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A B S T R A C T   

Cross-modal effects have recently become a popular topic in building science. However, studies in this area 
frequently neglect causal inference, leading to a lack of valid causal results. To address this problem, we spe-
cifically highlight causality and its importance to cross-modal research. We present three general guidelines, and 
describe them using toy examples, for appropriately conducting causal cross-modal research. The guidelines 
originate from the methodological framework for quantitative social science by Lundberg et al. (2021). They are 
as follows: i) specify the theoretical estimand as the target of causal inference; ii) specify the empirical estimand 
that is informative for the theoretical estimand based on causal assumptions; iii) select the estimation strategy 
empirically to estimate the empirical estimand. In light of these guidelines, we discuss some common method-
ological pitfalls in current research practices that can jeopardize causal inference. Moreover, we offer certain 
recommendations to avoid such pitfalls. The general objective of this paper is to promote transparent causal 
cross-modal research by raising the awareness of causal inference in view of appropriate causality-related 
methodological choices.   

1. Background 

Human perception of the indoor environment is simultaneously 
influenced by multiple sensory modalities. In the past, numerous multi- 
domain studies have focused on thermal, visual, acoustic, and air quality 
domains and investigated cross-modal effects. These effects pertain to 
circumstances where a stimulus from one domain influences a response 
from another domain [1]. 

Multi-domain studies of people’s evaluation of indoor- 
environmental exposure situations have been reviewed in the past. For 
instance, Schweiker et al. [2] reviewed 219 papers in detail. A key 
conclusion of their extensive review pointed to a certain level of 
inconclusiveness of the findings: In many instances, participants’ re-
sponses could not be suggested to display signals clearly above the noise 
level associated with the experimental uncertainties. This inconclu-
siveness was furthermore underlined by the circumstance that studies of 
similar combination of exposure elements sometimes appeared to pro-
vide conflicting results. Another fairly comprehensive review [1] 

provided further indications of inconsistency in methodological ap-
proaches and documentation of multi-domain studies. Specifically, this 
review identified the lack of consistency in research design, study set-up, 
data collection, statistical analysis, and results reporting as responsible 
for the fact that most studies do not facilitate the generation of cumu-
lative knowledge. Furthermore, a recent high-level analysis of past 
studies [3] identified multiple factors that have limited the reliability of 
past multi-domain studies on indoor-environmental quality. These fac-
tors included certain inherent limitations of short-term controlled lab-
oratory studies, the insufficiently established utility of the studies for 
practical inquiries, the inconsistency in the use (and the absence of 
validation) of deployed constructs and scales, the absence of founda-
tional theories, and the lack of consideration for the informational 
component of exposure situations. 

In this context, the present paper suggests that many shortcomings 
identified by the past reviews may stem from the absence of a general 
tightly structured procedural approach to the specification of the con-
crete research targets, to the explicit methodological step toward the 
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design of empirical quantities that appropriately approximate the 
research targets, and to the selection and execution of suitable estima-
tion strategies. The authors further suggest that the pursuit of causal 
inference methods could have provided remedies for some of the pri-
mary shortcomings identified in the aforementioned reviews. This 
observation, and the general absence of any specific reference to causal 
inference in studies reviewed by Refs. [1,2], provides the primary 
motivation for the present study, which aims to bring the attention to the 
untapped potential of causal inference in the cross-modal studies. 

To start with, we posit that one fundamental problem may be un-
derlying the inconclusiveness of cross-modal research, namely a lack of 
valid causal results due to the widespread neglect of causal inference. 
The contention is that appropriate causal inference is routinely missing 
in cross-modal research regarding indoor environment, resulting in 
studies that are difficult to interpret, offering instead a mix of spurious 
and causal associations. 

The above-mentioned unsatisfactory status of contemporary 
research could stem from multiple circumstances. First, researchers 
might be unaware of causality and the difference between causal and 
predictive research. Second, researchers aware of causality might un-
dervalue its importance for cross-modal research. Third, researchers 
might appreciate the importance of causality, but fail to appropriately 
conduct causal inference. 

To address these issues, we first briefly introduce causality and 
differentiate causal research from predictive research. Next, we explain 
why causality is important for cross-modal research. Subsequently, we 
provide recommendations for appropriately conducting causal cross- 
modal research. These recommendations are informed by three guide-
lines that originate from recent advances in causal inference for social 
science [4]. The guidelines toward conducting sound causal cross-modal 
research are explained using toy examples from cross-modal research 
questions. Moreover, some common methodological pitfalls that nega-
tively affect causal inference are discussed and related recommenda-
tions are offered. 

The main objective of this contribution is to promote causal cross- 
modal research by drawing attention to causal inference and to inform 
causality-related methodological choices. The presented guidelines are 
meant not only to aid planning, implementing, and justifying causal 
research, but also to serve as a structured basis for systematic evalua-
tions of existing and future studies in view of their potential to yield 
valid causal results. Using these guidelines, researchers can trans-
parently and effectively discuss contentious research issues and engage 
in productive distributed collaboration among each other [5]. We 
believe that such collaborative evaluations and discussions can improve 
the consistency and cumulative depth of cross-modal research and more 
precisely identify research gaps, which cannot be bridged via isolated 
studies. 

2. Introduction to causality 

This section first provides a pragmatic introduction to causality and 
the difference between causal and predictive research. Next, we explain 
why causality is important for cross-modal research. Finally, we discuss 
the undesirable consequences of neglecting causal inference. 

2.1. Causality 

Over decades, causality has been under active discussion in various 
fields, such as philosophy, statistics, and informatics. Given the limited 
scope of this article, we refrain from philosophically discussing (e.g., 
Refs. [6,7]) or mathematically defining (e.g., Ref. [8]) the epistemo-
logically broad concept of causality. Rather, we approach it in a simple 
and pragmatic way: Causality (synonym “causation”) tells us about the 
consequences of an intervention [9–11]. An intervention actively alters 
the value of a variable. Given causality, a (hypothetical) intervention on 
a variable (i.e., the cause) will lead to a change in another variable (i.e., 

the consequence).1 

As researchers in building science, we are often interested in causal 
questions regarding the consequences of certain environmental in-
terventions,2 such as the impact of increased indoor temperatures con-
ditions on occupants’ perception of thermal comfort (e.g., Ref. [12]), or 
the impact of traffic noise on occupants’ task performance (e.g., 
Ref. [13]). Answers to these kinds of questions can inform design choices 
and technical standards that require environmental interventions (e.g., 
installation of shading devices to prevent overheating, or installation of 
acoustically performant windows to reduce traffic noise transmission). 
Such questions all involve causality because they target the conse-
quences of interventions. 

2.2. Directed acyclic graph and fundamental causal structures 

Causal inference methods help us to appropriately investigate causal 
effects based on empirical data [8,9]. One popular tool that aids causal 
inference is the directed acyclic graph (DAG; [14]). Given the limited 
scope of this paper, we restrict our introduction to DAG to only the es-
sentials that will be relevant for later sections. 

DAGs visualize causal relationships with nodes and arrows (see Fig. 1 
for a hypothetical example3). Nodes represent variables (e.g., tempera-
ture and weather). Directed arrows connect nodes from the cause to the 
consequence (e.g., weather causally influences indoor temperatures in 
naturally ventilated buildings). DAGs are non-parametric, that is, there 
is no assumption regarding the functional form of causal relationships 
(e.g., linear, polynomial, or exponential). Interactions are not explicitly 
depicted in DAGs, but variables that jointly influence another variable 
may have any form of interaction (e.g., weather and temperature may 
interact regarding their effects on visual comfort4). 

Causal inference literature differentiates three fundamental causal 
structures: confounder, collider, and mediator (see Ref. [10] for a more 
detailed introduction). A confounder is a common cause for two other 
variables and induces a spurious (i.e., non-causal) association between 
these two variables. In the presence of a spurious association, the 
confounded effect estimates will deviate from the true causal effects. 
Controlling for (e.g., through statistical control as covariate, through 

Fig. 1. Example causal assumptions regarding the relationships among indoor 
temperature, weather, visual comfort, and overall comfort. 

1 Following this definition, when we say variable x (e.g., temperature) causes 
outcome y (e.g., visual comfort), we mean that a (hypothetical) intervention on 
x will lead to a change in y, without implying any binary meaning (e.g., comfort 
or no comfort).  

2 With environmental interventions, we mean interventions on the (indoor) 
environment, for example opening the window or turning off the light.  

3 All examples in this paper are for demonstration purposes only and may not 
reflect reality. 

4 For our purposes, we understand the psychological construct “visual com-
fort” as an umbrella term. As a construct, its levels can range between extreme 
discomfort and extreme comfort. The specific visual comfort level may be 
caused by glare, color perception or further factors like illuminance levels. 
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stratification of the sample, or through selection process during data 
collection) the confounder will remove the spurious association. In our 
example, weather is a confounder because it causes both indoor tem-
perature and visual comfort. Thus, weather induces a spurious associa-
tion between temperature and visual comfort (in addition to their causal 
association).5 This non-causal association can be removed by controlling 
for weather. 

A collider is a common consequence of two causes. Contrary to the 
confounder, the collider only induces a spurious association between its 
causes when the collider is controlled for. For example, visual comfort is 
a collider for weather and temperature because it is caused by these two 
variables. By default, thermal comfort does not induce a spurious asso-
ciation between weather and temperature. However, when thermal 
comfort is controlled for, a spurious association will emerge between 
weather and temperature. 

A mediator is the consequence of a cause and at the same time the 
cause for another consequence. Controlling for the mediator will remove 
the causal association that is transmitted (i.e., mediated) by the medi-
ator between its cause and its consequence. For example, visual comfort 
is a mediator because it is the consequence of temperature and the cause 
of overall comfort. The causal association between temperature and 
overall comfort that goes through visual comfort will be removed, once 
visual comfort is controlled for. 

2.3. Difference between causal and predictive research 

In contrast to causal research that targets causality, predictive 
research aims to forecast outcomes as accurately as possible. For this 
purpose, any statistical associations, whether causal or not, are exploited 
[15,16]. Common threats to causal inference such as confounders and 
colliders are useful in predictive models because their non-causal re-
lationships with the outcome improve predictions [10]. However, pre-
dictive research assumes, often implicitly, that predictions will be made 
under stable settings where there are no interventions or changes [15]. If 
interventions not available in the data used to develop the model are 
introduced into the settings, predictive models will likely become biased 
and misleading. In that case, predictions may have a poor performance, 
because predictors in predictive models do not necessarily have a causal 
relationship with the outcome and may not be useful for predictions 
under interventions [15]. 

Suppose we aim to predict overall comfort in an open-plan office 
with stable environmental settings. We could use observational data 
from a representative sample and develop an accurate predictive model. 
The model may take all available predictors, such as temperature, 
workers’ salaries, and even their shoe sizes, into consideration and 
predict the workers’ comfort in this office accurately. However, if we 
actively manipulate the environmental settings (e.g., due to installation 
of a new building automation system) and try to predict the resultant 
comfort levels, the predictive model is likely to fail, because it utilizes 
non-causal associations that will not hold under interventions, i.e., 
under the altered conditions. 

2.4. Potential of causal inference in cross-modal research 

Causality is important for cross-modal research due to three main 
reasons. First, cross-modal research often aims at informing 
intervention-related decisions, for example regarding how to design 

indoor environments. As explained above, causal results are needed 
when we want to predict what happens under interventions. Therefore, 
cross-modal research needs causal inference to achieve valid causal 
results. 

Second, causality promotes theory development. Researchers have 
highlighted a lack of theories for cross-modal research (e.g., Ref. [2]). 
Causality helps us identify the underlying causes and understand the 
mechanisms of cross-modal effects. Such causal knowledge lays the 
foundation for theory development and guides future research. On the 
other hand, causality is also needed to appropriately examine proposed 
theories, because non-causal results might be variously biased and thus 
incorrectly confirm or falsify theories. 

Third, causality is necessary for generalizing results. Very often, the 
sample in cross-modal research is not representative of the target pop-
ulation. This threatens the generalizability of the results from a sample. 
Advances in causal inference have shown that generalization depends on 
the causal relationships among variables and on the mechanisms un-
derlying the difference between the study population and the target 
population a result is planned to be generalized for [17,18]. To get 
generalizable results for the target population, we need causal inference 
to appropriately model the sampling process and accordingly adjust the 
estimates (see later sections on theoretical estimand and generaliz-
ability). Thus, regardless of whether our research pursues causal effects 
or just descriptive differences, causal inference methods are relevant as 
long as the results require generalization, for example from a sample to 
the target population or even across different populations and settings 
(e.g., in cross-cultural research). 

Despite the importance of causality, appropriate causal inference has 
been generally absent in existing cross-modal research. Consequently, 
existing literature demonstrates various methodological issues from the 
causality perspective, including confusing causal inference with pre-
dictive inference. Such confusions have led to conflicts among research 
aims, analysis methods, results, and interpretations. For example, a 
study might aim at understanding the causal effect of a thermal inter-
vention on visual perception. However, it analyzes the data in a pre-
dictive way, for example by misusing certain machine learning 
techniques that are actually meant for non-causal predictions, or by 
adding all available variables to a regression under the incorrect 
assumption that the more covariates, the better the causal results.6 The 
study then reports the predictive results but misinterprets them as 
causal. 

Another common methodological issue is the application of p-values7 

and numerous predictive model selection criteria8 (e.g., Bayesian in-
formation criterion [19]) for selecting the “correct” causal relationship. 
This practice has been repeatedly criticized by methodological literature 
in other fields (e.g., Refs. [10,20,21]), because these statistical tools 
alone do not suffice for inferring causal relationships. 

These examples above also imply that randomized experiments 
alone, the generally known “gold standard” for causal effects, do not 
guarantee valid causal results because the above-mentioned issues 
cannot be dealt with solely by experimentation and randomization. 
Great efforts are still needed to appropriately handle diverse aspects 
related to causal inference, such as measurement errors, estimation 
strategies, imperfect randomization, and generalizability. 

For cross-modal research, neglecting causal inference has multifold 
consequences. On the academic side, inappropriate causal inference can 
systematically bias both the direction and the size of effect estimates (see 

5 Suppose the causal effect of temperature on visual comfort is 1 unit. Given 
the DAG with confounder weather, if we control for weather and then estimate 
the effect of temperature on visual comfort, we will get roughly 1 (i.e., the true 
causal effect) back. However, if we don’t control for weather, it will confound 
the effect estimate, so that we will get, say 3, back. This deviation from 3 
(confounded effect estimate) to 1 (the true causal effect) is the spurious 
association. 

6 This typical non-causal approach is known as “garbage-can regressions” (e. 
g., Ref. [69]). See Ref. [22] for examples of bad control variables that bias 
causal inference.  

7 p-values are designed to control false positive rates and do not imply 
causation [10].  

8 Predictive model selection criteria are predictive and often choose models 
with spurious relationships over causal models [10]. 
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Ref. [22] for various biases). The biases can lead to misidentified 
influencing factors (i.e., false positive errors) and neglected important 
aspects9 (i.e., false negative errors). Biases can also lead to inconsistent 
findings as highlighted by Ref. [2]. Furthermore, cumulative research is 
threatened because it becomes unclear whether the inconsistency re-
flects genuine differences in causal effects, methodological problems, or 
a mix of both. On the practical side, resources are wasted when 
follow-up research is based on invalid causal results. Furthermore, 
invalid results will mislead intervention-related decisions, resulting in 
ineffective or even counterproductive measures. 

3. Three guidelines for causal cross-modal research 

Below, we introduce three guidelines regarding how to appropriately 
conduct causal inference in cross-modal research. The guidelines are 
largely based on the methodological framework for quantitative social 
science by Ref. [4]. These guidelines are presented here in a rather 
general manner in order to maintain their general applicability. 

3.1. Theoretical estimand 

The first guideline is to precisely specify the theoretical estimand10 at 
the research start. A theoretical estimand, following [4], defines the 
target of causal inference. It states what researchers want to know. A 
precisely defined theoretical estimand guides the methodological 
choices in later steps of the research. 

A theoretical estimand consists of a unit-specific quantity and a 
target population. The unit-specific quantity is the difference in the 
interested outcome under different intervention conditions for a single 
unit (e.g., an individual) from the target population. It may involve 
unobservable quantities such as latent constructs (constructs that cannot 
be observed or measured directly) or counterfactuals (potential out-
comes under a hypothetical intervention condition). It should be inde-
pendent of any statistical model (e.g., not defined as a coefficient in a 
regression model), as the selection of statistical models belongs to esti-
mation strategies addressed by the third guideline. The target popula-
tion is the group of units that the unit-specific quantity is aggregated 
over. It specifies to whom we want to apply the results from the study. 

For example, we might be interested in the causal effect of temper-
ature on visual comfort, as postulated by the hue-heat-hypothesis (e.g., 
Refs. [23,24]). The theoretical estimand may be the difference between 
an individual’s latent visual comfort under 20 ◦C versus under 15 ◦C (i. 
e., unit-specific quantity), averaged over all German citizens (i.e., target 
population). 

Researchers should argue why a theoretical estimand is of interest 
and worth investigating by linking it to research goals, previous find-
ings, related theories, and practical implications. When specifying a 
theoretical estimand, researchers need to consider both the theoretical 
implications and practical constraints such as operationalization, sam-
pling, and confounding. A theoretical estimand that can be straightfor-
wardly operationalized might lack theoretical relevance, while a 
theoretical estimand that is theoretically important might suffer from 
restrictions on feasibility. Researchers need to make a balanced choice 
between these two aspects. 

3.2. Empirical estimand 

The second guideline is to specify the empirical estimand that is 
informative for the theoretical estimand based on causal assumptions. 

Following [4], an empirical estimand defines the target of the statistical 
analysis. In contrast to a theoretical estimand that may involve unob-
servable quantities, an empirical estimand involves only observable 
quantities. For instance, we cannot directly observe the individual-level 
change of latent visual comfort nor the effect for the whole German 
population, but we could estimate them using observable comfort rat-
ings under several manipulated thermal conditions from a selected 
sample. 

Because of practical constraints (e.g., limited samples) and com-
plexities (e.g., confounders) in the real world, the data we collect 
generally cannot be one-to-one mapped to the theoretical estimand. 
Thus, researchers need to transparently specify the causal assumptions 
about how the empirical estimand approximates the theoretical esti-
mand. Causal assumptions may be embodied in a generative model 
regarding the causal processes that generate the observable data [25]. 
DAGs provide an intuitive way to graphically represent generative 
models [10]. 

When making causal assumptions, researchers should strive, to the 
extent possible, for a causal DAG that includes all common causes (i.e., 
confounders), whether observed or unobserved, between any pair of 
included variables [26]. Researchers may follow the recommendations 
by Ref. [10] to derive a causal DAG: First, draw the path representing the 
target causal effect. Next, draw the paths for competing causes (i.e., 
other variables that influence the outcome). Subsequently, draw the 
paths representing the relationships among the causes. Finally, draw 
confounders, whether measured or unmeasured, among the variables. 

Given a causal DAG, researchers may use software (e.g., Ref. [27]) to 
algorithmically11 determine whether the target causal effect can be 
estimated given the causal assumptions (e.g., a causal effect cannot be 
estimated if it is assumed to be confounded, but we cannot adjust for the 
confounders because they are unmeasured). They must also determine 
which variables must be controlled for and which ones can or must be 
ignored in order to derive a valid causal conclusion (cf. confounders and 
colliders). Overall, causal assumptions and causal inference tools pro-
vide a principled way to design, improve, and justify an empirical esti-
mand for the theoretical estimand. 

We will illustrate empirical estimand and causal assumptions with 
the example regarding the effect of temperature on visual comfort. Our 
empirical estimand may be the difference between an individual’s visual 
comfort rating under 20 ◦C versus under 15 ◦C, averaged over a repre-
sentative sample. One key assumption for this empirical estimand to be 
informative for the theoretical estimand is that there are no variables 
that confound the relationship between temperature and visual comfort. 
We may represent this causal assumption in a generative model as Fig. 2, 
where visual comfort is caused by temperature in absence of any con-
founders. If data came from a perfect experiment where the temperature 
was precisely manipulated and everything else, such as weather and 
time at circadian rhythm, was kept constant or successfully randomized, 
this causal assumption would be plausible and our empirical estimand 
would be justified. However, if data came from an observational study or 
an experiment that did not successfully control or randomize relevant 
aspects, this assumption would be implausible because there are likely 
confounders such as weather and daytime. 

Fig. 2. Example causal assumption that temperature causes visual comfort 
without any confounder. 

9 Under specific conditions, a causal effect might be biased towards zero. 
Thus, in complement to the well-known wisdom that association does not 
necessarily imply causality, causality also does not always imply association.  
10 A study may have multiple theoretical estimands depending on the research 

questions. For better readability, this article generally uses the singular form. 

11 We refer interested readers to the d-separation [9] and the do-calculus [8] 
for the underlying algorithms. 
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To take weather into consideration, we may improve our empirical 
estimand to be the difference between an individual’s visual comfort 
rating under 20 ◦C versus under 15 ◦C, controlling for weather, averaged 
over the sample. We may propose the new causal assumptions as Fig. 3. 
To justify this empirical estimand, we need to defend our causal as-
sumptions and argue why we assume that weather confounds the rela-
tionship and why there are no further confounders. 

Every empirical research that aims at causality needs causal as-
sumptions about how observable data provide information about the 
target of causal inference because data only contain statistical associa-
tions and cannot reveal causal relationships without causal assumptions 
[8,10]. Researchers need to clearly specify their causal assumptions and 
plausibly defend them rather than keeping them hidden or intrans-
parent. The assumptions may be defended with related theories and 
subject matter knowledge such as the temporal ordering of the variables 
(i.e., a cause precedes its consequence) and design characteristics of the 
data collection process (e.g., randomization and double blinding). 

Often, once the theoretical and empirical estimand are specified, the 
causal assumptions will readily show that the observable evidence is not 
suitable for supporting the causal interpretations that we are interested 
in. Clarity and transparency regarding the estimands allow researchers 
to realize misalignments between their research goal and empirical ev-
idence and to accordingly make improvements. Moreover, other re-
searchers will be able to assess how plausible the causal assumptions are 
and whether the empirical evidence validly provides information 
regarding the research goal. 

3.3. Estimation strategy 

The third guideline is to empirically choose the strategy to estimate 
the empirical estimand from data. Following [4], the same empirical 
estimand can be estimated by diverse estimation strategies, such as 
parametric models, semi-parametric models, non-parametric models, 
and machine learning models. Researchers should design candidate 
estimation strategies that recover the empirical estimand from available 
data. Researchers need to consider how well the statistical assumptions 
of the respective estimation strategy hold for data (e.g., homoscedas-
ticity and independence of observations). Admittedly, it is often diffi-
cult, if not impossible, to justify all aspects of the estimation strategy a 
priori. For example, the functional form (e.g., linear, quadratic, or 
stratified non-parametric) of the estimation strategy can be hard to 
defend based on theories alone, because theories rarely involve such 
information. 

Instead of conceptually arguing among different estimation strate-
gies that all serve as estimators for the same empirical estimand, they 
may be selected in a largely data-driven way. For this purpose, re-
searchers should develop appropriate performance metrics for assessing 
the candidate estimation strategies. Per suggestions by Refs. [4,10], a 
useful metric may be the out-of-sample predictive performance tailored 
for the theoretical estimand and the empirical estimand. Again, clearly 

specified estimands will guide the research because they tell us what 
kind of out-of-sample predictions we aim to make. This is especially 
relevant when the sample is not representative, so that reweighting is 
needed when making out-of-sample predictions for the target 
population. 

In our example, to estimate the effect of temperature on visual 
comfort while controlling for weather, we could consider candidate 
estimation strategies among machine learning algorithms and regression 
models that may differ by higher order terms and interaction terms. 
These candidate estimation strategies need to be designed under 
consideration of the theoretical estimand and the empirical estimand. 
Besides, their statistical assumptions should hold for the available data. 
To select the best estimation strategy, we may choose the one that 
minimizes expected squared errors in out-of-sample predictions for a 
representative sample. 

4. Common pitfalls and recommendations 

Below, we address a selection of common methodological pitfalls in 
cross-modal research that threaten causal inference. Based on the above- 
presented guidelines, we grouped these pitfalls into separate areas of 
concern. For each group, we discuss major problems and provide cor-
responding recommendations. 

4.1. Theoretical estimand 

The first group of pitfalls concerns the theoretical estimand. We will 
discuss underspecified theoretical estimands and questionable 
generalizability. 

4.1.1. Underspecified theoretical estimands 
In current cross-modal research, one major problem could be the 

insufficient specification of theoretical estimands, especially at the 
beginning of the research. This is the case when researchers first spent 
considerable resources collecting potentially messy data and only af-
terwards consider the target of causal inference and analysis methods. 
As Sir Fisher [28] said: 

"To consult the statistician after an experiment is finished is often 
merely to ask him to conduct a post mortem examination. He can 
perhaps say what the experiment died of." 

Conducting experiments without thorough consideration of theo-
retical estimands (and the following empirical estimands and causal 
assumptions) may lead to serious causal inference problems that are 
unrecoverable by statistics [10,29]. For example, if causal assumptions 
imply important confounders, but these confounders are not registered 
in data, we may be unable to identify the target causal effect regardless 
of the estimation strategy. In such cases, the empirical evidence cannot 
be plausibly mapped to the theoretical estimand. Furthermore, data 
might be collected in a way that does not match the causal assumptions 
that researchers impose on the study. For instance, an unblinded 
experiment may cause participants’ reactivity to confound the effect of 
interest as suggested by the Hawthorne effect [30]. Researchers might 
neglect the reactivity and incorrectly assume no confounders. In such 
situations, any subsequent estimation will be misleading as the empir-
ical estimand cannot appropriately approximate the theoretical esti-
mand because of flawed causal assumptions. 

In our experience, the research targets of existing cross-modal studies 
are often obscure and cannot be translated into unambiguous unit- 
specific quantities and target populations as required by the above- 
presented first guideline. Insufficient specification of theoretical esti-
mands may have contributed to the prevalent confusion between causal 
and predictive research highlighted above. Without a clear theoretical 
estimand, the research goal is obscure. It becomes difficult to determine 
whether the target of the inference are causal effects or merely pre-
dictions under stable settings. 

Fig. 3. Example causal assumption that (only) weather confounds the effect of 
temperature on visual comfort. 
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Moreover, underspecified theoretical estimands make research 
intransparent and hard to interpret. Often, we could reconstruct the 
empirical estimand based on the analysis conducted. However, the same 
empirical estimand may be used to approximate different theoretical 
estimands, usually with different degrees of plausibility. For example, 
when there are interactions among covariates and independent vari-
ables, the effects of the independent variables will depend on the specific 
levels of the covariates. Thus, the empirical effects conditional on 
certain levels of the covariates may not plausibly represent the effects of 
interest given very different levels of covariates. However, we can only 
assess such discrepancies when the target levels of covariates are clearly 
specified. More generally, if the theoretical estimand is underspecified, 
it often becomes unclear whether there is a gap between the empirical 
evidence and the target of causal inference and how valid the conclu-
sions are. In such cases, the results will be hard, if not impossible, to 
interpret and evaluate. It is thus important to recall the first guideline, 
suggesting that researchers should clearly specify the theoretical esti-
mand, particularly at the start of their study. 

4.1.2. Questionable generalizability 
Given the well-recognized importance of generalizability (e.g., Refs. 

[31–33]), it deserves increased attention in cross-modal research. 
Thereby, three major problems need to be addressed. First, the target 
population is often not specified. Second, generalizability is often 
incorrectly assumed as given. Third, advanced methods for transporting 
results across populations have not been generally considered. 

We first address the underspecification of the target population. 
Currently, research publications generally describe the sample charac-
teristics. However, a clear statement of the target population is often 
missing. This is problematic because describing the sample cannot 
replace a specification of the target population. If unspecified, the target 
population may be the sample, the population where the sample comes 
from, or some other population [18]. Such lack of clarity can render 
research intransparent, lead to misapplication of results to unsuitable 
populations, and hinder the evaluation of the results’ generalizability. 
As required by the first guideline on theoretical estimand, researchers 
should always specify their target population and explain why this 
population is of interest. Transparency regarding the target population 
facilitates the consideration of generalizability and sheds light on the 
underlying inferential problems (see below). 

The second problem is related to the possibly incorrect generaliz-
ability assumption. Besides specifying the target population, researchers 
need to convincingly argue for the generalizability of the results from 
the available sample to the target population. At times, researchers may 
implicitly assume generalizability of their own or other authors’ results 
as they interpret the results as applicable for the target population 
without providing arguments. Such interpretations can be implausible 
for many reasons. For example, many cross-modal studies have samples 
of a very limited size.12 Also, they are often recruited from a special 
subpopulation (e.g., opportunity sample). Such samples are unlikely to 
be representative of a broader target population and do not justify direct 
generalization [34]. 

Researchers may incorrectly appeal to the diversity of the sample and 
argue for the applicability of the results for a broader population. 
However, diversity does not imply representativeness. As methodolog-
ical literature (e.g., Refs. [17,18]) has pointed out, if the diversity in the 
sample does not match the diversity in the target population, the results 
from the sample may still be invalid for the target population. Similarly, 
generalizability cannot be simply assumed for a large sample because a 
large sample size does not guarantee representativeness [34]. 

Finally, we should mention that advanced methods for generaliza-
tion are often not taken into account. Current research practices 

sometimes include disclaimers about how the sample may not be 
representative of the target population and how the results may not 
generalize. However, the focus on threats to generalizability only 
mentions problems instead of solving them [18]. Advances in causal 
inference have brought us the key insight that valid estimates for the 
target population may still be possible even if the sample is not repre-
sentative. From the causal inference perspective, generalizability de-
pends on the mechanisms by which the populations differ and the causal 
relationships among the variables [17,18]. Various methods have been 
developed for transporting results across populations, but they are often 
neglected in cross-modal research. 

In this context, it would be useful to briefly introduce selection di-
agrams [17] and post-stratification [35,36]. Selection diagrams extend 
DAGs and represent the mechanisms underlying differences in pop-
ulations [17]. We can use selection nodes to indicate variables that are 
assumed to distribute differently across populations. These additional 
causal assumptions allow us to determine whether generalization is 
possible and derive better empirical estimands for the target population. 

Once the empirical estimand is specified based on selection dia-
grams, we may apply post-stratification in our estimation strategy to 
adjust for the differences between the populations [10,35,36]. Specif-
ically, estimates from the subpopulations in the sample are reweighted 
based on their relative frequencies in the target population regarding 
relevant variables specified by the selection diagrams. Such procedures 
are expected to result in better estimates. 

For example, we may be interested in the effect of lighting on ther-
mal comfort and assume that only sex modifies this effect (Fig. 4). Our 
sample may mainly be female, but our target population are all German 
citizens which has a more balanced sex distribution. Apparently, the 
sample differs from the target population regarding the sex distribution. 
We thus add a selection node to the node sex. Based on the selection 
diagram, we derive an empirical estimate that includes sex. To get a 
valid estimate for the target population, we may apply post-stratification 
to adjust the results by reweighting the sex to its distribution in the 
general German population.13 

Advanced generalization methods open more possibilities to cross- 
modal research. For example, studies are generally more interested in 
effects in the real world, but out of practical constraints, the data often 
come from the laboratories. Transportability, a general framework for 
generalizability [17], offers us a systematic way to deal with whether 
and how causal effects may be transported from experimental settings to 
the real world. 

Cross-cultural differences and generalizability are popular topics in 
building science (e.g., Refs. [37,38]) and can promisingly extend 

Fig. 4. Example selection diagram assuming that only sex modifies the effect of 
lighting on thermal comfort. 

12 For example, previous reviews (e.g., Ref. [2]) have criticized that many 
cross-modal studies had less than ten participants. 

13 Such statistics may be available from other sources like the German Federal 
Statistical Office or related studies. 
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cross-modal research. In cross-cultural studies, the differences or simi-
larities between different populations are easily misinterpreted because 
of the diverse contexts involved and additional threats such as mea-
surement inequivalence14 and demographic differences. By adopting 
methods for cross-cultural generalizability (e.g., Ref. [18]), we can 
address these problems in a principled way and appropriately conduct 
cross-cultural cross-modal research. 

In summary, the three recommendations offered can mitigate some 
of the current problems regarding generalization in cross-modal 
research. First, clearly specify the target population as required by the 
first guideline. Second, model the causal assumptions regarding how 
populations differ with tools such as selection diagrams. Third, use 
methods such as post-stratification to adjust sample estimates for the 
target population. 

4.2. Empirical estimand 

The next group of pitfalls concerns the empirical estimand and causal 
assumptions. We will discuss the mismatch between theoretical and 
empirical estimand and the neglect of measurement-related inferential 
problems. 

4.2.1. Mismatch between theoretical and empirical estimand 
Another pitfall that threatens cross-modal research are mismatches 

between the theoretical estimand and the empirical estimand, which are 
often implicitly implied by the research goal and the conducted analysis. 
Diverse problems may underlie such mismatches. Here, we focus on 
unspecified causal assumptions, inappropriate control variables, and a 
lack of theory for deriving causal assumptions. 

Currently, hardly any cross-modal study explicitly specifies causal 
assumptions. However, as mentioned above, any causal results analyzed 
from empirical data always involve causal assumptions. In many studies, 
the causal assumptions implied by their analyses are implausible. For 
example, many studies apply procedures which do not control for any 
confounder (e.g., ANOVA, t-test, or Friedman test). Such analyses 
implicitly assume no confounders between the exposure and the 
outcome. For non-experimental studies, this assumption is generally 
unjustified because of a lack of experimental manipulation and 
randomization. However, even experiments in cross-modal research can 
suffer from imperfect manipulation and randomization, because exper-
imental manipulations often have multiple environmental side effects. 
For instance (Fig. 5), changing ventilation rates to manipulate temper-
ature may change CO2, water vapor concentration, as well as further 

confounders. For demonstration purposes, we assume that these envi-
ronmental side effects causally influence visual comfort. If not 
controlled for, they will confound and systematically bias the target 
causal effect. In such cases, the underlying causal assumption of no 
confounders is implausible and any empirical estimand based on this 
assumption would mismatch the theoretical estimand. 

Besides omitting important control variables, inappropriate inclu-
sion of control variables may also cause a mismatching empirical esti-
mand and lead to systematically biased results [29]. As introduced 
above, including a collider will lead to spurious relationships. Suppose 
temperature influences thermal comfort, and overall comfort is both 
influenced by temperature and thermal comfort (Fig. 6). If an analysis 
regarding the effect of temperature on thermal comfort includes overall 
comfort as a covariate, it introduces overall comfort as a collider and 
biases the estimation with unpredictable magnitude and direction. 

In this example, researchers may also induce the overcontrol bias 
[22] by controlling for thermal comfort while investigating the effect of 
temperature on overall comfort. Here, thermal comfort is a mediator. 
Controlling for it will block the causal effect from temperature to overall 
comfort through thermal comfort, thus biasing the results. Beyond these 
examples, inappropriate control variables can also induce numerous 
other types of biases (see Ref. [22] for further examples). 

It is at times assumed that a large sample could resolve various 
biases. For example, larger samples might be mentioned as a way to 
check the reliability and validity of the findings for future research. One 
might also incorrectly assume that if an effect is consistently found 
within large samples, the results can be considered as robust and 
trustworthy. However, sheer sample size does not address the problems 
in causal assumptions. Bad control variables systematically introduce 
biases to the results regardless of the sample size because the empirical 
estimand mismatch the theoretical estimand. Under certain conditions, 
a large sample can even amplify biases [22,34]. The consensus in causal 
inference is that wrong causal assumptions can be fixed neither by data 
nor by estimation strategy [10,25]. Biases need to be assessed with 
causal assumptions and corrected by improving empirical estimands (e. 
g., with an adjusted set of control variables). 

To counteract these problems, one should explicitly state and defend 
the causal assumptions underlying the empirical estimand as per the 
second aforementioned guideline. Since defending causal assumptions 
requires extensive related theories and subject matter knowledge, it is 
admittedly very difficult to plausibly argue for causal assumptions, 
particularly given the current state of research where theories for 
deriving causal relationships and valid causal results are generally 
lacking. Thus, a pressing task for the cross-modal research community is 
the development of formal theories to accompany and guide our 
research. A theoretical framework for cross-modal research is currently 
being developed by the authors. Note that researchers do not need to, in 
fact generally cannot, propose perfect causal assumptions, since no 
research can take every influencing aspect into consideration. However, 
researchers should always keep their assumptions transparent to 

Fig. 5. Example causal assumptions on the effects of temperature and lighting 
on visual comfort with confounders151 introduced by ventilation such as CO2 
and water vapor concentration. 

Fig. 6. Example causal assumptions regarding the relationships among tem-
perature, thermal comfort, and overall comfort. 

14 I.e., measurement instruments may demonstrate different properties (e.g., 
reliability and validity) across populations (e.g., Refs. [37,70]). 
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facilitate independent evaluation and interpretation by other 
researchers. 

4.2.2. Measurement-related inferential problems 
Measurement-related inferential problems like measurement errors 

and validity are further pitfalls in cross-modal research and the focus of 
this section. It is widely recognized that all measurements involve errors. 
The errors may stem from, for example, instrument inaccuracy and data 
entry mistakes. But when researchers, for instance, aim at the effects 
between latent constructs (e.g., visual and thermal comfort) but directly 
conduct regressions on observed values (e.g., subjective ratings) without 
adjusting for reliability, their analysis is conducted as if there were no 
measurement errors. 

However, measurement errors are not a trivial matter for causal 
inference. There is a vast literature showing how neglecting measure-
ment errors can attenuate or exaggerate results (e.g., Refs. [39–41]). The 
strength and direction of the bias induced by measurement errors 
depend on the specific constellation [42,43]. For example, if we directly 
use observed values to adjust for confounding effects, we will not 
completely remove all confounding, as these values are an error-loaded 
proxy for the latent construct, and hence residual spurious relationship 
will remain in results. The spurious relationship might then bias the 
results upwards or downwards with unpredictable magnitude. 

Following [42], we recommend representing measurement errors in 
DAGs while specifying causal assumptions. Researchers may then make 
assumptions regarding the structure and magnitude of measurement 
errors and conduct statistical error corrections (for introductions to as-
sumptions and error models, see Refs. [42–44]). For instance, inde-
pendent measurement errors assume that the errors for different 
constructs do not influence each other. Errors may also be assumed as 
non-differential when the latent value of the construct does not influ-
ence its errors. 

In Fig. 7, we illustrate an example DAG where the observable comfort 
ratings are both determined by the latent comfort and measurement 
errors. We assume the errors for thermal comfort and visual comfort to 
be dependent as personality affects both ratings (e.g., through individual 
response tendencies). The errors are assumed as non-differential, 
because they are both independent of the latent comfort. Given these 
causal assumptions, we may empirically estimate or directly assume the 
measurement reliability and use that value to adjust the observable 
ratings for latent comfort. To address the dependence of errors, we may 
use repeated measures and multilevel modeling to control for 

personality. 
Another major problem related to measurement is the questionable 

validity. When the scales used in cross-modal research (regarding, for 
example, comfort or satisfaction) are not validated, it is unclear what 
latent constructs are being measured and how successfully the oper-
ationalizations reflect the target constructs (i.e., construct validity [45]). 
This can lead to gaps between the empirical estimand and the theoretical 
estimand, for instance, if the target construct is comfort but the scale 
mainly measures social desirability (i.e., the tendency to response in a 
socially favorable way [46,47]). 

Researchers from other fields have been intensively discussing 
problems related to validity. For example, Yarkoni [31] highlighted 
poor alignments between hypotheses and quantitative inference in 
psychology and argued that results and generalizations are invalidated 
by seemingly arbitrary operationalizations of broad constructs. Simi-
larly, Eronen and Bringmann [48] also deem questionable construct 
validity as one of the fundamental difficulties in psychological research. 
For cross-modal research, we recommend the community consider and 
discuss the validity of the scales they apply. Because of a limited scope, 
we refrain from further discussions on this topic and refer interested 
readers to our upcoming review on the constructs and scales used in 
cross-modal research. 

4.3. Estimation strategy 

The final group of pitfalls concerns the estimation strategy. We will 
discuss violations of statistical assumptions, inadequate analysis of rat-
ing scale data and interaction-related inferential problems. 

4.3.1. Violations of statistical assumptions 
Inappropriate statistical practices, such as violations of statistical 

assumptions, have been repeatedly highlighted in many fields over de-
cades (e.g., Refs. [49,50]). Statistical procedures are generally designed 
based on statistical assumptions. If the assumptions underlying the 
procedure are seriously violated, the results may be completely 
invalidated. 

The risk of getting invalidated results is increased if researchers 
ignore statistical assumptions, incorrectly examine statistical assump-
tions, or make implausible statistical assumptions. For example, one 
assumption for the linear regression model is the normality of residuals. 
Neither outcomes nor predictors are required to distribute normally [49, 
51]. However, researchers may incorrectly test for the normality of 
variables without checking residuals. Even when variables deviate from 
normality, such tests do not tell us whether the normal residuals 
assumption is violated, and thus do not justify any consequent change to 
other procedures such as non-parametric tests. 

Another example is the application of procedures that assume inde-
pendent observations (e.g., Pearson’s correlation, t-test, and multiple 
regression) on data from repeated measures (such data are termed 
pseudoreplications [52,53]). If within-subjects designs are applied, as in 
many cross-modal studies, but the analyses neglect the 
non-independence of data, the results can be invalidated because each 
repetition would be mistaken as an independent sample. For a data set 
with 50 participants, each with 10 measurement points, procedures that 
assume independent observations would mistreat the data as if there 
were 500 (=50 × 10) participants. The degree of freedom and the 
variance decomposition within and between subjects will be incorrect, 
resulting in misleading standard errors and confidence intervals. The 
significance level will also be biased. Importantly, the results become 
uninterpretable as the bias can differ in magnitude and direction 
depending on the specific constellation (see Ref. [53] for simulated 
examples). 

More generally, the assumption of independence is violated when 
residuals are correlated [52,53]. This can happen both at the individual 
level (e.g., from repeated measures or response tendencies) and at the 
group level (e.g., from participants tested in groups). In cross-modal 

Fig. 7. Example causal assumptions for the effect of visual comfort on thermal 
comfort. The latent comfort and errors determine the observable comfort rat-
ings. The errors are dependent because of the confounder personality. 

15 Although we emphasize the importance of being as precise as possible when 
making causal assumptions, we acknowledge that researchers may often 
encounter cases where not all confounders can be or have been observed. In 
causal inference, it is a common practice to indicate the presence of further 
unobserved confounders in DAGs (e.g., Ref. [10]). 
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research, participants are often grouped during experiments (e.g., being 
in the same room at the same time). The spatial and temporal depen-
dence induced by groupings will cause individuals to be more similar to 
each other, so that their residuals become correlated. 

More advanced statistical procedures such as multilevel analysis [54, 
55] may be applied to model non-independent data. Some researchers 
may argue that non-independence, along with many other methodo-
logical problems, may not bias the results much and can be ignored. 
However, researchers should use the best methods available. Ignoring 
well-developed solutions to widely acknowledged methodological 
problems is not a hallmark of rigorous scientific practices. Furthermore, 
it is necessary to empirically demonstrate that methodological problems 
such as correlated residuals do not matter for the specific case. For this 
purpose, we may employ different methods and compare their results. 
However, simply assuming no difference between the methods does not 
suffice. 

Because of a limited scope, we refrain from discussing further 
assumption violations. Generally speaking, researchers should thor-
oughly consider all statistical assumptions underlying their analyses and 
explicitly state whether their assumptions are satisfied.16 Such trans-
parency brings about awareness with regard to assumption violations 
and allows others to assess how appropriate the statistical analyses are 
and whether the results are valid. 

4.3.2. Inadequate analysis of rating scale data 
Rating scales are ubiquitous in cross-modal research. However, they 

can often be improperly analyzed and interpreted as metric and un-
bounded. Such analyses can systematically lead to diverse biases that 
differ in magnitude and direction depending on the constellation (see 
Ref. [56] for examples). Two important properties of rating scale data 
underlie these biases, namely, the ordinal measurement scale and 
boundedness. Rating scales are ordinal because the response levels have 
a natural order, but the differences between the levels are not neces-
sarily equal [56,57]. Thermal comfort researchers, for instance, have 
questioned the equidistant assumption of common thermal sensation 
scales and empirically demonstrated that most people do not perceive 
the distances between scale categories as equal [37,58,59]. More 
generally, assuming a scale with 2 = uncomfortable, 3 = comfortable, 
and 4 = very comfortable, the change from 2 to 3 likely does not equal to 
the change from 3 to 4. Although the response levels are assigned with 
consecutive integers, these numbers only indicate order. The numerical 
assignment may be arbitrarily changed as long as the order is kept.17 

In contrast, metric data have constant distances between adjacent 
values [56]. Common metric statistics such as means, standard de-
viations and Pearson’s correlation require equidistant data. Applying 
metric statistics to rating scales requires the implicit assumption of 
equidistance between all adjacent response levels. If this assumption is 
violated, the results will be misleading and uninterpretable. For the 
previous example, a mean value of 2.3 (between uncomfortable and 
comfortable) does not have a clear interpretation if we cannot assume 
equidistant levels. 

Rating scales are also inherently bounded, namely, there are limits 
on both ends. The limited range will squeeze a wide range of extreme 
values on a hypothetical latent scale (e.g., latent comfort) into the few 
response levels on the ends of a rating scale [10,60]. Thus, ratings are 
often denser on the ends and demonstrate floor and ceiling effects. By 
contrast, common metric methods assume data distribution over an 
unlimited range. These methods inadequately analyze rating scale data 
because they ignore the boundedness and floor and ceiling effects, 
thereby biasing the results. 

For example, a room with an ambient temperature of 30 ◦C may 
generally be rated as thermally very uncomfortable, the lowest level of a 
scale. However, a room in an even higher temperature (i.e., worse 
regarding latent comfort) will still be generally rated as very uncom-
fortable because of the boundedness of the scale. This floor effect will 
suppress the effect of temperature, especially when the analysis is con-
ducted with a linear model on the metric scale. 

Some researchers are aware of the ordinal scale and boundedness but 
still want to apply metric methods on rating scale data. They may 
replace rating scales with visual analogue scales or percentages. How-
ever, this presumed “workaround” does not solve the underlying prob-
lems because the data remain bounded and possibly ordinal.18 Other 
researchers may resort to common non-parametric procedures which 
only require ordinal data, such as Wilcoxon test and Friedman test. 
However, non-parametric procedures have several general limitations. 
For example, it is often hard or impossible to extend these procedures 
with necessary control variables derived by the causal assumptions and 
with multilevel structures to address correlated residuals. In addition, 
common non-parametric procedures generally cannot analyze cross- 
modal interactions that are often of major research interest. Further-
more, non-parametric procedures have less power than parametric ones 
[61]. Moreover, such non-parametric results need to be interpreted on 
the ordinal scale and are thus less informative for intervention-related 
decisions than the metric results from parametric procedures. 

For analyzing outcome variables from rating scales, we recommend 
ordinal regression (see Ref. [62] for introductions). Loosely speaking, 
ordinal models transform ordinal and bounded data into a latent metric 
unbounded scale and then conduct regression on that scale. Explanatory 
variables in ordinal regressions can be interpreted similarly as in linear 
regression. Besides, ordinal models are parametric and allow studying 
interactions. They can also incorporate control variables, multilevel 
structures, and further statistical extensions. 

In addition to outcome variables, cross-modal research often in-
volves ordinal and bounded explanatory variables. For example, ratings 
may be used as explanatory variables when studying the effect of ther-
mal comfort on visual comfort. Furthermore, ordinal variables such as 
education level and socio-economic status may be included as control 
variables. As with ordinal and bounded outcome variables, mistreating 
these explanatory variables as metric and unbounded can also bias the 
results in an unpredictable way [63]. For appropriate modeling, we 
recommend monotonic regression (also known as isotonic regression 
[64]). For example, researchers may apply Bayesian models using 
Dirichlet distributions as priors for the ordinal explanatory variables (for 
further information, see Refs. [10,63]). 

4.3.3. Interaction-related inferential problems 
A central target of cross-modal research is cross-modal interaction, 

that is whether a stimulus from one domain influences the effect di-
rection and magnitude of a stimulus from another domain [1]. In causal 
inference, a causal interaction means that an intervention on a variable 
would influence the effect of another variable on an outcome [65,66]. In 
this section, we focus on three inferential problems related to causal 
interactions, namely, confounded interactions, scale dependence, and 
interactions induced by floor and ceiling effects. 

One major inferential problem is that confounders, which induce 
non-causal relationships between variables, may also induce spurious 
interactions [65,66]. In a spurious interaction, the effect of variable x 
varies with variable y, but intervention on y does not change the effect of 
x, because y is confounded with a third variable z (i.e., confounder) that 
causally interacts with x. In Fig. 5, suppose lighting (x) only causally 

16 We acknowledge the word limit in journals and recommend making such 
statements in footnotes or supplementary materials.  
17 For example, the example scale levels may be remapped to 1, 9.94 and 

10.16. 

18 Visual analogue scales and percentages often need to be treated as ordinal 
rather than metric because in practice, a difference near the middle of the scale 
(e.g., between 49 % and 50 %) may qualitatively differ from the same nu-
merical difference at the end [71] (e.g., between 98 % and 99 %). 
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interacts with humidity (z) regarding visual comfort. Because the 
manipulation changes humidity along with temperature (y), humidity 
confounds the interaction between temperature and lighting. Thus, even 
if temperature does not causally interact with lighting, we can still find a 
significant spurious interaction between them because of the con-
founding between temperature and humidity. 

In cross-modal research, if studies do not consider the possibility of 
spurious interactions or inappropriately control for confounding in-
teractions, such neglect may result in interaction estimates that are 
biased with unpredictable magnitude and direction [65,66]. To properly 
remove spurious interactions for causal inference, researchers need to 
control for the interaction between any relevant confounder and the 
independent variable of interest [66]. For the previous example, we may 
include the interaction term between humidity and lighting as a co-
variate. Importantly, simply controlling for the confounder, for example 
by including standalone humidity term instead of its interaction term as 
a covariate, does not remove spurious interactions [66]. 

Another generally overlooked problem inherent to interactions is the 
scale dependence [4,65,67], namely, the direction and strength of an 
interaction depend on the analysis scale (e.g., additive or multiplica-
tive). For example (Fig. 8 left), if we analyze the effect of variable x (e.g., 
illuminance) on outcome y (e.g., visual comfort) over variable z (e.g., 
temperature) on an additive scale (e.g., using the absolute values), both 
effects of x appear parallel, indicating no interaction between x and z. 
However, if we analyze the interaction on a multiplicative scale, for 
example by log-transforming y to the rates of change, the effects of x 
over z become non-parallel (see right). This means that an interaction 
between x and z emerges purely through the scale transformation. Thus, 
a null result regarding an interaction using an estimation strategy on an 
additive scale may become significant on a multiplicative scale. Simi-
larly, changing the analysis scale may also cause a significant interaction 
to differ in size and direction or even disappear. 

The scale dependence of interaction is particularly problematic when 
the observed measurement and the underlying construct do not have a 
natural single mapping [65,68]. This can particularly be the case for 
rating scales ubiquitous in cross-modal research. As discussed previ-
ously, rating scale data should not be analyzed and interpreted as metric 
on the absolute scale because they are ordinal and bounded. Appropri-
ately analyzing them for interactions generally requires transformation 
to a latent scale. Because ratings are often more densely distributed on 
both ends rather than evenly distributed over the whole range, a linear 
mapping of the ratings for the latent scale is not plausible and non-linear 
mappings are required. However, as rating scales differ greatly in their 
properties, there is no single natural mapping for them, so that as-
sumptions for such non-linear mappings are necessary [67]. Because of 
the scale dependence, by assuming different non-linear mappings, the 
direction and magnitude of the interaction will change accordingly. 
Overall, we recommend researchers consider the analysis scale for the 

interaction in the estimation strategy, specify how and defend why they 
choose the scale of interest and interpret the meaning of the interaction 
in alignment with the chosen scale (e.g., avoid misinterpreting multi-
plicative results as additive). 

When studying cross-modal interactions with rating scales, re-
searchers also need to deal with above-mentioned floor and ceiling ef-
fects that are inherent to ratings because of the boundedness, as these 
effects can also induce spurious interactions [10,65]. In Fig. 9 left, there 
is no interaction as the two lines are parallel. But when there are floor 
and ceiling effects, there is less room for change near the ends and all 
data over the limit are assigned with the highest or lowest rating. In a 
linear model assuming an unlimited range (e.g., ANOVA or multiple 
linear regression), this boundedness induces methodological artifacts 
and results in a spurious interaction, shown by the lines on the right 
which are no longer parallel. This highlights again the fact that a sig-
nificant interaction is not necessarily a causal interaction. When inves-
tigating causal interactions, the boundness requires a more appropriate 
statistical model than methods that assume unlimited distribution. As 
mentioned previously, for bounded data, ordinal regression would be 
preferable [63]. 

5. Conclusion 

This paper addressed a fundamental problem underlying cross- 
modal research in building science, namely the widespread neglect of 
causal inference. To this end, we first discussed causality and differen-
tiated causal research from predictive research. We then presented three 
guidelines that originated from Ref. [4] for appropriately conducting 
causal cross-modal research: first, specify the theoretical estimand as the 
target of causal inference; second, specify the empirical estimand that is 
informative for the theoretical estimand based on causal assumptions; 
third, select the estimation strategy empirically to estimate the empirical 
estimand. Finally, we discussed common methodological pitfalls and 
offered corresponding recommendations. 

The presented guidelines and recommendations were meant to raise 
the awareness of causality in the relevant research community and to 
encourage reflections on our research practices. Moreover, they can 
assist researchers to plan, implement, justify, and evaluate causal studies 
in a principled way. We acknowledge that conducting causal inference 
appropriately is extremely difficult and there is no universally appli-
cable standard procedure that guarantees valid causal inference. For 
example, empirical studies cannot take every conceivable aspect into 
consideration and will inevitably face alternative explanations that 
cannot be ruled out and assumptions that are unsubstantiated but 
necessary. Thus, we concede that the presented guidelines and recom-
mendations will not solve all problems. Rather, the assumption is that 
adopting these guidelines will be an initial yet important step toward 
transparent causal cross-modal research. Transparency is arguably a 

Fig. 8. Left: Two parallel lines indicating no interaction between variable x and z on an additive scale of outcome y. Right: Two non-parallel lines indicating an 
interaction between variable x and z on a multiplicative scale of outcome y. Figure inspired by Ref. [67]. 
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necessary condition for research to generate independently verifiable 
and criticizable results and promote cumulative cross-modal research, 
which is expected to gradually resolve the inconsistency issues in the 
current literature. 

Note that highlighting suboptimal research practices in the field can 
also reveal remarkable opportunities for future research. For example, 
we urgently need formal theories to guide our research so that plausible 
causal assumptions can be specified in cross-modal research. Needless to 
say, great efforts are also needed from the entire research community 
involved to conduct rigorous causal inference and establish valid causal 
results with regard to every aspect of human exposure to indoor- 
environmental conditions. 

Although we mainly addressed cross-modal research, the presented 
guidelines and recommendations apply more broadly to other research 
fields. Specifically, research with regard to occupancy, occupant 
behavior and single-domain perception in the built environment can 
benefit from these recommendations, given the prevalence of challenges 
similar to those in cross-modal research, such as inattention to causality 
and deficient causal inference practices. As such, improved causal 
inference is likely to enhance not only cross-modal research, but also 
general research efforts in occupant-centric building design and 
operation. 
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