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Abstract. Ventilation is critical for maintaining thermal comfort and air quality in buildings. However, 
developing ventilation control is challenging due to the large number of control variables and performance 
criteria. Typical ventilation controls are On-Off controls, time schedules, and PI/PID controls. Specific 
parameters are tuned based on simple rules of thumb and the engineer’s experience. Although building 
simulation tools are commonly applied, they are normally used to evaluate the performance of certain control 
strategies rather than guide the development of these control strategies. This study presents a novel Monte 
Carlo modelling method that supports the early-stage development of ventilation control. The method 
consists of the following steps: (1) Creating an initial building model, (2) Identifying relevant control 
variables and assigning probability distributions, (3) Executing Monte Carlo simulations, (4a) Applying 
filters to assess the outcomes, (4b) Performing sensitivity analysis on control variables, (5) Selecting a 
ventilation control strategy fulfilling control objectives. The method is tested on a classroom equipped with 
a hybrid ventilation system. The case study demonstrates that the novel approach, allows ventilation 
designers to systematically identify high-performance control solutions for multiple control variables and 
performance requirements. Thus, offering clear advantages over the traditional trial-and-error method.

1 Introduction 
Ventilation is one of the most important systems for 
maintaining thermal comfort and air quality in 
buildings. Hybrid ventilation combines mechanical and 
natural forces in a dual-mode system [1]. The active 
mode adapts to both indoor and outdoor conditions and 
takes maximum advantage of ambient conditions. 
Compared to natural ventilation or mechanical systems, 
hybrid ventilation systems consist of more controllable 
elements, such as operable building envelopes, HVAC 
systems, and room sensors. However, the control of 
these elements is a challenging task because of complex 
interactions between systems, dynamic outdoor and 
indoor conditions (e.g., outdoor air temperature, noise, 
air quality, and occupancy behaviour), and multiple 
control objectives (e.g., energy and comfort) [2]. 

Numerous control techniques for hybrid ventilation 
have been developed over the past decades. The control 
techniques are typically categorized into two layers: 
local control and high-level control [2]. Local control 
includes classic On-Off control and proportional-
integral-derivative (PID) controller [3, 4], where 
specific parameters are tuned based on simple rules of 
thumb and the system design expertise. The limitation 
of local control is that they lack systematic methods for 
optimal technique integration, and are sensitive to the 

changes of exterior and interior conditions [5]. While 
high-level control is an additional layer of control to 
determine the references to the local control using 
specified rules, optimal control, such as model 
predictive control [6-10] and reinforcement learning[11, 
12], or other computational intelligence such as fuzzy 
logic [13, 14]. Data-driven models, which automatically 
learn from real-world collected data of building and 
system dynamics and local disturbances (weather 
conditions and occupant behavior) are contingent on 
data availability and quality. These models are not 
always suitable for developing control strategies in the 
early phases. Commonly, physical-based models are 
employed to develop and test control strategies. These 
models use building simulation tools to capture the 
dynamics of building physics and systems, enabling 
adaptation to disturbances. While building simulation 
models are frequently utilized, their primary role tends 
to be evaluating control strategy performance rather 
than guiding control strategy development, particularly 
during the initial stages.  

This study presents a novel method to support the 
development of ventilation control strategies that 
overcome the above-mentioned challenges. The method 
is based on Monte Carlo simulations to explore the 
control space and uses sensitivity analysis to identify 
critical control variables and support decision-making 
processes.  The proposed method is tested on a typical 
classroom located in Oslo, which is equipped with a 
hybrid ventilation system.   
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2 Methodology 
The workflow of the methodology is shown in Fig. 1 and 
described in detail in the following sections. 

 

Fig. 1. Workflow for stochastic modelling method for control 
development 

2.1 Creating an initial building simulation 
model 

The initial building simulation model includes a 
detailed setup of building envelops, systems and 
building usage.  However, detailed control strategies are 
not considered and only the basic concept for building 
HVAC operation is implemented. For example, in the 
initial model we need to define the ventilation principles 
whether it is natural, mechanical or hybrid ventilation, 
but do not need to specify control variables like setpoints 
and running hours. The initial model serves as the 
starting point from which the engineers or designers 
explore variations on control strategies. 

2.2 Identifying relevant control variables and 
assigning probability distributions  

There is a large number of variables that can be used to 
control ventilation. Based on the literature review by 
Peng et al. [2], the control variables can be classified 
into four categories: indoor environment, outdoor 
climate, building/system, and occupancy. The selection 
of inputs (control variables) is one of the most 
significant steps, where inadequate input coverage may 
overlook key parameters, while an excessive number of 
inputs can consume significant time and resources for 
computation. 

Once relevant control variables are identified, the 
next step is to assign a probability density function to 
each control variable. Generally, four primary 
probability density functions are used in building 
simulations: normal/lognormal, triangular, uniform, and 
discrete/steps [15]. Uniform and discrete functions are 
often used for design or control parameters (e.g., 
window opening ratio), which assign equal likelihood to 

all values within a specified range. Normal or triangular 
functions are typically applied to parameters involving 
aleatory or epistemic uncertainty (e.g., occupancy 
density and occupancy schedule), which allows for a 
wide range of values while emphasizing the likelihood 
of certain values. For each variable, the range and 
probability distribution may depend on the building 
function, technical possibilities, user preference, 
economic considerations or other issues. 

2.3 Executing Monte Carlo simulations 

Monto Carlo simulations enable the exploration of an 
extensive control space by generating numerous random 
samples based on input variable distributions. These 
samples are then used as inputs for the building 
simulation model, and outputs, such as energy use, 
thermal comfort, air quality, etc., are recorded across 
multiple simulations. By aggregating these iterations, 
Monte Carlo simulations produce a range of possible 
outputs and reveal the correlations between inputs and 
outputs, which enables the development of robust 
control strategies adapted to various conditions. 

Several sampling methods have been used in Monte 
Carlo simulations, including random sampling, Latin 
hypercube sampling, and quasi-random sampling (for 
example, Sobol sequence) [18, 21, 25]. The Sobol 
sequence method is used in this study because it is an 
efficient space-filling technique to produce low 
discrepancy sequences by filling multidimensional 
spaces with uniform coverage in the unit hypercube. The 
samples are chosen under consideration of the 
previously sampled points and thus avoids the presence 
of clusters and gaps [26]. In addition, it is possible to 
increase statistical convergence when compared to the 
random sampling method [16].  

2.4 Applying filtering to assess the outcomes  

Monte Carlo simulations produce a wide range of 
possible outputs. Engineers or designers need to further 
define what performance should be achieved by the 
ventilation systems, in terms of energy use, thermal 
comfort and air quality, and other considerations. The 
performance criteria could be based on international 
standards, national regulations, or specific requirements 
set by the clients. By using the performance criteria as 
filters, it could divide the outputs into two subspaces, 
corresponding to behavioral and non-behavioral 
outputs. Monte Carlo filtering is based on factor 
mapping setting, which helps to identify regions of the 
input space that meet certain criteria [25].   

Parallel coordinate plot (PCP) is an interactive tool 
to visualize control space and support the decision-
making process. Each vertical bar represents a variable 
and has its own distribution. Adjusting the filters allows 
to identify suitable settings for control variables to 
achieve the desired performance. Fig. 2 illustrates a case 
study with 10,000 simulations. By applying the filter on 
overheating hours, high CO2 level hours, and ventilation 
capacity, only 683 behavioral simulations remain, as 
shown in Fig. 2.  PCP is effective when exploring and 



analyzing multivariate data. However, if the analysis 
contains more than approximately 10 variables, it 
becomes challenging to identify which variables have a 
significant impact on the output by applying the filter 
[27]. Therefore, sensitivity analysis is needed to 
eliminate non-significant control variables. 

2.5 Performing sensitivity analysis  

Sensitivity analysis allows to identification of the most 
influential control parameters and shows insignificant 
control parameters that can be ignored. Several different 
mathematical methods for sensitivity analysis can be 
found in the literature [21, 25]. In general, they can be 
distinguished by multiple dimensionalities, e.g., 
local/global, quantitative/qualitative, one-at-a-time/all-
at-a-time [28]. The sensitivity analysis method TOM is 
used in this study, which was developed based on the 
Kolmogorov-Smirnov two-sample statistics [27]. This 
method can be used to rank inputs according to their 
influence on one or more outputs, which is suitable for 
identifying critical control variables that have a 
significant impact on one or more performance criteria. 

2.6 Selecting a ventilation control fulfilling 
control objectives and performance criteria. 

Sensitivity analysis assists engineers and ventilation 
designers simplify the decision-making process by 

fixing the non-influential control variables and 
highlighting the variables requiring special attention. By 
interactively adjusting the Monte Carlo filter, it could 
identify the regions of control space fulfilling the 
performance criteria. Subsequently, engineers and 
ventilation designers should select a control strategy 
among the control space aligned with project-specific 
objectives, for example, considering technical and 
economic factors.  

Moreover, control strategies should adapt to the 
change of requirements during a year, for example, 
indoor comfort temperature criteria may vary between 
summer and winter seasons. Therefore, it is 
recommended to select and compare control strategies 
at different time resolutions (annual, two seasons, four 
seasons, or even monthly) based on control objectives. 
This comprehensive approach ensures that the chosen 
strategies effectively align with the dynamic needs of 
the building across varying time frames. 

3 Case study 
The proposed methodology is tested on a typical 
classroom to demonstrate the applicability of the 
method in practice. The initial building model is created 
using BSim, a commonly applied building simulation 
software for analyzing indoor climate and energy 
performance [16]. The classroom is located in Oslo, 
Norway. It has a rectangular shape with dimensions of 

Fig. 2. Parallel coordinate plot for a case study before and after filtering 
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9.2m*6.5m*2.7 m, with two external walls facing 
southwest and southeast, as shown in Fig. 3. The 
occupancy density is 6 m2/person, and equipment load 
and lighting load of 25 W/m2 and 6 W/m2, respectively. 
The classroom has window openings on both external 
façades to facilitate cross-ventilation. At the current 
stage, the window opening area is regarded as a control 
variable, which is reflected as the input parameter of 
natural ventilation capacity. The classroom is also 
equipped with mechanical ventilation with a heating 
coil, a cooling coil, and a heat recovery unit. Besides the 
ventilation system, the room is also equipped with a 
heating system. It is assumed that the full mixing 
condition of the air is achieved in the classroom. 

 

 
Fig. 3. Building simulation model of the test classroom 

Ten control variables are considered in the study, 
including mechanical ventilation (MV) and natural 
ventilation (NV) capacities; heating and cooling 
temperature setpoints; CO2 setpoints; running hours for 
ventilation and night cooling.  To equally explore 
possibilities, uniform distributions (discrete and 
continuous) are assigned to most of the variables and 
their ranges are described in Tabe 1. It must be noted 
that some of the control variables are correlated, for 
example, the night cooling running hour is influenced by 
the ventilation running hour. The same applies to MV 
and NV cooling setpoints, which depend on MV heating 
setpoint. The combination of these variables creates an 
infinitely large control space. To represent this space 
adequately, 10,000 Monte Carlo simulations are 
conducted, offering a substantial sample of the overall 
control possibilities. 

The outputs of the study include the energy use 
(electricity for fan, heating need, cooling need and total 
energy), thermal comfort (overheating hours and 
underheating hours) and air quality (hours surpassing 
CO2 criteria). It is worth noting that heating and cooling 
needs presented in the PCP are already converted into 
electricity consumption by considering their seasonal 
coefficient of performance. The performance criteria 
used for the summer case in this study are no hours 
above 1000 ppm, max 50 hours over 26 °C, no hours 
lower than 19 °C, and the total energy use is as low as 
possible. It is also worth noting that only the occupied 
hours are considered in the thermal comfort and air 
quality performance criteria. 

Considering control variables might have varied 
impacts on outputs in different seasons, sensitivity 
analysis is conducted for each season. Only the summer 

results are presented here, for brevity’s sake. The rank 
of inputs with respect to their sensitivity towards all 
outputs (global) and individual outputs (local) are 
presented in Table 2. It is important to notice that apart 
from the predefined control variables, a randomly 
sampled dummy input is introduced in the analysis. The 
dummy has no impact on any of the output, and it is used 
to identify variables with no impact. The global 
sensitivity reveals that MV cooling setpoint has the 
largest sensitivity towards the overall outputs, followed 
by NV cooling setpoint, MV heating setpoint, and MV 
capacity, respectively. The NV capacity (max air change 
rate) ranks lower than the dummy, indicating it has no 
significant sensitivity towards the outputs. This might be 
due to the predefined range of the NV air change rate 
(ACH) being too large, with even the minimum ACH 
being adequate to maintain acceptable performance. 
Consequently, increasing the NV capacity shows no 
notable impact on the system performance. This also 
indicates that the selection of control variables, along 
with their ranges and distributions, are critical in the 
method. 

Applying filters based on thermal comfort and air 
quality criteria narrows our control space to 1463 
solutions. By adding the filter on energy consumption, 
only one control solution remains. The final control 
solution is shown in the PCP plot in Fig. 4,  and the 
detailed control input and output are described in Table 
3 It is clear that the proposed method is an iterative 
process which allows the decision makers to observe the 
correlations between performance criteria and control 
choices, and provides the flexibility to add and adjust 
performance criteria at different stages of the project.  

The performance of the hybrid ventilation with the 
final control solution is simulated in BSim, as presented 
in Fig. 6. MV is activated when occupants are present, 
lasting several hours after they leave and turning off 
when the indoor temperature reaches ventilation heating 
setpoint.  The maximum ACH for MV is 5.5 h-1. NV is 
available during occupied hours but only activated when 
the temperature or CO2 level cannot be maintained by 
MV. However, NV is significantly applied during 
unoccupied hours to fully explore exploit the night 
cooling potential, and the maximum ACH for NV is 
11.2 h-1. 

 



 

Table 2. Inputs and outputs for the final control solution of the summer case. 

 

Global 
sensitivity 

Local sensitivity 

Input 
Heating 

need 
[kWh] 

Cooling 
need 

[kWh] 

Electricity 
use 

[kWh] 

Total 
Energy 

use 
[kWh] 

Hours 
above 
26 °C 

Hours 
above 
27 °C 

Hours 
above 
28 °C 

Hours 
below 
21 °C 

Hours 
below 
20 °C 

Hours 
below 
19 °C 

Hours 
above 
1000 
ppm 
CO2 

Hours 
above 
1100 
ppm 
CO2 

Ventilation running hours [h] 9 4 8 9 8 7 11 11 4 8 11 9 9 

Night cooling running hours 
[h] 7 1 4 7 6 6 10 8 3 3 6 8 8 

Total venting/ventilation 
running hours [h] 10 7 9 10 10 11 9 9 12 6 5 10 10 

Night cooling: Outdoor 
temperature set-point [oC] 8 5 5 8 7 5 2 4 7 10 7 7 6 

NV capacity 
[m3/h] 12 9 12 11 11 10 12 10 8 11 10 11 12 

NV cooling setpoint  
[oC] 2 11 2 2 2 2 4 5 11 5 3 2 4 

NV CO2 setpoint  
[ppm] 5 2 6 5 4 8 7 7 2 2 4 3 2 

MV capacity  
[m3/h] 4 6 10 6 9 3 1 1 6 7 9 6 7 

MV heating setpoint  
[oC] 3 8 3 3 3 4 5 6 10 12 12 5 5 

MV cooling setpoint  
[oC] 1 10 1 1 1 1 3 3 9 4 2 1 1 

MV CO2 setpoint  
[ppm] 6 3 7 5 5 9 8 12 2 9 8 4 3 

Dummy 11 12 11 12 12 12 6 2 5 1 1 12 11 

 
 
 
 
 

 
 
 
 

 

Table 1. Control variables probability distributions and ranges 

Control variables Unit       Range 
Min      Max 

Variable sampling 
(number of steps) 

Distribution 
Min                     Max 

Ventilation running hour h 10 24 Discrete (15) 
 

Night cooling running hour h 0 14 Discrete (15) 
 

Night cooling: Outdoor temperature set-point °C 10 20 Discrete (9) 
 

NV capacity m3/h 
(h-1) 

756 
(4.7) 

2268 
(14) Discrete (11) 

 

NV cooling setpoint °C 22.5 27 Discrete (9) 
 

NV CO2 setpoint ppm 1000 1900 Discrete (9) 
 

MV capacity m3/h 
(h-1) 

756 
(4.7) 

1965.6 
(12.2) Continuous 

 

MV heating setpoint °C 20 24 Discrete (9) 
 

MV cooling setpoint °C 22 26 Discrete (9) 
 

MV CO2 setpoint ppm 950 1750 Discrete (3) 
 



Table 3. Inputs and outputs for the final control solution of the summer case. 

Input 

Ventilation 
running 
hours 

Night 
cooling 
running 
hours 

Total  
running 
hours 

Night 
cooling: 
Outdoor 
temperature 
setpoint 

NV 
capacity 

NV 
cooling 
setpoint 

NV 
CO2 
setpoint 

MV 
capacity 

MV 
heating 
setpoint 

MV 
cooling 
setpoint 

MV 
CO2 
setpoint 

h h h °C 
m3/h  
(h-1) °C ppm 

m3/h  
(h-1) °C °C ppm 

10 11 21 11 
1814 
(11.2) 25.5 1000 

892 
(5.5) 21 25 °C 

950 
ppm 

Output 

Heating 
need 

Cooling 
need 

Electricity 
use 

Total 
energy use 

Hours 
above 
26 °C 

Hours 
above 
27 °C 

Hours 
above 
28 °C 

Hours 
below 
21 °C 

Hours 
below 
20 °C 

Hours 
below 
19 °C 

Hours 
above 
1000 
ppm  

kWh kWh kWh kWh hour hour hour hour hour hour hour 

0.1 149.7 145.5 295.3 0 0 0 5 0 0 0 

Fig. 5.  BSim simulation results in week 32 with the final control solution  

Fig. 6. BSim simulation results in week 32 with the final control solution  

Fig. 4.  PCP plot showing the full solution space, the filtered solution space and the final solution. 



 

4 Conclusions 
This study presents a novel Monte Carlo modelling 

method to facilitate the early-stage development of 
ventilation control strategies. The method enables 
exploration of the control space by considering multiple 
control variables and performance criteria.  Through 
sensitivity analysis, critical control variables are 
identified, supporting the decision-making process. The 
proposed method is tested on a typical classroom located 
in Oslo, which is equipped with a hybrid ventilation 
system. 

The case study revealed the crucial role of selecting 
control variables and defining their ranges and 
distributions for the success of this method. Improper 
selection or definition of input variables will increase 
the risk of overlooking important variables. 
Furthermore, the case study demonstrated that the 
proposed method is an iterative process that allows the 
decision-makers to observe the correlations between 
performance criteria and control choices. The method 
provides flexibility to adjust performance criteria at 
different stages of the project. This systematical method 
therefore offers clear advantages over the traditional 
trial-and-error method. 

Further study will investigate the applicability of the 
proposed method across different ventilation systems, 
including natural, mechanical and hybrid ventilation. 
Furthermore, the method will be applied in developing 
control strategies a demonstration building to validate 
the applicability in practice.  
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