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Analysis of Facial Features for Trust Evaluation in Industrial
Human-Robot Collaboration*

Giulio Campagna1, Dimitrios Chrysostomou2, Matthias Rehm1

Abstract— The advent of Industry 5.0 marks a significant
transition towards a collaborative partnership between humans
and robots, exploiting their respective capabilities and features
to enhance the manufacturing process. This increased coop-
eration necessitates a secure environment and, in this context,
trust becomes a pivotal factor influencing the quality of human-
robot interactions. To ensure safety and workload balance, it
is essential to have a reliable and timely measure of trust
in robots. This study explores the use of facial features to
identify potential correlations with human trust levels. To this
purpose, a chemical industry scenario was developed where a
cobot assisted the human handing over a beaker and pour-
ing chemicals. The analysis employed Deep Learning models,
specifically Convolutional Neural Networks (CNNs), to explore
the relationship between facial expressions and trust levels. The
results of the investigation revealed an accuracy rate of 78.61%
for the handing task, and an accuracy of 73.35% for the pouring
task. Nevertheless, the findings highlight the importance of
implementing sensor fusion algorithms to improve the accuracy
and robustness of trust evaluation towards robots.

I. INTRODUCTION

The concept behind Industry 5.0 fosters human-centric
manufacturing, driven by technologies that empower work-
ers through improved transparency and collaboration with
intelligent machines [1]. Trust and intention prediction play
a pivotal role in realizing this vision by enabling fluent
interactions between humans and collaborative robots as
team members. According to Muir and Moray, trust can
be defined as the operator’s confidence in the machine’s
competence, ensuring that the operator believes the system
effectively performs its tasks [2]. In this regard, appropri-
ate trust levels facilitate collaboration, while mismatches
can lead to under-utilization of automation or hazardous
situations with safety implications [3]. Consequently, the
ability to assess trust levels during interactions is critical
for adapting robot behaviors to user trust and enhancing
transparency. However, conventional trust measurement of-
ten relies on post-task questionnaires [4], providing only
retrospective evaluations of overall trust without capturing
real-time trust dynamics [5]. Furthermore, subjective trust
perceptions do not always align with actual behavior [6] and
can be susceptible to well-known biases, including selective
memory, recency effects, and rationalization [7].

To address these limitations, researchers have explored the
use of sensors and machine learning techniques to infer trust
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from behavioral cues. For example, studies have investigated
the relationship between trust and physiological signals such
as heart rate and skin conductance [8], as well as body
movements and gestures [9]. These approaches have shown
promising results in predicting trust levels, but they require
specialized sensors and complex data processing algorithms.

In recent years, there has been growing interest in using
facial expressions as a means of assessing trust in human-
robot interactions (HRI) [10]. Facial expressions are a rich
source of information about a person’s emotional state and
have been shown to be closely linked to trust during collab-
orative tasks [11] and human-robot handover tasks [12].

Convolutional neural networks (CNNs) have emerged as
a powerful tool for facial expression recognition and trust
assessment in HRI [13]. CNNs are a type of deep learning
architecture that are well-suited to facial expression recogni-
tion tasks and they have been shown to achieve state-of-
the-art performance on various facial expression recogni-
tion benchmarks, outperforming traditional machine learning
methods [14]. Several studies have applied CNNs to trust
assessment and related emotion recognition in HRI. For
example, Shen et al. introduced multi-modal feature fusion
for clearer understanding of human personality traits [15] and
Jaiswal and Nandi built a real-time emotion detection system
to explore the range of emotions that could be tracked by
facial expressions [16].

Building on our prior work presented in [17], our current
study investigates the use of CNNs for real-time trust as-
sessment based on facial expressions in a chemical industrial
scenario. Our findings show that the CNN architecture can
assess trust levels in real-time, providing valuable insights
for adapting robot behaviors to user trust and enhancing
transparency. This study presents two primary technical
contributions:

• Developing an innovative data-driven framework that
integrates facial gestures images with state-of-the-art
deep learning algorithms to categorize trust levels using
implicit reactions and responses.

• Conducting comprehensive training and robust evalu-
ation of the proposed deep learning framework with
annotated computer vision datasets under controlled
conditions to map facial gestures to trust levels reliably.

II. METHODOLOGY

As previously mentioned in Section I, the envisioned
scenario is based on the chemical industry environment
developed in [17]. In this framework, a collaborative robot
delivered a beaker containing a chemical to the human



operator, followed by the robot taking another beaker with
a different chemical and pouring its contents into the beaker
held by the human. This task involved two distinct levels of
robot performance: high and low performance.

In the high-performance trials, the robot executed the task
with seamless precision, following well-planned trajectories,
and avoided any non-ergonomic behaviors that might dis-
comfort the user. Conversely, in the low-performance con-
dition, the robot exhibited hazardous trajectories, including
coming too close to the human operator and giving the
impression of pouring chemicals onto the operator’s hand.
Consequently, this created an uncomfortable environment,
leading to heightened levels of anxiety in the user.

In line with the findings presented in [17], the experiment
was designed with two distinct conditions: high trust and
low trust, corresponding to the high and low performance
of the robot, respectively. Each participant completed the
task four times, twice with the high-performance robot and
twice with the low-performance robot. Notably, the robot
employed different path planning for each trial, making its
actions unpredictable.

As a result, this approach facilitated the collection of fa-
cial expression images with automatic labeling, categorizing
them as either high or low levels of trust.

A. Experimental Setup

The experimental apparatus concerned the following two
principal components: the Universal Robots UR10-CB3-
Series Robot1 and the Azure Kinect DK Camera2.

The UR10 Robot, featuring six rotational joints, is
purpose-built for collaborative tasks with human operators,
leveraging its exceptional precision and reliability. It was out-
fitted with an OnRobot RG6 gripper, which is a versatile two-
fingered gripper with the capacity to deliver a stroke of up to
150 mm. While the path planning and grasping phases were
pre-determined, the participants were explicitly informed that
the robot operated with dynamic and autonomous behavior,
thus carrying the possibility of occasional malfunctions. The
Azure Kinect DK Camera comprises various components.
For the proposed research, its key feature is its 1920x1080
pixel RGB camera capturing 30Hz color video with a 75◦

horizontal, 65◦ vertical field of view.
To conclude, both participants and assistants wore labora-

tory coats, gloves, and safety glasses to ensure their safety.
The chemicals used in the experiment were baking powder
in the human-held beaker and water in the robot-held beaker.
As a result, the only product generated during the reaction
phase was carbon dioxide, ensuring a safe experimental
environment. The actual chemical composition was revealed
at the conclusion of the experiment, in accordance with the
participants’ prior knowledge of the potential hazards asso-
ciated with these substances. The setup of the experimental
scenario is illustrated in Fig. 1.

1https://www.universal-robots.com/cb3/
2https://azure.microsoft.com/en-us/products/kinect-dk

 

 

 

 

 

 

RG6 gripper 

UR10 Robot 

Teach 

Pendant 

Azure Kinect 

DK Camera 

Fig. 1: The setup for the chemical industry scenario.

B. Procedure

A group of 20 participants was involved in the study.
Specifically, 10 males and 10 females were selected with
diverse age (M=29.1, SD=7.54).

The study adhered to the Declaration of Helsinki and
underwent thorough ethical review, gaining approval from
the institutional review board. Participants received a printed
consent form detailing the research objectives, tasks, method-
ology, and associated risks prior to the experiment.

Afterwards, the assistant supported the participant in
putting on the protective equipment. To ensure an unob-
structed view, the camera was appropriately positioned at
a suitable height and angle. It was securely mounted and
placed at a one-meter distance from the participants. This
distance was chosen because increased distance would lead
to decreased facial resolution, potentially compromising face
matching performance, as elaborated in [18]. Moreover,
adequate and consistent lighting was set up, as poor lighting
can introduce undesirable elements like noise, shadows, or
overexposure.

The participant’s involvement spanned a total of 30 min-
utes, which included the introductory explanation. Over this
duration, participants engaged in the tasks four times, thereby
experiencing both high and low-performance modes of the
robot.

C. Data Collection

Data collection was specifically focused on capturing
participants’ facial expressions during their reactions for both
the high and low robot performance, encompassing both
the beaker-handling and pouring stages. The captured 2D
RGB images featured 1980x1020 pixels resolution, and were
collected at a rate of 30 Hz.

D. Data Pre-Processing

The initial phase revolved around deriving the participants’
facial expressions from the original RGB images, a task
that demanded the utilization of a face detection algorithm.
To this end, the pre-trained Multi-Task Cascaded Con-
volutional Networks (MTCNN) model was utilized. The



Fig. 2: The facial landmarks in each individual bounding
box.

architecture of MTCNN is described in [19]. Each image
is resized to various scales to construct an image pyramid,
serving as the input for the subsequent three-stage cascaded
network, as described in the following. In the first phase (The
Proposal Network), a fully convolutional network (FCN)
is employed to generate a set of candidate face regions
(bounding boxes) that may possibly enclose faces. This stage
efficiently filters out non-face regions, reducing computa-
tional load in subsequent stages. The second stage (The
Refine Network) concerns the refinement of the previously
generated bounding boxes. A CNN is applied to eliminate
false positives and optimize the size and positioning of
the bounding boxes for improved alignment with the actual
faces in the image. Lastly, in the third phase (The Output
Network), facial landmark detection is conducted. This stage
identifies key facial landmarks, including the eyes, nose,
and corners of the mouth (both left and right), within each
bounding box (refer to Fig. 2). MTCNN was selected for
face detection for several reasons, including its exceptional
accuracy in identifying faces within images, resilience in
handling diverse lighting conditions, its multi-stage approach
for refining face detection, efficient computation, and its
outstanding generalization ability across various face sizes.

Using the bounding box positions, the regions containing
the detected faces were extracted, resulting in cropped face
images. To ensure a balanced trade-off between computa-
tional efficiency, information preservation, and model per-
formance, the images were resized to 200x200 pixels using
bilinear interpolation — a resampling method that facilitates
smooth resizing. The initial dataset comprised 9849 samples
for the handing task and 7944 samples for the pouring
task. The images were labeled as high trust or low trust
depending on the robot’s performance in the several trials.
Images collected during high-performance trials were labeled
as high trust, while those from low-performance trials were
labeled as low trust. Subsequently, the images underwent
standardization. Given that the dataset size for both tasks was
relatively small, employing data augmentation techniques
was crucial for enhancing the model’s performance. As
a result, online data augmentation methods were applied,
encompassing, for example, flips and rotations (ranging from
0 to 40 degrees) to mitigate overfitting. Choosing the right

techniques is crucial, as an improper selection may lead
to the loss of facial details (e.g., extreme zooming). The
augmented images were also standardized for consistency.

III. EXPERIMENTAL RESULTS

The subsequent analysis delves into investigating the cor-
relation between facial gestures and the trust levels of human
operators, framed as a binary classification problem: high
trust and low trust.

Given their inherent capability to capture spatial patterns
within images, 2D-CNNs stand as a well-suited choice for
the analysis of facial gesture images. The deep learning
algorithms were implemented on Tensorflow platform. In
the context of both the Handing and Pouring datasets, the
data were divided into training, test, and validation sets with
participant-based splitting approach. Specifically, the training
set encompassed data from 12 participants, constituting 60%
of the dataset, while the test set was composed of data
from 4 participants, representing 20%, and the remaining 4
participants were allocated to the validation set, also making
up 20%. This partitioning strategy ensured the model’s eval-
uation on unseen data. In the following, the three different
architectures used for 2D-CNNs are presented with the rela-
tive classification results. To improve the training efficiency
and convergence of the models, two optimization algorithms
were employed - Adaptive Moment Estimation (Adam) and
Stochastic Gradient Descent (SGD). Regarding Adam, a
learning rate of 0.001 was utilized to regulate the step size
of weight updates, while beta 1 and beta 2 parameters were
set to 0.9 and 0.999, respectively. These parameter values
influenced the exponential decay rates for the first and second
moments of gradients, thereby enhancing the model’s ability
to adapt its learning rates dynamically. Regarding SGD, a
learning rate of 0.001 was utilized, and a momentum factor
of 0.9 was added to exploit previous gradients, facilitating
faster convergence. The 2D-CNN models were compiled
with the binary cross-entropy loss function and underwent
training for 20 epochs, with a batch size of 32. The input of
the model was a 4D tensor (batch size, height, width, depth)
where the last three dimensions represented the dimensions
of the image 200x200x3 (200x200 pixels and 3 channels, i.e
red, green and blue).

With reference to Architecture 1, a 2D-CNN was imple-
mented with a series of layers designed to process and extract
features from the input data. To begin with, a convolutional
layer was used, employing 32 filters, each with a 3x3 kernel
size, and Rectified Linear Unit (ReLU) activation. Following
this, a max-pooling layer with a 2x2 pooling window was
applied to reduce spatial dimensions and ease computational
load. To prevent overfitting, a dropout layer was introduced
with a 0.25 dropout rate, randomly deactivating 25% of
neuron outputs during training. The network then incor-
porated another convolutional layer with 64 filters and a
3x3 kernel, followed by ReLU activation to capture more
complex patterns in the data. Subsequently, a second max-
pooling layer with a 2x2 pooling window was employed.
Another dropout layer with a 0.25 rate further enhanced
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Fig. 3: The 2D-CNN Architecture 3 that provided the best accuracy solution for both handing and pouring analysis.

regularization. The feature maps were flattened into a one-
dimensional vector using a flatten layer, serving as input for
subsequent fully connected layers. A dense layer with 128
units and ReLU activation was introduced to extract higher-
level features. A dropout layer with a 0.5 rate was included
before the final output layer, which consisted of a single
neuron with sigmoid activation. The results demonstrated an
accuracy of 65.77% using Adam and 71.59% with SGD for
the handing task. In the case of pouring, the 2D-CNN model
achieved an accuracy of 66.53% with Adam, while it yielded
71.48% with SGD.

Concerning Architecture 2, the following model was
developed. To begin with, a convolutional layer was charac-
terized by 64 filters, 3x3 pixel kernel, and ReLU activation
function. Subsequently, a max-pooling layer with a 2x2
pooling window was utilized. A dropout layer was used
with a dropout rate of 0.25 to mitigate overfitting. Then,
the model consisted of an additional convolutional layer,
featuring 128 filters utilizing a 3x3 kernel and the ReLU
activation function. Subsequently, spatial dimensions were
reduced by a max-pooling layer with a 2x2 pooling window.
A dropout layer with a dropout rate of 0.25, was employed.
Continuing with the description of the model, the feature
maps underwent transformation into a one-dimensional vec-
tor through a flatten layer, preparing them for integration
into the subsequent fully connected layers. Consequently, a
dense layer, with 256 units and utilizing ReLU activation,
was incorporated. Before the final output layer, a dropout
layer with a 0.5 rate was introduced, further intensifying
the regularization efforts. To conclude, the output layer
comprised a single neuron using sigmoid activation, which
yielded the probability output for the class. The accuracies
were observed as 54.96% with Adam and 69.46% with SGD
for the Handing analysis. In the case of Pouring, the accuracy
reached 63.02% with Adam and 73.30% with SGD.

The Architecture 3 comprised three convolutional layers
with varying parameters, each followed by a max-pooling

layer and dropout layer. For the convolutional layers, the
parameters included the number of filters 32, 64, and 128, the
3x3 kernel size for each, and the activation function ReLU.
The max-pooling layers consistently used a 2x2 pooling
window size. The dropout layers were set with a dropout rate
of 0.25. After the three repetitions of the pattern (Conv2D,
MaxPooling2D, and dropout layer), a flatten layer prepared
the data for fully connected layers. The following dense
layer had 256 units and used ReLU activation, while the last
dropout layer, just before the final output layer, had a 0.5
dropout rate. The architecture concluded with a dense layer
containing a single neuron with sigmoid activation, making it
suitable for binary classification tasks. With this architecture,
an accuracy of 58.20% was achieved with Adam and 78.61%
with SGD for Handing. Regarding Pouring analysis, the
accuracy reached 58.01% with Adam and 73.35% with SGD.
Fig. 3 illustrates the Architecture 3, which, among all the
architectures, achieved the highest accuracy for both handing
and pouring task.

IV. DISCUSSION

The analysis delved in the investigation of facial gestures
as expression of the trust level of the human operator towards
the robot’s capabilities. Facial gestures, a form of non-
verbal communication, offer valuable insights into the user’s
emotional state towards the robot and can provide real-time
feedback regarding trust levels during the interaction. This
would enable prompt adjustments and adaptations in the
robot’s behavior or decision-making to maintain a safe envi-
ronment and balance workload. 2D-CNNs were employed to
explore the relationship between trust categorization and fa-
cial gestures. In the following, the discussion of performance
metrics results is presented. In Table I, a comprehensive
summary of the results for the Handing task can be found,
while Table II contains the summary for the Pouring task.
Concerning the description about the different architectures,
refer to Section III.



(a) Handing. (b) Pouring.

Fig. 4: Confusion Matrix Analysis (Architecture 3 with SGD optimizer).

Fig. 5: AUC-ROC curve for handing task.

To begin with, 2D-CNN (Architecture 3 with SGD op-
timizer) attained a 78.61% accuracy for the Handing task,
and 73.35% for the Pouring task. The SGD optimizer likely
delivered improved results over Adam thanks to its inherent
stochasticity that can help it escape local minima, making it
a robust optimization algorithm. The confusion matrices are
depicted for both Handing (Fig. 4a) and Pouring (Fig. 4b)
considering the architecture that yielded the highest accuracy.
To further evaluate the classification performance, Receiver
Operating Characteristic (ROC) curves plotting the true
positive rate against false positive rate were generated for
each architecture. The area under the curve (AUC) provides
a comprehensive measure of classification ability across
different thresholds. For the handing task, Architecture 3
with SGD demonstrated an AUC of 0.87 while it achieved
an AUC of 0.72 for the pouring task. Fig. 5 and Fig. 6
depict the AUC-ROC curve for the handing and pouring
tasks, respectively.

Analyzing the findings, it is evident that the participants
exhibited susceptibility to emotional responses conveyed
through their facial expressions when engaged in both hand-
ing and pouring task. The emotional expressiveness observed
may be attributed to the heightened risk perception of
potential harm. This risk is associated with the possibility

Fig. 6: AUC-ROC curve for pouring task.

of a collision with the robot during the handover task and
exposure to chemicals during the pouring task. Nevertheless,
the manifestation of facial expressions was not flawless. It
is important to note that not all participants demonstrated
maximum expressiveness. One contributing factor could be
the potential influence of the physical environment within the
experiment’s framework. Since the study took place in a lab-
oratory environment under the observation of researchers, it
is plausible that participants demonstrated greater confidence
levels than they would in real-world situations. Furthermore,
participants’ diverse cultural backgrounds may have influ-
enced their responses to the robot’s capabilities, subsequently
affecting their trust levels and facial expressions. Throughout
the experiment, a subset of participants exhibited a lack of
facial expressions, irrespective of the robot’s performance.
Enhancing emotional responses could be improved by in-
troducing riskier robot movements, accompanied by vocal
feedback that underscores the potential for collisions, thereby
likely provoking more pronounced psychological reactions
from the participants.

Trust has an intricate nature, highlighting the need for a
more robust analysis to capture the full spectrum of its ex-
pressions. While facial gestures can offer insights into trust,
incorporating additional sensors alongside facial gestures has



TABLE I: Performance metrics relative to the three different
architectures for Handing analysis.

Optimizer Arch. Accuracy AUC Precision Recall F1-score

Arch. 1 65.77% 0.72 0.43 0.66 0.52
Adam Arch. 2 54.96% 0.59 0.54 0.55 0.54

Arch. 3 58.20% 0.61 0.56 0.58 0.57

Arch. 1 71.59% 0.80 0.70 0.66 0.65
SGD Arch. 2 69.46% 0.82 0.71 0.69 0.66

Arch. 3 78.61% 0.87 0.78 0.79 0.78

TABLE II: Performance metrics relative to the three different
architectures for Pouring analysis.

Optimizer Arch. Accuracy AUC Precision Recall F1-score

Arch. 1 66.53% 0.67 0.72 0.67 0.61
Adam Arch. 2 63.02% 0.71 0.72 0.63 0.54

Arch. 3 58.01% 0.68 0.45 0.58 0.43

Arch. 1 71.48% 0.65 0.72 0.71 0.70
SGD Arch. 2 73.30% 0.67 0.80 0.74 0.70

Arch. 3 73.35% 0.72 0.80 0.73 0.70

the potential to enrich the understanding of trust, especially
considering its intricate and multifaceted nature.

V. CONCLUSION

The study aimed to explore the link between trust and
facial expressions of human operators while interacting with
robots. In the presented research, it was simulated a chemical
industry setting where a robotic arm assisted users by deliv-
ering and dispensing chemicals into a beaker. The method-
ology employed to investigate the correlation between facial
gestures and trust levels involved the utilization of 2D-CNNs.
The obtained accuracy resulted in 78.61% for the hand-
over task and 73.35% for the pouring task. However, facial
gestures alone is not sufficient in delivering the requisite pre-
cision for accurately categorizing trust, primarily due to their
inherent complexity and susceptibility to misinterpretation.
As result, a more advanced approach is imperative, which
involves the implementation of sensor fusion algorithms.
Leveraging data from diverse sensors has the potential to
significantly augment the detection of a proper trust response
from human operators. Consequently, in future endeavors, we
will focus on the development of sensor fusion-based models
designed to categorize trust efficiently and conduct a more
nuanced analysis of trust evolution over time. The ultimate
goal is to enable the robot to adapt its behavior in response
to the current trust level, thereby ensuring both safety and
workload balance.
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