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Abstract—The advances in location positioning and wireless
communication technologies have led to a myriad of spatial
trajectories representing the mobility of a variety of moving
objects. While processing trajectory data with the focus of
spatio-temporal features has been widely studied in the last
decade, recent proliferation in location-based web applications
(e.g., Foursquare, Facebook) has given rise to large amounts of
trajectories associated with activity information, called activity
trajectory. In this paper, we study the problem of efficient simi-
larity search on activity trajectory database. Given a sequence of
query locations, each associated with a set of desired activities, an
activity trajectory similarity query (ATSQ) returns k trajectories
that cover the query activities and yield the shortest minimum
match distance. An order-sensitive activity trajectory similarity
query (OATSQ) is also proposed to take into account the order
of the query locations. To process the queries efficiently, we
firstly develop a novel hybrid grid index, GAT, to organize the
trajectory segments and activities hierarchically, which enables
us to prune the search space by location proximity and activity
containment simultaneously. In addition, we propose algorithms
for efficient computation of the minimum match distance and
minimum order-sensitive match distance, respectively. The results
of our extensive empirical studies based on real online check-in
datasets demonstrate that our proposed index and methods are
capable of achieving superior performance and good scalability.

I. INTRODUCTION

Driven by major advances in sensor technology, GPS-
enabled mobile devices and wireless communication, a large
amount of data describing the motion history of moving
objects, known as trajectory, are currently generated and
managed in scores of application domains. This inspires
tremendous efforts made on analyzing large scale trajectory
data from a variety of aspects in the last decade. Represen-
tative work includes designing effective trajectory indexing
structures [1][2][3][4][5], efficient trajectory query process-
ing [6][7][8], uncertainty management [9][10], and mining
knowledge/patterns from trajectories [11][12][13][14][15], to
name a few.

In spite of the significant contributions made by this work,
they mainly focus on the spatio-temporal features of the
trajectories. Typically, a trajectory is modelled as a sequence
of time-stamped geo-locations in two or three dimensional
space, which means spatio-temporal information is essential
to a trajectory database. However, recent years have witnessed
the flourish of location-based web applications such as online

check-in services (e.g., Foursquare1), location or route sharing
(e.g., Facebook Place2, Bikely3) and geo-tagged media sharing
(e.g., Flickr4). These applications are redefining and enriching
the traditional trajectory databases by associating locations
with semantic meanings. For example, Foursquare users can
check in the venues they are visiting and leave tips for other
people. Flickr allows tourists to upload their geo-tagged photos
took by smartphones during the travel, so that their trips can be
outlined by the time and location information embedded in the
photos. From the trajectories generated in these applications,
we can know not only where and when a user has been,
as in the traditional trajectory database, but also what he/she
has done by extracting the information from the multimedia
contents attached to the locations (e.g., text, images, videos).

In this paper, we use the term activity trajectory to represent
this new type of trajectory data that contains the information
about the user activities at particular places. Tr1 and Tr2
in Figure 1 exemplify the activity trajectories, where each
place is associated with a set (could be empty) of activities
performed by the users. Notice that how to extract and classify
the activities is orthogonal to the techniques in our paper,
and we just regard each activity as a unique entry of a
pre-defined activity vocabulary. Since the activity trajectories
are becoming ubiquitous and still growing in a fast pace,
analyzing them is undoubtedly an important problem which
will lead to many interesting findings. Towards this direction,
we study the problem of efficient similarity search in large
scale activity trajectories. Similarity search has been studied
for long in trajectory databases due to its broad range of
real applications. Consequently, a great number of research
results exists including different similarity/distance measures
and search techniques [16][17][18][6][7][19][20]. But none of
these methods can be applied to activity trajectories, as the
activities must be considered in both distance measures and
search process.

Identifying the similar activity trajectories to a given query
is very useful for place recommendation and trip planning.
Consider the example in Figure 1 where a tourist plans to
visit three places q1, q2, q3 in a city and conduct activities
{a, b}, {c, d}, {e}, respectively. Because he is not familiar with

1http://www.foursquare.com
2http://www.facebook.com
3http://www.bikely.com
4http://www.flickr.com
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Fig. 1: Similarity query example

this city, he would like to look at the travelling histories
of other people nearby his intended locations for reference.
If only the geometric property of the trajectories is to be
considered, we can apply the best match distance measure
proposed by Chen et al [20], which aims at searching for
similar trajectories with respect to multiple query locations.
By doing so, Tr1 will be taken as the most promising result
since its points p1,1, p1,3, p1,5 are closer to the query points
than Tr2. But obviously the tourist will not be satisfied by this
result since p1,1, p1,3 do not cover his intended activities. On
the other hand, Tr2 can be a better reference for the tourist as
it has the points around each query location while matching
the activities (p2,1, p2,2 for q1, p2,3 for q2, p2,5 for q3), though
it is a bit further than Tr1 from pure geographical aspect.

Having observed the limitation of traditional trajectory
similarity search, we propose a novel similarity query for
activity trajectories by incorporating both geometric distance
and activity match into the similarity measure, with the goal
of returning more meaningful results to the users. However,
answering this new query turns to be a more challenging
problem since just making use of either location or activity
information for pruning the search space will result in bad
query performance. Our approach to this problem starts with
a novel grid index called GAT, which includes a hierarchy of
cells for each activity, an inverted list of trajectories containing
each activity within each cell, and a summarized sketch of
activities for each trajectory. GAT keeps the advantage of
hierarchical spatial index like R-tree [21] while avoiding the
flaws of large “dead zones” when indexing trajectories by
minimum bounding boxes. In addition, the index not only
uses the local information on trajectory segments within the
cells but also preserves some global information for the
entire trajectory in the activity sketch, so that its pruning
power can be boosted. On top of the index, we develop a
best-first search strategy with tighter distance lower bound
for all “unseen” trajectories in the database and an efficient
algorithm to compute the distance between candidates and the
query. Furthermore we extend the similarity query to be“order-
sensitive” by taking into account the order of the query points,
and propose efficient solutions to rule out invalid candidates

and evaluate the more costly distance function. To sum up, we
make the following major contributions in this paper.

• We introduce and formalize two new types of similarity
queries for activity trajectories.

• We propose a novel grid indexing structure called GAT
to organize the trajectory segments and their activity
information in a hierarchical manner. On top of that, we
develop a best-first search framework, which consists of
candidate retrieval and validation procedures, to prune
a large number of disqualifying trajectories by spatial
proximity and activity containment simultaneously.

• We also develop efficient algorithms to compute the min-
imum (order-sensitive) match distance between a query
and a candidate trajectory.

• We conduct an extensive experimental study based on
real trajectory datasets, which includes performance com-
parisons with three baseline algorithms and memory
cost evaluation on the proposed index. The experimental
results demonstrate the efficiency and scalability of our
proposed solution.

The remainder of the paper is organized as follows. We
define the necessary concepts and formulate the similarity
query in Section II. Section III presents the baseline meth-
ods. Proposed indexing structure and solution for ATSQ are
discussed in Section V. Section VI defines the OATSQ and
describes our approach. Section VII reports the experimental
observations, followed by a brief review of related work in
Section VIII. Section IX concludes the paper.

II. PROBLEM STATEMENT

In this section, we give the problem statement and provide
necessary definitions and background. Table I summarizes the
notations used throughout the paper.

Definition 1 (Activity): An activity α represents a type of
action that a user can take at some place of interest such
as sport, dining and entertaining. We use A to denote the
pre-defined activity vocabulary, which is the union of all the
activities the can be performed by the users.

Definition 2 (Activity Trajectory): An activity trajectory Tr
is defined as a sequence of geo-spatial points associated with
activities, i.e., Tr = (p1, p2, ..., pn). Each pi represents a geo-
spatial location, which is attached with a (possibly empty) set
of activities Φ ⊆ A.

Essentially, an activity trajectory is historical record describ-
ing what a user did and where he/she did it. In the rest of
the paper, we will simply use trajectory to represent activity
trajectory when no ambiguity can be caused.

Definition 3 (Point Match): Given a query point q with a
set of activities q.Φ, a point match from Tr to q, denoted by
Tr.PM(q), is a set of points P ⊆ Tr such that its union
of activities is a superset of q.Φi, i.e., q.Φ ⊆ ⋃

pi∈P pi.Φ.
The sum distance between each point in Tr.PM(q) and q,
i.e., Dpm(q, Tr.PM(q)) =

∑
p∈Tr.PM(q) d(p, q), is called the

point match distance.



TABLE I: Summary of notations

Notation Definition
Tr Activity trajectory
α An activity
p A point in trajectory
p.Φ The set of activities attached to p
Tr[i, j] Sub-trajectory of Tr from pi to pj
Q A set of query locations
q A query location in Q
Tr.PM(q) A point match from Tr to q
Tr.MPM(q) The minimum point match from Tr to q
Tr.M(Q) A match from Tr to Q
Tr.MM(Q) The minimum match from Tr to Q
Tr.OM(Q) An order-sensitive match from Tr to Q
Tr.MOM(Q) The minimum order-sensitive match

from Tr to Q
Dpm(q, T r.PM(q)) Point match distance from Tr.PM(q) to

q
Dmpm(q, T r) The minimum point match distance from

Tr to q
Dm(Q,Tr.M(Q)) The match distance from Tr.M(Q) to

Q
Dmm(Q,Tr) The minimum match distance from Tr

to Q
Dom(Q,Tr.M(Q)) The order-sensitive match distance from

Tr.OM(Q) to Q
Dmom(Q,Tr) The minimum order-sensitive match dis-

tance from Tr to Q

Obviously, there may be none or multiple point matches
in Tr for a given query point. So we define the concept of
minimum point match.

Definition 4 (Minimum Point Match): Given a query point
q and a trajectory Tr, a point match Tr.PM(q) (if
exists) is called the minimum point match, denoted as
Tr.MPM(q), if for any other point match Tr.PM(q)′,
we have Dpm(q, Tr.PM(q)) ≤ Dpm(q, Tr.PM(q)′).
Dpm(q, Tr.PM(q)) is called the minimum point match dis-
tance between Tr and q, denoted as Dmpm(q, Tr).

Considering the example in Figure 1, any point set in Tr1
that is the superset of any of the four point sets, namely
{p1,1, p1,2}, {p1,1, p1,4}, {p1,2, p1,5}, {p1,4, p1,5}, is a point
match from Tr1 to q2. With the distance matrix shown in the
figure, {p1,1, p1,2} is the minimum point match.

Intuitively, the minimum point match is the set of points in
the trajectory that collectively meet the activity requirement
and have the closest distance to the query point. Next we
extend this concept to multiple query points.

Definition 5 (Match): Given a set of query locations Q :
(q1, q2, ..., qm), we say a trajectory Tr is a match to Q,
denoted as Tr.M(Q), if the point match exists for each
query point qi ∈ Q. The set of point matches for each
query point forms the match from Tr to Q. Besides, the sum
of point match distances is called the match distance, i.e.,
Dm(Q, Tr.M(Q)) =

∑
q∈Q Dpm(q, Tr.PM(q)).

Definition 6 (Minimum Match): Given a set of query lo-
cations Q and a trajectory Tr, a match Tr.M(Q) is
called the minimum match, denoted as Tr.MM(Q), if for

any other match Tr.M(Q)′ we have Dm(Q, Tr.M(Q)) ≤
Dm(Q, Tr.M(Q)′). Dm(Q, Tr.M(Q)) is called the minimum
match distance between Q and Tr, denoted as Dmm(Q, Tr).

Continuing the above example, we can get that the minimum
match from Tr1 to Q is {{p1,2, p1,3}, {p1,1, p1,2}, {p1,5}},
and Tr2.MM(Q) = {{p2,1, p2,2}, {p2,3}, {p2,4}}. By this
way, Tr2 is considered to be more similar to the query
than Tr1 based on the their minimum match distances. The
following lemma states the relationship between the minimum
point match and minimum match.

Lemma 1: Given a query Q and a trajectory Tr, the
minimum match Tr.MM(Q) is formed by the mini-
mum point match for each query point qi ∈ Q, i.e.,
{Tr.MPM(q1), T r.MPM(q2), ...}. The minimum match
distance is the sum of minimum point match distance, i.e.,
Dmm(Q, Tr) =

∑
qi∈Q Dmpm(qi, T r).

The proof is omitted due to the space limit. According to
this lemma, finding the minimum match for a query Q can
be decomposed into looking for the minimum point match for
each point in Q.

Activity Trajectory Similarity Query (ATSQ). Given an
activity trajectory set D, a query Q, a positive integer k, an
Activity Trajectory Similarity Query (ATSQ) returns k distinct
trajectories from D that have the smallest minimum match
distances with respect to Q.

Ideally, the ATSQ will return the trajectories that contain
the query activities at the places close to each query location.
Here to offer some degree of flexibility, the order of the query
locations is not considered. But we will extend the query
definition to be order-sensitive in Section VI which, as we
shall see later, makes the query processing more complicated
since the Lemma 1 will not hold.

III. BASELINE ALGORITHMS

No baseline method exists for the ATSQ. In this section, we
propose three baseline algorithms which explore the possibility
of using existing techniques to solve this problem.

A. Inverted List based algorithm

The first baseline algorithm, called IL, only utilizes the
activities to prune the search space. Specifically, it aggregates
the activities associated with each point in a trajectory, and
then builds an inverted list for each activity. The basic idea
is to firstly filter out the trajectories in database that do not
contain all the activities specified in the query. Then for the
remaining candidates, we will sequentially process each of
them to compute the minimum match distance with respect to
the query, and then return the top-k results.

B. R-tree based algorithm

The second baseline method uses R-tree [21] as the indexing
structure to prune the search space in pure spatial dimension.
Firstly we treat the points of all trajectories as a point set and
index these points using an R-tree. Given a query Q, the base-
line traverses R-tree to find the nearest trajectory incrementally
in terms of the best match distance. The best match distance



(Dbm) between a query Q and a trajectory Tr is defined as the
sum distances from each query point in Q to its nearest point
in Tr, i.e., Dbm(Q, Tr) =

∑
q∈Q minDist(q, Tr), where

minDist(q, Tr) = minp∈Tr d(q, p).
It is easy to see that the best match distance always lower

bounds the minimum match distance, formally presented by
the following lemma.

Lemma 2: Dbm(Q, Tr) ≤ D(Q, Tr)mm

We can adapt the algorithm proposed in [20], which is
designed to answer the k-BCT query efficiently. Whenever the
next nearest trajectory is retrieved, we compute its minimum
match distance if it is a match with respect to Q. During the
process, we keep track of the k-th minimum match distance as
the threshold. If the best match distance of the next obtained
candidate exceeds this threshold, the algorithm can terminate
since it is guaranteed that all “unseen” trajectories will not
have the minimum match distance smaller than the current
top-k results, due to Lemma 2.

C. IR-tree based algorithm

The third baseline adopts the IR-tree [22] as the indexing
structure, which is used to support efficient spatial keyword
search on static point set. The IR-tree is essentially an R-tree
extended with inverted files [23]. Each leaf node in the IR-
tree contains a number of entries with the form (p, p.r, p.if),
where p refers to the pointer of a spatial object, p.r is the
bounding rectangle of p, and p.if is a pointer to an inverted
file for the text descriptions of the objects stored in this node.
Each non-leaf node R contains a number of entries of the
form (cp, cp.rect, cp.if) where cp is the address of a child
node of R, cp.rect is the MBR of all the rectangles in the
entries of child nodes, and cp.if is a pointer to an inverted
file for the union of the text descriptions of its child nodes. The
search algorithm based on IR-tree proceeds similarly with the
R-tree based method, i.e., trying to find the most spatially close
trajectories and then computing the minimum match distance
with respect to the query. The only modification is, before
probing the entries in a node of IR-tree, we first check its
inverted file to see if it contains any activity of the query. If
not, all the places enclosed in this node can be pruned directly.
By this means, this baseline is expected to examine fewer
nodes than the R-tree based method, thus can achieve better
efficiency.

IV. PROPOSED INDEXING STRUCTURE

In this paper, we propose a novel Grid index for Activity
Trajectories (GAT). Specifically, we construct a d-Grid by
dividing the entire spatial region into 2d×2d quad cells. Then
we further build (d − 1)-Grid,(d − 2)-Grid,...,1-Grid, which
will form a hierarchy of cells. Each cell can be assigned a
unique numerical ID by using space filling curve, which maps
multidimensional cells to 1-dimensional integer domain. As
shown in Figure 2(a), cell 1 to cell 16 form the 2-Grid, and
cell 17 to cell 20 form the 1-Grid. In addition, GAT consists of
the following four components, which are illustrated in Figure
2(b).

Hierarchical Inverted Cell List (HICL). To facilitate
identifying the regions that contain the query activities, we
firstly build an inverted list of cells in the d-Grid for each
activity α existing in the dataset. After that, we aggregate
the cells that belong to the same parent cell in the (d − 1)-
Grid to build a higher-level inverted cell list. By repeating the
above process until reaching the 1-Grid, we eventually build a
hierarchical inverted cell list for each activity. Next, we discuss
the storage of this structure.

Since the number of activities can be very large, maintaining
the entire HICL in the main memory may become infeasible.
In this case, we can just keep the high levels of the structure
within main memory and the low levels on the secondary
storage. More specifically, given a memory budget B, and
the cardinality of activity vocabulary C, we can estimate the
level h, the levels higher than which will be put on the
secondary storage, by choosing the largest integer h satisfying∑h

i=1 4
iC ≤ B, i.e., h = �log4( 3B4C + 1)�.

Inverted Trajectory List (ITL). In each cell of the d-
Grid, we build an inverted trajectory list for each activity
α existing in this cell, which is a list of trajectory IDs
whose segment contains α within this cell. This structure
provides the activity information on the trajectory level, i.e.,
which trajectories contain α in this cell. Since it does not
keep the detailed information about individual points for each
trajectory, the size of ITL is much smaller compared to the
original dataset, and hence ITL can be accommodated within
the main memory of a mainstream server in most cases.
However, in the circumstances where only limited memory
is available, we can partition all the cells into fewer but
big blocks, save all the blocks in the secondary storage, and
then retrieve the block(s) around the query location into main
memory at query time.

Trajectory Activity Sketch (TAS). For each trajectory
Tr in the database, we build an activity sketch in the main
memory, which summarizes the activities contained in Tr by
using relatively small memory space. The purpose of this data
structure is to quickly filter out the trajectories whose activities
do not match the query requirement without retrieving all the
detail information from the disk.

To this end, we sort all the activities in the vocabulary
by their occurrence frequencies in the whole database, and
assign continuous numerical ID to each activity. Then for each
trajectory Tr, we partition its activity IDs into M intervals,
I = {I1, I2, ..., IM}, with the goal of minimizing the overall
size of the intervals, i.e.,

∑M
a=1 |Ia|, where |Ia| is defined as

the difference between the greatest and smallest IDs in Ia.
The reason of doing this is to make the intervals as compact
as possible so that the pruning effect can be maximized. The
choice of M can be made according to the memory budget.
Large M (i.e., more intervals) is expected to gain better
pruning effect. Since each interval only needs to keep two
integers (which cost 8 bytes), the total memory cost for N
trajectories is 8MN bytes.

To derive the desired partition, we first sort the activity
IDs for each trajectory, and then compute the gap between
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Fig. 2: Grid index for activity trajectories, with illustration of the four components: (i) Hierarchical inverted cell list. (ii)
Inverted trajectory list. (iii) Trajectory activity sketch. (iv) Activity posting list.

consecutive IDs. Finally the top M−1 largest gaps are chosen
as the split positions to partition all activities into M intervals.
It is not difficult to prove this is the optimal partition, since
relocating any split point (with gap g) to other places (with
gap g′) will result in increase by g− g′ on the overall size of
the intervals (g > g′).

Activity Posting List (APL). For each trajectory Tr in the
database, we construct an activity posting list for each activity
α existing in Tr, which is a list of the trajectory points that
contain α. This data structure is stored on disk due to its
high space requirement, and will be retrieved only when the
distance with the query needs to be evaluated.

V. PROPOSED SEARCH ALGORITHM

The basic structure of our proposed search algorithm is
illustrated by Algorithm 1. Firstly, we retrieve a set of λ
candidate trajectories, which contains some places nearby
any of the query locations and at least one of the query
activities. The second step is to validate each candidate if
it is a whole match with respect to the query. Finally we
compute the minimum match distance for each valid candidate
and insert it into the result set. During this process, we keep
track of k-th smallest minimum match distance (MMDk

mm)
found so far and a lower bounding distance (Dlb) for all
“unseen” trajectories. As long as Dk

mm < Dlb, the algorithm
can terminate safely since all the “unseen” trajectories are
impossible to become the top-k results. Otherwise we will
incrementally fetch more candidates and repeat the above
process again.

A. Candidate Retrieval

A candidate is a trajectory that is possible and seemingly
promising to become a result for the query. Since the query
trajectory can consist of several places spanning a large area,
we will obtain a set of candidates which are close to at least

Algorithm 1: Search Algorithm Outline
Input: trajectory database D, query Q
Output: top-k result set R

1 while true do
2 CS ← ∅;
3 CS ← retrieve at least λ new candidates;
4 Dlb ← update the lower bounding distance;
5 for each Tr ∈ CS do
6 if Tr is a valid candidate then
7 Compute Dmm(Q,Tr) and put Tr into R;
8 Update Dk

mm and Dlb;

9 if Dk
mm < Dlb then

10 break;

11 Keep the topk results in R;
12 return R;

one of the query locations and contain at least one of the query
activities at that location.

We adapt the best-first search paradigm to obtain the candi-
date set. Specifically, we maintain a priority queue PQ with
entries in the form of (mdist, cellID, q), where mdist is the
minimum distance from the cell c with cellID to the query
point q ∈ Q. mdist is used as the key to sort the entries
in PQ. The retrieval process starts from inserting all cells
in the highest level of HICL that contains any query activity
to PQ. Then similar with the best-first search, the algorithm
repeatedly dequeues the top entry of PQ, i.e., the one having
the smallest mdist with respect to some query point qi. If it is
not the leaf cell (the cell in the lowest level of HICL), inserts
its child cells that contains any activity in qi.Φ back to PQ.
This can be done by looking up the HICL for each α ∈ q.Φ
and take the union set of the cells in the inverted list. By this
means, the cells without any query activity will be pruned



automatically. Once the popped out entry refers to a leaf cell,
the algorithm checks the ITL (if exists) of this cell for each
activity in q and put the trajectories in the ITL into a candidate
set CS. This procedure continues until CS contains at least
λ candidates.

B. Computing Lower Bound Distance

Another important task during the candidate retrieval pro-
cess is to maintain and update a lower bounding distance Dlb

for all “unseen” trajectories. A straightforward approach is to
directly use the mdist in the top entry of PQ, which obviously
is a lower bound for Dmm. However it is too loose to be useful
in practice. To develop a tighter lower bound, we use a set of
sorted lists, cellsn(qi), to keep track of the IDs of the m
nearest cells with respect to qi, which have not been visited
yet. At first, all the lists are initialized empty. Then whenever
an entry (mdist, cellID, qi) is dequeued from PQ, we first
remove cellID from cellsn(qi) (if it exists), and then insert
the IDs of its child cells, which contains any activity of qi.Φ,
into cellsn(qi). The cells in cellsn(qi) are sorted ascendingly
based on their mdist to qi, and only the first m cells are kept.
Now we propose to use these cells to derive a tighter lower
bounding distance, shown in Algorithm 2.

For the convenience of presentation, we only describe how
the lower bound Di

lb with respect to each qi is derived, and
Dlb is just the sum of Di

lb for all qi ∈ Q. First, for each
cell cj in cellsn(qi), we create a virtual point pj with all the
activities in cj , which can be acquired directly from ITL of
the index, and d(pj , q) = mdist(cj , q) (line 6). Then we use
these points to create a trajectory Tri = (p1, p2, ..., pm) and
compute the minimum point match distance Dmpm(qi, T ri)
by using the Algorithm 3 (line 7). Finally the smaller value
between Dmpm(qi, T ri) and d(qi, cm) is chosen as the lower
bound of Dmpm for all “unseen” trajectories (line 8).

Algorithm 2: Lower Bound Construction
Input: Q, cellsn(qi) for qi ∈ Q
Output: Dlb

1 mdist ← minimum distance in the top entry of PQ;
2 Dlb ← 0;
3 for each (qi,Φi) ∈ Q do
4 if cellsn(qi) is not empty then
5 for each cell cj in cellsn(qi) do
6 Create a point pj s.t. pj .Φ = cj .Φ and

d(qi, pj) = mdist(qi, cj);
7 Create a trajectory Tri = (p1, p2, ..., pm);
8 Dlb ← Dlb +min(Dmpm(qi, T ri), d(qi, pm);

9 else
10 Dlb ← Dlb +mdist;

11 return Dlb;

Theorem 1: Dlb derived by Algorithm 2 lower bounds
Dmm for all “unseen” trajectories in the database.

Proof: Since Dmpm is the minimum match distance we
can get given the virtual trajectory points and each virtual point
is the optimal one amongst all the points in the cell, Di

lb is

guaranteed to lower bound the minimum point match distance
between qi and all unvisited trajectories. Consequently, Dlb

lower bounds the minimum match distance between Q and all
unvisited trajectories.

C. Validating Candidates

This step validates each candidate trajectory whether it
contains all the activities specified by the query. Recall that
we have built a data structure, called trajectory activity sketch
(TAS), as a component of the index, which will be used to
prune a number of candidates without probing the original
trajectories on the disk. Given a candidate Tr ∈ CS, we firstly
check if its TAS enclose all the activities in the query, i.e.,
∀α ∈ Q.Φ, α.ID ∈ TAS(Tr). Clearly, this may introduce
false positives, i.e., the TAS covers the query activities but
the trajectory does not actually. However it guarantees that no
false dismissals will be introduced.

Consider the example in Figure 2. If Tr3 is retrieved as a
candidate, we can check that its activity sketch [b, c] ∪ [e, f ]
does not contain the query activities a and d. Hence Tr3 is
not a valid candidate.

To further eliminate the false positives, we then obtain the
activity posting list (APL) for each remaining candidate to see
if there exists a posting list for each query activity. If yes, then
the trajectory is set to be valid; otherwise, it will be removed
from the candidate set.

D. Computing Minimum Match Distance

The last step is to compute the minimum match distance
with respect to Q for each valid candidate. According to
Lemma 1, it is equivalent to find the minimum point match
for each query point in Q. For the sake of simplicity, we just
describe the algorithm of computing the minimum point match
for a single query point in the sequel.

A straightforward way to evaluate the minimum match
distance is to enumerate all match point set in the candidate Tr
and find the one with the smallest distance with the query q.
Obviously this will involve a large number of combinations,
which makes the computation cost too high. We propose a
smarter and more efficient algorithm to compute the minimum
match distance, which can reduce the number of combinations
and terminate early.

The basic structure is illustrated in Algorithm 3. Given a
query point q ∈ Q and a valid candidate Tr, we firstly retrieve
the points in the activity posting list (APL) of Tr for each
α ∈ q.Φ into a candidate point set, denoted as CP . The points
in CP are then sorted according to their distances with respect
to q, the purpose of which is to terminate the algorithm early.
We also maintain a hash table H whose key is a subset of
the query keyword set and its value is the current minimum
match distance with respect to this keyword subset. Next the
algorithm sequentially processes each point p in CP . For each
point p, we only care about the set of keywords that overlap
with the query, denoted as p.Φ′, and push it into an FIFO
queue L. After that the algorithm iteratively pops out the first
entry of L (it is p.Φ′ at the beginning). If a better minimum



match for the keyword subset ks already exists in H, then no
update is needed. Besides, there is also no need to examine
the subsets of ks since there must be a better minimum match
for the subset as well. Otherwise, we update the current best
minimum match distance for ks to be the distance between p
and q, and at the same time put all the (|ks|−1)-size subsets of
ks into L. Since the minimum match distance for keyword set
ks has changed, the minimum match distance for the superset
of ks may be affected as well. To ensure the minimum match
distances for all existing keyword sets up-to-date, we retrieve
each keyword set s from H, generate a new keyword set key
which is the union of s and ks, and update the minimum
match distance for key if necessary. Note that the keyword
set that is a subset or superset of ks can be skipped safely,
since in either case, i.e., key = s or key = ks, we have
H[key] < H[s] +H[ks].

The early termination condition of Algorithm 3 lies in the
beginning of each iteration of the candidate points CP (line
5). The algorithm can terminate if the distance between q and
the next unchecked point of CP is greater than Dmpm. This
ensures that all the unchecked points in CP cannot lead to
a better minimum match distance since the distance between
qi and any of those single points already exceeds the current
Dmpm.

Algorithm 3: Minimum Point Match Distance
Input: query point q, candidate Tr
Output: Dmpm(q, T r)

1 CP ← the points in Tr.APL for α ∈ q.Φ;
2 Sort the points of CP by the distance with q;
3 Initialize a hash table H to store the current minimum match

distance for each subset of query keywords;
4 for each point p ∈ CP do
5 if H.hasKey(q.Φ) and H[q.Φ] ≤ d(p, q) then
6 Break;

7 p.Φ′ ← p.Φ ∩ q.Φ;
8 Initialize an FIFO queue L to store the subsets of p.Φ′;
9 L.push(p.Φ′);

10 while ks← L.pop() do
11 if H.hasKey(ks) and H[ks] ≤ d(p, q) then
12 Continue;

13 else
14 H[ks]← d(p, q);
15 Push all the (|ks| − 1)-size subsets of ks into L;
16 for each s ∈ H.keys do
17 if ks � s and s � ks then
18 key ← ks ∪ s;
19 H[key]← min{H[key],H[s] +H[ks]};

20 return Dmpm(q, T r) = H[q.Φ];

Now we use the following example to illustrate how Dmpm

is computed, where the query point q has the activity set
{a, b, c, d}. We assume all the points in CP are already sorted
according to their distances to q. The algorithm will process
each point sequentially and update H, Dmpm when necessary.
The intermediate status of the hash table H is shown in the

right column of Table II.

TABLE II: Example of Dmpm computation

CP d(p, q) Updates of H Dmpm

p1 : {a} 10 {a} : 10
p2 : {b, c} 11 {b} : 11, {c} : 11, {b, c} :

11, {a, b} : 21, {a, c} : 21,
{a, b, c} : 21

p3 : {a, b} 13 {a, b} : 13
p4 : {d} 15 {d} : 15, {a, d} : 25,

{b, d} : 26, {c, d} : 26,
{b, c, d} : 26,
{a, b, d} : 28,
{a, c, d} : 36,
{a, b, c, d} : 36

36

p5 : {c, d} 17 {c, d} : 17, {a, c, d} : 27,
{a, b, c, d} : 30

30

p6 : {a, b, c} 26 no update since
H[{a, b, c}] = 21 < 26

p7 : {a, b, c, d} 31 algorithm can stop now
since Dmpm = 30 < 31

VI. ORDER-SENSITIVE QUERY EXTENSION

The similarity query defined in Section II does not take into
account the order of the query points. In other words, as long
as a trajectory matches all the query activities, it is regarded
as a whole match to the query. Though this definition offers
some flexibility, sometimes the user may be more interested in
the trajectories whose activity order is the same as the query’s.
In this section, we extend the ATSQ to be order-sensitive, and
develop novel algorithms to address the new challenge brought
by this extension.

A. Order-sensitive Similarity Query

Definition 7 (Order-sensitive Match): Given a query Q, we
say another trajectory Tr is an order-sensitive match of Q if
for each query point qi ∈ Q, we can find a point match Pi

from Tr. Besides, the order of the point matches complies
with the respective query points, which means for any pair
of query points qi, qj (i < j), the index of any point in Pi

must be smaller than or equal to the index of any point in
Pj . The set of point matches forms the order-sensitive match,
denoted by Tr.OM(Q). The order-sensitive match distance is
the sum of point match distances, i.e., Dom(Q, Tr.OM(Q)) =∑

qi∈Q Dpm(qi, Pi).
Similarly, we can define the minimum order-sensitive match

Tr.MOM(Q) to be the one with the smallest Dom, which is
called the minimum order-sensitive match distance between Q
and Tr, denoted as Dmom(Q, Tr).

In the running example of Figure 1, the minimum point
matches Tr1.MPM(q1) : {p1,2, p1,3} and Tr1.MPM(q2) :
{p1,1, p1,2} do not comply with the order of q1, q2. Hence
they cannot constitute the order-sensitive match. Instead,
{{p1,2, p1,3}, {p1,4, p1,5}, {p1,5}} is an order-sensitive match,
and easy to verify that, it is also the minimum order-sensitive
match. On the other hand, Tr2.MOM(Q) is the same as
Tr2.MM(Q).



Order-sensitive Activity Trajectory Similarity Query
(OATSQ). Given an activity trajectory set D, a query trajec-
tory Q, a positive integer k, an order-sensitive activity trajec-
tory similarity query (OATSQ) returns k distinct trajectories
from D that have the smallest Dmom(Q, Tr).

B. Retrieving and Validating Candidates

It is not hard to observe that the relationship between
the minimum point match distance and the minimum match
distance stated by Lemma 1 does not hold any more for order-
sensitive match distance. This is because the minimum point
matches may not comply with the order of the query. In some
circumstances, there is no order-sensitive match even though
the point match exists for each query point. However, the
minimum match distance can serve as a lower bound for the
minimum order-sensitive match distance, formally stated as
the following lemma.

Lemma 3: Given a query Q and a trajectory Tr,
Dmm(Q, Tr) always lower bounds Dmom(Q, Tr). Besides,
this lower bound is tight.

Proof: Since Dmm(Q, Tr) is yielded by choosing the
minimum point match for each query point, changing to
any other point match will result in increase of the overall
distance. Besides, when these minimum point matches comply
with the order of activities in the query, Dmm(Q, Tr) =
Dmom(Q, Tr), so the lower bound is tight.

Based on Lemma 3, we can still adopt the algorithm de-
scribed in Section V to retrieve the candidates since the lower
bound distance for the “unseen” trajectories still applies. After
that, the candidates are validated in a similar way as in ATSQ,
i.e., checking TAS and then APL of the candidate to see if it
contains all the query activities. This is sufficient for ATSQ to
ensure all the valid candidates will be the matches with respect
to the query definitely. However, for OATSQ a candidate
surviving the above check may not be an order-sensitive match
to the query due to the additional order constraint. As we
shall see in the next subsection, evaluation of Dmom is more
complex and expensive than Dmm, hence further validation is
needed to eliminate more invalid candidates.

To this end, for each query point qi, we look up the APL
of the candidate Tr to find out all the points that contain any
of the activities in qi.Φ. Then only the smallest and greatest
position indexes of these points are kept, which are called the
matching index bound of qi, denoted by MIB(qi) = [lb, ub].
Finally we compare the MIBs of every pair of query points.
If there exist two query points qi, qj ∈ Q (i < j) such that
MIB(qi).lb > MIB(qj).ub, then Tr can be eliminated from
the candidate set since the point matches for qi and qj cannot
comply the order of qi → qj .

C. Computing Minimum Order-sensitive Match Distance

Computing Dmom is more challenging than Dmm since we
need to make the order of point matches consistent with the
query and try to minimize the match distance at the same
time. A straightforward approach is to find out all the point
matches for each query point and then try all the possible

combinations to find the one with the smallest match distance
and satisfying the order constraint. Clearly this approach is
not efficient especially when the query trajectory is long and
each query point has many point matches. In the sequel, we
propose a more efficient solution using dynamic programming.

Given a query Q : {q1, q2, ..., qm} and a valid candidate
trajectory Tr : {p1, p2, ..., pn}, we define an m× n matrix G
such that its element G(i, j) (1 ≤ i ≤ m, 1 ≤ j ≤ n) rep-
resents the Dmom between the sub-query Q[1, i] : {q1, ..., qi}
and the sub-trajectory Tr[1, j] : {p1, ..., pj}. Now what we
need to do is construct the matrix G until it is filled up, and
then G[m,n] holds the desired value of Dmom between Q and
Tr.

First, we observe the following relationship between a
structure and its sub-structures exists in G,

G(i, j) = min
1≤k≤j

{G(i− 1, k) +Dmpm(qi, T r[k, j])} (1)

where Dmpm is the minimum point match distance between
qi and the sub-trajectory Tr[k, j], which can be computed by
the algorithm described in Section V-D.

Intuitively, G(i, j) can be derived by minimizing the Dmom

between the first i − 1 query points and the sub-trajectory
Tr[1, k] plus the minimum point match distance between qi
and the sub-trajectory Tr[k, j]. It is guaranteed to be an order-
sensitive match since qi is restricted to match the part Tr[k, j]
which is successor of Tr[1, k].

Lemma 4: Matrix G has the following two monotonicity
properties: 1) If j′ > j, G(i, j) ≥ G(i, j′); 2) If i′ > i,
G(i, j) ≤ G(i′, j).

Proof: 1) j′ > j means Tr[1, j] ⊂ Tr[1, j′]. So for
the same sub-query Q[1, i], it is possible to find a better
match that has smaller match distance. 2) i′ > i means
Q[1, i] ⊂ Q[1, i′]. With the same sub-trajectory Tr[1, j], more
point match distances are contributed to the overall match
distance. Another possibility is that no order-sensitive match
exists for Q[i, j′]. In either case, G(i′, j) cannot be smaller
than G(i, j).

The computation process is illustrated in Algorithm 4. At
the beginning we initialize a guardian row of G to be zero for
the implementation convenience. Then the algorithm iterates
each row and column to fill G progressively. For each pair
(i, j), G(i, j) is firstly initialized to be the greatest value.
Then with k ranges from j to 1, G(i, j) will be updated once
a smaller value is obtained based on Eq. (1). Note that the
iterator k is decremented from j, which has two benefits. First,
the evaluation of Dmpm can be done incrementally since only
one more point is added to Tr[k, j] each time. Second, once
G(i−1, k) = +∞, we can break the loop since G(i−1, k′) is
also infinite for any k′ < k (based on Lemma 4). Besides, line
9 is an early termination condition, in which after G(i, |Tr|)
is derived for each i, we compare it against the current k-th
smallest Dmom in the result set. If the value already exceeds
Dk

mom, it is assured that G(|Q|, |Tr|) > Dk
mom due to Lemma

4, hence there is no need to continue the computation.



Algorithm 4: Minimum Order-sensitive Match Distance
Input: query Q, candidate Tr, the k-th smallest Dmom found

so far Dk
mom

Output: Dmom(Q,Tr)
1 G(0, ∗)← 0;
2 for i = 1 to |Q| do
3 for j = 1 to |Tr| do
4 G(i, j)← +∞;
5 for k = j to 1 do
6 if G(i− 1, k) 
= +∞ then
7 Evaluate Dmpm(qi, T r[k, j]);
8 Update G(i, j) according to Eq.(1);

9 if G(i, |Tr|) > Dk
mom then

10 return

11 return G(|Q|, |Tr|);

Finally we use the example in Figure 1 to demonstrate how
our algorithm works. In order to compute the Dmom between
Q and Tr1, we will fill the matrix G(i, j) progressively. First
we compute the entries G(1, 1), G(1, 2), ..., G(1, 5), which
is equivalent to computing the minimum point match dis-
tances between q1 and sub-trajectories Tr1[1 : 1], T r1[1 :
2], ..., T r1[1 : 5] respectively. The results are shown in the
first column of Table III. After that we set i = 2 to include
the second query point q2 and increases j from 1 to 5.
To exemplify this, suppose the next entry to be evaluated
is G(2, 3). We iterate the variable k from 3 downto 1.
When k = 3, G(1, 3) + Dmpm(q2, {p1,3}) = +∞ since
p1,3 is not a point match of q2. When k = 2, we find
G(1, 2) = +∞ so it is safe to conclude G(2, 3) = +∞
according to Lemma 4. Similarly when j = 5, we can get
G(2, 5) = G(2, 4) + Dmpm(q2, {p1,4, p1,5}) = 55. Table III
presents all the entry values after G is filled and G(3, 5) holds
the value of Dmom between Q and Tr1.

TABLE III: Example of Dmom computation

G(i, j) j = 1 j = 2 j = 3 j = 4 j = 5
i = 1 +∞ +∞ 24 24 24
i = 2 +∞ +∞ +∞ +∞ 55
i = 3 +∞ +∞ +∞ +∞ 56

VII. EXPERIMENTS

We conduct extensive experiments on real trajectory datasets
to study the performance of the proposed index and query
algorithms.

A. Experimental Settings

We use two real activity trajectory datasets by crawling the
online check-in records of Foursquare within the areas of Los
Angeles (LA) and New York (NY) [24]. Each check-in record
of Foursquare contains the user ID, venue with geo-location
(place of interest), time of check-in, and the tips written in
plain English. We put the records belonging to the same user
in the chronological order to form the trajectory of this user.

The activity set for each place of a trajectory is generated by
the words/phrases in the tips associated with the location. The
detailed statistics of the two datasets are given in Table IV.

TABLE IV: Statistics of datasets

LA NY
#trajectory 31,557 49,027
#venue 215,614 206,416
#activity 3,164,124 2,056,785
#distinct activity 87,567 64,649

We will compare time cost of the proposed methods (GAT)
against the three baseline approaches introduced in Section
III, namely inverted list based algorithm (IL), R-tree based
algorithm (RT), and IR-tree based algorithm (IRT). Note that
the four algorithms only differ in the index structure and how
they retrieve candidates, and they will use the same algorithms
to compute the minimum match distance (Section V-D) and
minimum order-sensitive match distance (Section VI-C).

TABLE V: Default parameter values

Parameter Default value
#results k 9
#query points |Q| 4
#query activities per location |q.Φ| 3
the diameter of query δ(Q) 10km

By default, we build a d-Grid with d = 8 for the trajectory
dataset, which means the entire space is partitioned into 28×28
cells. We keep the hierarchical cells from level 1 (d = 1) to
level 6 (d = 6) within main memory, and store the two lowest
levels (d = 7, 8) on hard disk. The default values for other
parameters are summarized in Table V. In the experiments,
we will vary these values to investigate the effect of each
parameter. For each set of experiment, we generate 50 queries
and report the average running time. Each query is generated
by randomly choosing a trajectory from the dataset, and then
selecting the desired number of locations and activities. All
the algorithms including the baselines are implemented in Java
and run on a PC with Intel Duo-Core 3GHz CPU and 4GB
memory.

B. Performance Evaluation

Effect of k. In the first set of experiments, we study the
effect of the intended number of results k by plotting the
average time costs of ATSQ and OATSQ on both LA and
NY datasets. As shown in Figure 3, our proposed indexing
approach, GAT, significantly outperforms all other three base-
line indexing methods on both datasets. In particular, GAT is at
least one order of magnitude faster than IL and 4–5 times faster
than RT and IRT. Since IL finds all the trajectory candidates
that match the query activities first and then compute the
match distance for these candidates, the running time remains
constant for all values of k. The other three methods, on the
other hand, incur higher cost as k increases. This is expected
since the kth smallest match distance becomes greater, which
means more candidates need to be retrieved and refined. We
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Fig. 3: Effect of k

also observe that, though the NY dataset has more trajectories,
all algorithms except RT run faster than on LA dataset. This is
because trajectories of LA contain more activities averagely,
resulting in more candidates matching the query activities. But
RT only uses spatial information of trajectories to prune the
search space, so it tends to be less effective on larger dataset.
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Effect of |Q|. Next we study the query performance when
the number of query locations, |Q|, is varying. The results
are presented in Figure 4. Again, our proposed method has
superior performance than all baseline approaches. With the

increase of query points, RT,IRT and GAT incur more time
cost since they all utilize spatial index to retrieve candidates
around each query point. Hence more query points will result
in more candidates retrieved. However, IL behaves differently
for ATSQ and OATSQ. IL runs faster for ATSQ when more
query points are issued because there are fewer candidates
matching all the query activities. Though this is also the case
for OATSQ, the runtime cost still increases mainly due to the
higher computation cost of Domo with more query locations.
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Fig. 5: Effect of |q.Φ|

Effect of |q.Φ|. Then we investigate the query performance
with regard to the number of activities at each query location,
i.e., |q.Φ|. The results are shown in Figure 5. We observe
that all approaches except RT consumes less time when |q.Φ|
increases. This is due to the fact that all the three methods
make use of activity information when they search for candi-
dates. Therefore more query activities means fewer candidates
retrieved and thus less distance computation cost. On the other
hand, RT does not incorporate any activity information into
the indexing structure, so the candidate retrieval process is
not affected by this parameter. However, with more query
activities, the k-th smallest Dmm or Dmom tend to be greater,
which means it needs to check more candidates before the
result set can be decided.

Effect of δ(Q). We now proceed to examine the effect
of the distribution of query locations. To quantify this fac-
tor, we define the diameter of query, δ(Q), which is the
maximum distance amongst all pairs of query points, i.e.,
δ(Q) = maxqi,qj∈Q d(qi, qj). Query with greater diameter is
more widely spread over the space. We choose the queries with
diameters varying from 5km to 50km and plot the average
running time of all approaches in Figure 6. As we can see
IL is not affected by this parameter since it does not take into
account any geometric property of the query when performing
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Fig. 6: Effect of δ(Q)

the search. All other three methods become less efficient when
the query points are more distant with each other. This is
expected since these methods retrieve the trajectories close
to any query point. When the query is more spreaded, more
trajectories will be retrieved as candidates.
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Effect of |D|. We also evaluate the scalability of all the
approaches. In order to do that, we sample the NY dataset to
generate datasets with different number of trajectories varying
from 10K to (approx.) 50K, and report the average running
time in Figure 7. Without surprise, the time costs of all four
methods increase linearly/sublinearly with respect to the size
of dataset. But it is worth to note that our proposed method
scales much better than the others on both ATSQ and OATSQ.

Effect of partition granularity. Finally we study the effect
of the partition granularity of the grid index. Recall that by
default we partition the entire space into 256×256 cells (d =
8). In this set of experiments, we set the number of partitions
to 32 × 32(d = 5), 64 × 64(d = 6), 128 × 128(d = 7) and
256 × 256(d = 8) and record the respective running time
of ATSQ and OATSQ and memory cost of GAT. The results
are shown in Figure 8. Generally, better performances will be
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Fig. 8: Effect of partition granularity

achieved for both ATSQ and OATSQ by using the GAT index
with finer granularity since tighter distance lower bound for
“unseen” trajectories can be derived with smaller sized cells.
But this performance improvement is not so obvious especially
when the partition number is beyond 64. This is because, with
more partitions, GAT has more levels in the HICL structure,
which requires more queue operations (enqueue and dequeue
of cells) and neutralizes the benefit gained by the tighter lower
bound. The memory cost of the index increases when more
cells are built since both HICL and ITL in GAT require more
memory. But recall that we only keep the cells in the levels
d > 6 of HICL on the disk. That means only ITL needs more
memory for the cells below this level, which explains the slight
increase in memory cost when the partition number is more
than 64.

VIII. RELATED WORK

Spatial Keyword Search. Searching spatial objects associ-
ated with textual information have gained significant attentions
due to the prevalence of spatial web objects on the Internet.
The earliest work studying the spatial keyword search problem
includes [25][26][27], which retrieve web documents relevant
to a keyword query within a pre-specified spatial region. These
proposals use loose combinations of an inverted file and a
spatial index (e.g., R-tree). The query processing in these
proposals occurs in two stages: One type of indexing (e.g.
inverted list) is used to filter web document in the first stage,
and then the other index (e.g. R-tree) is employed, or the
vice versa. This index has the disadvantage that it cannot
simultaneously prune the search space using both keywords
and spatial distance. More recently, a location-aware top-k
text retrieval (LkT) query is proposed [22], where the text
relevancy to a query is computed by means of language
model and a probabilistic ranking function. A new index-
ing framework, IR-tree that integrates location indexing and
text indexing has been developed to efficiently process this
query. Variants of LkT query including MkSK query [28]
and RSTkNN query [29] have also been proposed. Cao et
al. [30] propose a location-aware top-k prestige-based text
retrieval (LkPT) query, to retrieve the top-k spatial web
objects ranked according to both prestige-based text relevance
(PR) and location proximity. Zhang et al. [31][32] introduced
the m-closest keyword query (mCK query) which aims at
finding the closest objects that match the query keywords.



Cao et al. [33] propose a different semantics is taken such
that the group of objects in the result covers the query’s
keywords and has the lowest cost. Yao et al. [34] tackled
the problem of answering approximate string match queries in
spatial databases. Roy and Chakrabarti [35] studied type-ahead
search in spatial databases using materialization techniques.
Li et al. [36] studied the problem of direction-aware spatial
keyword search, which aims at finding the k nearest neighbors
to the query that contain all input keywords and satisfy the
direction constraint.

To the best of our knowledge, there is only one work
considering the fusion of keywords and trajectories [37].
But in their work, keywords are associated with the whole
trajectory rather than each individual point. Hence both the
similarity function and the query processing algorithms are
quite different from the proposals in our paper.

Trajectory Similarity Search. Due to the structural
complexity of trajectory data, measuring the similarity be-
tween trajectories is not a straightforward task. There-
fore many different similarity functions and algorithms ex-
ist to compute the similarity between time series/trajectory
data [16][17][18][6][7][19][20]. In particular, the similarity
query proposed in [20] is more similar to our work, in
which they use multiple locations as the query to search for
trajectories that “best match” these locations. However, since
they only consider the spatial property of trajectories, their
techniques cannot be applied to our problem.

IX. CONCLUSION

This paper studies the problem of efficient similarity search
on the trajectories associated with activity information, given
multiple query locations with activity requirement. Two types
of queries, ATSQ and OATSQ, are proposed depending on
whether the order of query points is considered. To support
efficient query processing, we develop a novel hybrid grid
index called GAT, and propose efficient algorithms to compute
the minimum match distance and minimum order-sensitive
match distance between a query and a trajectory. Extensive
experimental results based on real datasets demonstrate that
the proposed method outperforms several baseline algorithms
significantly and achieves good scalability.

ACKNOWLEDGEMENT

This work was supported by ARC grants DP120102829 and
DP110103423.

REFERENCES

[1] D. Pfoser, C. Jensen, and Y. Theodoridis, “Novel approaches to the
indexing of moving object trajectories,” in VLDB, 2000, pp. 395–406.

[2] Y. Cai and R. Ng, “Indexing spatio-temporal trajectories with chebyshev
polynomials,” in SIGMOD, 2004, pp. 599–610.

[3] J. Ni and C. Ravishankar, “Indexing spatio-temporal trajectories with
efficient polynomial approximations,” TKDE, vol. 19, no. 5, pp. 663–
678, 2007.

[4] V. Chakka, A. Everspaugh, and J. Patel, “Indexing large trajectory data
sets with seti,” in CIDR, 2003.

[5] P. Cudre-Mauroux, E. Wu, and S. Madden, “Trajstore: An adaptive
storage system for very large trajectory data sets,” in ICDE, 2010, pp.
109–120.

[6] M. Vlachos, D. Gunopoulos, and G. Kollios, “Discovering similar
multidimensional trajectories,” in ICDE, 2002, p. 0673.
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