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Executive summary  
 

This guide presents practical approaches to handle uncertainty in the Life Cycle Assessment 
(LCA) of bio-based products within the ALIGNED project. The primary aim is to improve decision 
making in the bio-based industries and sectors – because such transition is heavily informed by 
and dependent on comparative assessment studies.  

 

As in the case of all ALIGNED WP1 outputs on methodological framework, all guidance is here 
provided using a tiered approach, i.e. different options are provided to perform a specific task 
or apply a specific method, in order of increasing accuracy but also increasing complexity. This 
is reported in a specific action paragraph in each section. 

 

The document is accompanied but other tools such as tutorials and calculators in excel and 
python that are made available in the T1.4 repository. 
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Introduction 
Nowadays the number of environmental assessments and related modelling approaches and 

tools is booming. Besides LCA studies under the ISO framework (ISO, 2020), the Environmental 

Product Declaration system (EPD International, 2023) and now the Product Environmental 

Footprint (DG Environment, 2021) guidelines from the European Commission, but also studies 

under the framework of Greenhouse Gas Emission protocol (WRI & WBCSD, 2011) and the 

Science Based Targets and many others are all essentially based on quantitative models to 

calculate and return a numerical estimate of environmental footprint. All the results of these 

models are affected by uncertainty.  

Uncertainty can be defined as unknowns about the reality. Since a model is a simplified 

representation of reality and our understanding of reality is always incomplete, then the lack of 

knowledge about how the model should be designed is transferred to the results of such model 

(Lo Piano & Benini, 2022). 

In even simpler words the uncertainty of the result of a product footprint model can be intended 

as a range: every produced number should be intended as one in a distribution of possible 

outcomes. 

Uncertainty is related to sensitivity. While uncertainty analysis is about the qualification and 

quantification of the uncertainty in the inputs and outputs of a model, sensitivity analysis 

focuses on understanding how the changes in the inputs of a model influence the model outputs. 

Sensitivity analysis helps shaping uncertainty analysis and vice-versa. 

Recently several studies have argued for an increased focus on uncertainty and sensitivity 

analysis (Lo Piano & Benini, 2022; Saltelli, Bammer, et al., 2020) and on the limit of LCA models 

and in general of the limits of quantification in decision making for sustainability (Saltelli, Benini, 

et al., 2020). 
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1. Types of uncertainty: classification 
used in this document 

 

There are different ways of defining uncertainty and for the LCA domain. Igos et al. (2019) 
suggest to classify uncertainty either according to its intrinsic nature - epistemic or aleatory, or 
according to its location in a LCA model. In the latter case one can distinguish between 
uncertainty regarding the structure of the model, the quantities used in the model, or the 
context in which the model is used. 

From Igos et al. (2019): “Regarding the nature of uncertainty, epistemic uncertainty is due to a 
lack of knowledge or representativeness and can be reduced with more research and efforts (e.g., 
more collected data, higher model complexity). Aleatory or ontic uncertainty is due to the 
inherent variability and the lack of determinability of the system (inherent randomness of nature, 
observer effect) and cannot be reduced. Both natures of uncertainty can be present for quantity 
uncertainty, model structure uncertainty, and context uncertainty” (Igos et al., 2019). 

In their report on the prospective assessment of bio-based technologies the JRC and European 
Commission (2022) also classify uncertainties depending on either their nature (epistemic and 
ontic) their location (data, model, context), and their scale (from moderate to deep uncertainty). 
We refer the reader to the original report (European Commission et al., 2022) for a more 
extensive description of each.  

Not all these classifications are however equally useful for practical purposes. Since this is a 
guide addressing LCA practitioners in the bio-based industries, and users of the models provided 
by the project, the pragmatic choice done in the ALIGNED project was to simplify the 
classification to two types of uncertainty: data and model uncertainty – as this also allows to 
define appropriate handling strategies in terms of uncertainty and sensitivity analysis 
respectively. 

 

Data uncertainty refers to the choice of the numerical values to be used in the LCA model.  

 

Examples: lack of knowledge regarding…. 

…the carbon content of a specific tree species.  

…the amount of feedstock used to produce a biobased product in a year. 

…the amount of carbon emissions generated by composting a biobased product. 

 

Model uncertainty refers to all the possible way data are combined into a LCA model and the 
operations done with these data. 

 

Examples: lack of knowledge regarding the choice of…. 

…characterisation factors for the global warming potential (GWP20 or GWP100). 

…type of decay of biomass in the ground (linear versus nonlinear). 

…temporal range to calculate the yearly increment in biomass supply (5 years versus 20 years) 
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…type of probability distribution selected for each parameter/input (uniform, triangular, etc.) 

 

In Figure 1, a LCA model can be intended as a black box where input data points are transformed 
into output data points. When the specific value of the input is not precisely known (“cloud” of 
values rather than single value), we have uncertainty. The same applies when there are 
unknowns regarding how to structure the model (“shifting” shape of the box rather than single 
shape).  

Sensitivity is instead the relation between input and output (arrows). While some techniques 
like stochastic error propagation allow to quantify the uncertainty associated with the output of 
a LCA model starting from the uncertainty in the inputs, techniques like local and global 
sensitivity analysis allow explain to what extent changes in model input or model structure, that 
are due to uncertainty, lead to variations in model results.  
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Figure 1 Uncertainty and sensitivity analysis for a generic model, for example a LCA model. 

 Uncertainty analysis quantifies the range of input and related outputs of a model, due to the 
unknowns (represented as blurred cloud instead of clear single data point, blurred structure of 
the model due to limited understanding of the phenomenon) in both data and model structure. 
Sensitivity analysis quantify the influence that a change in input has on the output (both 
represented as arrows), for different data and model structures. 
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2. General approaches to analysis of 
uncertainty and sensitivity 

 

The toolbox that it is recommended for ALIGNED addresses the data and model uncertainties 
and uncertainty and sensitivity analysis respectively (Figure 2). 

 

 

 

 

Figure 2 Practical toolbox for handling uncertainty and sensitivity of data and models in the ALIGNED framework 
(OAT: One At Time, GSA: Global Sensitivity Analysis). 
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3. Uncertainty analysis – focus on data  
 

3.1. Defining uncertainty for input data, tiered approach 
 

Rough estimate. The simplest but also least accurate approach is to define an arbitrary level 
of uncertainty for each exchange input data point (e.g., the kg of CO2 emissions per kg output of 
an activity). For example, the uncertainty on each value can be assumed to be equal to 10% of 
the value. This percentage could be intended as a coefficient of variation (CV) in case of a normal 
distribution (ratio of the standard deviation (𝝈) to the mean (𝝁)). Or this can be the interval 
(+10%, -10%) in which the value is expected to be found with equal probability (uniform 
distribution). In situations of lack of reliable data or expert knowledge on uncertainty, this can 
be a starting point or screening method for estimating uncertainty that is easily applicable also 
a large scale (many datasets or a database) and is arguably better than assuming no uncertainty 
at all. The value can be chosen completely arbitrarily – and in that case this should be clearly 
communicated and sensitivity analysis using increasing estimates of uncertainties is 
recommended – or based on expert knowledge, information from literature, or other soundly 
motivated assumptions.  

 

Pedigree matrix. A widely used approach is to use a semi-quantitative method to estimate 
uncertainty, i.e. the pedigree matrix. With this approach each exchange in a dataset is evaluated 
using a score from 1-5 by the LCA practitioner in five dimensions: Pedigree Reliability, Pedigree 
Completeness, Pedigree Temporal correlation, Pedigree geographical correlation, Further 
technological correlation. Each score is then converted in a measure of uncertainty using specific 
conversion tables and finally a overall measure of uncertainty is obtained, for example a 
coefficient of variation (Weidema & Wesnæs, 1996) or a “geometric mean” (Ciroth, 2013) for an 
assumed lognormal distribution1 (Limpert et al., 2001) using a formula for analytical propagation 
of uncertainty. Detailed documentation on how to apply it available in published literature 
(Ciroth, 2013; Ciroth et al., 2016; Muller et al., 2016) and a simple calculator is also provided 
(ALIGNED-T1.4-Pedigree-matrix-calculator-AAU.xlsx). The approach is simple and easily 
applicable also at large scale (database). A disadvantage is that the approach has been criticised 
when used in combination with stochastic error propagation (Heijungs, 2019), the reason for 
this criticism is not entirely clear but supposedly because the pedigree method was originally 
not developed for the purpose of being used in stochastic simulations. 

 

Empirical estimates. Empirical estimates are more reliable than assumptions because based 
on evidence, but obtaining these data might require more resources. A simple approach is to 
use a range to quantify exchange input data uncertainty. Estimates might be available for a max. 
and min. value of an exchange in a specific activity and then the assumptions can be limited to 

 
1 Using the notation of Limpert et al. (2001), for a variable X that is lognormally distributed, the «geometric mean » 
that is calculated with the pedigree formula in Ciroth et al. (2013) corresponds to 𝝈* = exp(𝝈) where 𝝈 is the 
standard deviation of the underlying normal distribution (logX)). This value represents a measure of scale and has to 
be coupled with the appropriate measure of location depending on the software (e.g., in the open source brightway  
the mean and standard deviation of the underlying distributions should be used: https://stats-
arrays.readthedocs.io/en/latest/#id19)  

https://stats-arrays.readthedocs.io/en/latest/#id19
https://stats-arrays.readthedocs.io/en/latest/#id19
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the share of the distribution between these values, for example uniform or triangular. The most 
accurate approach to estimating uncertainty is to calculate descriptive statistics on a repeated 
sample of values for an exchange data input. An example is provided in Table 1 below where 
mean and standard deviations are calculated for the CO2 emission per kg product from an 
unspecified activity (calculation in the file: ALIGNED-T1.4-Uncertainty-from-measurement-
example-AAU.xlsx). A disadvantage of this method is that it is difficult to apply at scale as 
repeated measurements for each exchange of an activity are seldom available and even more 
seldom are available for multiple activities in the same system.  

 

Table 1 Example of calculating uncertainty estimates for LCA model inputs from repeated measurements. 

Measurement 

(nr) 
 

Product  

(kg) 

CO2 emission  

(kg) 

Emission factor  

(kg CO2/ kg product) 

1 10 50 5.00 

2 11 54 4.91 

3 13 57 4.38 

4 12 55 4.58 

5 9 48 5.33 

6 8 47 5.88 

7 14 56 4.00 
 

Mean 4.87 

Standard deviation 0.62 

 

 

 

3.2. Propagating uncertainty from input data to output, 
tiered approach 

 

Analytical method. To quantify the uncertainty in model output that is due to uncertainties 
due to data, theory of uncertainty propagation can be applied to the LCA model in analytical 
way, i.e. using specific equations that are well established in literature and nowadays textbook 
material (Harvey, David, 2019) and have also been described for LCA (Imbeault-Tétreault et al., 
2013). 

The complexity of the calculation depends heavily on the structure of the model. An extremely 
simplified case could be the one of a product system that is the sum of three activities to provide 
a functional unit. For each of these a pre-calculated value of climate change impact (kg CO2-eq) 

Action: for each exchange in the inventory, provide a measure of uncertainty. The following 
methods should be applied in this order (increasing order of accuracy but also increasing 
complexity): rough estimate, empirical estimate using min and max values, pedigree matrix, 
empirical estimate using repeated measurements.  
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is calculated for the amount needed.  A “rough estimate” (see above) of uncertainty is given 
using a coefficient of variation. The uncertainty of the results is calculating using the theory of 
error propagation of a sum (square root of the sum of the squares of each uncertainty). The 
outcome is an uncertainty of 3.5% on the model output. A calculator to reproduce this is 
provided as separate Excel file (ALIGNED-T1.4-Analytical-error-propagation-calculator-
AAU.xlsx).  

A more complex approach using multiple input data and the sensitivity indexes, based on the 
work of Imbeault-Tétreault et al. (2013) is provided as a separate file (ALIGNED-T1.4-Analytical-
error-propagation-calculator-AAU.xlsx). The file also includes a worked example for the case of 
comparative assessment where the ratio of the impact of the two alternatives should be used. 
The advantage of the method is its simplicity. The disadvantage is that is not easily applied to 
larger systems, so it works poorly at scale. 

 

Table 2 Example of calculating uncertainty estimates for LCA model outputs with the analytical method. 

Activity GWP (kg CO2-eq) (pre-
calculated) 

 
CV (%) 
(estimated) 

SD (back-
calculated) 

Square of SD 

Production 
stage 

11 ± 10 1.10 1.21 

Use stage 15 ± 4 0.60 0.36 

End of life 
stage 

18 ± 5 0.90 0.81 

Total life 
cycle 

44 ± 3.5 1.54 ßAnalytically 
propagated 

 

Stochastic method. A very popular approach to error propagation in LCA is to use stochastic 
error propagation such as Monte Carlo simulation. This consists in randomly sampling inputs 
based on information about their uncertainty (for example, the assumed or measured shape, 
scale and location of their distribution), calculating model outputs, and iterating the process 
several times.  

The approach has the drawback that it creates inconsistencies in life cycle inventories because 
mass balances are not conserved in the random sampling procedure. Sampling strategies should 
always be applied exclusively to independent variables of a model, but in LCA this is not possible. 
This is because LCA models are usually not parameterized: the value of an exchange in an 
inventory dataset is static and is not calculated from the value of another exchange, e.g. the 
output of CO2 of an activity is not calculated automatically based on the value of the reference 
flow of the same activity. So when these are sampled independently an inconsistency or 
mismatch between the two is inevitably introduced. The extent of this imbalance and whether 
this is a pragmatically problem remains currently poorly understood in the scientific literature 
in LCA, to the best of our knowledge. 

The method is sufficiently practically implementable in open and commercial LCA software. 
Particular attention should be paid when using the stochastic error propagation in comparative 
context (Pizzol, 2019) – in this case a paired sampling procedure must be used to avoid 
overestimating the uncertainty. Additionally, in comparative context excessive amount of 
iterations (over 10.000) might result in forced or “hacked” significant differences between 



 
 

 

Horizon Europe grant agreement N° 101059430. Views and opinions expressed are however those of the author(s) 
only and do not necessarily reflect those of the European Union or the European Research Executive Agency. Neither 
the European Union nor the granting authority can be held responsible for them. 

15 

 

alternatives when the two distributions of results are compared using p values from a statistical 
test (Heijungs, 2019).  

To avoid this problem it is recommended to calculate the difference (or ration) between 
iterations over the simulation and then define an arbitrary but strict threshold value for such 
difference, e.g. 95% of iterations should show a positive difference between the two alternatives 
for them to be significantly different when considering the alternatives. In this type of 
simulations p-values should only be compared in relative terms i.e. should be only compared 
across alternatives in the same simulation but not across studies or simulations.  See separate 
notebook tutorial (ALIGNED-T1.4-Comparative-MC-tutorial-AAU.ipynb). 

 

 

 

  

Action: for the product system under analysis, perform a quantification of the uncertainty 
the following methods, listed in increasing order of accuracy but also increasing complexity: 
analytical method using simple model structure and terminated datasets; analytical method 
using sensitivity indexes, stochastic error propagation method. Note that the choice of 
method also depends on how the uncertainty has been quantified in the previous step 
(lognormal uncertainties are required to apply the analytical method with sensitivity indexes 
and the simple analytical method requires pre-calculated datasets). 
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4. Sensitivity analysis – focus on data  
 

The most practical approach is to use OAT (One At Time) sensitivity analysis. Once a set of 
specific data or parameters’ values is chosen, these are varied one by one and the difference in 
output is then compared to the difference in input using sensitivity coefficients that can be 
calculated in different way  (Bisinella et al., 2016).  

Imbeault-Tétreault et al. (2013) defines a sensitivity index Sx,h as the relative variation in output 
h caused by a relative variation in input x. While this index should be calculated using the partial 
derivative of impact score h according to x, in practice the LCA practitioner usually calculated it 
based on discrete data, as the ration between the relative difference in output and input. This 
is defined as “sensitivity ration” by Bisinella et al. (2016) and approximated to the value obtained 
using the derivatives. See an example of calculation in a separate Excel file (ALIGNED-T1.4-
Sensitivity-Ration-example-AAU.xlsx) and in a separate notebook tutorial (ALIGNED-T1.4-OAT-
tutorial-AAU.ipynb). The result is a ranking of the most sensitive parameters based on their index 
value, where higher value indicates higher sensitivity of the results to changes in the value of 
the parameter.  

The limitation is that a data point or parameter might have different sensitivity on the results 
under different modelling assumptions. For example, the sensitivity to energy use can depend 
on the carbon intensity of the energy mix assumed. The sensitivity might also change depending 
on the values taken by of the rest of the input parameters, this is the case when there are 
interactions between parameters and non-linear models.  

 

 

  

Action: for the product system under analysis, select a list of parameters for testing 
sensitivity. This selection can be informed by previous experience and familiarity with the 
model, results from a contribution analysis, special importance for the decision maker of the 
study, or because they are highly uncertain (lack of knowledge) or very variable (multitude of 
values can be expected). Test the sensitivity of the parameters by changing their value (e.g. 
by 10% as in the notebook), calculating new results, and then calculating sensitivity ratios. 
With more time and resources available, increase the number of parameters under analysis. 
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5. Uncertainty analysis – focus on model  
 

To understand the uncertainty in the results that is due to modelling choices, the suggested 
approach is to use scenarios. Scenarios are intended as plausible assumptions regarding a 
specific model structure, for example the assumption about a constrained flow or about what 
activity is substituted by a co-product, or model is used to calculate characterisation factors or 
emissions at the end of life, or the geographical location of a supplier, or the composition of the 
energy mix used.  

The modelling choice might affect multiple activities simultaneously in a complex way, for 
example the choice of allocation key (economic vs mass) or the choice of modelling approach 
(attributional versus consequential) or even of background system model (cut-off versus APOS 
versus consequential for the same ecoinvent version) are all modelling choices that affect 
simultaneously several activities in the product system.  

In practice the analysis is performed by changing the assumption and thus the model structure 
according to different scenarios, and then calculate new model outputs. This can be iterated for 
several options, see a simplified example in the notebook on changing electricity mix (ALIGNED-
T1.4-Model-Uncertainty-tutorial-AAU.ipynb). 

Note that the use of different scenarios here is practically similar but conceptually different from 
doing an OAT sensitivity analysis on the modelling choice. It is practically similar because in the 
way it is implemented because it consists in a calculating a series of results based on different 
model configurations. However, since each modelling choice is a discrete choice - because either 
one model structure or another structure can be considered each time - the “variable” that is 
modified is a categorical type of variable and not a continuous one as in the case of OAT. In other 
words, it is the type of exchanges that is modified whereas in OAT the numerical value of an 
exchange is modified. The presence of a categorical variable prevents to calculate sensitivity 
rations on the modelling choice as in the case of OAT (previous section). The scenario analysis 
approach is then conceptually different from sensitivity analysis because its objective is 
quantification of uncertainty. The objective of the uncertainty analysis is to obtain a range or 
distribution of output values due to different modelling choices, while the objective of OAT and 
GSA is to obtain a measure of sensitivity of results due to the change in model structure.  

 

 

 

  

Action: for the product system under analysis identify a set of discrete modelling choices that 
are expected to influence results. (cf. also tables 3-7). For these, perform calculations using 
different scenarios, i.e. model structures obtained from different assumptions, and present 
results together making clear what is the quantitative difference that is due to the 
assumption made. A common approach is to test the sensitivity to the choice of energy mix.  
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6. Sensitivity analysis – focus on model  
 

To overcome the limitation of OAT, the only approach that can allow to investigate sensitivity to 
model assumptions is Global Sensitivity Analysis (GSA) (Cucurachi et al., 2016; Saltelli, 2005). 

GSA is a systematic perturbation of the model, in the sense that all parameter values are 
changed simultaneously using a predefined sampling strategy (e.g. Morris, Hypercube latin, etc.) 
and the influence of each parameter on the results under varying conditions is then determined 
using appropriate indices of sensitivity (Delta, Sobol). This approach allows to mitigate the limits 
of OAT previously mentioned.  

For example, calculating the average and standard deviations of the sensitivity ratios for one 
parameter while all the others are being modified allows to derive sensitivity indices for the 
parameter that take into account possible changes in model structure (Morris method).  

GSA is however more complex than OAT to implement in practice in LCA and it is not feasible 
with commercial LCA software and had larger computational requirements the higher the 
number of parameters are included in the analysis, because this results in a larger number of 
combinations between these parameters with the need to perform a larger number of 
simulations. In some situations GSA might also be not strictly necessary: Kim et al. (2022) show 
that since several LCA models are linear or close to linear (the output is directly proportional to 
a change in input over the entire input space, i.e. across all possible values of all inputs) a simpler 
approach can be applied, i.e. using a correlation analysis.  

The tiered recommendation is to first investigate qualitatively if any model assumption might 
change the results of OAT, and if this is found to be the case perform a simplified version doing 
multiple OAT on a limited set of selected critical modelling assumptions and investigate the 
differences in results using sensitivity ratios.  

A second step can be to perform a larger simulation considering several key parameters and 
calculating correlation coefficients for each of those (Kim et al., 2022). Guidance for carrying out 
this type of analysis is provided in a separate notebook tutorial (ALIGNED-T1.4-GSA-tutorial-corr-
AAU.ipynb). 

A third and more complex but also more informative approach is to apply GSA using a predefined 
sampling strategy and then analysing results using corresponding sensitivity indexes. Guidance 
is provided in separate notebook tutorial (ALIGNED-T1.4-GSA-tutorial-FAST-AAU.ipynb). 

It should be noted that the GSA approach described in previous sections is in fact an approach 
to estimate the sensitivity to the choice of parameters values when also considering the 
structure of the model. However, the approach does not strictly assess sensitivity to the use of 
different model structures and consequently to different modelling choices, and neither does 
assess the or consider the combination of choices made on parameter values and modelling 
structure. GSA and scenario analysis can in principle be coupled to address this challenge (Blanco 
et al., 2020) but the theoretical approach is not yet practical operational in existing software 
tools to consider a large numbers of modelling choices and scenarios as in common LCA practice. 
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Action: for the product system under analysis identify first qualitatively whether relations of 
interdependence between parameters require the need for a GSA. If this is the case, identify 
a set of parameters that must be included in the GSA. Define sampling strategies for these 
parameters and perform a simulation on the different models obtained from the combination 
of different values for different parameters. For simpler approach use uniform distributions 
to sample the parameters and use correlation indices to measure the sensitivity. With more 
resource and skills available use specific sampling strategies and specific sensitivity indexes.
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7. Guidelines for appraisal of uncertainty 
in the ALIGNED model framework 

 

In the following, recommendations are provided for understanding the uncertainties in the 
models used in the ALIGNED framework for assessment of bio-based products. These are 
organized according to the tasks in the Work Package 1 of the project, that loosely follow the 
ISO phases of LCA. For each model in the framework, indications are provided regarding 
uncertainties of data and model type. Additional guidance is provided that illustrates practical 
tools to be used in the uncertainty and sensitivity analysis of the LCA of bio-based products. 

 

 

 

 

  

Action: when using the approaches, methods, and tools within the aligned modelling 
framework, read the indications provided in the tables below before performing uncertainty 
and sensitivity analysis. These can e.g. guide in the choice and selection of the parameters 
for a sensitivity analysis as well as in the understanding of the major sources of uncertainty 
and consequent strategies for reduction of uncertainty where possible (e.g., via additional 
collection of data and checking the soundness of assumptions with specific stakeholders) or 
for management of uncertainty where reduction is not possible (e.g. nuancing the 
presentation of results by reporting on the uncertainties). 
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7.1. Uncertainty in background modelling (T1.1) 
Table 3 Uncertainty and sensitivity of data in modelling of prospective scenarios using IAMs within the ALIGNED 

framework. 

 Uncertainty Sensitivity 

Data As prospective background databases are 
based on premise tool (Sacchi et al. 2022), 
uncertainties are related mostly to the 
modelling structure from output data of 
Integrated Assessment Models (IAMs). 
The compilation of future background 
databases also depends on the choices 
made by the developers such as when 
considering new inventories representing 
novel technologies being gradually 
implemented in key industries such as 
power generation, fuels steel, cement, 
and transport at global level.  Introduction 
of alternative inventories for novel 
technologies is possible through user-
defined scenarios. Although data- and 
time-consuming, this feature can be 
useful to incorporate projections for a 
sector, product, or technology that may 
not be adequately addressed by standard 
IAM scenarios. 

Compared to the standard approach (e.g. 
fixed ecoinvent database), the adoption of 
prospective background databases coupled 
with outputs from IAMs already represents 
an important advance towards a better 
sensitivity analysis of the effects from 
diverse assumptions of the background 
database used in LCAs. The possibility of 
making projections of future databases for 
different years (from 2005 to 2100, with 
time steps which vary from five to ten years) 
using diverse combinations of modelling 
assumptions can be understood as an extra 
layer of complexity when expressing 
possible future realities affecting 
background databases.  

Model Uncertainties are related mostly to the 
modelling structure from Integrated 
Assessment Models (IAMs), Shared socio-
economic pathways (SSPs), and climate 
policy implementation assumptions 
which, in turn, are largely affected by the 
potential trajectory selected for 
atmospheric radiative forcing associated 
to the Representative Concentration 
Pathways (RCPs). Market structure can 
vary depending on the selected LCA 
approach (e.g. consequential or 
attributional). Considering that the world 
supply chain is aggregated into a few 
regions, there is an intrinsic uncertainty 
associated to LCAs studies adoption a 
smaller geographic scope (e.g., countries, 
states, counties, etc.).  

Sensitivity is indirectly covered by the 
model’s scenario analysis. For a selected 
year of the future database, it is possible to 
select between two IAMs of high reliability 
(REMIND and IMAGE). In terms of narratives 
or storylines for the future, the current 
version of premise covers three SSP options 
in REMIND (SSP1- Taking the green road, 
SSP2- Middle of the Road, and SSP5-Fossil-
fueled development: Taking the highway) 
and one SSP option in IMAGE (SSP2). 
Besides, different climate policy 
assumptions here ranked by order of 
stringency, can be selected: no policy 
implementation (Base), National Policies 
Implemented (NPi), Nationally Determined 
Contributions (NDC), and the achievement 
of different CO2 emission peak scenarios by 
2100 (PkBudg1150 and PkBudg500) 
according to Paris Agreement Objectives. 
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7.2. Uncertainty in foreground modelling (T1.2) 
7.2.1.  Dynamic carbon flux model  

Table 4 Uncertainty and sensitivity in modelling dynamic carbon fluxes within the ALIGNED framework. 

 Uncertainty Sensitivity 

Data Not all species-specific data are 
available and some are assumed.  

Example: “share of above ground 
biomass harvested” for “Kiggelaria 
africana” as the data were not 
available. There is high variability 
across tree species in the growth and 
biological parameters to it is 
recommended to calculate results for 
more than one to account for this. 

 

Monte Carlo simulation is not 
implemented in the model but the 
model is parametrized and can thus 
support this type of simulation (with 
appropriate Excel add-ins).  

 

Results are very sensitive to the chosen rotation 
period value as well as carbon content in the 
biomass, it is recommended to choose these as 
accurately as possible. 

The model is parametrized so allows to easily 
calculate the sensitivity to changes in parameter 
values. Note that the model is nonlinear. 

Notes from sensitivity/correlation test 
performed in excel, based on ~30 scenarios: 

• Life cycle CO2 uptake (C balance): Strong 
correlation with S1 carbon factor (0.9+) 
and S1 basic wood density (0.5+), 
moderate with S1 rotation time (0.3+) 

• Life cycle CO2 uptake (GTP): strong 
correlation with S1 rotation time (0.8+), 
moderate with S1 wood density (0.5+), 
S1 carbon content (0.6+) 

• Life cycle CO2 uptake (GWP): strong 
correlation with rotation time (0.9+), 
moderate with carbon factor (0.4+) 

• Life cycle CO emissions (C-balance): 
strong correlation with S1 carbon 
content (0.8+), moderate with S1 wood 
density (0.6+) 

Model The choice of substituted activity 
regarding the biomass from thinning 
is associated with uncertainty. The 
uncertainty concerns the assumption 
that biomass from thinning is burned 
and thus substitute short-rotation 
wood. What is uncertain is the 
location of the substituted activity 
e.g. short rotation wood from south 
American plantation rather than 
European ones.  

 

This needs to be modelled ad hoc in 
the model. 

The choice of carbon pool and the choice of 
indicator for the climate impact are very 
impactful on the results.  

 

The model is parameterized and can in principle 
support the use of global sensitivity analysis. The 
model is nonlinear. 
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7.2.2.  Constraints to biomass availability 

Table 5 Uncertainty and sensitivity in modelling constraints to biomass availability within the ALIGNED framework. 

 Uncertainty Sensitivity 

Data Data from FAOSTAT are assumed to have 
high reliability, however some of those are 
estimated by FAOSTAT and not the result of 
direct measurement / reporting.  

It is possible to calculate uncertainty 
estimates of the model coefficients (annual 
increments) using the standard error of the 
regression (SER estimate). This gives a 
quantitative indication of the size of 
uncertainty in the estimated historical 
increment.  

The model is based on historical data from 
FAOSTAT.  

These are representative of past conditions 
and thus have high uncertainty in making 
predictions to the future. It is 
recommended to substitute historical data 
with scenario ones when available, e.g. 
FAO agricultural outlook  
(https://www.oecd.org/publications/oecd-
fao-agricultural-outlook-19991142.htm).  

Data are per country level, there is 
variability across countries and it is 
recommended to perform the analysis for 
multiple countries.  

 

The model is substantially sensitive to the 
choice of the timeframe for the analysis 
(start year and end year chosen to calculate 
the historical increment). For the same 
number of years under analysis, it is 
recommended to calculate results using 
different start and end years (e.g. 2014-
2019 and 2015-2020) to nuance the 
conclusions. 

 

Model The model is based on linear regression, 
this model might not reflect fully the reality 
of the phenomenon as growth. The use of 
other nonlinear models is possible to 
obtain higher accuracy. Use of R2 and AIC 
statistics is recommended to quantify the 
accuracy of the prediction. 

 

The model is substantially sensitive to the 
choice of the timeframe for the analysis 
(start year and end year chosen to calculate 
the historical increment). For the same data 
sources, it is recommended to calculate 
results using different periods (e.g.5y range 
and 10y range) to nuance the conclusions. 

The model to calculate the composition of 
the country mix is substantially sensitive to 
the choice of countries to be included in the 
analysis. It is recommended to include a 
minimum of ten countries in the analysis. A 
non -exhaustive list of strategies for 
choosing the countries to include are on 
following, to be chosen based on what is 
most sound in the specific case (for regional 
markets choosing the neighbouring trading 
area might be sufficient but for good traded 
globally a larger number of producing 
countries should be considered). 

 

https://www.oecd.org/publications/oecd-fao-agricultural-outlook-19991142.htm
https://www.oecd.org/publications/oecd-fao-agricultural-outlook-19991142.htm
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7.3. Uncertainty in Life Cycle Impact Assessment (T1.3) 
Table 6 Uncertainty and sensitivity in life cycle impact assessment within the ALIGNED framework. 

 Uncertainty Sensitivity 

Data Characterization factors (CFs) are 
sometimes provided with uncertainty 
ranges (e.g. for Iordan et al., (2023) 
biodiversity losses due to GHG 
emissions). 

 

Temperature impulse response 
functions (to compute e.g. GTP 
midpoint metrics) have uncertain 
variable calibrations, as these depend 
on the selected background climate 
model (Olivié et Peters, 2013) 

CF proportionally affects the LCA scores. For CF 
with uncertain ranges documented, an OaT can 
be performed with the brightway framework. 

 

Model Which climate metric to choose (see 
recommendations of task 1.3), as the 
further in the impact pathway (the 
cause-effect chain of ecosystem 
modelling), the higher the 
uncertainty: selecting different 
metrics to reduce the uncertainty. 

Conclusions are sensitive to the time horizon 
selected when computing relative metrics such 
as GWP and GTP. Duration of the life cycle 
duration is also relevant. Both can be assessed as 
perturbation/scenario analysis (what if..), to see 
if conclusions change. 

 

For endpoints damages indicators (e.g. 
biodiversity loss), assess at least two different 
LCIA method (e.g. LC-impact and Impact world 
+).  
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7.4. Uncertainty in socio-economic assessment (T1.5) 
Table 7 Uncertainty and sensitivity in socio-economic assessment within the ALIGNED framework. 

 Uncertainty Sensitivity 

Data Depending on the TRL of the 
technology/process/product data can be 
subject to uncertainty. In general, uncertainty 
tends to be the highest under low TRL and 
gradually decreases with increasing TRL 
(maturity). Potential mitigation strategy: 
scenario analysis.  

All indicators are primarily focused on a 
microalga case study. However, the goal was 
also to focus on the biobased sector. Hence, 
the indicators can be used as a starting point 
for the Aligned project and need to be slightly 
adjusted in a further stage. Potential mitigation 
strategy: Project internal expert consultation. 

Social indicators are usually qualitatively 
assessed and are subjective. It is hard to 
quantity them. For now, the social indicators 
are based on a microalga case study. Potential 
mitigation strategy: further literature review, 
scenario analysis.  

Specifically for social indicators, the value of 
the country-specific indicator is based on the 
average of the entire country which might 
deviate from the correct value that is 
determined on a firm level.  Potential 
mitigation strategy: further literature review, 
scenario analysis. 

Data can be sensitive to the choice of 
country, especially for environmental 
indicators and social indicators. Certain 
indicators such as electricity mix 
(environmental) or wages (social) can 
deviate depending on the 
country/region. 

 

Potential mitigation strategy: It is 
recommended to include a pre-defined 
number of countries that is used 
among all parts of the novel Aligned 
framework. 

Model The prospective aspect is still lacking. The 
model is constructed in such a way that it 
represents the present. Specifically, the social 
indicator unit does not have a prospective 
nature.  

For now, the model is decoupled from the 
consequential model that is currently under 
development in the Aligned project. The model 
does not include learning effects/curves.  

Potential mitigation strategy: Aligned and 
harmonized learning model across the entire 
Aligned model.  

The model is built in an integrated way. 
All technological data points are 
connected to the economic, 
environmental, and societal part of 
assessments. Hence, a deviating 
technological parameter will cause a 
deviation in results in all three 
domains.  
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8. Concluding remarks 
 

This document has provided a selection of practical approaches to handle uncertainty in the 
environmental assessments of bio-based products within the ALIGNED project.  

Guidance was provided using a tiered approach where the approaches are listed in order of 
increasing accuracy but also increasing complexity in a way that each LCA practitioner can find 
the approach that best fits to the level of expertise possessed, and accuracy needed. 

Separate tutorials and calculators in excel and python where the approached proposed are 
applied in practice are available in the T1.4 repository and accompany this guide.  

Additionally, a qualitative assessment of the main sources of data and model uncertainty and 
sensitivity respectively was provided for the models and approaches within the harmonized 
ALIGNED framework for assessing the environmental performance of bio-based products – 
which is intended to ease the application of the approaches, methods, and tools in this 
framework as well as the understanding of the uncertainties associated with the results of these 
models.  

The primary audience for this guide is LCA practitioners in bio-based industries and sectors – but 
also beyond as the techniques here illustrated can be used for LCAs in other contexts.  

The final remark is that given the importance of uncertainty and sensitivity analysis for the 
interpretation and communication of LCA results, it is important that these analyses are 
performed in all LCA studies, even if not all LCA studies would require uncertainty and sensitivity 
analysis at the highest level of complexity. 
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