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Investigating Electrodermal Activity for Trust Assessment in Industrial
Human-Robot Collaboration*

Giulio Campagna1, Dimitrios Chrysostomou2, Matthias Rehm1

Abstract— In the Industry 5.0 framework, due to the close
collaboration between humans and robots, providing a safe
environment and balance workload becomes an essential re-
quirement. In this context, evaluating the trustworthiness of
robots from a human-centric perspective is essential as trust
impacts the interaction in human-robot collaborations. Numer-
ous researchers in the literature have delved into physiological
responses as indicators of user trust in robots. In this research
endeavor, multiple machine learning models were employed,
leveraging skin conductance response (SCR) to classify the trust
level of the human operator. A chemical industry scenario was
developed, where a collaborative robot supported a human
operator by handing over a beaker used for the pouring of
chemicals. The machine learning models achieved a moderate
accuracy rate of 68.99% and AUC of 0.73 for the hand-
over task. Nonetheless, this study underscores the importance
of sensor fusion techniques to improve the accuracy of trust
assessment within the context of human-robot collaborations.

I. INTRODUCTION

Industrial environments are transitioning to Industry 5.0
paradigms, focusing on resilience, sustainability and human-
centered production. This transition requires seamless and
safe human-robot collaboration (HRC) while maintain-
ing appropriate trust levels between human operators and
robots [1]. Trust is a pivotal component that enables produc-
tive collaboration between human coworkers and robotic as-
sistants in industrial settings. When human operators demon-
strate an appropriate level of trust in robots, it enables them
to rely on the robots’ capabilities for reliable execution of
collaborative tasks, thus facilitating effective coordination
and seamless teamwork dynamics [2]. However, excessive
trust can lead to complacency and safety risks, while insuf-
ficient trust impedes collaboration and overburdens human
operators [3]. Therefore, effectively evaluating trust levels
during real-time human-robot interactions (HRIs) and main-
taining appropriate trust calibration are crucial prerequisites
for ensuring safe coordination in HRC across next-generation
smart factories and Industry 5.0 production facilities [4].

Trust, as a multidimensional concept, has been extensively
studied in human interactions with automated systems and
intelligent robots. Seminal works by Muir and Moray [5] and
Lee and See [6] established the theoretical foundations where
trust is defined as an operator’s willingness to act on an
automated system’s recommendations in situations involving
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vulnerability, uncertainty, and risk. Factors affecting trust in
HRC can be categorized into human-related, robot-related,
and environmental clusters [7], with specific factors such as
transparency of robot intentions [8], robot appearance [9],
robot speed [10], and task importance [11] critically influ-
encing trust. Recent research has shown that factors such
as proxemic distances and risks associated with unexpected
robotic movements, can significantly influence user trust,
reducing trust levels during collaborative activities [10],
[12]. Many prior studies have relied on post-interaction,
retrospective evaluations of trust levels using surveys, and
questionnaires [13], [14]. Although these tools are well-
established tools for assessing trust, they cannot capture the
trust fluctuations during dynamic interactions.

Electrodermal Activity (EDA) and its phasic component,
Skin Conductance Response (SCR) offer potential in evalu-
ating emotional arousal, anxiety, cognitive load, and stress
responses, which are key indicators of trust [15], [16].
While EDA has been extensively used in emotion recognition
research [17], [18], its application to trust estimation has
been relatively unexplored. Studies have investigated the
correlation between EDA and trust in various contexts, such
as text-based games [19], semi-automated robot operation
[20], and autonomous driving scenarios [21], [22], achieving
accuracies ranging from 73% to 81.6% in trust classification
using EDA features, sometimes in combination with other
measurements. However, these studies faced challenges in
data labeling, relying solely on user responses to assess trust.

This research aims to explore the use of SCR data as
an implicit, objective psycho-physiological indicator of trust
levels during HRIs in industrial settings. The study employs a
representative scenario from the chemical industry, involving
close coordination and collaboration between humans and
robots during the handling of hazardous chemicals inside a
beaker, where unexpected robotic movements may signify a
potential decline in trust from the human perspective.

This study integrates skin conductance measurements from
wearable sensors and machine learning techniques to build
a data-driven framework for categorizing trust levels based
on the implicit psycho-physiological cues and reactions of
the human operator. Monitoring of SCR data during collab-
orative tasks allows the system to infer trust dynamics and
adapt the robotic controller’s behavior to maintain calibrated
trust levels, ensuring enhanced safety and balanced work-
load coordination during close collaboration in Industry 5.0
environments. The key technical contributions are:

• Devising a data-driven framework combining SCR data
streams and machine learning algorithms to categorize
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Fig. 1: The electric scheme for the Shimmer3 GSR+ Unit.

trust levels based on implicit psycho-physiological re-
actions and responses.

• Training and evaluating the proposed framework on
SCR dataset systematically labeled through experimen-
tal conditions, to reliably map physiological cues to
corresponding trust levels.

Research on wearable systems for trust inference is still
limited, and most approaches combine EDA with other
measurements, raising questions about the true effectiveness
of EDA in this context. Additionally, most approaches use
informal data labeling instead of well-established measure-
ment tools. In the subsequent section, we introduce a data
collection method for skin conductance signals that relies
on automatic labeling derived from a reliable ground truth
source [12].

II. METHODOLOGY

The research study delved into the analysis of SCR and
its correlation with the trust levels exhibited by participants.
This investigation took place within the context of a chemical
scenario in which a collaborative robot assisted a human
operator in tasks involving the handing of a beaker with
chemicals inside.

In a previous research [12], it was demonstrated that the
trust levels of human operators varied significantly based on
the performance of the robot. More specifically, when the
robot approached the human operator too closely, participants
reported lower levels of trust. Conversely, when the robot
exhibited high-performance capabilities, completing tasks
without malfunctions and minimizing the risk of collisions
or harm from chemicals, participants displayed higher levels
of trust. Drawing from these findings, the current study
sought to replicate the same scenario while manipulating the
robot’s performance, resulting in two distinct performance
modalities: high performance and the other low performance.
This deliberate manipulation allowed for the creation of two
experimental conditions: high trust and low trust, related
to the high and low performance modalities, respectively.
This innovative approach facilitated the collection of SCR
data with automatic labeling (i.e. high or low trust). Within
the experimental framework, every participant was involved
in two separate trials for each condition, resulting in a
cumulative total of four task executions. In the course of each
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Fig. 2: The chemical industry environment and the Shimmer3
GSR+ Unit.

trial, the robot followed distinct trajectories for delivering the
beaker to the user. This methodology facilitated a thorough
investigation into the physiological responses linked to the
diverse levels of trust exhibited by the user.

A. Experimental Setup

The main component in our experimental setup was the
Universal Robots UR10 Robot1 which was employed to
assist the human in handling the beaker with the chemicals.
The 6-DoF (degrees of freedom) UR10 robot is a six-axis
manipulator arm with six rotational joints and it is designed
to provide high reliability and precision in collaborative
tasks. It was equipped with the RG6 gripper from OnRobot,
a flexible 2-fingered gripper capable of providing up to 150
mm of stroke. Throughout the experiment, the path plan-
ning and grasping phases were pre-configured in advance.
Nevertheless, participants were explicitly informed that the
robot exhibited autonomous behavior, which introduced the
possibility of malfunctions and an element of unpredictabil-
ity. The assistant was provided with an emergency button to
halt the robot in case of possible collisions with the human
operator.

With the purpose of measuring skin conductance, the
Shimmer3 GSR+ Unit2 was utilized. The Shimmer3 GSR+
Unit is a wearable sensor equipped with advanced sensing
technology, designed to capture variations in electrical con-
ductance on the skin’s surface. With reference to [23], one
electrode should be placed on the palmar surface of the
medial phalange (e.g. index finger) and the other on the
palmar surface of the distal phalange (e.g. middle finger),
as illustrated in Fig. 1. Shimmer is equipped with a 12-
bit ADC, indicating that it can provide readings within the
range of 0 to 4095. A calibration equation is employed to
transform the ADC output into skin resistance, and subse-
quently, by taking the reciprocal, the skin conductance is
derived. Skin conductance provides insights into shifts in an

1https://www.universal-robots.com/cb3/
2https://shimmersensing.com/product/shimmer3-gsr-unit/



individual’s emotional or psychological condition. Typical
skin resistance varies from 47kΩ to 1MΩ resistance (21µS
to 1µS conductivity) [24]. Increased sweating results in
higher skin conductance (lower skin resistance). Arousal,
heightened alertness, discomfort, or sudden shock may in-
duce individuals to perspire as their bodies prepare for
potential exertion in response to a perceived threat, enabling
temperature regulation through heightened sweat production.

To conclude, both participants and assistant were equipped
with laboratory coats, gloves, and safety glasses for safety
reasons. With reference to the chemicals utilized, the beaker
held by the robot was filled with water. The true chemical
composition was disclosed at the experiment’s end, in line
with the participants’ prior awareness of the potential hazards
linked to these substances. The experimental scenario is
depicted in Fig. 2.

B. Procedure

The research encompassed a group of 20 participants,
evenly split between 10 males and 10 females, showcasing a
diverse range of ages (M=29.1, SD=7.54). The participants
exhibited varying degrees of familiarity with robots, with
10 individuals possessing hands-on experience with robotic
technology, while one had merely encountered robots in
real-world scenarios, such as exhibitions. The remainder 9
participants had no previously experience with robots.

Following the Declaration of Helsinki and in accordance
with ethical guidelines, the study was subjected to a rigorous
review and received formal approval from the institutional
review board, recognizing the importance of ethical standards
in research involving human subjects. Prior to the com-
mencement of the experiment, participants were provided
with a detailed explanation of the study’s purpose, the tasks
involving interactions with the robot, the research methodol-
ogy, and the potential risks. This comprehensive information
was accompanied by a printed consent form, ensuring that
participants were fully informed.

In addition, the assistant provided support to the partic-
ipant by guiding them through the process of donning the
necessary personal protective equipment. Lastly, the Shim-
mer3 GSR+ Unit was securely positioned beneath the non-
dominant hand, which was not involved in the experiment
due to the nature of the task. This placement was achieved
using adjustable straps, guaranteeing comfortable and unob-
trusive data collection. When using skin-contact electrodes
with potential movement at their location, motion artifacts
can affect the signals, typically appearing as high-frequency
noise-like components in recordings. To mitigate this artifact,
the electrodes were pressed tightly onto the skin to provide
better contact and consequently higher conductance values.
The subsequent sections will detail a cleaning phase designed
to address and overcome this issue.

Each participant spent a total of 20 minutes, encompassing
all the experiment stages, including the initial explanation.
During this time, the participant performed the task four
times (3 minutes for each trial), experiencing the robot’s dual
performance modes: high and low performance.

TABLE I: Extracted features for SCR.

Feature Description

Mean Average value of the amplitude of SCR.
Median Center value of SCR.

Stand. Dev. Dispersion of the SCR relative to its mean value.
Minimum Lowest value of SCR.
Maximum Highest value of SCR.

C. Data Collection

The controlled data collection was timed to capture the
physiological responses of the participants for the handing
task. The acquisition of raw skin conductance data was
performed at a sampling rate of 60 Hz.

D. Data Pre-Processing

To begin with, the skin conductance raw data underwent
a cleaning phase. A Butterworth low-pass filter with a 3
Hz cutoff frequency was utilized on the data to eliminate
high-frequency noise originating from factors such as motion
artifacts and other sources of interference [25]. The filter
permits all frequencies within the passband to pass with uni-
form gain, leading to minimal distortion. Skin conductance
is divided in two components: phasic and tonic component.
According to several studies found in the literature [26],
[27], a commonly adopted approach involves distinguishing
between the slowly-evolving tonic or baseline response,
also referred to as Skin Conductance Level (SCL), which
is primarily influenced by factors such as skin condition
and temperature, and the rapidly-varying phasic response
(SCR), which encompasses reactions to both specific and
non-specific stimuli. The greater the variations in the phasic
component of the signal, the more likely it is that the
subject is in an increased state of arousal. Therefore, for
the subsequent analysis, the SCR component was extracted
using a Butterworth high-pass filter with a cutoff frequency
of 0.05 Hz [28].

In summary, the dataset for the handing task comprised
20275 samples. Every data sample received an automatic
trust label, determined by the experimental condition in
each participant’s trial. A low-trust label was assigned when
the robot’s performance was poor, while a high-trust la-
bel was assigned when the robot operated with high-level
performance. Exploratory Data Analysis was employed to
inspect the dataset and identify outliers within the dataset.
To eliminate outliers, the Z-score method was applied with
a threshold set at 3. As a result, the Handing dataset was
reduced to 19400 samples (a 4.32% decrease). Afterwards,
the extraction of the features was conducted. With reference
to [25], for each trial of the participant, the following
features were extracted to analyse the physiological arousal
derived from the interaction: mean, median, standard devi-
ation, minimum, maximum. An overview of the features is
presented in Table I. Following the feature extraction process,
the dataset underwent standardization and label encoding
processes. To conclude, the last phase focused on feature



TABLE II: The optimal hyperparameters of each model
determined by Grid Search Cross-Validation with 5-fold
cross-validation approach.

Model Hyperparameter Value

Random Forest
max depth 10
min samples leaf 4
min samples split 10
n estimators 50

XGBoost
max depth 3
n estimators 50
learning rate 0.05

LightGBM
max depth 10
n estimators 50
learning rate 0.05
num leaves 63
boosting type dart

Voting Classifier
voting soft

TABLE III: Machine Learning models with related perfor-
mance indicators for Handing task.

Model Accuracy AUC Precision Recall F1-score

Random Forest 66.61% 0.67 0.66 0.67 0.66
XGBoost 68.99% 0.73 0.68 0.69 0.68

LightGBM 67.63% 0.68 0.67 0.68 0.67
Voting 67.97% 0.71 0.67 0.68 0.67

selection using a tree-based algorithm, as ensemble models
such as Random Forest, XGBoost, and LightGBM will be
employed in the machine learning analysis. XGBoost was
utilized as the tree-based algorithm to select features due
to its efficiency and robustness. The assessment of feature
importance was conducted using the gain metric, which
calculates the average performance improvement associated
with each feature throughout the model’s training process.
A selection criterion was defined, with features considered
significant if their importance score exceeded 5% of the
maximum value. Furthermore, trial-and-error approach was
used to fine-tune the final selection of the features. In
conclusion, all features were considered as input for the
machine learning models.

III. EXPERIMENTAL RESULTS

A comprehensive analysis was conducted to examine the
potential correlation between the trust levels exhibited by
human operators, specifically categorized as either high trust
or low trust, and their corresponding physiological responses,
expressed as SCR values. These values serve as indicators
of the operators’ emotional states.

Machine learning algorithms, implemented on the Ten-
sorflow platform, were applied to examine both the hand-
ing and pouring tasks. Specifically, the chosen algorithms
encompassed Random Forest, XGBoost, and LightGBM.

The selection relied upon the features of each algorithm.
Random Forest enhances accuracy by constructing multiple
decision trees and aggregating their predictions, effectively
mitigating overfitting. XGBoost excels in predictive precision
due to its gradient boosting technique. LightGBM, another
gradient boosting algorithm, demonstrates high speed and
efficiency, achieved through its histogram-based approach,
which accelerates computations while maintaining accuracy.
In conclusion, the Voting Classifier was employed to harness
the advantages of combining the multiple classifiers for the
final prediction of the class, thereby reducing classification
errors and overfitting.

Before examining the model’s hyperparameters tuning,
it is important to highlight that the training set comprised
70% of the data, encompassing 14 participants, while the
remaining 30%, involving 6 participants, constituted the test
set. The utilization of this partitioning criterion guaranteed
that the model underwent evaluation using entirely unseen
data. In the following, the model’s hyperparameters were
tuned using Grid Search Cross-Validation with 5-fold cross-
validation approach.

In the Random Forest analysis, the optimization of the
hyperparameters governing individual decision trees within
the ensemble was carried out. These parameters included
maximum depth, minimum samples in leaf nodes, minimum
samples for node splitting, and the number of decision trees.
For the Handing dataset, the best configuration was deter-
mined as max depth 10, min samples leaf 4, min samples
split 10, and n estimators 50, resulting in an accuracy rate
of 66.61% and 0.67 AUC score .

Considering XGBoost, the hyperparameters included max-
imum depth, number of decision trees and learning rate.
The optimal hyperparameter configurations turned out to be
learning rate 0.05, max depth of 3, and n estimators 50.
Consequently, these parameter settings translated into final
accuracy rates of 68.99% and an AUC score of 0.73.

With reference to LightGBM, the selected hyperparame-
ters comprised boosting type, learning rate, maximum depth,
number of decision trees, and the number of leaves in
the decision tree. The optimal hyperparameters emerged as
follows: ’dart’ for boosting type, a learning rate of 0.05, max
depth 10, n estimators 50, and num leaves 63. As a result,
the achieved accuracy was 67.63% and AUC score was 0.68.

To conclude, as previously mentioned, the Voting Classi-
fier was employed to mitigate overfitting and enhance the
robustness of the analysis. In this case, the hyperparam-
eter to fine-tune was the voting technique, as the Voting
Classifier utilizes two distinct approaches: hard and soft
voting. Under hard voting, the ultimate prediction hinges
on the class that receives the most votes. In contrast, soft
voting takes into account class probabilities, computing the
average probability for each class. The final prediction is
then based on the class with the highest average probability.
The base classifiers, namely Random Forest, XGBoost, and
LightGBM, were configured using the previously determined
optimal hyperparameters. The soft voting method emerged as
the optimal choice, achieving an accuracy rate of 67.97% and
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Fig. 3: Handing task and related analysis results using Voting Classifier.

0.71 as AUC score.
A comprehensive summary of the best hyperparameters

of each model is reported in Table II. Table III presents the
performance indicators results for the several algorithms.

IV. DISCUSSION

In this analysis, the primary objective was to investigate
the correlation between physiological responses, particularly
SCR, and the trust levels exhibited by human operators.
Given that trust plays a pivotal role in determining individu-
als’ comfort and their inclination to engage in collaborative
efforts with robots, SCR was examined for objectively mea-
suring emotional reactions and the associated physiological
arousal connected to trust. The three machine learning algo-
rithms used for the analysis of SCR data and trust will be
discussed, summarizing the key findings and performance
metrics.

The study incorporated a variety of ensemble machine
learning models, specifically Random Forest, XGBoost, and
LightGBM. These algorithms yielded diverse outcomes when
applied to the handing task. Table III presents the machine
learning models and their associated performance indica-
tors, including classification accuracy and Area Under the
Curve (AUC). XGBoost showcased superior performance by
achieving a moderate classification accuracy of 68.99% and
AUC score of 0.73. To mitigate the slight overfitting, the
Voting Classifier was employed to enhance result robustness.
This algorithm delivered an accuracy of 67.97% and 0.71
as AUC. The confusion matrix and Receiver Operating
Characteristic (ROC) curve of Voting Classifier are reported
in Fig. 3a and Fig. 3b, respectively.

In light of the results, the experimental scenario was able
to elicit apprehension from the participants in relation to
their proximity to the robot. This increased sensitivity to
physical closeness played a role in the fluctuations observed
in trust levels, which corresponded to variations in the SCR
values. Furthermore, participant’s physiological state could

have been affected by the nature of the task, specifically, the
transportation of a beaker containing hazardous chemicals.
Nonetheless, there are various factors to consider for enhanc-
ing the experimental setup with the goal of improving the
accuracy in classifying trust levels. To begin with, if the robot
were to incorporate more dynamic or potentially hazardous
movements during the handling task, it might increase the
probability of eliciting a broader range of physiological
responses from the participants. Moreover, it is important
to consider the psychological factors at play during the in-
teraction. Participants may have had preconceived notions or
biases about robots, influencing their trust and physiological
responses. Lastly, external factors, including the presence
of researchers, the controlled laboratory environment, or
the novelty of the robotic interaction, may have exerted an
influence on participant responses, potentially obscuring any
underlying correlations. To address this limitation, employ-
ing a more realistic scenario, such as an actual workplace
environment within a company, may prove more effective in
examining trust. In such settings, participants may experi-
ence a greater degree of real-world risk, providing a more
authentic context for trust assessment. To conclude, the inclu-
sion of additional sensors could improve the reliability and
robustness of the machine learning framework to categorize
trust accurately. Incorporating multi-modal data provides a
comprehensive perspective by considering both physiological
and behavioral cues (e.g., body posture, facial expressions),
thereby refining the model’s capacity to discern subtle varia-
tions in trust dynamics. Consequently, strategically deploying
diverse sensors emerges as a promising approach to advance
both the accuracy and comprehensiveness of trust classifica-
tion within the experimental setup.

V. CONCLUSION

In this investigation, physiological responses were ex-
amined as an indicator of trust level towards the robot.



Specifically, SCR was selected for this purpose for its
potential to reflect emotional engagement or discomfort, both
integral aspects of trust. The scenario consisted of a chemical
industry environment with a cobot working alongside with
the human operator. The cobot’s primary task was to hand
a laboratory beaker with a chemical to the human operator.
A machine learning analysis was subsequently carried out to
explore potential correlations between user trust levels and
the data derived from SCR measurements. The XGBoost
algorithm demonstrated a moderate level of accuracy of
68.99% and AUC score 0.73.

The results highlight the need for sensor fusion to deliver
a more reliable and unbiased evaluation of trustworthiness.
Improved precision in classifying trust levels is essential for
tailoring the robot’s behavior to match the human’s current
trust level, thereby enhancing safety and optimizing the
distribution of workload in the environment. With further
refinement of the methodology and sensors, the use of phys-
iological signals provide an effective approach for modeling
human-robot trust. In the long term, the authors aim to
develop a model capable of conducting a more detailed
analysis of trust fluctuations. This endeavor seeks to establish
a dynamic framework that can better capture and understand
the nuanced changes in trust over time.
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