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Energy flow in photonic crystal waveguides

T. Stndergaart
Research Center COM, Technical University of Denmark, Building 345, DK-2800 Lyngby, Denmark

K. H. Dridi
Optics and Fluid Dynamics Department, OFD-129, Ridational Laboratory, Frederiksborgvej 399, DK-4000 Roskilde, Denmark

(Received 5 January 2000

Theoretical and numerical investigations of energy flow in photonic crystal waveguides made of line defects
and branching points are presented. It is shown that vortices of energy flow may occur, and the net energy flow
along the line defect is described via the effective propagation velocity. Single-mode and multimode operations
are studied, and dispersion relations are computed for different waveguide widths. Both strong positive, strong
negative, and zero dispersion are possible. It is shown that geometric parameters such as the nature of the
lattice, the line defect orientation, the defect width, and the branching-point geometry have a significant
influence on the electrodynamics. These are important issues for the fabrication of photonic crystal structures.

[. INTRODUCTION line-defect region. These vortices of energy flow show that

diffraction and reflection processes at the defect-cladding in-
Photonic crystal structures exhibit efficient light-control terface force some wave components to be delayed and re-

properties-~’ As optical technology permits higher transmis- flected in the opposite direction of net energy flow, but as
sion rates of information at higher speed with great capacityguided modes conserve their form and positive net energy
many compact optical devices such as low-threshold laser§Ow occurs, the reflected fields must add up in phase without
microcavities, waveguides, and multiplexers based on photqggmflcant d|stor.t|on of the forward traveling field, propagat-

nic crystals have been propokd®in order to achieve min- N9 in a waveguide that can be regarded as a series of reso-

iaturization and exploit the excellent light confinement thath@nt cavities whose modes are matched. _
they offer. Investigations of the time-average energy floynting

The main reason for the interest in photonic crystals is/€ctoD, the effective velocity of energy transport along the
that their condensed matter physics allows the existence dfaveguide, the single-mode/multimode operation, and the
photonic bandgaps. When a line defect is introduced in th&lispersion relations as a function of the width and orientation
perfect photonic crystal that exhibits a bandgap, waveguide@f theé waveguide are therefore important issues. In this pa-

in which guided modes are allowed may be created. Mod®®': theoretical and numerical investigations on the funda-
symmetries in some optical guides with two-dimensionalmental electrodynamics of two-dimensional waveguides with

photonic band-gap boundaries have been stuldied. this photonic crystal claddings are presented, focusing mainly on
context, periodic structures such as dielectric gratings thataddings with triangular and quadratic lattices of GaAs rods
form a class of photonic crystals are known to exhibit highin @ background of air. Recently, an investigation of two-
wavelength-dependent modal dispersion. Just as Wave|enggr|,men5|onal cladding structures of finite height was given in
dispersion is an important characteristic of fibers and dielecRef. 13. ) )

tric slab waveguides, a few fundamental issues regarding the Furthermore, a study of energy flow in photonic crystal
properties of waveguides with photonic crystal C|addingswavegwdes with sharp bends and a discussion of the elec-

have to be clarified. Figure 1 shows the energy fl@eyn-  trodynamics of branching points are presented. In such
ting vecto) in a conventional dielectric slab waveguide and branchmgimpomts, as in constrictions and bends, bound states
in a waveguide with a photonic crystal cladding with a tri- €an occur,” and resonant modes must be matched to the

angular lattice of GaAs rods in air, computed with the use ofvaveguide 4m9d<_as in order to obtain high transmission
the finite-difference time-domaitFDTD) method? In con- coefficientd*~1" with efficient redistribution of energy.

ventional planar slab waveguides, light is guided in the high N Se€c. Il the method of analysis used in the calculation of
index film layer in which plane-wave components propagatd®@nd diagrams is presented. Analyses of straight photonic
via the mechanism of total internal reflection at planar mate€"yStal waveguides are discussed in Sec. Ill, where two line

rial interfaces. In these waveguides, a Gaussian distributio€fect ~orientations are studied for photonic crystal
of energy is present with a tail continuing in the C|adding,Wavegwdes with triangular lattices. In Sec. IV, sharp bends

and there is a net effective energy flow with the Poyntinga”d branching points are discqssed, and geometr!c influences
vector directed in the direction along the guide. On the otheP" the energy flow are underlined. We conclude in Sec. V.
hand, photonic crystal waveguides may have a better con-

finement of energy in the guiding section.b'ecaus.e Qf the Il. METHOD OF ANALYSIS

photonic band-gap phenomenon that prohibits radiation of

energy in the cladding. In these guides, vortices may appear The analyses in this paper rely on two numerical models
in the Poynting vector plot. The periodic lattice presents abased on the FDTD meth&dand Bloch theory, respectively,
photonic potential that restricts electromagnetic energy to théor the TM polarization(the electric vector field is oriented
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FIG. 2. (a) Two-dimensional photonic crystal with circular di-
electric rods arranged on a triangular lattice in a background of air.
The simplest unit cell required for the representation of the structure
is shown with a dashed linéb) Two-dimensional photonic crystal
waveguide made by introducing a line defect in the photonic crys-
tal. The width of the waveguide is denoted Y A supercell is
shown with a dashed line.
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ized to the region of the line defect. A way of modeling
straight waveguides, such as the one shown in Rig, & to
approximate the waveguide by a periodic structure using a

‘- supercell approximation. The superperiodicity is obtained by
’ < spatially repeating the supercell, which is the period of the

discrete translational representatisee Fig. 2b)]. Due to

this approximation, the considered structure is a periodic ar-
ray of waveguides, where the separation between the
waveguides is determined by the height of the supercell. To
, ensure no coupling of energy between guided modes in
‘ < neighboring waveguides, the height of the supercell is in-
creased to an appropriate level.

The photonic crystal and the periodic approximation of
s photonic crystal waveguides are both characterized by dis-
PRV crete translational symmetry. According to Bloch’s theorem
o) ' the electric field and the magnetic field in discrete transla-

tionally symmetric structures may be written as an expansion
of Bloch modes. The magnetic field is expressed as
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FIG. 1. Energy flow(Poynting vector in a conventional sym-
metric dielectric slab waveguide and in a waveguide with a photo- (k4G) 1
nic crystal cladding with a triangular lattice of GaAs rods in air. Hk,n(r) = % _21 5 hk,G,v,ne ) (1)

along the axis of the rogisThe Bloch theory model is based wherek is the Bloch wave vectorG is a reciprocal lattice
on plane-wave expansions and a variational princii€’  vector, andv represents the two field directions perpendicu-
The energy flow, i.e., the Poynting vector and the energyar to k+G (ensuring transversality, i.eV,- H=0). The in-
propagation velocity, is analyzed for waveguides based o@exn is the band number. The frequency of the Bloch mode
photonic crystal claddings. is denotedwy ,. The magnetic field calculation relies on a

We choose a two-dimensional photonic crystal with cir-yariational method based on minimization of the functional
cular dielectric rods, of dielectric constasnt11.4 (the per-

mittivity of GaAs at optical frequencig¢sarranged on a tri- (VX ((Lle (r))VXH)[H)

angular lattice in a background of air with=1. E(H)= (H[H) : @
The photonic crystal is characterized by discrete transla-

tional symmetry in thexy plane (see Fig. 2 and is fully ~ When this functional is at a minimum, the argumehis a

described by the unit cell shown in Fig(@ This structure  solution to the wave equation

exhibits a bandgap for certain values of rod diam&eand

lattice constant\, i.e., there is a frequency interval, a TM 1

photonic band gap, where TM polarized modes are not al- &(r)

lowed to propagate in they-plane. However, by introducing

a line defect in the crystal, as shown in FigbR TM polar- By applying a trial vector on the fornil) in Eg. (2), the

ized modes with a frequency within the band gap of thefunctional effectively becomes a function of the coefficients

perfect photonic crystal may exist. These modes are locahk, ¢ , ,, and the problem is reduced to varying the coeffi-

2

% VXH(r))zw—ZH(r). 3)
C
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FIG. 4. Number of guided modes in the straight triangular-
lattice photonic crystal waveguidérst orientation as a function of
the waveguide width and the frequency.

FIG. 3. Allowed frequencies for TM polarized modes in the
straight photonic crystal waveguidshown as an insgtfor four
different values of the widthw.

) o ) _tain wave vectors in such a way that these guided modes
cients along a path that minimizes the functional. An effi-yeakly sense the effect of the waveguide width. Although
cient iterative approach that performs this task is described ifyree “defect bands exist for the waveguide of width

Ref. 19. Higher-order solutions are found by restricting the—3 gz | there is a frequency interval where only one of the
trial vectors to be orthogonal to all previously found eigen-qgefect modes is allowed, and consequently single-mode

vectors, using the same minimization principle. For MOr€qyuidance of light is possible for frequencies within this in-
details on the numerical method see Refs. 18 and 20. WRya| (A/\<0.29). A similar observation is valid fow

choose the rod diamet&=0.4A corresponding to the larg- —5 1A for which single-mode operation is possible for
est TM photonlc_band-géﬁor the following investigations A /\ <0.38 although two defect bands are present within the
in order to exploit the band-gap effect. cladding band gap.
A clearer picture of the single-mode/multimode behavior

Ill. STRAIGHT PHOTONIC CRYSTAL WAVEGUIDES can be obtained by considering the results of calculations of
the number of localized modes in the line defect as a func-
tion of the waveguide width and the frequensge Fig. 4.
The number assigned to different areas in thgN,W/A)

Figure 3 shows a TM band diagram for the two- plot represent the number of guided modes as a function of
dimensional photonic crystal waveguide for four values ofW/A values between 0 and 4, and as a function of the nor-
the widthW. A/\ is the normalized frequency, whekeis ~ malized frequency in the band gap of the cladding. Zero up
the free-space wavelength, akg\ /27 is the component of to three guided modes are observed. For widths larger than
the normalized wave vector along the line defect. The grayapproximately 3.8, there are no frequency intervals within
regions in the figure represent a continuum of TM modes ofvhich only one defect mode is guided by the line defect. As
specific frequencies and specific values of heomponent a rule of thumb, single-moded guidance appears to be pos-
of the Bloch wave vector allowed to propagate in the two-sible for waveguide widths being on the order of, or smaller
dimensional photonic crystal cladding. A TM band gap ex-than, a free-space wavelength. The white area represents a
ists for the photonic crystal cladding in the interval from region in the band gap of the cladding where no guided
A/N=~0.27 to 0.45 where no cladding modes are allowedmodes are allowed. Filtering of certain normalized frequen-
However, as a line defect is introduced in the perfect crystalgcies within the band gap of the cladding is possible for
one or more defect bands may appear within the photonitV/A <2, especially for narrow waveguides with/ A~0.8
band gap. Figure 3 shows that only one defect band exists favhere only one defect band is present, and where this band
the widthsW=0.8A and W=1.2A. As the width of the has a small bandwidth for which &} A /27 are allowedsee
waveguide is increased #/=2.1A, two defect bands are Fig. 3). Note that the domain with two guided modes for
allowed, and foW=3.6A three defect bands appear. Defect W<1.8A is not due to two separate defect bands overlap-
modes appear to break away from the continuum of modes qing in frequency. It is the same defect mode that is allowed
the top of the cladding band gap, having small bandwidthdo propagate with two different values &§A/27. This is
(few frequencies allowed in one defect bandnd they ap- illustrated by considering the defect band fé=0.8A in
pear to “descend” toward the bottom of the cladding band-Fig. 3, where there may be two allowed values kQA\ /27
gap, gaining a larger bandwidth &8 is increased. As the for the same frequenci/\.
width of the waveguide increases, more defect modes see Considering the defect band correspondingte 1.2A in
their individual dispersion relation approach that of free-Fig. 3, modes corresponding to differemt/\ ,k,A/27) so-
space propagating modes given by the light lingA lutions on this defect band may behave quite differently in
=k,A/27. This is due to the fact that more modes are al-terms of their flow of energy in the waveguide. Figure 5
lowed to propagate in a broader line defect region with cershows the real part of the complex Poynting vectds E

A. Waveguides with a triangular lattice cladding
with first orientation
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FIG. 5. The real part of the complex Poynting vect®rE
X H* for a Bloch mode, where thecomponent of the Bloch wave
vectork, is given byk,A/27=0.100. The inset shows an example
of the x component of the Poynting vector across the waveguide.

XH*, for kykA/27=0.100, withE=(1liwe,(r)eg) VXH, i

=/—1, where* denotes complex conjugation, asglis the FIG. 7. The real part of the complex Poynting vect+E
dielectric constant in vacuum. The inset showsxtw@mpo- XH* for the first-order, second-order, and third-order guided
nent of the Poynting vector. The figure shows that the energfdes in the photonic crystal waveguidt=3.6A.

flows primarily in the x direction. However, the picture
changes dramatically whdg A /2 is chosen closer to 0.5.
For both case&,A/27=0 andk,A/27=0.5, no energy is
allowed to flow, and in these two limits, light is not guided.
The situation folk,A/27=0.450 is illustrated in Fig. 6. The

lic plates. In this case the photonic crystal material on either
side of the waveguide acts similarly to metallic reflectors for
microwave frequencies. A key difference between the pho-
tonic crystal waveguide and a metallic-parallel-plate wave-

inset shows the component of the Poynting vector across guide is that whereas a metallic-parallel-plate waveguide has

. ; o : lower cutoff frequency, a photonic crystal line defect wave-
the Yvavegwdg. T'he flglfre'lndlfzates that engrgy 'S o Iongeguide may have both a lower and a higher cutoff frequency.
flowing primarily in thex direction, and vortices of energy Tpjs difference means that in photonic crystal line defect

flow appear as turbulence. In this case energy moves CirCyjayeguides both strong positive and strong negative disper-
larly near the dielectric rods closest to the waveguiding rejqn, are possible.

gion, and energy appears to be coupled backwards. The net 1hq effective energy propagation velociég may be de-
energy flow is practically zero across the waveguide sectior}. ined as the ti ¢ flow inxtdirec-
The situation wher&,A/27=0.5 appears to be a resonant ermined as the ime average net energy Tow In ec
state where two-dimensional standing waves are possiblé',on through a line parallel to the ax!s divided by the time
and the waveguide might be considered as a series of resf?)‘[1d space average energy storsge:
nant cavities. o
For W=3.6A there are three defect ban@see Fig. 3 J P,dy
Poynting vector plots for three defect modes belonging to Ve
three different defect bands are shown in Fig. 7 for low val- c o (A :
ues ofk,A/27 on each individual defect band. For all three UAJ B xefoSOSr(r)|E|2+ polH|? dxdy
cases the energy flows primarily in thedirection. The pro-
files indicate that the pattern of the modes resembles that jote that [ “ZP,(x,y)dy is independent ok (which has
standing waves along theaxis, which is what could have peen checked numericallyA calculation of this velocity is
been expected for modes guided between two parallel metakhown in Fig. 8 for two choices of the waveguide widh
The circles and crosses on the smooth curves show results
k,A/2r = 0.450 for the flow velocity obtained using Ed4), whereas the
smooth curves were obtained by calculatidg/dk,, i.e.,
the smooth curves may be obtained directly from the disper-
sion relations shown in Fig. 3. Indeed the effective flow ve-
locity equation(4) equals the group velocitydw/dk,) in the
case of a perfect dielectric. The narrow waveguide With
=1.2A has only one defect bandee Fig. 3. Its band fre-
quency edges are seen at the two edges of the dashed curve,
where the energy propagation velocity drops to zero. From
the lower band edge the velocity increases with frequency,
whereas the velocity decreases with frequency closer to the
FIG. 6. The real part of the complex Poynting vec=E  higher band edge. Consequently, both strong positive and
X H* for a Bloch mode, where thecomponent of the Bloch wave negative dispersion are possible. Furthermore, there is a fre-
vectork, is given byk,A/27=0.450. The inset shows an example quency range where the slope of the dashed curve is negli-
of the x component of the Poynting vector across the waveguide. gible, indicating that zero dispersion is possible around the

=—

(4)
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FIG. 9. Allowed frequencies for TM polarized modes in the

FIG' 8. Energy prop_agation velocity for guided modes in thestraight photonic crystal waveguidshown as an insgffor three
two-dimensional photonic crystal waveguide for two choices of thedifferent values of the widthV.

waveguide widthW. The smooth curves were obtained directly
from the dispersion relations by calculatidg/dk,, whereas the defect with the orientation of Fig. 3 has a cladding boundary
discrete points were obtained using 4. with a A periodicity. Due to this difference in periodicity the
light line is positioned almost entirely below the band gap in
center frequency with the maximal effective flow velocity the case of the second orientation.
Ve/c~0.36 for this defect band. The wider waveguide with  From Fig. 9 we observe that only one defect band exists
W=3.6A has three defect bandsee Fig. 3. The third-order for W=0.87A, and it appears to be quite flat with a narrow
band (0.3%<A/\<0.465) is breaking away from the con- bandwidth. FolW=1.73A andW=2.6A, three and five de-
tinuum of cladding mode&rom higher frequencies to lower fect bands are allowed, respectively. M&is increased, de-
ones with a maximal effective flow velocity ofVg/c  fect bands appear to break away from the upper cladding
~0.38 for this band in the band gap of the claddiigis band gap edge at the right, gaining in bandwidth until they
third-order defect band does not have all its spectrum insiddetach themselves completely from the upper cladding band
the band gap. The second-order defect band (0s28/\  gap edge at the left contrary to the line defects of Fig),3
<0.45) is wider and is inside the band gap of the claddingthe normalized frequency of the defect band being a de-
More modes have small dispersion in this band than whascending function oikx\/§A/27r. The defect bands subse-
was the case for the third-order band. The maximal effectiveuently have their bandwidths reducedvéss increased fur-
flow velocity for this band isVg/c~0.63. The first-order ther, and they appear flat as they reach the middle of the
band has a dispersion relation that approaches that of fregladding band gap. As the defect width increases further, the
space propagation. It is the widest of the three defect bandsandwidth of the defect bands increases once again, and the
for W=3.6A, and more modes have small dispersion com-normalized frequency of the defect band becomes an ascend-
pared to the higher-order bands. The maximal effective flowing function ofky/3A /27, with defect bands finally reach-
velocity for the first-order band g /c~0.87. As the width  ing the lower edge of the cladding band gap on the left side
of the waveguide is increased, defect bands break free fromf Fig. 9. Both negative and positive dispersion are also
the continuum of cladding modes at the top of the band gapchievable with this type of waveguide. Note that for the
of the cladding, and move into the band gap, widening theiisecond orientation also the defect bands converge toward the
bandwidth. Their modes obtain high¥g/c values, and the light line as the widthW increases. The large difference be-
defect band’sVe/c curves becomes more and more flat for tween defect band dispersion relations for the two waveguide
center frequencies of the defect band3/ds\ is increased. orientations can be attributed to the different positions of the
light line relative to the band gap.
B. Waveguides with a triangular lattice cladding Figure 10 shows the number of guided modes in the
with second orientation straight photonic crystal waveguide with the line-defect ori-

) , _entation of Fig. 9 as a function of the waveguide width and
Figure 9 shows the band diagram for the actual photonighe frequency. A comparison with the previous orientation

crystal waveguide with a line-defect orientation perpendicu—(see Fig. 4 again shows a completely different distribution
lar to the previous onex(is redefined to be the direction of guided modes. Single-mode operation seems possible for
along the line defect for this second orientajiolthe al-  W/A>4. Figure 10 shows that there are band gaps for the
lowed frequencies are computed for TM polarized modes iyuided modes in the band gap of the cladding. These gaps
the straight photonic crystal wavegui@ghown as an insgt are seen as white areas where no guided mode is allowed.
for three different values of the widthv. The dispersion These gaps are surrounded by many discrete areas of single-
relations are in this case quite different from those of themode operation. The number of guided modes is highly de-
previous line-defect orientatioisee Fig. 3. Itis importantto  pendent on the width of the waveguide, and there is a more
note that the line defect with the orientation of Fig. 9 has acomplicated distribution of guided modes for this second line
cladding boundary with 8/3A periodicity, whereas the line defect orientation.
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length scale has been demonstrated for quadratic lattice clad-
dings in Ref. 16. Contrary to conventional planar slab-
waveguides, light can be guided around very sharp bends
without significant reflections in the opposite direction of the
incident energyflow and without radiation losses thanks to
the band gap effect. With the, geometry(see Fig. 1}, it

was shown that the transmission coefficient of thecon-
figuration could be improved in order to obtain coefficients
above 98%theoretically when the dispersion relation of the
branching region, d411) waveguide section in the case of
Ref. 16, does not differ significantly from those of the con-
necting waveguides, indicating the significance of matching
the width of the connecting waveguides and the geometry of
the region of the transition from the linedefect to the clad-
ding.

FIG. 10. Number of guided modes in the straight triangular- Figure 12 shows the electric field in two branching points,
lattice photonic crystal waveguidsecond orientatioras a function ~ d2 and ds, for the photonic crystal waveguide with a qua-
of the waveguide width and the frequency. dratic lattice. For waveguide widths &f=1.6A, guidance

of light is possible for the band of normalized frequencies in

The dispersion relations of the photonic crystalthe range from\/x=0.305 toA/\=0.435. Theqs configu-
waveguides of Fig. 9 differ significantly from those of Fig. 3, ration does not have power transmission coefficients in the
indicating that the characteristics of photonic crystalhorizontal direction above 18.28% around the center fre-

waveguides are highly dependent on the orientation of th@uency of this band. The steady-state calculation of transmis-
line defect. Operations of dispersion Compensation’ sensin ,IOI’I coefficients takes into account the effects of reflections

and filtering could be performed by such photonic crystalffom outside the photonic crystal. Each of the two vertical
structures of definite length. waveguides carry about 38.48% of the incident power, and
there is about 5% of the incident power that is reflected in

the horizontal direction. Figure 13 shows a Poynting vector

IV. BRANCHING POINTS IN PHOTONIC CRYSTAL plot for this case. The difference in power coupling is due to
WAVEGUIDES the geometry of the branching point where radiation in the

cyertical direction is favored because the vertical waveguides
re illuminated before the horizontal waveguide. In order to
obtain a more equal power splitting, the entrance of each
vertical waveguide might be changed. This could be done by
introducing an extra rod that is centered about the symmetry
axis of the vertical waveguides with a rod radius that is
smaller than that of the waveguide cladding. In general, the
optimal design of branching sections must result in geom-
etries that match the resonant cavity modes of the branching

point to the waveguide modé5The symmetry of the cavity

modes must match the symmetry of all waveguide modes.

investigations are illuminated from the left to the right h the width of th id ¢ also be ch
through the horizontal waveguide section. The remarkablc!::ur ermore, e width of the waveguides must aiso be cho-
Sen carefully in order to avoid backward reflections due to

ability of photonic crystal waveguides to guide light around™™ ich of the di . lati £ all th id
sharp corners with radii of curvature that are in the subwaye'STatch ot the dispersion relations of all iheé waveguides
connected to the branching point. The photonic crystal wave-

guide with the triangular lattice cladding offers many options
'Y _| _| _I_ for the redistribution of energy into multiple waveguides.
o0 N
00
4, q, d; d,

2
W/A

The following analysis relies on a numerical model base
on the FDTD method, where a collimated beam is used as
source of excitation. Figure 11 shows a quadratic (90° sym
metry) and a triangular (60° symmetryattice crystal with
some of the most obvious configurations of waveguide con
nections(branching pointsfor the redistribution of energy.
Each branching point geometry is specifically marked (
—q4 andt;—t;). Due to the 60° symmetry, the triangular
lattice offers more natural branching configurations. With
reference to Fig. 11, the branching points in the following

Figure 14 shows single channel waveguide-transmission co-
efficients for thet, andt; type of branching points with
triangular lattices folW=1.332\ for three normalized fre-
guencies in the defect band. The fractions of incident power

n A _< < x >< that are coupled into the oblique channels above and below

ot the horizontal waveguide are equal because of symmetry.

&0 4 L L LI The data represented by squares are for a single oblique
A\ channel waveguide in thie case. Diamonds represent data
i 7/t7 for one of the oblique channels in thgcase, and left arrows

represent data for the horizontal channel waveguide irithe

FIG. 11. Quadratic (90° symmefrand triangular (60° symme- Case. The, configuration has excellent transmission proper-
try) lattice crystals with some of the most obvious configurations ofties for all three normalized frequencies in the defect band,
waveguide connectiondranching pointsfor the redistribution of ~ with a total transmission coefficient above 0.98 for the center
energy. frequencies of the defect band. In thecase, a more pro-
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FIG. 13. Energy flow in a branching point of typg for a
quadratic lattice.

they approach the cavity, and the high-photonic potential in
the horizontal direction forces electromagnetic energy to be
redirected in the oblique directions. In thg configuration,
however, there is no forbidden energy gap for the incident
modes along the horizontal direction in the defect band. The
asymmetric coupling occurs because the dispersion relations
are unchanged in the horizontal direction, and incident
wavevectors do not allow a proper coupling of energy into
the modes of the oblique waveguides. The energy flow for

the g; and thet; configurations is observed to be signifi-
cantly different, i.e., photonic crystal structures exhibit a
high sensitivity to geometric parameters as well as dielectric

materials.
1
(b) - 09F
= -
Q08
FIG. 12. Electric field in two branching pointg, andqs, for Qo F
the photonic crystal waveguide with a quadratic lattice. § 07 _
nounced difference in the power transmitted in the horizontal g 06 -
direction is observed for the different frequencies, whereasa © 05F [ -
less significant difference is seen for the power transmitted in @ osk
the oblique direction. A third of the incident power is trans- g " | 4
mitted horizontally in the; case for a normalized frequency, g 03F r
A/N, of 0.4, whereas only about 10% of the power is carried @ o
away in the obligue waveguide. The horizontal waveguide * " F >
after the branching point carries about three times as much 01F : & *
power as the obligue waveguide fa/\=0.4. This asym- oE1 : , " ' Y

metric coupling of energy is diminished for frequencies
away from the center frequencies. Figure 15 shows the en-
ergy flow (Poynting vector in branching points of type,
and t; for a triangular lattice withA/A=0.4 and W

1
0.37 0.38 0.39 0.4 0.41 0.42 0.43

A/

FIG. 14. Single channel waveguide-transmission coefficients for
the t, andts type of branching points with triangular lattices for

=1.332\. Thet, configuration ensures a highly symmetric yy—1 332 for three normalized frequencies in the defect band.
power coupling with low-backward reflections. As photonsThe fractions of incident power that are coupled into the oblique
approach the branching point cavity, the photonic potentiathannels above and below the horizontal waveguide are equal be-
diminishes because photons experience a decreasing photguse of symmetry. The data represented by squares are for a single
nic crystal wall, and tunneling occurs. A turbulent vortex of oblique channel waveguide in thg case. Diamonds represent data
energy flow appears in the cladding region near the corner dbr one of the oblique channels in thg case, and left arrows

the branching point. This gives the photons momentum agepresent data for the horizontal channel waveguide irt{luase.
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FIG. 15. Energy flow in branching points of typeandt; for a
triangular lattice withA/A=0.4 andW=1.332\.

V. CONCLUSION

on the wavevector and the frequency of the guided mode in
the defect band. It was shown that vortices of energy flow
may occur, and the net energy flow along the line defect was
described via the effective energy propagation velocity
(which equals the group velocity in the case of a perfect
dielectrig.

It was shown that individual modes in multimode
waveguides exhibit standing wave patterns across the wave-
guide section much like those of highly reflective parallel-
plate microwave metallic guides. Computations of velocity
of effective energy flow in photonic crystal waveguides with
line defects in triangular lattices have been performed for
single-mode and multimode waveguides. Both strong posi-
tive, strong negative, and zero dispersion are possible.

The dispersion relations have been calculated for photonic
crystal waveguides with two line defect orientations in trian-
gular lattices for different waveguide widths. It was shown
that these relations depend strongly on the line-defect orien-
tation in the photonic crystal. Furthermore, a study of energy
flow in sharp bends and branching points in the subwave-
length scale in photonic crystal waveguides show that al-
though radiation losses are prohibited by the band gap of the
cladding, branching points with multiwaveguide connections
must be designed carefully in order to minimize backward
reflections, and in order to obtain equal distribution of
power, as energy flow is highly dependent on the geometric
parameters as well as the dielectric materials. These param-
eters are the nature of the lattice, the orientation of the defect
in the photonic crystal, the width of the connecting
waveguides, as well as the geometry of the branching points.
In general, the width of connecting waveguides must be
matched in order to avoid mismatch of the dispersion rela-
tions, and resonant branching point modes must match all
waveguide modes and respect their symmetry. Photonic
crystal waveguides of definite length might enable efficient
dispersion compensation, sensing, filtering, wavelength divi-
sion multiplexing, as well as efficient energy transport
around sharp corners because radiation losses are prohibited
by the band gap of the cladding, and because of the ease with
which they can be tailored to new functionalities simply by
creating defects and mode matching by adding or removing
geometries with specific material distributions. However,
these structures require precise design and refined fabrication

Theoretical and numerical investigations of energy flowtechniques as their electrodynamics are highly dependent on
in photonic crystal waveguides made of line defects in lat-geometric parameters. The investigations presented in this
tices of GaAs rods in a background of air have been prepaper have been for two-dimensional problems. However,
sented. The fundamental difference in the electrodynamics ahe three-dimensional nature of light propagation in photonic
symmetric conventional planar slab waveguides and photcerystals must be taken into account in order to obtain a real-
nic crystal waveguides has been studied. In the former, eristic picture of the diffraction physics, and in order to per-
ergy flows primarily in the direction along the waveguide form optimal design. More accurate and faster modeling
with a Gaussian distribution of energy across it, whereas in #&ols in the frequency domain as well as in the time domain
photonic crystal waveguide the energy flow profile dependsnust be developed in order to facilitate these tasks.
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