁 ) denotes a matrix of ones
of size (𝑀 × 𝑁). A = diag (a) is a diagonal matrix whose
diagonal elements are formed by the elements of vector a.
The superscripts (· )𝑇 and (· )𝐻 denote transpose and hermitian
operations, respectively. ⊗ is the Kronecker product. ⊙ denotes
the Hadamard product. E {· } represents the expected value.
CN(0, 𝜎2) represents the circularly-symmetric and zero-mean
complex normal distribution with variance 𝜎2. |·| represents
the absolute value of a complex number. C𝐾 and Z𝐾 are
𝐾-dimensional complex and integer spaces, respectively, and
C𝐾×𝐾 is the 𝐾×𝐾-dimensional complex space. Finally, circ[·]
denotes the circulant matrix.

II. SYSTEM MODEL

The OTFS system model [4] maps the complex data and
pilot symbols onto a resource grid in the DD domain. These
symbols are then converted into delay-time domain samples
using the inverse discrete Zak transform (IDZT). In particular,
zero-padding OTFS (ZP-OTFS) is chosen since its appends
a ZP at the end of each multi-carrier symbol to absorb the
intersymbol interference (ISI) of the channel. The signal is
affected by a frequency-selective and time-varying channel,
with the following expression in the DD domain

ℎ(𝜏, 𝜈) =
𝐿𝑝∑︁
𝑖=1

𝑔𝑖𝑒
− 𝑗2𝜋𝑣𝑖 𝜏𝑖𝛿(𝜏 − 𝜏𝑖)𝛿(𝜈 − 𝜈𝑖) (1)

where 𝐿𝑝 is the number of propagation paths and 𝑔𝑖 denotes
the channel complex gains. 𝜏𝑖 and 𝜈𝑖 are the delay and Doppler

shifts, respectively, with the following expressions

𝜏𝑖 =
𝑙𝑖

𝑀Δ 𝑓
≤ 𝜏𝑚𝑎𝑥 =

𝑙𝑚𝑎𝑥

𝑀Δ 𝑓
, (2)

𝜈𝑖 =
𝑘𝑖

𝑁𝑇
|𝜈𝑖 | ≤ 𝜈𝑚𝑎𝑥 (3)

where 𝑀 and 𝑁 corresponds to the number of delay and
Doppler bins, respectively. 𝑙𝑖 , 𝑘𝑖 ∈ Z are the normalized
delay and Doppler shifts, respectively, which are assumed to
be integers. The channel is assumed to be underspread [7]–
[9], so that 𝜏𝑚𝑎𝑥𝜈𝑚𝑎𝑥 ≪ 1 and 𝑇Δ 𝑓 = 1. The normalized
delay and Doppler shifts are constrained to 𝑙𝑚𝑎𝑥 < 𝑀 and
−𝑁/2 ≤ 𝑘𝑖 < 𝑁/2. The ZP is then selected to have length
𝐿𝑍𝑃 ≥ 𝑙𝑚𝑎𝑥 , to absorb the ISI.

At the end, the received signal is again converted to the DD
domain by using the discrete Zak transform (DZT) [4], [15].
The equivalent channel model in the DD domain can be given
as [7]–[9]

y = Hx + z, (4)

where y ∈ C𝑀𝑁×1 is the received signal in the DD domain,
x ∈ C𝑀𝑁×1 is the transmitted data vector, composed of
quadrature amplitude modulation (QAM) symbols, with unit
energy (E

{��[x]𝑖 ��2} = 1, 1 ≤ 𝑖 ≤ 𝑀𝑁). z ∈ C𝑀𝑁×1 denotes
the additive white Gaussian noise (AWGN), with CN

(
0, 𝜎2

𝑧

)
,

and H ∈ C𝑀𝑁×𝑀𝑁 is the equivalent channel matrix in the DD
domain, which is modeled as [8], [16], [17]

H = (F𝑁 ⊗ I𝑀 ) ©«
𝐿𝑝∑︁
𝑖=1

𝑔𝑖𝑒
− 𝑗2𝜋𝑣𝑖 𝜏𝑖𝚷𝑙𝑖𝚫𝑘𝑖

ª®¬ (F𝐻𝑁 ⊗ I𝑀 ). (5)

where F𝑁 ∈ C𝑁×𝑁 denotes the normalized Fourier transform
(DFT) matrix, 𝚷 ∈ C𝑀𝑁×𝑀𝑁 is the forward cyclic-shift (per-
mutation) matrix and 𝚫 = diag

( [
1, 𝑒 𝑗2𝜋 1

𝑀𝑁 , ..., 𝑒 𝑗2𝜋
𝑀𝑁−1
𝑀𝑁

] )
.

III. CHANNEL ESTIMATION FOR ISAC WITH ST
In this section, we briefly describe the OTFS channel

estimation and sensing scheme based on ST proposed in [10],
where the pilot symbols are superimposed on the data ones.
We start by defining the pilot design that will allow us to later
perform the averaging method in the DD domain. The pilot
design covers the entire lattice, and its pattern is as follows.
We define a pilot sequence p ∈ C𝑀×1 as

p = [𝑝0, ..., 𝑝𝑀−1]𝑇 = [𝑒 𝑗2𝜋𝜙𝑝0 , ..., 𝑒 𝑗2𝜋𝜙𝑝𝑀−1 ]𝑇 (6)

where 𝜙𝑝𝑏 denotes the phase of the pilot and 𝑏 = 0, 1, ..., 𝑀−1.
This pilot sequence is replicated for each multi-carrier symbol
as

x𝑝 = 1(𝑁×1) ⊗ p ∈ C𝑀𝑁×1 (7)

where x𝑝 is the pilot signal that will be superimposed on the
data as

x =
√︁
𝛽x𝑑 +

√︁
1 − 𝛽x𝑝 , (8)

where 𝛽 is the power assigned to the data and x𝑑 is the data
signal. The received signal (4) can be expressed as

y = Hx𝑑 + Hx𝑝 + z ∈ C𝑀𝑁×1. (9)



The channel estimation and sensing scheme [10] is based on
four steps: 1) a pre-processing of the received signal to average
it in the DD domain, 2) the estimation of the normalized delay
and Doppler shifts, 3) the computation of the channel complex
gains, in this order. Finally, 4) the symbols are equalized to
recover the transmitted communications signal and the sensing
parameters are used to compute the range and velocity of
the targets. The main idea of the scheme is to perform an
averaging technique on the signal. Making use of the fact that
the data and noise samples are zero-mean random variables [8]
(E {x𝑑} = E {z} = 0), the averaging reduces both data-induced
self-interference and noise effects.

1) Pre-processing: The averaging in the DD domain of the
received signal is done by multiplying the received signal y
by an averaging matrix W of size 𝑀 × 𝑀𝑁 ,

y =
1
𝑁

Wy =
1
𝑁

(
1(1×𝑀 ) ⊗ I𝑁

)
y, (10)

where y ∈ C𝑀×1 is the averaged received vector y, whose
expression is

[y]𝑚 =

𝑚∑︁
𝑖=1

𝐿
(𝑙𝑖 )
𝑝∑︁
𝑛=1

𝑔𝑛𝑝𝑚−𝑖+1𝑒
𝑗2𝜋 𝑘𝑛 (𝑚−𝑖−𝑙𝑛 )

𝑀𝑁 + 𝑥′𝑑 + 𝑧
′, (11)

with 𝐿 (𝑙𝑖 )
𝑝 being the number of propagation paths whose delay

is 𝑙𝑖 , 𝑖 = 1, ..., 𝑚, where 𝑚 denotes the index position of y.
The terms 𝑥′

𝑑
and 𝑧′ denote the residual self-interference from

the data and the residual noise, respectively, with variances
𝜎2
𝑥′ =

𝛽

𝑁
, 𝜎2

𝑧′ =
𝜎2

𝑧

𝑁
. Note that the averaging reduces both

variances by a factor of 𝑁 .
2) Estimation of the delay and Doppler shifts: Given that

the possible options for the values of the normalized delay and
Doppler shifts are bounded by 𝑙𝑖 < 𝑀 and −𝑁/2 ≤ 𝑘𝑖 < 𝑁/2,
we use a bank of correlators to infer their values from the
received signal. We define the reference vector of Doppler
exponentials 𝜅𝜅𝜅𝑘𝑖 as

𝜅𝜅𝜅𝑘𝑖 = 𝑒
𝑗2𝜋 𝑘𝑖𝑞

𝑀𝑁 ∈ C𝑀𝑁×1 with 𝑞 = 0, ..., 𝑀𝑁 − 1, (12)

1
𝑀𝑁

𝜅𝜅𝜅𝑘𝑖𝜅𝜅𝜅
𝐻
𝑘 𝑗

=

{
1, if 𝑖 = 𝑗 ,

0, otherwise. (13)

And we define 𝜅𝜅𝜅𝑘, 𝑝 as the reference Doppler vector 𝜅𝜅𝜅𝑘𝑖
multiplied by the pilots

𝜅𝜅𝜅𝑘, 𝑝 = 𝜅𝜅𝜅𝑘𝑖 (𝑀) ⊙ p =

[
𝑝0𝑒

𝑗2𝜋 0
𝑀𝑁 , ..., 𝑝𝑀−1𝑒

𝑗2𝜋 𝑘𝑖 (𝑀−1)
𝑀𝑁

]𝑇
,

(14)
where the term (𝑀) in 𝜅𝜅𝜅𝑘 (𝑀) refers to the first 𝑀 samples
of the signal. We correlate shifted copies of the vector 𝜅𝜅𝜅𝑘, 𝑝
with the received averaged signal y, so that correlation peaks
will be obtained whenever the Doppler is present in the
received signal. The position of the correlation peak gives
the information of the delay shift, since the delay of the tap
is directly related to the position of the tap in the averaged
received vector.

To store the results of the correlations, we define a matrix
C(abs) ∈ R𝑁×𝑀 , with each of its positions in row index 𝑘 and
column index 𝑙 as

[C(abs)]𝑘,𝑙 =
1
𝑀

��� y[𝜅𝜅𝜅𝐻𝑘,𝑝]
(𝑙)

��� (15)

with 𝑙 = 0, ..., 𝑀 − 1 and −𝑁/2 ≤ 𝑘 < 𝑁/2. The estimates of
the normalized delay and Doppler shifts will be given by(

�̃�𝑖 , 𝑙𝑖
)
= arg max

𝑘,𝑙

[
C(abs)]

𝑘,𝑙
, (16)

where a target will be detected if the correlation peak is higher
than a certain threshold 𝛾

[C(abs)]𝑘,𝑙
𝑙𝑖=𝑙, �̃�𝑖=𝑘

≷
𝑙𝑖≠𝑙, �̃�𝑖≠𝑘

𝛾. (17)

3) Computation of the channel complex gains: once the
estimated delay and Doppler vectors are known 𝑙𝑖 and �̃�𝑖 ,
the averaged received vector is used to compute the estimated
channel complex gains �̃�𝑖 . The method accurately yields �̃�𝑖
in a two-step procedure with a low level of computational
complexity.

4) Data detection and sensing: The estimated channel
matrix is built from the estimated 𝑙𝑖 , �̃�𝑖 and �̃�𝑖 and a minimum
mean squared error (MMSE) equalization is used to compute
the estimated data symbols as

x̂MMSE =

(
H̃HH̃ + 𝜎2

𝑧 I𝑀𝑁
)−1

H̃Hy. (18)

We consider passive sensing, in which the receiver infers
the sensing parameters of the targets from a received commu-
nications signal. Some examples of passive sensing scenarios
can be found in [9] and [18], where the velocity and range of
the targets are derived by relating a reflected non-line of sight
(NLoS) tap with a reference LoS tap. The delay and Doppler
shifts are proportional to the range and relative velocity of the
targets, as 𝑟 ∝ 𝜏𝑐 and 𝑣 ∝ 𝜈𝑐/ 𝑓𝑐 where 𝑐 is the speed of light
and 𝑓𝑐 is the carrier frequency.

IV. PROPOSED DNN FOR TARGET DETECTION

The choice of the threshold 𝛾 in (17) determines the overall
performance of the system. This threshold determines if a
target is present or not, based on the values of the correlation
matrix C(abs). A poor threshold decision could result in subop-
timal operations. For this reason, a scheme based on DNNs is
proposed that is capable of detecting taps in the matrix C(abs)

without the need for defining a threshold or any prior statistical
analysis. The architecture is illustrated in Fig. 1. The input of
the DNN tap detector is the correlation matrix C(abs), and the
output is the estimate of the normalized delay and Doppler
shifts

(
�̃�𝑖 , 𝑙𝑖

)
. Note that the input matrix does not necessarily

have to be 𝑁 × 𝑀 , it can be reduced to 𝑁 × 𝐿𝑍𝑃 , where
𝐿𝑍𝑃 ≥ 𝑙𝑚𝑎𝑥 , since the maximum delay spread appearing in
the matrix will be given by this value.

The DNNs used are based on convolutional neural networks
(CNNs), which are widely used in the literature for applying
DL to the physical layer, since the signals can be easily
represented as if they were pixel-based image processing. Each



Fig. 1. DNN architecture to estimate the normalized delay and Doppler shifts.

TABLE I
DNN ARCHITECTURE

Layer Filter Stride Shape
Input layer: (𝑁 × 𝑅 × 1)
C(abs), 𝑅 = 𝐿𝑍𝑃 (DNN1)[
C(abs)]

𝑘
, 𝑅 = 𝐵 (DNN2)

2-D Convolutional (3, 3) (1, 1) (𝑁 × 𝑅 × 32)
ReLU (𝑁 × 𝑅 × 32)
2-D Max Pooling (2, 2) (𝑁/2 × 𝑅/2 × 32)
2-D Convolutional (3, 3) (1, 1) (𝑁/2 × 𝑅/2 × 32)
ReLU (𝑁/2 × 𝑅/2 × 32)
2-D Max Pooling (2, 2) (𝑁/4 × 𝑅/4 × 32)
2-D Transposed Convolution (4, 4) (2, 2) (𝑁/2 × 𝑅/2 × 32)
ReLU (𝑁/2 × 𝑅/2 × 32)
2-D Transposed Convolution (4, 4) (2, 2) (𝑁 × 𝑅 × 32)
ReLU (𝑁 × 𝑅 × 32)
2-D Convolutional (1, 1) (𝑁 × 𝑅 × 2)
Softmax

Dice pixel classification

element of the matrix is managed as if it were a pixel. First, the
matrix C(abs) is fed into a first neural network, called DNN1,
which is responsible for discriminating targets based on delay.
Each output delay estimated by DNN1 is fed to DNN2 to
obtain the normalized Doppler shifts associated with that tap.
The architecture of both networks is the same and it is shown
in Table I. The DNNs are semantic segmentation networks,
which means that they assign a class label to each individual
pixel of the input image. The architecture uses first CNNs
and max pooling layers to perform downsampling, followed
by transposed CNN layers for upsampling. The activation
function used is the rectified linear unit (ReLU).

DNN1 is responsible for assigning a ‘1’ or a ‘0’ to every
element of C(abs) if it considers that there is a tap or not,

respectively. In this first step, taps are distinguished only by
their delay. Based on the delays found by DNN1, the indexes
of the C(abs) columns where there is a tap are extracted. Each
column (for each delay 𝑙𝑖) is transformed to logarithmic (for a
better resolution) and is given to DNN2, which is responsible
for finding the Doppler shifts. Before feeding the column into
DNN2, it is expanded to obtain a matrix of 𝐵 replicas of the
column, as shown in Fig. 1. This is done to combat the class
imbalance problem. This problem is due to the disproportion
between the number of classes of type ‘1’ (tap) and type ‘0’
(non-tap). The number of ‘1’ labels is usually much smaller
than the number of ‘0’ labels. That is, we aim to distinguish
objects of the size of a single pixel within a column of size
𝑁 , which is complicated for the DNN and gives unsatisfactory
results. Therefore, by extending the column in a matrix, a
better training for DNN2 is achieved. In addition, both DNNs
use the generalized Dice loss function. This function controls
the contribution of each class to the loss, weighting the labels
by the inverse size of the expected region [19]. The generalized
Dice loss between an image C and the ground truth T, in case
the number of classes is 2, can be expressed as

𝐿𝐷𝑖𝑐𝑒 = 1 −
2
∑2
𝑛=1 𝑤𝑛

∑𝑁𝑅
𝑠=1 [C]𝑛𝑠 [T]𝑛𝑠∑2

𝑛=1 𝑤𝑛
∑𝑁𝑅
𝑠=1 [C]2

𝑛𝑠 + [T]2
𝑛𝑠

, (19)

where 𝑤𝑛 is the weight, for 𝑛 = 1, 2 (two classes) assigned
to each class, which corresponds to the squared inverse of the
area of the expected region

𝑤𝑛 =

(
𝑁𝑅∑︁
𝑠=1

[T]𝑛𝑠

)−2

. (20)

The DNNs were trained with the following parameters:
• Dataset for training was obtained from simulations with

parameters from Table II. A total number of 19,960
correlation matrices C(abs) was used. For DNN1, 70%
of these matrices were used for training and 30% for
validation. In the case of DNN2, we used the columns of
these same matrices. The DNNs are trained for SNR of
20 dB. The training and validation data include matrices
with a total of 1,000 different channels, with −𝑁/2 ≤
𝑘𝑖 < 𝑁/2 and 𝑙𝑖 < 𝑙𝑚𝑎𝑥 with 𝑙𝑚𝑎𝑥 = 𝐿𝑍𝑃 = 16.
The channel complex gains 𝑔𝑖 are randomly generated
following a Rayleigh distribution. This means that the
DNN is robust to changes in the channel conditions
or the targets scenario, which is useful to reduce the
number of times the DNN needs to be trained during the
communication. The training can be performed offline.
We used both 𝑅 = 16 and 𝐵 = 16 for the sizes of the
input data.

• Adam optimizer [20], learning rate of 0.001 and mini-
batch size of 64.

• The training was made for 450 iterations (DNN1) and
2700 (DNN2).

A. Conventional Choice of the Threshold
This section illustrates the conventional scheme to the DNN

approach for choosing 𝛾. Ideally, 𝛾 should be several times



TABLE II
SIMULATION PARAMETERS

Parameter Value
Delay and Doppler bins M=512, N=16

Carrier frequency 𝑓𝑐 = 26 GHz

Subcarrier spacing Δ 𝑓 = 60 kHz.

Modulation QPSK

higher than the noise and interference present in the matrix,
in order to avoid them. The main sources of noise and
interference are

• The effects of noise and self-interference of the data
within C(abs) are proportional to 𝜎2

𝑧′′ and 𝜎2
𝑥′′ .

• Furthermore, additional interference 𝜎2
𝜅 is introduced by

the correlation between the Doppler reference vectors
𝜅𝜅𝜅𝑘, 𝑝 and the taps in the received averaged vector y.
Since only the first 𝑀 samples of these vectors are
correlated, then (13) is not strictly satisfied. The value of
this interference directly depends on the complex channel
gains 𝑔𝑖 of each tap, as given in (15). This is a problem
because the values of 𝑔𝑖 are estimated after this procedure,
so they are unknown at this point.

Hence, we can give a lower-bound to 𝛾, so that

𝛾 >

√︃
𝜎2
𝑥′′ + 𝜎2

𝑧′′ + 𝜎2
𝜅 = 𝜎𝑇 , (21)

where we define 𝜎2
𝑇
= 𝜎2

𝑥′′ +𝜎2
𝑧′′ +𝜎2

𝜅 as the total interference
power at the correlation matrix C(abs). In practice, however,
the variances are not straightforward to compute. A realistic
application implies a prior estimation of this interference.
Whenever the matrix C(abs) is sufficiently sparse (i.e. the num-
ber of propagation taps or targets 𝐿𝑝 << 𝑀𝑁) or, equivalently,
𝑀𝑁 → ∞, applying fundamental statistical analysis, it can be
demonstrated that the total interference power of the matrix
can be estimated with the average power of the matrix as

𝜎2
𝑇 ≈ 1

𝑀𝑁

𝑁∑︁
𝑘=1

𝑀∑︁
𝑙=1

[C(abs)]2
𝑘,𝑙 . (22)

In practice, of course, this approximation may lead to a
poor computation of 𝛾 if the matrix is not sparse (there are
a large number of targets) or if M or N are not high enough.
Setting the threshold above the interference level, i.e. how
many levels above it to set, is also a difficult decision in
practice. Given this, and its direct dependence on the channel
gains, it will be difficult to update this calculation in real time
during communication.

In fact, the threshold decision expression (22) can be viewed
as a simple form of constant false alarm rate (CFAR) detection.
This problem is well-known in the radar literature. To solve
this threshold decision problem for radar target detection,
several variants of CFAR have been proposed [21]. However,
many CFAR techniques also require specific conditions to
work properly. For example, in cell-averaging CFAR (CA-
CFAR), the threshold in each cell (for each point in the
matrix) is calculated based on the average noise power of
adjacent cells. This provides near-optimal performance for

homogeneous scenarios. However, when additional sources of
interference or clutter are present, the interference estimation
is biased and can lead to an excessive number of false alarms
or target masking. Other more sophisticated CFAR techniques
can be used as an alternative, but the authors of [22] provide
an interesting analysis of CFAR detectors, which concludes
that no technique will be suitable for every combination of
homogeneous and non-homogeneous background noise, and
suggests that other adaptive techniques may provide the best
solution for changing operating conditions.

Therefore, DNN-based approaches can be easily adapted
to the problem and can be a viable solution. DL-based radar
target detection techniques have been proposed for other
applications [1]. In this paper, the DNN designed for tap
detection in our ST-OTFS technique for ISAC is successfully
adapted to this scenario and shows that it achieves good results
in terms of detection probabilities and false alarms.

V. SIMULATION RESULTS

In this section, we present some results to evaluate the
performance of the proposed DNN for tap detection. The
simulation parameters are the ones in Table II.

The system is evaluated in terms of detection and false
alarm probabilities. To calculate the probability of detection,
the detected �̃�𝑝 targets

(
�̃�𝑖 , 𝑙𝑖

)
are compared with the database

of true targets. If the target is found, it is considered detected.
If a target is detected but not found in the database, it is
considered a false alarm. A tap is considered detected if it
is within a minimum distance of the true target. The correct
Doppler shift estimate is based on a distance of 𝑑𝑘 = ±1,
while for the delay shift it is 𝑑𝑙 = 0, where 𝑑𝑘 = 𝑘𝑖 − �̃�𝑖 and
𝑑𝑙 = 𝑙𝑖 − 𝑙𝑖 . The expressions for the probability of detection
and false alarm are

𝑃𝑑 =
𝐿𝑑𝑒𝑡

𝐿𝑝
, 𝑃 𝑓 𝑎 =

𝐿 𝑓 𝑎

𝑀𝐿𝑍𝑃 − 𝐿𝑝
(23)

where 𝐿𝑑𝑒𝑡 is the number of detected targets and 𝐿 𝑓 𝑎 is the
number of false alarms, so that �̃�𝑝 = 𝐿𝑑𝑒𝑡 + 𝐿 𝑓 𝑎.

Fig. 2 shows a comparison between the proposed DNN
and the conventional threshold decision techniques based on
the probability of detection 𝑃𝑑 . In this figure, the ideal 𝛾
calculation is considered as the upper-bound defined in (21),
where the interference value 𝜎2

𝑇
is assumed to be known. To

avoid the interference levels, the threshold is chosen to be
slightly larger than 𝜎2

𝑇
, in particular 𝛾 = 4𝜎𝑇 . This gives a

constant false alarm rate of approximately 𝑃 𝑓 𝑎 = 4 · 10−4,
which is shown in Fig. 3. We also show 𝛾𝑟 , which is the
realistic or practical computation of the threshold based on
the estimated interference power, i.e., �̃�2

𝑇
in (22). We choose

𝛾𝑟 = 3�̃�𝑇 , which gives a false alarm rate of 𝑃 𝑓 𝑎 = 10−4.
In Fig. 2 and Fig. 3, the conventional practical method

of threshold estimation results in a 𝛾𝑟 with the lowest 𝑃 𝑓 𝑎,
but at the expense of a low detection probability 𝑃𝑑 , which
indicates that this threshold may not be the most appropriate.
Conversely, the DNN approach exhibits a detection capability
that closely resembles the ideal case. It achieves this at the



Fig. 2. Probability of detection 𝑃𝑑 , for the upper-bound case 𝛾 (21), practical
𝛾𝑟 (22) and proposed DNN.

Fig. 3. Probability of false alarm for the proposed DNN.

expense of a slightly higher false alarm probability for low
SNR regime (SNR < 0 dB), while for SNR ≥ 0 dB it achieves
an average false alarm probability of about 𝑃 𝑓 𝑎 = 4 · 10−4,
which is almost identical to that of the ideal scenario. And,
given that for communications to be successful, the scenario
will rarely exhibit such low SNR, it can be concluded that
the DNN surpasses the conventional 𝛾𝑟 method in both de-
tection accuracy and false alarm rates, approaching an ideal
performance.

VI. CONCLUSIONS

In this work, we enhance our previously proposed channel
estimation technique with ST-OTFS for ISAC [10] by incorpo-
rating a DNN for tap detection. Traditionally, target detection
relies on selecting a threshold, which is challenging without
prior knowledge of the channel conditions and interference.
Choosing an incorrect threshold compromises the system per-
formance, leading to higher probabilities of miss-detection or
false alarm. In this study, we introduce a DNN-based approach
that eliminates the need for threshold decisions. The proposed
DNN architecture, which requires only a moderate number
of layers, can be trained offline. Moreover, it demonstrates
robustness to changes in channel conditions, reducing the
frequency of model training during the communication.
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