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A Data-Driven Approach Utilizing Body Motion Data for Trust
Evaluation in Industrial Human-Robot Collaboration*

Giulio Campagna1, Mahed Dadgostar, Dimitrios Chrysostomou2, Matthias Rehm1

Abstract— Industry 5.0 signifies a transformative era where
humans and robots collaborate closely, leading to advancements
in manufacturing efficiency and personalization. In light of this,
it becomes essential to assess the robot’s trustworthiness to
ensure a secure environment and equitable workload distri-
bution. The majority of trust assessments hinge on post-hoc
questionnaires for the extent of trust experienced during the
interaction. A data-driven approach is required to promptly
assess trust levels in real-time, allowing for the adjustment of
robot behavior to align with human needs. The paper proposes
a chemical industry scenario where a robot assisted a human
in the process of mixing chemicals. Several machine learning
models, including deep learning, were developed using body
motion data to categorize the level of trust exhibited by the
human operator. The models achieve an accuracy exceeding
90%. The results clearly show the feasibility of data-driven
trust assessment.

I. INTRODUCTION

Trust is a critical component of successful Human-
Robot Collaboration (HRC), enabling humans to rely on
robotic teammates to competently perform assigned tasks [1].
As industrial environments increasingly adopt collaborative
robots, ensuring seamless HRC and maintaining appropriate
trust levels is imperative. While high levels of trust facilitate
fluent teamwork, placing blind trust in robotic capabilities
or insufficiently monitoring robotic actions can endanger the
safety of human operators. Conversely, lacking trust impedes
collaboration, overburdening the human operators with de-
cision fatigue [2], [3]. As Lu et al. [4] discussed, safety,
cognitive health, psychological wellness and wellbeing form
the base of the Industrial Human Needs Pyramid. Thus,
appropriately calibrating trust between humans and robots
is required for productive and safe HRC while enabling self-
actualization.

Trust can be described as the operator’s confidence in
the machine’s competence, emphasizing the necessity for
the operator to believe that the system effectively fulfills its
tasks [1]. Hancock et al. [5] analyzed factors influencing trust
in human-robot interaction across three categories: human-
related (e.g. abilities, personality), robot-related (e.g. reliabil-
ity, proximity), and environment-related (e.g. group dynam-
ics, task complexity). Experimental evidence demonstrates
certain factors impact trust, including robot transparency [6],
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robot appearance [7], humanized dialogue systems [8] and
task criticality [9].

Most prior research has evaluated trust post-hoc via ques-
tionnaires [10]–[13]. While validated, these provide only
summative evaluations, lacking real-time assessment while
retrospective rationalization in surveys may not accurately
capture actual behaviors [14]. Categorizing trust dynamics
during interactions is essential for effectively managing trust
when controlling robots. Nevertheless, dynamically adjusting
robot behavior requires recognizing trust fluctuations as
they occur. To address these gaps, recent research explores
using data-driven approaches for implicit, continuous trust
evaluation. For instance, body-worn inertial sensors have
been applied for detecting distrust through increased limb
movements [15]. In similar fashion, vision systems can
estimate trust levels by tracking facial expressions and body
language [16]. However, research using wearable sensors to
robustly infer trust remains limited.

Recent studies demonstrate proxemics and risk-taking
impact user trust, with closer proximity and unexpected
robotic motions diminishing trust [17]. Building on this prior
work [17], this study investigates using on-body sensors
and machine learning to correlate motion data with trust
levels. The chemical industry context offers a representative
testbed, requiring close collaboration on handling hazardous
materials. The tasks involve the human waiting while the
robot pours liquid, providing a scenario where sudden robotic
arm movements may indicate declining trust in the robot arm.
The main contributions of this work are twofold:

• Devising a data-driven framework to categorize trust in
real-time based on human motion data from on-body
IMU sensors.

• Training of the framework with state-of-art machine
learning models to map motion cues to trust ratings.
This will allow us to adapt the robot controller in real-
time to maintain appropriate trust, ensuring safety and
balanced workloads.

II. METHODOLOGY

In a prior study, we demonstrated that trust in a human
operator is affected by both low and high performance of the
robot, resulting in correspondingly diminished or elevated
trust ratings [17]. The current data collection process was
built upon these findings, aiming to replicate the scenario for
automatically labeling behavioral data. A chemical industry
scenario was devised, where the task unfolded in two distinct
stages. Initially, the robot handed a beaker containing a
chemical to the human, who held it. Following this, the
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Fig. 1: The chemical industry scenario with the body motion
capture system.

robot grabbed another beaker filled with a different chemical
and poured it into the beaker held by the human. The robot
exhibited two distinct operational modalities in terms of its
performance capabilities: low performance eliciting low trust
and high performance eliciting high trust. For each opera-
tional modality, there were two distinct trials conducted. In
each trial, the robot executed distinct trajectories for handing
the beaker to the user and for pouring the chemical.

In the low-performance condition, during the handing
phase, the robot’s approach to the human was overly close
resulting in an uncomfortable and non-ergonomic situation
for the human. In the pouring phase, the robot’s actions
gave the impression that it might pour the chemical onto
the human’s hand, thereby creating a potentially hazardous
situation for the human operator.

In the high-performance case, the robot was efficiently
handing and position the beaker as required. These actions
were executed smoothly so that they didn’t cause any stress
or anxiety for the user. Likewise, during the pouring stage the
robot was successfully pouring the chemical into the beaker
without encountering any issues or unexpected behaviors.

The task itself did not involve any movement on the
part of the human operator during any of its stages, unless
for safety reasons. Consequently, as also affirmed by the
participants, any noticeable movements on the operator’s
part were a result of diminished confidence in the robot’s
performance due to unexpected behaviors and potentially
hazardous situations (e.g., the robot approaching the human
too closely, posing a risk of collision).

A. Experimental Setup

Figure 1 provides an overview of the experimental setup.
Participants interacted with the 6-axis UR10-CB3-Series
Robot, which was equipped with the flexible 2-fingered
gripper RG6. The robot’s trajectory was pre-programmed.
However, the participants were informed that the robot
exhibited dynamic and autonomous behavior, which made
it susceptible to potential malfunctions. To capture body
motion data, participants wore a Xsens MVN Awinda motion
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Fig. 2: The various anatomical sections of the body (indicated
with blue arrows) and the placement of the motion trackers.

tracking suit with 17 wireless motion trackers (MTws) that
were positioned to specific anatomical locations (refer to
Fig 2). These sensor modules come equipped with inertial
and magnetic measurement units, housing 3D gyroscopes,
3D accelerometers, and 3D magnetometers. The data were
collected with a frequency of 60 Hz.

Lastly, both the participants and the assistant were outfitted
with personal protective gear, which included lab coats,
gloves, and safety glasses. Regarding the chemicals used,
the human-held beaker contained baking powder, while the
robot-held beaker contained water. Consequently, during the
reaction phase, only carbon dioxide was generated, ensuring
the safety of all involved. The true composition of the
chemicals was disclosed at the end of the experiment, as
participants were initially informed that the substances could
be potentially hazardous. As an additional safety measure,
the assistant was equipped with an emergency button to stop
the robot in the event of potential collisions between the
human operator and the robot.

B. Experimental Protocol

The study included 20 participants, 10 males and 10
females with different age (M=29.1, SD=7.54). The partici-
pants were recruited from the students of Aalborg University.

The experiment protocols adhered to the Declaration of
Helsinki. Involving human participants, the study underwent
ethical review and received approval from the institutional
review board. Additionally, at the beginning of the exper-
iment, each individual was given a printed consent form
and provided with information regarding the study’s purpose,
the tasks involved, associated risks, research methods, and
potential benefits of the analysis.

The participant received support from the assistant in
wearing the protective equipment and ensuring that the Xsens
suit was tightened as much as possible to minimize motion
artifacts, such as the shifting of MTws. Then, the 17 MTw



sensors were affixed to the body straps. When positioning
sensors on the body, the initial alignment between the sensors
and body segments is often uncertain [18]. To address this, a
calibration procedure becomes essential for establishing both
the alignment of the sensors with the body and the body’s
dimensions. The N-pose calibration was chosen (refer to [19]
for further details) and body measurements were obtained for
achieving precise calibration results. After the calibration, the
participant performed the task four times with the operational
modalities mentioned in the beginning of this section. Taking
into account all the stages of the experiment, each participant
required a total of 30 minutes.

C. Data Collection
To ensure the creation of a compact and meaningful

dataset, data collection was strategically timed to capture
specific moments within the overall task, particularly fo-
cusing on human reactions during the handing and pouring
phases. Therefore, recording commenced upon receipt of
control signals from the robot, and data acquisition occurred
at a frequency of 60 Hz, encompassing all 23 body seg-
ments1. Kinematic quantities, specifically linear and angular
velocities, as well as linear and angular accelerations, were
recorded for each body segment, as they provide direct
insights into human reactions.

In conclusion, the dataset for the handing phase comprised
20277 samples and 276 columns, representing 23 body
segments, each with data on four kinematic quantities (linear
and angular velocities, linear and angular accelerations), and
three components (x, y, z). As for the pouring dataset, it
consisted of 16412 samples.

D. Data Pre-Processing
For each participant, each data sample was automatically

labeled as high or low trust based on the trial’s char-
acteristics. Specifically, if the robot operated with a low-
performance, it was assigned a low-trust label; otherwise, it
was assigned a high-trust label. Exploratory data analysis
was conducted as an essential initial step, involving the
examination of data distributions, pattern identification, and
the detection of potential outliers. Therefore, the dataset
underwent a refinement process where outliers were iden-
tified and subsequently removed. This outlier removal was
executed utilizing the Z-score method, thus ensuring a more
robust and reliable dataset for further analysis and modeling.
A z-score of 3 was used as threshold. Consequently, the
Handing dataset comprised 19702 samples (reduction of
2.8%), whereas the Pouring dataset contained 15835 samples
(reduction of 3.5%). Afterwards, the magnitudes of linear
and angular velocities (likewise for accelerations) for each
body segment i were determined at each time instant tk.
As exemplification, it is provided the calculation with linear
velocities (1):

vi(tk) =
√

vi
x(tk)2 + vi

y(tk)2 + vi
z(tk)2 (1)

1https://base.movella.com/s/article/MVN-Biomechanical-
Model?language=en US

where vi(tk) represents the magnitude of the velocity,
while vi

x(tk), vi
y(tk) and vi

z(tk) correspond to the x,y, and z
components of the linear velocity at time tk for each body
segment i.

In conclusion, the Handing dataset contained 19702 sam-
ples and 92 columns, representing the magnitudes of the four
kinematic quantities for each of the 23 body segments. Sim-
ilarly, the Pouring dataset also consisted of 15835 samples
with 92 columns of data. In the following, it is described
the data processing for both machine learning and deep
learning analysis, as the authors examined both approaches
to understand the correlation between body motion data and
trust levels of the human operator. Referring to deep learning
analysis, the last preprocessing steps involved employing
label encoding and standardization of the dataset.

In the context of machine learning, the next phase con-
sisted in the extraction of the features. For every kinematic
quantity related to each specific body segment, it was cal-
culated the following features within a 10-sample window
(downsampling applied for noise reduction): mean, median,
standard deviation, minimum, and maximum. The aforemen-
tioned features were determined for every trial undertaken by
each participant. Consequently, the Handing dataset com-
prised 1960 samples and 460 features columns, while the
Pouring dataset contained 1557 samples and 460 features.
Following that, label encoding and dataset standardization
were performed. Due to the extensive range of features
available, a two-step approach was employed: first, a tree-
based algorithm was utilized to select the most significant
features, followed by Principal Component Analysis (PCA).
This sequential approach was chosen to provide a new
feature-space using a set of representative features. Given
the utilization of ensemble methods such as Random Forest,
XGBoost, and LightGBM in the machine learning analysis,
it was reasonable to employ a tree-based algorithm for
feature selection. To this end, XGBoost was employed due
to its exceptional efficiency and optimized speed in handling
high-dimensional data. The gain metric was employed for
feature importance assessment. Gain quantifies the average
performance enhancement attributed to each feature during
the model’s training process. To conduct feature selection,
we initially applied a threshold of 5% of the maximum
importance score to select the most crucial features. This
resulting number was then fine-tuned through a trial-and-
error approach. Ultimately, 31 features were chosen for the
Handing dataset, while 29 features were retained for the
Pouring dataset. In the concluding phase, PCA was applied
to retain essential feature information while reducing the
dataset’s complexity. PCA accomplishes this by mathemat-
ically deriving a new set of coordinate axes in the feature
space, referred to as principal components. These principal
components are calculated such that the first one explains
the maximum variance in the original data. The second
principal component, orthogonal to the first, explains the
second most variance, and so on. In PCA, a crucial element
is determining how many principal components to keep.
The authors followed the common approach that involves



selecting components that capture 95% of the total variance.
As a result, 11 principal components were chosen for the
Handing dataset, and 13 were selected for the Pouring
dataset. After applying PCA to reduce the dimensionality
of the dataset, the resulting principal components were used
as input for the machine learning modeling phase.

III. EXPERIMENTAL RESULTS

The proposed analysis is centered on the investigation of a
potential correlation between the user’s trust level, which has
been categorized as either high or low trust (i.e. binary clas-
sification problem), and the observable behavioral changes
detected within body motion data. This examination involved
the utilization of a combined approach, incorporating both
machine learning and deep learning techniques for both
handing and pouring sections of the experiment.

A. Machine Learning Analysis

To examine the binary classification of trust (i.e., distin-
guishing between high and low trust), a selection of machine
learning models was made. These models included Random
Forest, XGBoost, and LightGBM. They all employ an
ensemble learning approach, combining multiple models
(specifically, decision trees) to enhance predictive accuracy.
Furthermore, these algorithms demonstrate robustness when
dealing with noisy data and outliers, making them suitable
for real-world datasets. In addition to employing these clas-
sifiers, the authors opted to incorporate a Voting Classifier
into their methodology. A Voting Classifier is an ensemble
technique that combines the predictions of multiple individ-
ual classifiers. This combination of diverse models allows
the Voting Classifier to leverage the unique strengths and
characteristics of each constituent classifier. By considering
the input from multiple models, the ensemble strategy aims
to improve the robustness of predictions, reduce overfitting,
and ultimately achieve higher classification accuracy.

For both Handing and Pouring datasets, the training set
consisted of 70% of the data (14 participants), while the
test set included the remaining 30% (6 participants). This
participant-based split ensured that the model was evaluated
using unseen data. In the following, each model’s hyperpa-
rameters tuning and the corresponding classification accuracy
are documented. The model’s hyperparameters were fine-
tuned using Grid Search Cross-Validation with 5-fold cross-
validation approach.

Concerning Random Forest, the hyperparameters sub-
jected to tuning included the maximum depth of each de-
cision tree within the ensemble (max depth), the minimum
number of samples required in a leaf node (min samples
leaf ), the minimum number of samples necessary to split
an internal tree node (min samples split), and the number
of individual decision trees in the ensemble (n estimators).
For the Handing analysis, the best hyperparameters were
determined to be max depth 10, min samples leaf 4, min
samples split 2, and n estimators 100. By comparison, for the
Pouring analysis, the optimal hyperparameters were found to
be max depth 20, min samples leaf 1, min samples split

5, and n estimators 50. The corresponding classification
accuracy rates were 87.22% for Handing and 91.94% for
Pouring.

With reference to XGBoost, the considered hyperparam-
eters included max depth, n estimators, and learning rate.
The learning rate regulates the step size at each iteration
when approaching the loss function’s minimum. For both
Handing and Pouring analysis, the optimal hyperparameters
were identified as max depth 3, n estimators 50, and learning
rate 0.05. The resulting accuracy was 87.56% for Handing
and 92.16% for Pouring.

The third ensemble algorithm utilized was LightGBM.
The hyperparameters considered for optimization encom-
passed boosting type, learning rate, max depth, n estimators,
and the number of leaves in the decision tree (num leaves).
Boosting type refers to the strategy used to combine the
outputs of numerous weak learners, frequently represented
as decision trees, in order to create a resilient predictive
model. Concerning the Handing study, the optimal hyperpa-
rameters were found to be as follows: boosting type ’dart’,
learning rate 0.2, max depth set to None, n estimators 50,
num leaves 31. Similarly, in the Pouring study, the optimal
hyperparameters were determined to be: boosting type ’goss’,
learning rate 0.05, max depth set to None, n estimators 100,
num leaves 63. The classification accuracy was 87.05% for
Handing and 87.80% for Pouring.

Lastly, the analysis included the use of the Voting Clas-
sifier. The Voting Classifier employs two primary voting
techniques: hard voting and soft voting. In the former,
each individual model within the ensemble contributes a
prediction, and the final prediction is determined by selecting
the class that garners the majority of votes. In the latter, the
Voting Classifier considers the class probabilities predicted
by each individual model rather than counting class labels. It
computes the average probability for each class and selects
the class with the highest average probability as the final
prediction. Therefore, the hyperparameter to tune was the
voting method. For Handing analysis, it was selected ’hard’
voting while for Pouring ’soft’ voting. The level of agree-
ment among models can differ between datasets, leading to
variations in the suitability of hard or soft voting. In cases of
high model agreement, hard voting may be effective, while
in datasets with more diverse model predictions, soft voting
could be a better option. Concerning each base learn model
(Random Forest, XGBoost, LightGBM), it was utilized the
previously discovered optimal hyperparameters. The classi-
fication accuracy was found to be 87.56% for Handing and
91.07% for Pouring.

To conclude, Table I presents the machine learning models
and their associated performance indicators for Handing,
while Table II provides the corresponding information for
Pouring. Additionally, the confusion matrices relative to the
Voting Classifier are reported for both Handing (Fig. 3a) and
Pouring (Fig. 3b).



(a) Handing. (b) Pouring.

Fig. 3: Confusion Matrices relative to the Voting Classifier.

TABLE I: Machine Learning models and performance indi-
cators for Handing analysis.

Model Accuracy Precision Recall F1-score

Random Forest 87.22% 0.86 0.86 0.86
XGBoost 87.56% 0.87 0.86 0.86

LightGBM 87.05% 0.86 0.85 0.86
Voting 87.56% 0.87 0.86 0.86

TABLE II: Machine learning models and performance indi-
cators for Pouring analysis.

Model Accuracy Precision Recall F1-score

Random Forest 91.94% 0.92 0.91 0.91
XGBoost 92.16% 0.92 0.91 0.92

LightGBM 87.80% 0.87 0.87 0.87
Voting 91.07% 0.90 0.91 0.91

B. Deep Learning Analysis

To supplement the analysis, deep learning algorithms were
incorporated to explore intricate global sequential patterns
within the body motion data. To this end, it was utilized
the following architectures: Long Short-Term Memory
(LSTM), Gated Recurrent Unit (GRU), and 1D Convolu-
tional Neural Network (1D-CNN).

In the case of both the Handing and Pouring datasets, the
division of data was as follows: the training set comprised
60% of the data (12 participants), the test set encompassed
20% (4 participants), and the validation set also accounted
for 20% (4 participants). Similarly to the machine leaning
analysis, this partitioning, based on participants, guaranteed
that the model underwent evaluation with entirely new,
unseen data.

In the following, the model architectures will be presented,
along with the corresponding classification accuracy results.
For both Handing and Pouring, it is noteworthy that two

TABLE III: Deep Learning models and performance indica-
tors for Handing analysis.

Optimizer Model Accuracy Precision Recall F1-score

LSTM 94.95% 0.94 0.96 0.95
Adam GRU 96.30% 0.96 0.97 0.96

1D-CNN 95.98% 0.95 0.97 0.96

LSTM 93.05% 0.92 0.94 0.93
SGD GRU 93.53% 0.93 0.95 0.93

1D-CNN 95.24% 0.94 0.96 0.95

TABLE IV: Deep Learning models and performance indica-
tors for Pouring analysis.

Optimizer Model Accuracy Precision Recall F1-score

LSTM 83.71% 0.87 0.74 0.77
Adam GRU 84.11% 0.87 0.75 0.78

1D-CNN 84.34% 0.87 0.75 0.78

LSTM 83.40% 0.87 0.74 0.77
SGD GRU 84.62% 0.88 0.76 0.79

1D-CNN 84.76% 0.88 0.76 0.79

optimization algorithms were applied to the models: Adaptive
Moment Estimation (Adam) and Stochastic Gradient Descent
(SGD). Concerning Adam, learning rate was 0.001 to regulate
the weight update step size. Additionally, the parameters
beta 1 and beta 2 were set at 0.9 and 0.999, respectively,
governing the exponential decay rates for the first and second
moments of gradients, contributing to adaptive learning rates.
Regarding SGD, a learning rate of 0.001 was applied, and
a momentum factor of 0.9 was incorporated to utilize past
gradients for faster convergence. Lastly, the models were
compiled using the loss function binary cross-entropy and
were trained for 20 epochs with a batch size of 32.

The first algorithm utilized was LSTM. The two LSTM
layers were configured as follows: the first layer had 32



units with tanh activation and featured L2 regularization on
kernel, bias, and activity terms, along with a dropout rate of
0.2. The second layer had identical settings. Subsequently,
the data was flattened. A dense layer with 64 units (’relu’
activation) was used, which incorporated L2 regularization
(0.5 dropout). The final dense layer 1 unit, ’sigmoid’ ac-
tivation) handled binary trust level classification with L2
regularization. Referring to Handing, when employing the
Adam optimizer, an accuracy level of 94.95% was achieved,
compared to 93.05% with SGD. Regarding Pouring, the
utilization of the Adam optimizer yielded an accuracy rate
of 83.71%, in contrast to 83.40% when using SGD.

Subsequently, the implementation of the GRU model was
carried out. The model implemented two GRU layers with
64 units and ’tanh’ activation, while L2 regularization and
dropout (rate 0.2) prevent overfitting. After flattening the
data, two dense layers with 128 units and ’relu’ activation
followed, each with L2 regularization and dropout (rate 0.5)
to enhance generalization. The final layer, with 1 unit and
’sigmoid’ activation, performed binary classification while
also using L2 regularization. In the context of Handing,
the classification accuracy reached 96.30% when utilizing
the Adam optimizer, whereas SGD yielded an accuracy
of 93.53%. By comparison, for Pouring, the utilization of
the Adam optimizer resulted in a classification accuracy of
84.11%, while using SGD yielded a slightly higher accuracy
of 84.62%.

The last algorithm concerned 1D-CNN. The model com-
prised a 1D convolutional layer with 32 filters and a kernel
size of 3 using ReLU activation and L2 regularization. This
layer captured local patterns. It was followed by a max-
pooling layer with a pool size of 2 for dimensionality
reduction while retaining essential information. The flattened
layer prepared the 3D feature maps for fully connected
layers. A dense layer with 64 units and ReLU activation
captured complex relationships along with applying L2 reg-
ularization. To prevent overfitting, a dropout layer with a
rate of 0.5 was introduced. Finally, the output layer, suitable
for binary classification, had a single unit with sigmoid
activation and L2 regularization. Concerning Handing, using
Adam optimizer yielded an accuracy of 95.98%, whereas
SGD produced a slightly lower accuracy of 95.24%. With
reference to Pouring, Adam optimizer provided an accuracy
rate of 84.34%, while SGD resulted in a slightly reduced
accuracy of 84.76%.

To conclude, Table III presents the deep learning models
and their associated performance indicators for Handing,
while Table IV provides the corresponding information for
Pouring.

IV. DISCUSSION

In this study, the purpose was to examine how trust im-
pacts the behavioral changes of human operators in industrial
settings, as manifested through body motion data analysis.
As discussed previously, achieving real-time trust response
is essential for tailoring a robot’s actions to match the trust
level of the human operator. To address this, a data-driven

methodology was adopted, harnessing the power of machine
learning and deep learning algorithms.

Concerning machine learning analysis, the exploration
involved the utilization of ensemble models, including Ran-
dom Forest, XGBoost, and LightGBM. Significantly, these
algorithms demonstrated robust performance during the ex-
periments. For comprehensive performance metrics in both
the Handing and Pouring tasks, refer to Table I and Ta-
ble II, respectively. XGBoost emerged as the top-performing
algorithm, achieving the highest accuracy scores in both
tasks, notably recording 87.56% accuracy for Handing and
92.16% for Pouring. XGBoost’s superior performance can be
attributed to its operation as a gradient boosting algorithm.
It systematically builds a sequence of decision trees in a
sequential fashion, with each subsequent tree dedicated to
correcting the errors made by its predecessors. This itera-
tive approach often leads to improved predictive accuracy,
setting it apart from Random Forest, which constructs trees
independently. Although LightGBM also harnesses gradient
boosting, XGBoost offers distinct advantages, especially in
its ability to handle overfitting and optimize the learning
process. Subsequently, a Voting Classifier was utilized to
combine the predictions generated by the aforementioned
models, enhancing the overall classification accuracy and im-
proving the robustness of the results. This ensemble method
yielded an accuracy of 87.56% for Handing and 91.07% for
Pouring. Notably, for Pouring it demonstrated slightly lower
accuracy compared to XGBoost, likely attributed to a minor
presence of overfitting.

Within the domain of deep learning, the implementa-
tion encompassed the utilization of the subsequent models:
LSTM, GRU, and 1D-CNN. These algorithms delivered
outstanding accuracy results, which are detailed in Table III
and Table IV for Handing and Pouring, respectively. With
reference to Handing, the highest level of accuracy was
achieved through the utilization of the GRU model with the
Adam optimizer, specifically 96.30%. In the case of Pouring,
the highest accuracy, specifically 84.76%, was delivered by
the 1D-CNN model using the SGD optimizer. GRU and
1D-CNN demonstrate superior performance compared to
LSTM due to their streamlined architectures, computational
efficiency, and ability to capture short-term dependencies
effectively. These models share the benefit of reduced over-
fitting risk, faster training times, and adept handling of
immediate contextual information. Moreover, the proficiency
of 1D-CNN in feature extraction empowers it to excel in
identifying intricate local patterns within sequential data,
further underscoring its utility in specific applications.

The results underscore the empirical foundation for trust
evaluation via data-driven methods. Nevertheless, there re-
mains a need for enhancing trust categorization through
sensor fusion techniques. Additionally, to gather valuable
feedback, participants were queried about their impressions
and potential ways to enhance the spectrum of trust levels.
Their responses indicated discomfort when the robot experi-
enced malfunctions, suggesting that simulated noise of robot
malfunctions could potentially elicit a wider range of trust



levels. Lastly, participants also underscored the impact of re-
searchers presence and the controlled laboratory environment
on their trust responses, potentially veiling more authentic
reactions that would occur in real-world settings, such as
within an industry environment. The study’s limitations
primarily revolved around the utilization of predetermined
trajectories. Addressing these limitations could involve the
implementation of dynamic and unpredictable trajectories,
a step that holds the potential to introduce a wider array
of challenging and high-risk scenarios for trust examination.
In conclusion, as further improvement, adjusting the trans-
parency of robot actions could unveil further nuances in trust
responses.

V. CONCLUSION

In this study, a data-driven approach for trust assessment
was developed. Body motion data were analyzed as an indi-
cator of how human behavior changes in relation to their trust
levels in the robot’s performance. The scenario unfolded in a
chemical industry context where the robot’s responsibilities
included tasks such as handing a beaker and mixing chemi-
cals. To uncover potential correlations between body motion
data and trust levels, machine learning and deep learning
algorithms were utilized. The findings were noteworthy, as
machine learning algorithms achieved an accuracy of 87.56%
for the Handing task and 92.16% for Pouring when utilizing
XGBoost. By comparison, deep learning surpassed expecta-
tions, yielding exceptionally impressive results. Specifically,
the Handing task reached an outstanding 96.30% accuracy
when employing GRU with the Adam optimizer, while
Pouring delivered a commendable 84.76% accuracy with
1D-CNN using SGD optimizer. Overall, these findings hold
great promise, demonstrating that body motion data is a
valuable sensor input for assessing trust levels. Nevertheless,
for the purpose of proficiently monitoring and adjusting to
trust levels, the strategy will incorporate sensor fusion in
upcoming endeavors. This integration will draw data from
multiple sensors to offer a more objective measurement,
enabling us to fine-tune the robot’s behavior to align with
the human’s trust level, thus fostering a safer environment
and a more balanced workload.
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