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A B S T R A C T   

In a context of ecological emergency, ex-ante Life Cycle Assessment (LCA) can be used to prioritize investments 
into technological concepts that are expected to make human activities less damaging to ecosystems and humans. 
Yet forecasts about the future environmental success of technological concepts come with high incertitude and 
require careful appraisal of the distinct levels of knowledge associated with the technology’s indeterminacies. 
This study introduces the algorithmic procedure ENSURe (ENvironmental Success under Uncertainty and Risk) to 
apply ex-ante LCA when incertitude can be decomposed into risk, manageable with probability distributions, and 
uncertainty, a lack of knowledge so problematic that it prevents from defining probability distributions. The 
procedure applies a scenario discovery algorithm to identify combinations of requirements on the most uncertain 
factors to ensure a minimum conditional probability of success which stems exclusively from risk. The analysis of 
these requirements allows evaluating whether the total probability of success for the technological concept is 
above a decision-threshold. The procedure is demonstrated on the case of ex-ante LCA applied to the production 
of new microalgal compounds for health-management in fish farming. ENSURe can be extended to any type of 
model used to inform decisions under the co-existence of risk and uncertainty.   

1. Introduction 

In the wake of Collingridge’s Social Control of Technology (Col
lingridge, 1980) and Beck’s Risk Society (Beck, 1992) in the 
1980–1990’s, the field of Responsible Research and Innovation (RRI) 
(Owen et al., 2013) has problematized and advocated for a limitation of 
the undesired consequences of technological developments. Within this 
context, different types of models within industrial ecology and system 
analysis have provided decision support to various complex cases 
involving the interactions between the environment, people and in
dustry to plan and anticipate. Among these approaches, ex-ante Life 
Cycle Assessment (LCA) (intended as “an LCA performed before the 
technology exists”) stands out as a systemic and holistic ex-ante 
assessment of productive systems which leaves aside the retrospective 
scope of conventional LCA, allowing it to inform responsible innovation 
(Wender et al., 2014). Van der Giesen et al. (2020) describe the aim of 
ex-ante LCA as “to guide R&D decisions to make a new technology envi
ronmentally competitive as compared to the incumbent technology mix”. In 
this paradigm, ex-ante LCA does not forecast the future (Cucurachi et al., 
2018) but explores scenarios to find the optimal technological choices to 

guide R&D accordingly through an iterative process. Using ex-ante LCA 
within such an iterative improvement paradigm constitutes the 
“responsive” dimension (Owen et al., 2013) of RRI in which techno
logical development dynamically responds to societal needs and ex-ante 
LCA provides guidance. While ex-ante LCA here provides necessary 
guidance for existing innovation pathways (Genus and Stirling, 2018), it 
does not meet the need to make decisions about whether to invest time 
and resources into initiating the exploration of broad technological 
concepts. Indeed, in an undisputable context of ecological emergency 
(Intergovernmental Science-Policy Platform on Biodiversity and 
Ecosystem Services, 2019; Ipcc, 2022), policy-driven planning of tech
nological development should prioritize concepts that are likely to 
significantly improve the environmental performance of human 
activities. 

Ex-ante LCA has been applied to specific, well-defined emerging 
technologies such as CO2 reduction to formic acid production (Thone
mann and Schulte, 2019), milk ultra-high-pressure homogenization 
(Valsasina et al., 2017) and front-side metallization of photovoltaic cells 
(Blanco et al., 2020). In this article however, we consider the use of ex- 
ante LCA in a context of an urgent need for decisions about which 
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technological concepts should be further explored. Initiating research 
regarding a technological concept can eventually lead to different 
technological outcomes because these concepts are generally formulated 
as broad and open questions such as “What about using microalgae in fish 
farms?” or “Should we look for seaweed to improve cattle production?”. The 
exact modalities, such as function, location, design, and performance of 
the final technologies remain undefined. Ideally the decision makers of 
the innovation ecosystem (Carraresi and Bröring, 2022) in which such a 
technological concept emerges, from private entrepreneurs to politi
cians, should be informed early on about the probability of the concept 
to develop into a successful technology. Success here intended as 
improving environmental performance compared to a baseline situa
tion. This exercise of projection of the uncertain consequences of a de
cision is already carried out by companies that forecast Return on 
Investment (ROI) (Magni, 2015) considering incomplete information 
and perform Real option-analysis (Block, 2007; Lee, 2011) for strategic 
decision-making where the value of specific performance indicators is 
compared to defined thresholds. At the policy level also, the European 
states’ budgets are for instance disciplined based on arbitrary threshold 
deficit values together with additional assumptions on future financial 
balance evolutions (Priewe, 2020). Ex-ante LCA could be used in this 
same logic across the innovation ecosystem and as soon as concepts 
emerge, thus replacing financial indicators by environmental and social 
ones. Decision makers would invest time and resources in the explora
tion of a technological concept based on a threshold that they would set 
as a minimum probability of success. Instead of trying to correct 
emerging innovation trajectories, ex-ante LCA would assist in deciding 
whether a concept should even be explored, acknowledging the chaotic 
nature of technological development (Brian, 1989; Hung and Tu, 2011), 
especially in the environmental domain (Pizzol and Andersen, 2022), 
and the difficulty to control it along a responsive process (Owen et al., 
2013). 

In this context, ex-ante LCA aims at projecting the limited knowledge 
about the possible outcome of a technological concept into the space of 
environmental impacts. The result of this projection, practically simu
lated via propagation (Mendoza Beltran et al., 2018) of the model’s 
inputs distributions, should be presented under the form of a “proba
bility of success” to decision makers. The term “probability” here needs 
to be understood as “reasonable expectation” as proposed by R.T Cox 
(Cox, 1946). This interpretation also overlaps with a Bayesian 
perspective as it reflects the degree of belief, ideally supported by 
knowledge regarding the realization of an indeterminate event (Blanco, 
2022). 

In a typical ex-ante LCA model, the result (output) is determined by 
the combination of several factors (inputs, also commonly referred to as 
parameters) that are indeterminate in the sense that they are “not 
measured, counted or clearly known”(Cambridge University Press, n.d.). 
In such ex-ante LCA model, some indeterminate factors come associated 
with reasonable levels of knowledge that allow one to propose proba
bility distributions regarding the future state of these factors. The 
propagation of these probability distributions, therefore, belongs to the 
computation of “risk” in Wynne’s and Stirling’s classifications of 
incertitude (Stirling, 2010; Wynne, 1992). Yet, the level of knowledge 
about the probabilities for other indeterminate factors is so problematic 
(Stirling, 2010) that its projection into the impact space can deceive 
decision-making. Wynne (1992) and Stirling (2010) define the factors 
for which probability distributions can hardly be proposed, for instance 
because factors dependencies are supposed but cannot be modeled, as 
“subject to uncertainty” (instead of “risk”). The authors highlight the 
importance of clearly distinguishing “risk factors” from “uncertain fac
tors” for sound decision support (Scoones, 2019; Scoones and Stirling, 
2020; Stirling, 2010; Wynne, 1992). 

As LCA is inherently a quantitative assessment, practitioners could 
be tempted to apply wide uniform distributions to uncertain factors 
(Bergerson et al., 2020), propagate these distributions together with the 
risk factors, and present the results under the form of “probabilities”. 

While this is in principle a conservative approach to uncertainty quan
tification in traditional stochastic models, it still conveys a misleading 
overestimation of confidence and knowledge (Thonemann et al., 2020; 
van der Giesen et al., 2020). A conscientious way of dealing with un
certain factors is to include them within what-if scenarios (Pesonen et al., 
2000) while acknowledging that no probabilities can be assigned to their 
realizations. Stochastic propagation for factors with non-problematic 
levels of knowledge can be performed within these scenarios to 
generate probabilities of success which are conditional to the re
alizations of the scenarios. In complex cases where uncertainty is deep 
and defining relevant and likely scenarios cannot be done a priori, 
scenario discovery algorithms such as PRIM (Patient Rule Induction 
Method) (Bryant and Lempert, 2010) can be used as a computational 
algorithm to detect scenarios of interest, which are sets of intervals for 
indeterminate factors associated with a high proportion of cases of in
terest for the output. Scenario discovery was for instance used to identify 
different socio-economic pathways leading to the same CO2 emissions 
outcomes (Guivarch et al., 2016) or discover which water management 
plans in Southern California would perform poorly (Groves et al., 2008). 
The advantage of scenario discovery is that it does not require prior 
knowledge of the distributions associated with uncertain factors as it 
allows reflecting exclusively on the probability of occurrence of the 
scenarios of interest. Thus, the complex decision-making process can be 
summarized into simpler questions provided that the scenarios of in
terest are based on easily interpretable factors (Bryant and Lempert, 
2010). 

Summing up, the joint presence of risk and uncertainty when 
attempting to decide on broad technological concepts means that ex- 
ante LCA is performed under a condition of “deep uncertainty” (Kwak
kel and Jaxa-Rozen, 2016; van der Giesen et al., 2020) which means that 
the calculation of probabilities of impacts relies on problematic levels of 
knowledge. Deep uncertainty therefore prevents quantification and 
leaves decision makers and analysts with the sole options of “recog
nizing it”, “managing it” (Funtowicz and Ravetz, 1993), abiding by a 
precautionary principle (Van Asselt and Vos, 2006) or postponing the 
decision until new knowledge has been acquired, thus transforming an 
uncertainty problem into a risk problem (Scoones and Stirling, 2020). In 
a complex context of environmental emergency, such a postponement is 
detrimental and decisions for technological planning still need to be 
made (Ipcc, 2022). We here address this need for informed decisions 
without using probability distributions to represent uncertainty while 
still being able to compare a probability of technological success with a 
decision threshold. 

In this work, we present ENSURe (ENvironmental Success under 
Uncertainty and Risk), an algorithmic procedure to unveil if the total 
probability of success of a conceptual technology, in relation to envi
ronmental performance, exceeds a stipulated threshold. By combining 
the forms of incertitude from Stirling and Wynne, the prospective 
modeling approach, and the computational power of scenario discovery, 
ENSURe constitutes a novel approach which helps evaluating proba
bilities of success when both uncertainty and risk apply. We thus work 
towards more robust decision-making in the post-normal science age 
(Funtowicz and Ravetz, 1993), defined by high stakes and incertitude. 

While the approach suits any model-based decision problem 
featuring factors subjected to risk and uncertainty, we demonstrate the 
ENSURe procedure with ex-ante LCA used to support a decision on 
whether time and resources should be spent on bioprospecting for new 
microalgal compounds (Jouannais and Pizzol, 2022) to enhance fish- 
health management. This case constitutes a deeply uncertain concept 
regarding the technological outcomes, is based on recent discoveries 
(Falaise et al., 2016; Krohn et al., 2022; Patel et al., 2021; Talero et al., 
2015; Yaakob et al., 2014) showing interesting bioactivities of some 
microalgal compounds at laboratory scale and potential beneficial ef
fects on fish health, resistance to diseases and growth performance 
(Lieke et al., 2020). This ex-ante LCA case study is well-suited to the 
demonstration of the methodology as it is based on a parameterized LCA 
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models featuring dozens of factors subject to risk or uncertainty. 

2. Methods 

This section first provides a definition of the terms used throughout 
the study (Sect. 2.1) and a formalization of the decision-making problem 
(Sect. 2.2). The ENSURe procedure is then explained in its generalized 
form (Sect. 2.3), i.e., for any model type, before the ex-ante LCA case 
application is detailed in Section 3. 

2.1. Definitions of uncertainty, risk and indeterminacy 

The definition of “uncertainty” is the subject of semantical debate. 
While Wynne (1992) defines different forms of “uncertainty” as risk, 
uncertainty, ignorance and indeterminacy, Stirling (2010) presents a 
typology of “incertitude” as risk, uncertainty, ambiguity, and ignorance. 
The common categories cover the same concepts, but Wynne’s typology 
is ambiguous as it defines uncertainty as a type of uncertainty. In this 
work we pragmatically use “indeterminacy” as anything that prevents 
the modeler from using single deterministic values for factors in a 
model. We therefore interpret Stirling’s typology of incertitude as 
“states of knowledges” regarding indeterminacy. Some factors in a 
model are therefore “indeterminate” from an ex-ante perspective, which 
means that one type of incertitude applies on them. “Uncertain factors” 
are specifically subject to uncertainty intended in Stirling’s terms: they 

are associated with a problematic level of knowledge regarding their 
probability distributions. “Risk factors” are factors subjected to risk 
only. 

2.2. Formalization of the decision-making problem 

We define “a success”, as a desired outcome regarding the phe
nomena that the model assesses. For example, in the case of ex-ante LCA, 
a success can be a technological concept eventually leading to a novel 
technology environmentally outperforming a baseline in specific impact 
categories. The baseline is case-specific and can be a fixed impact value, 
chosen for instance as a desirable minimum or maximum environmental 
impact, or a comparison with an alternative projected in the future in 
absence of the concept. In the case under analysis the decision to 
incentivize or invest into this technological concept is taken only if it can 
be shown that the total probability of success is higher than a decision 
threshold. We define “the total probability of success” as the overall 
probability of success for the technological concept. For a case where 
only risk would apply, the total probability of success would be 
approximated by the proportion of simulations leading to a success after 
the propagation of the input distributions. The adjective “total” is cho
sen to contrast with the “conditional” probabilities that are manipulated 
during the procedure. By definition, this total probability of success is 
inaccessible a priori as the decisions are taken under deeply uncertain 
conditions but ENSURe will allow comparing it to the decision threshold 

Fig. 1. Step-by-step representation of the ENSURe procedure. P(S): probability of a success, here represented as equal to the proportion of successes. Ux0 is the 
minimal value in the range for Ux. The presented mathematical notations are further developed in SI A.1. 
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of the decision-makers. 

2.3. ENSURe procedure 

The objective of ENSUre is to discover sets of value ranges for the 
uncertain factors that are associated with outcomes for which the 
probability of success is superior to the decision threshold. The space of 
technology configurations contained within such a set of value ranges is 
called a “box”, following the original terminology by Friedman and 
Fisher (1999) who developed the algorithm to identify such boxes (cf. 
2.3.3). 

This procedure allows reflecting only on the probability of the final 
technology having such a configuration instead of trying to define a 
priori reasonable probability distributions for all uncertain factors. 
Fig. 1 illustrates the step-by-step algorithmic procedure of ENSURe 
which is further explained in the following paragraphs. A mathematical 
formulation of the procedure and underlying theory is available in SI 
A.1. 

The procedure starts by defining a decision-threshold for the 
decision-making problem (cf. 1 in Fig. 1) and building the associated 
model (cf. 2 in Fig. 1). 

2.3.1. Uncertainty and risk propagation 
All indeterminate factors, whether they are subject to risk or un

certainty (cf. 3 in Fig. 1), are first propagated jointly via a Monte Carlo 
sampling scheme according to their distributions (cf. 4 and 5 in Fig. 1). 
The establishment of probability distributions for the risk factors can be 
performed using approaches such as expert elicitation (Huijbregts, 
1998; O’Hagan, 2019), statistical analysis regarding phenomena which 
are similar to the modeled ones (Jouannais and Pizzol, 2022; Tu et al., 
2018) and pedigree matrices (Ciroth et al., 2016). The uncertain factors 
are instead sampled using uniform distributions defined within arbi
trarily large boundaries while abiding by physical and logical con
straints (cf. example in 3.3). Uniform distributions are chosen due to the 
lack of knowledge that could justify another distribution and because 
they are the easiest option to populate the uncertain space with an even 
number of points in all regions, which is suitable for the following steps 
of the procedure. Each output of the model constitutes a data point, and 
the successes are identified among the points. 

2.3.2. Regionalization of the uncertain input space for conditional 
probabilities of success 

The proportion of successes among the data points resulting from the 
joint propagation of all factors (PropSraw ,cf. 5 in Fig. 1) cannot be inter
preted as a total probability of success as this would boil down to 
treating uncertainty as risk, i.e. considering that the uniform distribu
tions assigned to the uncertain parameters were chosen based on an 
acceptable level of knowledge. The only probabilities that should be 
assessed are those exclusively stemming from the propagation of risk. 
Thus, only probabilities which are conditional to specific, fixed combi
nations of values for the uncertain factors should be assessed. 

We cannot assess all combinations of uncertain factors to calculate 
conditional probabilities of success as this would lead to an infinite 
number of assessments. Therefore, the regionalization aims at assessing 
these conditional probabilities of success into small regions of the un
certain space, instead of for specific combinations of uncertain factors’ 
values. To do so, each uncertain factor’s range is divided into intervals of 
equal factor-specific length. For instance, a range from 0 to 100 m for a 
factor Ua is divided into 10 intervals of length 10 m. This length is the 
resolution dUa for this uncertain factor. The resolution divided by the 
total range is called the relative resolution dUare, which is also the in
verse of the number of intervals (e.g., factor Ua has a relative resolution 
of 1/10). This segmentation of all uncertain factor’s ranges divides the 
entire uncertain space defined by the ranges of the uncertain factors into 
small y-dimensional regions Reg of dimensions {dU1, dU2, …, dUy} 
where y is the total number of uncertain factors (cf. 7 in Fig. 1). Each 

region contains the data points for which the uncertain factors’ values 
are between the limits of the region (cf. 8 in Fig. 1). The smaller the 
regions are, the closer the proportions of successes within the region gets 
to conditional probabilities of success stemming exclusively from the 
propagation of risk factors. Indeed, the propagation of the chosen dis
tribution for an uncertain factor Ua in such region is limited to the 
factor’s variation over a small interval dUa. 

To limit the number of regions to assess, we assign the number of 
intervals, i.e. 1/dUre, for each uncertain factor based on its sensitivity 
(cf. 6,7 in Fig. 1). The latter is measured with the Borgonovo’s delta 
index δ (Borgonovo and Iooss, 2016) regarding the difference of impact 
between the technological concept and the alternative. Borgonovo’s 
approach (Borgonovo and Iooss, 2016) is a density-based global sensi
tivity analysis (GSA) and δ is based on the area difference between the 
output density and the conditional output density for a fixed value of the 
factor, averaged over all its values. δ is therefore a moment-independent 
measure, as it considers the whole output distribution instead of a spe
cific moment for variance-based sensitivity analysis. Alternatively, 
variance-based sensitivity measures could be chosen, such as the Sobol 
index (Saltelli, 2002). The analyst decides on a minimum and maximum 
relative resolution, i.e., a maximum and minimum number of intervals, 
to assign respectively to the most and least sensitive uncertain factors. 
The number of intervals for all the other uncertain factors is calculated 
between these two extremes as inversely proportional to their delta 
index δ via the equation presented in SI A.2. Thus, the more sensitive an 
uncertain factor is, the less it is permitted to vary in the regions in which 
the conditional probabilities of success are assessed. A value of 1 for the 
maximum relative resolution, implies that the probability distribution 
associated with the least sensitive factor is fully treated as risk (with a 
uniform distribution) and its influence on the probability assessment is 
considered neglectable. We can therefore approach true conditional 
probabilities of success, exclusively dependent on the propagation of 
risk factors, by decreasing the minimum and maximum relative 
resolutions. 

Overall, the regionalization step is necessary to approach conditional 
probabilities of success across the entire uncertain space without 
resorting to a computation of these for each combination of uncertain 
factors. 

2.3.3. Scenario discovery (PRIM) to reveal uncertain boxes of success 
Once the regions Reg have been defined, the empty regions that 

happened not to contain any data point are discarded and the pro
portions of successes, i.e., conditional probabilities of success, are 
assessed in the remaining ones (cf. 7,8 in Fig. 1). Then, the PRIM (Patient 
Rule Induction Method) algorithm (Friedman and Fisher, 1999) is 
applied to discover boxes of regions, i.e., groups of regions, that are 
associated with a probability of success superior to the decision 
threshold (cf. 10 in Fig. 1). Note that this means that PRIM is applied 
over the regions and not over the data points resulting from the sto
chastic propagation of the distributions through the model (cf. Fig. 1). 
The PRIM algorithm is designed to iteratively select “boxes” with a high 
predictive potential for an output of interest within a multidimensional 
input set. By applying a “hill climbing optimization procedure” (Fried
man and Fisher, 1999), PRIM iteratively “peels-off” sub-boxes, i.e. dis
cards sub-boxes of the input variables while maximizing an objective 
function to increase the predictive potential of the resulting box 
regarding the output of interest. The exact objective function and the 
settings ruling PRIM are chosen by the analyst depending on its goal (cf. 
2.3.4). In this study we used the PRIM python implementation proposed 
by Kwakkel and Jaxa-Rozen (2016). For each iteration of PRIM, the box 
with the highest density is kept and the selected data points are then 
removed from the sample before the next iteration is performed on the 
remaining points. The iterations stop when no remaining box can be 
found with a chosen minimum density, mass, and coverage (cf. 3.5). 

The total probability of success is evaluated by the analysis of the 
boxes identified by PRIM. While reasonable probability distributions 
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cannot be proposed for the uncertain factors a priori, the focus can be 
placed on the identified boxes only, which correspond to spaces defined 
by some uncertain factors only, thus drastically reducing the complexity 
of the problem. If the decision-makers are now sure (Probability =1) 
that the assessed phenomena (in our case study, a future technology 
development) will feature a configuration within the identified boxes, 
this means that the total probability of success is superior or equal to 
their decision threshold. This is a direct conclusion from the law of total 
probability with conditional probabilities detailed in SI A.1. Otherwise, 
it cannot be strictly concluded that the probability of success is either 
superior or inferior to the threshold (cf. SI A.1), uncertainty remains and 
the ENSURe procedure can be repeated with different settings or deci
sion threshold (cf. 3.5 and 5.1). However, if the procedure made the 
decision-making problem simpler so that it can now be stated that there 
is a probability P(β) of the technology eventually featuring a configu
ration in the boxes, the total probability of success is superior to P(β) 
multiplied by the decision threshold (cf. SI A.1). 

2.3.4. Choices and trade-offs within the ENSURe procedure 
The three main phases of ENSURe, namely the Monte Carlo sampling 

and model simulations, the regionalization of the uncertain space into 
regions of conditional probabilities, and the use of PRIM, can be con
figurated to optimize the procedure according to the objectives. The 
number of data points and regions quickly get constrained by available 
computational resources. Dividing the uncertain factors’ ranges into 
more interval by decreasing the minimum and maximum relative reso
lutions allows a more precise distinction of risk and uncertainty (cf. SI 
A.1) but also creates a larger number of regions with few or no data 
points (cf. 4.1). 

The objective function for the PRIM algorithm was chosen to be the 
“lenient” one proposed by Kwakkel and Jaxa-Rozen (2016), which is fit 
for different types of variables and considers the gain of density together 
with the loss of observations at each peeling step. Bryant and Lempert 
(2010) highlight how PRIM can be used as a “scenario discovery” tool to 
assist policy-making under deep uncertainty by selecting boxes with the 
desired trade-off between density, mass, coverage, and interpretability. The 
density is the proportion of observations (in our case the proportion of 
regions) of interest in the box, mass is the proportion of total observation 
contained in the box, and coverage is the proportion of total observations 
of interest. Interpretability refers to the fact that having too many factors 
constraining the boxes makes it difficult to interpret the results for 
stakeholders and policy makers (Bryant and Lempert, 2010). PRIM can 
be parameterized with the minimal density, mass, and coverage that a 
box can feature. 

3. Case study description and LCA application 

The technological concept under study is the bioprospecting of new 
microalgal compounds to enhance fish health in European fish farms. 
This technological concept is not a unique emerging technology, as 
initiating bioprospecting, i.e., searching compounds of interest within 
biodiversity, can eventually lead to substantially different technological 
configurations depending on what is found and how the market in
tegrates it (Jouannais and Pizzol, 2022). The diversity of microalgal 
compounds (Falaise et al., 2016) together with the diversity of fish 
health issues (Assefa and Abunna, 2018; Bang-Jensen et al., 2019) leave 
the technological outcome of this technological concept uncertain. 
Initiating research on this concept could for example generate a German 
production of powerful microalgal antibiotics tackling a particular fish 
pathogen at very low doses, or the production in Southern Europe of 
nutraceuticals which are closer to feed supplements than medicines. The 
diversity of outcomes associated with the development of this concept 
presents potential suboptimal configurations and the case thus consti
tutes a good example of technological concept that needs to be assessed 
before its development is initiated. Thus, since the future application of 
microalgae for health management in fish farming is characterised by 

deep uncertainty, this case study is very suitable for testing the method 
hereby proposed. 

The microalgal compound production part of the LCA model and the 
associated indeterminacies have been modeled and studied in previous 
works (Jouannais et al., 2022; Jouannais and Pizzol, 2022). The LCA 
model used in the present study is a combination of this model with a 
new parameterized model of a Danish trout farm (Jouannais et al., 
2023). We refer the reader to this work (Jouannais et al., 2022, 2023; 
Jouannais and Pizzol, 2022) for an exhaustive description. The alter
native technology is the production of trout without the microalgal 
compound. 

The next sub-sections explain the main aspects of the LCA model (cf. 
2 in Fig. 1), show how the distinction between risk and uncertain pa
rameters was made (cf. 3 in Fig. 1) and detail the choice of ENSURe’s 
settings for the step 6 to 10 in Fig. 1. 

3.1. Parameterized product system 

The functional unit of the consequential LCA is 1 kg live weight of 
sea-reared trout before slaughtering. The trout farm corresponds to a 
combination of primary data from Denmark and Italy reconstituting a 
detailed life cycle inventory with divisions between the different growth 
stages from inland hatchery to sea-reared trout of 2.4 kg live weight 
(Jouannais et al., 2023). The microalgal compound production, which 
can be an input to all trout growth stages, takes place in an indetermi
nate production mix stochastically sampled across 10 European coun
tries previously identified for their high potential for microalgal biomass 
production (Jouannais and Pizzol, 2022; Skarka, 2012). The size of a 
mix (number of plants) and the producing locations are therefore 
indeterminate. Each location of a mix produces the microalgal strain and 
compound in a vertical tubular reactor whose techno-operational setup 
is indeterminate. The life cycle inventory for the microalgal compound is 
obtained via a parameterized dynamic and location-specific simulation 
of the microalgae cultivation. 

The simplified product system is shown in Fig. 2 together with three 
groups of indeterminate factors affecting different parts of the system. 
The first group covers the indeterminacy of the production and nature of 
the production of an indeterminate microalgal strain and compound in 
Europe. The second group reflects the indeterminacy of the trout farm’s 
potential for improvement, which covers the level of losses (mortality) 
and the suboptimal feed conversion ratio experienced by the farm before 
using the compound, together with the unknown impact associated with 
the production of the chemotherapeutants used in the farms. This group 
also reflects the microalgal compound’s improvement performance, i.e., 
the beneficial effect of the compound on the fish farm. The third group 
describes the indeterminacy in the background system. 

3.2. Effects of factors on the compound’s improvement performance and 
fish farm’s potential for improvement 

In the model, the use of microalgal compound can have a double 
effect to improve the biological performance in each fish growth stage. It 
can reduce the losses and can decrease the biological feed conversion 
ratio (FCR) based on two distinct factors. These effects on a growth stage 
are achieved with an indeterminate input amount of microalgal com
pound and reflect a vast range of bioactivities for the compound. 

Furthermore, each growth stage division is parameterized so that it 
can be modeled as undergoing higher levels of losses than the current 
ones. This allows projecting the fish farms (with or without the com
pound) under different future regimes of health issues that the com
pound will tackle, thus modulating the farms’ potential for 
improvement. The model does not involve explicit temporal aspects, and 
the factors’ values simply describe the configuration of the system at 
time of application. 

We refer the reader to Jouannais et al. (2023) for an exhaustive 
description of the fish farm model. 
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3.3. Risk and uncertain factors 

While the distinction between risk and uncertainty can be obvious 
for some factors, the decision to categorize a factor in one category or 
the other is eventually subjective. This is illustrated by the intentionally 
fuzzy delimitation chosen by Stirling who differentiates “problematic” 
and “unproblematic” levels of knowledge. As show in Fig. 2, there 
happens to be an overlap between the three groups of factors in the 
product system and the associated levels of knowledge about probabil
ities. We used this case-specific overlap to draw a clearer distinction 
between risk and uncertainty factors. 

Probability distributions can reasonably be proposed for the factors 
defining the production of an indeterminate microalgal strain in Europe 
which therefore classify as “risk factors”. Indeed, data on microalgal 
biodiversity (lipid content, thermal requirements etc.) and techno- 
operational design of photobioreactors (tube diameter, flow rate etc.) 
can ground the definition of probability distributions as documented in 
previous works (Jouannais et al., 2022; Jouannais and Pizzol, 2022). 

The background factors also classify as risk factors and the proba
bility associated with these factors directly stem from the “un
certainties” (though not in Stirling’s terms) defined within ecoinvent, 
which is the background LCA database. These probability functions are 

generated using a qualitative pedigree matrix in which the level of 
knowledge about the amounts reported is graded on a scale from 1 to 5 
regarding the reliability, the completeness, the temporal, geographical 
and technological correlations, and the sample size (Ciroth et al., 2016; 
Muller et al., 2016). The use of the pedigree matrix is a canonical 
example of treating incertitude as risk because a qualitative description 
of the level of knowledge is mathematically converted into a probability 
distribution. 

The factors defining the improvement performance of the compound 
and the potential for improvement for the farm are considered uncer
tain. The knowledge associated with these parameters is scarce 
compared to other factors and no grounded guesses can be made about 
their distributions. The level of knowledge for these “uncertain factors” 
is so problematic that the propagation of arbitrarily large uniform dis
tributions for the factors’ values allows a mere exploration of the input 
factor space. For instance, the uniform distributions chosen for the 
factors defining the loss reduction in the different growth stages range 
from 0 to 100 % and are therefore only constrained by logic, as losses 
cannot be reduced by >100 %. 

All the model’s factors are presented and classified in SI B. 

Fig. 2. A) Simplified product system for case study. B) Groups of factors affecting the system and associated level of knowledge. The groups of factors are located on 
the same level (same colored band) as the processes they affect in the product system. The trapeze’s width illustrates the proportion of factors corresponding to the 
level of knowledge. No actual proportion is measured and only the trend is illustrated. 
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3.4. Aggregated factors for a compound’s improvement performance and 
a farm’s potential for improvement 

The LCA models used in this study are high-dimensional and allow 
simulation of many different configurations for the microalgae and fish 
farms. However, such a level of detail adds difficulty to the decision- 
making exercise. Indeed, it may require decision makers to form be
liefs about many low-level factors that they may not be familiar with. 
For instance, assigning probabilities to certain regions for the FCR 
reduction in a specific fish growth stage (e.g., from 80 g to 1 kg) is more 
difficult than reflecting on the overall FCR reduction for the whole 
production. Overall FCR values can indeed be compared to national 
statistics because they constitute widely used performance indicators at 
the farm level. 

Furthermore, applying regionalization (cf. 2.3.2) on many uncertain 
factors may lead to too many regions with very few data points 
depending on the computing resources and the total number of simu
lations that can be generated. 

For these two reasons, namely interpretability and computability, we 
propose five aggregated factors that can be used to regionalize the un
certain space. These aggregated factors are calculated within the model 
and depend on the values of different uncertain factors to reduce the 
dimensionality of the problem and ease the decision-making exercise (cf. 
3.5). 

Four aggregated factors are used to summarize the improvement 
performance of the microalgal compound. First, we quantify the total 
dose of microalgal compound per functional unit (g.kg − 1). Second, we 
calculate the overall economic FCR as the ratio of feed input over the 
live, ready-to-sell fish output and calculate the overall economic FCR 
reduction induced using the compound, in % of economic FCR in the 
alternative production. We also calculate the overall biological FCR 
(feed/(dead + live fish)) reduction, in % of biological FCR and the 
compound content in the microalgal biomass (g. gdried biomass 

− 1). The 
potential for improvement in the farm is summarized in one aggregated 
factor, namely the increase in loss level, i.e., the ratio of the loss level in 
the projected alternative over the current loss level. 

These aggregated factors depend only on uncertain factors and 
therefore reflect exclusively uncertainty and not risk. Their mathemat
ical definitions are available in SI A.3. 

3.5. Specific ENSURe settings for the case study 

For this case study, 500,000 technology configurations were sto
chastically generated via random sampling, where, in each configura
tion each model factor is assigned a different value. Each simulation 
output, i.e., each data point, is associated with its specific technology 
configuration. 

The conceptual technology is defined as successful if the impact of 
trout production using the microalgal compound is lower than the 
impact without using it. The life cycle impacts for the technological 
concept and for the alternative are calculated in pairs for each Monte 
Carlo iteration (cf. 5 in Fig. 1). The LCA considers four impact categories 
from ReCipe Midpoint (H): Freshwater ecotoxicity (FETinf), Global 
warming (GW), Terrestrial Ecotoxicity (TETinf), Freshwater Eutrophi
cation (FE). In addition, the eutrophication impact category from TRACI 
was used to encompass nitrogen and phosphorus emissions both in 
seawater and freshwater. No normalization or weighting was considered 
and addressing the possible burden shifting between impact categories 
in the decision is outside the scope of this work. 

The regionalization step was first performed at what we defined as a 
“high dimensionality level”, using 24 uncertain factors and one aggre
gated factor which constitute 25 dimensions. Using so many factors 
results in the definitions of a large number of regions, and the number of 
data points per region was expected to be too low in each region. 
Difficult interpretation of the boxes was also anticipated (cf. 2.4.4). 
Therefore, we also applied the procedure with a regionalization step at a 

“low dimensionality level” using only one factor and four aggregated 
factors. The influence of the 24 factors on the output of the model is still 
captured in the second case, because the aggregated factors are calcu
lated based on these factors. 

The decision threshold was set at 0.85. The minimal density, 
coverage, and mass for a box to be discovered by PRIM were fixed at 0.9, 
0.01 and 0.01 respectively. The minimum and maximum relative reso
lutions were respectively set at ¼ and 1 to divide the uncertain space at 
the high dimensionality level, and 1/8 and 1 for the space at low 
dimensionality level. 

After the choice of the settings for ENSURe, the algorithm performs 
the steps 6 to 10 in Fig. 1, based on the results of the propagation of the 
distributions through the model (step 5 in Fig. 1). 

4. Results 

4.1. Discovering boxes at the high dimensionality level 

When applying the regionalization at the high dimensionality level, 
the PRIM algorithm could identify at least one success box for each 
impact category. 

This means that we could identify one space of uncertain factors’ 
values that would be robustly associated with a total probability of 
success superior to 85 %. For the global warming impact (GW), only one 
box was found (cf. Fig. 3 A). This success box is defined by three factors 
and one aggregated factor, out of the 25 uncertain factors used for the 
regionalization, and out of the 13 that were assigned a relative resolu
tion lower than 1 (cf. Fig. 3 B). The box’s limits are a dose of microalgal 
compound lower than 3.1 g.kg− 1 output live fish in the first part of the 
last growing stage at sea (SFDK1_micro_dose), and lower than 1.5 g.kg− 1 

in the second part of the sea stage (SFDK2_micro_dose). In addition to 
these limits, the biological FCR of this stage must be affected so that it 
becomes lower than the middle value between its current and minimum 
theoretical values (SFDK2_FCR_red_ratio_frac > 0.5). Finally, the com
pound content in the microalgal biomass must be higher than 35 % 
(bioact_molec_dbio > 0.35). As the discovered box displays only four 
limits, no other requirement applies on the other uncertain factors that 
can vary freely within their wide ranges while ensuring a probability of 
success superior to 85 %. This means for instance that no predicting is 
required on the future increase in losses experienced by the farm, or on 
the compound dose delivered to any growth stage but the last one. 

Fig. 4 shows the two boxes that were found for Eutrophication, 
corresponding to two different ways of ensuring an 85 % chance that the 
technology will outperform the alternative. The first box is obtained by 
limiting only four factors: the microalgal compound doses in the two 
divisions of the sea stage are both limited to 2.2 g. kg live fish − 1 

(SFDK1_micro_dose and SFDK2_micro_dose < 0.022), the biological FCR 
in the last part of the sea stage must be modified to at least 50 % closer to 
its minimum value (SFDK2_FCR_red_ratio_frac > 0.50) and the compound 
content in the microalgal biomass must be at least 42 % (bio
act_molec_dbio > 0.42). The second box informs us that it is also possible 
to reach a 85 % probability of success by tightening the constraint on the 
biological FCR reduction in the last growth stage (SFDK2_FCR_re
d_ratio_frac > 0.75 instead of 0.5), removing the limits on the compound 
doses, and limiting the new level of losses in the first part of the sea stage 
to being at least five percentage points higher than it currently is 
(SFDK1_loss_lev > 0.05). However, PRIM returned for this box limit a 
quasi p-value of 0.09 (cf. SI A.7). This limit could thus be considered 
non-significant compared to the other limits for which the quasi p-values 
are several orders of magnitude below (cf. SI A.7). 

The boxes obtained for the other impact categories are presented in 
SI A.5. 

While boxes can be identified at the high dimensionality level, their 
interpretation is difficult and their use for decision-making requires 
careful consideration. With 25 factors/aggregated factors and 500,000 
data points, the minimum relative resolution could only be set to 1/4 
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and the average number of points per region fell between 28 and 3 
depending on the impact category. These numbers are too low to assess 
meaningful probabilities in each region (cf. 4.1). 

4.2. Discovering boxes at the low dimensionality level 

The low dimensionality level is only described by five aggregated 
factors and one factor, which allowed us to set the minimum relative 
resolution to 1/8 with an average number of points per region varying 
from 100 (GW) to 290 (TETinf). 

For global warming impacts (GW), four boxes were found, and 
therefore four configurations under which the total probability of suc
cess would be superior to 85 %. Two of the four boxes are shown in Fig. 5 
and the last two can be found in SI A.5. The first box covers 10 % of the 
success regions with a density of 1. The limits of the box indicate a 
reduction of the economic FCR higher than 22 % combined with a 
reduction of the biological FCR higher than 15 %. The quasi p-value for 
the latter is however equal to 0.10 which is several orders of magnitude 
higher than for the other limits, cf. SI A.7). These two constraints would 
need to be met with a dose of microalgal compound <2.5 g.kg live fish− 1 

during the whole life cycle and this compound should constitute at least 
20 % of the dried microalgal biomass. The second box features a limit on 
the compound dose which is less demanding than in the first one (< 3.5 
g.kg − 1). Unlike the first box, it does not have any limit on the biological 
FCR but requires a higher compound content in the biomass (30 %). 

While ENSURe applied at the high dimensionality level on FE only 
allowed to find consistent boxes with a decision threshold at 65 %, 
applying the procedure at the low dimensionality level generated 5 
boxes at 85 % (cf. SI A.5). 

4.3. Example of conclusion for the technological concept 

At the low dimensionality level and for the five impact categories, 
PRIM did not identify any box where the value of the factor “compound 
content in the microalgal biomass” is lower than 18 %. This means that it 
is impossible to consider a probability of success superior or equal to 85 
% for the conceptual technology without predicting that the compound 
will at least reach this concentration in the biomass. The fact that this 
aggregated factor was limited for all boxes is due to its high sensitivity, 
as measured by Borgonovo’s delta. The compound content in the 
microalgal biomass was the most sensitive aggregated factor for FETinf 
and GW. When considering these impact categories as outputs, the range 
for the compound content was divided into 8 intervals (relative reso
lution of 1/8, cf. Figs. 5,6), while the GSA processing only assigned it a 
relative resolution of ¼ when considering Eutrophication. This impact 
category was more sensitive to the economic and biological FCR re
ductions (cf. SI A.5). 

Achieving a compound content of at least 18 % can already be 
considered as a very demanding requirement but does not fully 
disqualify the conceptual technology from being explored, having set a 
total probability of success superior to 85 % as threshold. Indeed, a 
compound content over 18 % indicates that the compound should likely 
be a primary metabolite which is accumulated by the microalgae and 
associated with normal growth and development. While secondary 
metabolites are often bioactive because involved in meditating the in
teractions with other organisms, microalgal primary metabolites such as 
Beta 1–3 glucans and Poly-unsaturated fatty acids (PUFA) have also 
shown bioactivities and can accumulate up to >18 % of the biomass 
(Barsanti et al., 2001; Guedes et al., 2011). 

Fig. 3. A) Box discovered by PRIM at the end of ENSURe, at the high dimensionality level, for the Global Warming impact. The original graphic representation for 
PRIM proposed and programmed by Kwakkel and Jaxa-Roxen (Kwakkel and Jaxa-Rozen, 2016) was adapted to the present use. The dots were made transparent and 
then appear purple to see the stacking of the regions due to the one-dimensional projection. The blue rectangle corresponds to the limits of the box. A dot represents 
the lower boundary of a region which expands until the next dot (cf. 2.3.2). An assistance for box visual interpretation is presented in SI A.4. B) Borgonovo’s δ for 
each factor/aggregated factor describing the uncertain space and the corresponding assigned relative resolution dUre. The red rectangle contains the four factors/ 
aggregated factors that were constrained by PRIM as visible in A). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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In addition to stringent requirements about the compound content, 
the majority of boxes are defined by an ambitious reduction of the 
economic FCR by at least 20 % (e.g., boxes 1,2, for GW in Figs. 5 and 3,4 
for GW, 2,3,4,5 for Eutrophication in SI A.5), regardless of the increase 
in the level of losses (e.g., box 1, 2 for GW in Fig. 5) or by setting limits 
on them (e.g., box 2 for FE in SI A.5). The combination of these 
demanding requirements to ensure a total probability of success superior 
to 85 % appears unlikely. 

It is impossible to state that there is a 100 % probability for the 
conceptual technology to eventually meet them simultaneously by 
featuring a technological configuration in these boxes. Therefore, it 
cannot be concluded that the total probability of success for the con
ceptual technology is superior to the decision threshold of 85 %. Note 
that it cannot be mathematically concluded that the total probability of 
success is strictly below 85 %. Uncertainty therefore remains (cf. SI A.1). 
We further discuss this conclusion in 4.2. 

These results indicate that given the substantial incertitude repre
sented by the probability distributions of many factors, decision-makers 
would need to be very confident in the performance of the discovered 
compound before supporting the bioprospecting of these in a context 
where 85 % success probability was required. Technology developers 
could also use the results to orient their bioprospecting towards com
pounds that are highly concentrated in their respective microalgal 
strains as it is a strong requirement to ensure a high probability of 
success once the market-scale technology is deployed. The other un
certain factors that constitute the discovered boxes cannot directly 
orient bioprospecting as they mainly characterize the performance of 
the compound on the fish and the status of the fish farm, which will only 
be revealed late in the development process. However, the bio
prospecting could try to focus on compounds that target diseases which 
mainly affect the fish in its late growing stages as only factors related to 
the reduction of the FCR in the late stages were shown constrained in the 

boxes at high dimensionality (cf. Fig. 3 and 4). 

5. Discussion 

5.1. ENSURe’s robustness and trade-offs 

Applying the regionalization step on many factors at the high 
dimensionality level caused problems for the computability and there
fore interpretability of the results. The model of the technological 
concept here used relies among other things on a dynamic simulation of 
microalgal cultivation in different European production mixes, which is 
computationally intensive. Simulating millions of data points requires 
large computing resources and time, and we could only reasonably 
compute 500,000 data points because each point required several sim
ulations to generate production mixes for the microalgal compound 
(Jouannais et al., 2022). Overall, the case study required approximately 
325,000,000 LCAs and simulations of microalgal productions operated 
in parallel over multiple servers and cores over approximately ten days. 
The case study is thus particularly computationally demanding due to 
the long process simulation, but these computational limits can be partly 
generalized. Since ENSURe is limited by computing resources, trade-offs 
arise in terms of its performance. We propose three main criteria to 
evaluate the performance of the procedure. The first criterion is reli
ability, defined as the capacity of ENSURe to find boxes which do not 
contain false positive regions. In other words, reliability is high when the 
identified boxes only contain regions for which the conditional proba
bility of success would asymptotically tend to being superior to the 
threshold with more data points. The second criterion is purity and 
represents the degree of distinction between risk and uncertainty ach
ieved by the regionalization step. Purity is minimal when the uncertain 
space is not regionalized, which is equivalent to setting all relative 
resolutions to 1, and increases with lower relative resolutions, thus 

Fig. 4. Boxes discovered by PRIM at the end of ENSURe, at the high dimensionality level, for the Eutrophication impact. The Borgonovo’s δ for each factor/ 
aggregated factor and the assigned dUre are presented in SI A.5. A green border on a box means that the PRIM output indicated a quasi p-value that was substantially 
higher than for the other borders (qp >0.02) (cf. SI A.7). An assistance for box visual interpretation is presented in SI A.4. The “peeling trajectory” illustrating PRIM 
functioning is presented in SI A.6. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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approaching “pure” conditional probabilities in each region (cf. 2.3.2 
and mathematical formulation in SI A.1) The third criterion compre
hensiveness is maximized when all boxes, even the smallest ones, have 
been found. The trade-offs between criteria depend on the case study 
and its computing requirements and can be managed by modulating 
ENSURe’s settings as illustrated below. 

The number of regions within the uncertain space grows exponen
tially with the number of uncertain factors and intervals. Increasing the 
number of intervals decreases the average number of data points on 
which a probability of success is estimated in each region. At the high 
dimensionality level, dividing each of the 25 uncertain factor and 
aggregated factors’ ranges into only four intervals would lead to 425 

regions with an average number of points per region being infinitesimal. 
Thanks to the use of Borgonovo’s δ to assign distinct relative resolutions 
to factors, the average number of points per region was maintained at 28 
for TETinf but due to different Borgonovo’s δ, this number fell to three 
points per region for FETinf. This hinders reliability as it causes false 
negative and false positive regions assessed as “Success” based on very 
few data points, while more simulations could show a probability of 
success lower than 0.85 in these same regions. While increasing the 
minimum relative resolution from 1/4 to 1/3, thus dividing the range of 
the most sensitive parameter into 3 intervals instead of 4, would dras
tically increase the number of points per region, it would also allow a 
larger variation of the uncertain factors within these regions and reduce 
the purity of the procedure. If reliability is low, a lower minimal density 
can be set so that the algorithm can find boxes with a density <1, such as 
the boxes found for Eutrophication (cf. Fig. 4). These settings can allow 
finding boxes that are meaningful despite the noise due to false positives 
and negatives. The discarding of regions that happened to be empty is 
also an aspect of these performance trade-offs. Unless the model features 

very local non monotonic behaviors, the empty regions which are spread 
equiprobably across the uncertain space should not prevent PRIM from 
finding relevant boxes that may contain empty regions mainly sur
rounded by regions of interest. 

The PRIM algorithm was here parameterized to find all boxes with a 
mass superior to 0.01, meaning that the minimum number of regions in a 
box is 0.01 multiplied by the number of not empty regions. As pointed 
out by Friedman and Fisher (Friedman and Fisher, 1999) who set the 
basis for PRIM, the lower the mass of a box is, the higher is the risk of a 
box delimitation being affected by noise (“over-fitting” problem). When 
PRIM is applied within ENSURe, noise is due to false positives and 
negatives among regions in the space. Thus, fixing the minimal mass 
value as small as possible would potentially lead to PRIM identifying all 
false positives as small boxes and hinder reliability. On the other hand, 
looking exclusively for success boxes above a large mass affects the 
comprehensiveness of ENSURe by potentially overlooking boxes. For 
example, when applying regionalization at the high dimensionality 
level, setting a minimum mass at 0.01 made PRIM leave 90 % of the 
success regions outside of the discovered boxes for all impact categories. 
This is probably because the success regions are sparsely distributed in 
the uncertain space due to the false negatives and positives. Therefore, 
PRIM cannot identify a unified and consistent box with a sufficient mass 
containing these regions. 

In fact, for FE and at the high dimensionality level, no box at all could 
be found with a decision threshold at 0.85 but only at 0.65. The 
straightforward conclusion could be that the total probability of success 
for this impact category is not higher than 0.65, but the limitations 
addressed above prompt to remain cautious with this interpretation. 

Fig. 7 summarizes the trade-offs between purity, reliability, and 
comprehensiveness that are influenced by ENSURe’s settings and the case 

Fig. 5. Boxes discovered by PRIM at the end of the ENSURe, at the low dimensionality level, for the Global Warming impact. The Borgonovo’s δ for each factor and 
aggregated factor and the assigned dUre are presented in Fig. 6. A green border on a box means that the PRIM output indicated a quasi p-value that was substantially 
higher than for the other borders (qp >0.02) (cf. SI A.7). The “peeling trajectory” illustrating PRIM functioning is presented in SI A.6. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

P. Jouannais et al.                                                                                                                                                                                                                              



Technological Forecasting& Social Change 201 (2024) 123265

11

study. 
In addition to finding the right trade-offs regarding ENSURe’s set

tings, insightful results can also be obtained by carefully reducing the 
ranges considered for the uncertain factors. This reduction can be done 
by first allowing PRIM to find large boxes and then using the boxes limits 
to define new ranges for the concerned factors in a new iteration of the 
procedure. This iterative approach allows discovering boxes with a 
lower resolution. 

Decreasing the dimensionality of the problem by combining factors 
into aggregated factors is the solution we used to manage trade-offs in 
performance and provide results that have sufficient reliability, compre
hensiveness, and purity for decision-making. It must be noted that 
reducing the dimensionality by using aggregated factors implies losing 
information at the most detailed level of the modeling. The same 
aggregated factor value can be obtained from different combinations of 
factors values. This means that the probabilities assessed with ENSURe 
are given considering that for one aggregated factor value, all potential 
combinations are equiprobable. Thus, the incertitude associated to these 
multiple combinations for one aggregated factor value is therefore 
treated as risk while the factors on which the aggregated factors are 
based were first identified as “uncertain”. This particularity constitutes a 
limit to consider when using aggregated factors. 

5.2. Refining the evaluation 

For this case study in which the procedure could not prove that the 
total probability of success was over the threshold, decision-makers 
have multiple options. Firstly, they can settle for this result and 
dismiss the technological concept because ENSURe did not allow us to 
state that the total probability of success was over the decision 
threshold. The modelers can also change the settings of the procedure to 
refine the evaluation. The first option is to decrease the decision 
threshold in the procedure until they can find a box associated with a 

probability of 1. This will inform about the minimum total probability of 
success and allow decision-makers to assess whether this probability is 
too far from the initial decision threshold. Another option is to lower the 
minimum density chosen for PRIM to see if boxes with a slightly lower 
density can be associated with a probability of 1. This would mean that 
the total probability of success is not far from the decision threshold. The 
last option is to lower the minimum mass of discoverable boxes in PRIM 
which will allow the algorithm to find additional boxes on which 
decision-makers can reflect. However, these boxes will necessarily be 
associated to smaller shares of the uncertain space which implies more 
demanding limits on the ranges of the uncertain factors. These scenarios 
will probably be too specific to be likely. In addition, one must remain 
aware of the caveats that stem from low-mass boxes regarding reliability 
of the results (cf. 4.1). Additionally, ENSURe could be run using the 
approach to multiple boxes proposed by Guivarch et al. (2016), in which 
the points of interest (in our case, regions) located in a discovered box 
are not deleted but their status in instead changed to “of no interest” for 
the next iterations of PRIM. As described by the authors, this approach 
may improve the diversity of discovered boxes. 

Finally, the decision could be better informed if it was shown with 
certitude that the total probability of success is below the decision 
threshold. This can be done using the simple relationship P(success) = 1- 
P(failure). Thus, ENSURe can be applied to find boxes associated with a 
decision-threshold regarding the probability of a failure (e.g., 15 %), 
which is equal to one minus the decision threshold for a success (1–15 % 
= 85 %). This will allow showing whether the probability of failure is 
superior to a threshold (15 %), and therefore proving whether the 
probability of success is less than one minus this threshold (85 %). 

5.3. Setting the context to talk about probabilities 

While differentiating risk and uncertainty allows one to better 
approach the notion of probability regarding the outcome of techno
logical development, additional considerations are needed to approxi
mate “real-world probabilities”(Thompson and Smith, 2019). As Wynne 
(1992) states, “Science can define a risk, or uncertainties, only by artificially 
‘freezing’ a surrounding context which may or may not be this way in real-life 
situations. The resultant knowledge is therefore conditional knowledge.” In 
this context, sound decision-making for policy-planning requires explicit 
hypotheses on the main drivers of technological development. Hence, 
the probabilities that we assessed via ENSURe can only be considered as 
such if we assume, among other aspects detailed in previous works 
(Jouannais et al., 2022; Jouannais and Pizzol, 2022), that microalgal 
producers will always seek to optimize the areal productivity of their 
plants and that bioengineers can find any strain-specific techno-opera
tional setup to cultivate a microalgal strain at 30 % of its maximum 
productivity (Jouannais et al., 2022). Once this context is established, 
the evolution of the conceptual technological can more accurately be 
pictured as a random process whose first step will be the discovery of a 
specific microalgal strain and compound. 

5.4. Interpretation in a perspective of technological planning and guidance 

The present work uses ENSURe in the theoretical context of risk and 
uncertainty, but the approach can also be used in perspective of tech
nological governance and planning. Let’s examine our choice of 
considering the unknown locations of the compound’s producing mix as 
belonging to risk, with markets developing equiprobably around 
random regions in Europe (cf. 3.1 and 3.3). It could be argued that 
nothing separates the nature of the incertitude applying to the unknown 
set of factors (size of the mix, latitudes, and longitudes) describing the 
production mix (category 1) from the one applying to factors associated 
with the compound’s effect on the farm (category 2). They could both be 
considered as equally uncertain, and the production mix incertitude 
could be included in the uncertain space within the procedure. Treating 
this incertitude as risk as we did means that the discovered boxes are 

Fig. 6. Borgonovo’s δ for Global warming impact at the low dimensionality 
level and corresponding relative resolutions dUre. 
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associated with a total probability of success superior to 85 % if the 
geographical development can occur across Europe equiprobably. In 
other words, ENSURe here discovers boxes of uncertain factors that 
would allow making a safe-enough decision about the conceptual 
technology in a context where the geographical development is not 
constrained by regulations. This position constitutes a cautious stand, 
within which the evolution of the market associated with the technology 
is considered chaotic and uncontrollable (unresponsive) (Genus and 
Stirling, 2018) under the current economic system. We thus account for 
potential environmentally suboptimal configurations such as very 
valuable microalgal compounds being produced in countries requiring 
high fossil energy inputs per kg of compound because of low solar 
irradiance, low temperature and/or carbon intensive electricity mixes 
etc. 

On the contrary, treating the geographical development of the pro
duction mix as uncertainty within ENSURe could allow finding boxes 
which are constrained on the production mix factors. This would for 
instance enable discovering minimal and maximal latitudes under which 
the technology should be confined to ensure a targeted probability of 
success. 

In general, while we here presented a use of ENSURe to assist 
decision-making about initiating research on a technological concept in 
presence of uncertainty, with the previous example we argue that the 
procedure can also be employed for the guidance and planning of 
technological development. In this case, the factors being treated as risk 
constitute what decision-makers and regulators cannot, or do not intend 
to regulate. The factors treated as uncertainty represent political and 
technological freedom of maneuver for decision-makers and societal 
regulation of technological concepts. 

5.5. Deciding whether to prioritize an unexplored conceptual technology 

We have demonstrated the use of ENSURe on a technological concept 
on which a substantial incertitude applies. In this context, deciding to 
invest resources in the technological concept only if the total probability 
is shown higher than 85 % constitutes a very conservative and cautious 
stand. Daily individual or political actions are taken with a lower level of 
subjective certitude and ENSURe can be applied with lower decision 
thresholds. Furthermore, sound decision-making and technological 
planning could require more insightful decision criteria that do not 
consider only the probability of success but analyze the “risks” (in risk 
assessment terminology, i.e., “hazards”) of further developing an initial 
technological concept. Thus, ENSURe could be parameterized to not 
only consider the probability but also the magnitude of this success and 
the severity of a failure, i.e., how better or worse the final technology 
would be compared to the alternatives. This is particularly relevant 
when considering technological concepts associated with lock-in possi
bilities (Brian, 1989; Carraresi and Bröring, 2022; Hung and Tu, 2011) 
and possible suboptimal configurations regarding environmental im
pacts. A probabilistic view on innovation calling for cautious consider
ation of risks before exploring technological concepts is also provided in 
Nick Bostrom’s Vulnerable World Hypothesis (Bostrom, 2019), which 
depicts technological development as a random draw in an urn con
taining two types of balls. One type represents technological concepts 
that inevitably lead to the self-annihilation of humanity. The author 
exemplifies these concepts with theoretical “easy-nukes” but also global 
warming worsening directions. While microalgae-based solutions for 
fish farming could unlikely constitute a paramount threat to Human
kind, it could be argued that all investment of time and resources in 
concepts with low chance of improving the status quo an constitute an 

Fig. 7. Effects of the case study and ENSURe’s settings on the trade-offs between purity, reliability and comprehensiveness. An intermediate value stems from the 
combination of the case-specific aspects and the choice of the procedure settings. dUremin and dUremax respectively are the minimum and maximum relative 
resolutions. 
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irrational bet in times of ecological and social emergency. The use of ex- 
ante LCA within ENSURe enables an insight into Bostrom’s urn to 
cautiously preselect the balls we draw. 

6. Conclusion 

This study presented ENSURe, a new modeling procedure to deal 
with deep uncertainty in the prospective assessment of future systems. 
The application of ENSURe on an ex-ante LCA case study demonstrated 
its purpose by identifying sets of conditions that allow reaching a high 
success probability decision-threshold of 85 % without treating uncer
tainty as risk. The case study was particularly demanding regarding 
computing resources that prevented further iterations of the procedure 
to refine the evaluation of the total probability of success. This proba
bility could not be shown superior to the decision-threshold. The chal
lenging computing needs allowed exploring the different performance 
trade-offs for the procedure which can be piloted according to the 
case-study, the objectives and expectations of the analysts and decision- 
makers. 

While Stirling’s risk propagation acts as a projection of stakeholders’ 
belief and knowledge into the output space via the model, ENSURe ac
knowledges that only partial projection is possible in the presence of risk 
and uncertainty. Thus, ENSURe assists in evaluating the total probability 
of success, but not the full probability distributions for the outputs. We 
therefore keep uncertainty and risk differentiated without forcing a 
probabilistic approach to uncertainty and make modeling approaches 
such as ex.ante LCA comply with these key concepts in post-normal 
science. 

By separating risk and uncertainty, ENSURe prevents modeling from 
falling further down into “model-land” (Thompson and Smith, 2019), in 
which assigning tentative probabilities to events, or mathematical re
lationships between factors sometimes constitutes an additional 
abstraction and a deceptive impression of quantifying all incertitude. 
Instead, the approach takes advantage of the fact that stakeholders often 
fail to simultaneously assign probability distributions to multiple factors 
that may be interdependent, but this does not prevent them from 
informing about the probability of reaching a certain scenario defined 
by several factors. 

Our approach joins GSA to assist modeling approaches such as ex- 
ante LCA in providing insightful results for decision-making. While 
GSA supports practitioners and decision makers in prioritizing their data 
collection efforts to reduce uncertainty in the output of their models, 
ENSURe informs them about which conditions should be met to ensure a 
certain probability of success and decide on further exploring a concept. 

With ENSURe, ex-ante LCA and other modeling approaches can 
move forward into assessing broad technological concepts or any 
emerging technology for which incertitude is not limited to risk. While 
the other forms of incertitude, namely ambiguity or even ignorance 
(Stirling, 2010) still resist quantitative assessments, we tackle the need 
for early-stage decision making for a better planning of technological 
development under ecological emergency. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.techfore.2024.123265. 
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