
Aalborg Universitet

A System for Sketching in Hardware

Do-It-Yourself Interfaces for Sound and Music Computing

Overholt, Daniel

Published in:
9TH SOUND AND MUSIC COMPUTING CONFERENCE

Publication date:
2012

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Overholt, D. (2012). A System for Sketching in Hardware: Do-It-Yourself Interfaces for Sound and Music
Computing. In 9TH SOUND AND MUSIC COMPUTING CONFERENCE (pp. 253-257)
http://smcnetwork.org/node/1699

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 03, 2025

https://vbn.aau.dk/en/publications/1ea60cb7-c95b-4c8a-855c-85ea8c34bf0b
http://smcnetwork.org/node/1699

A System for Sketching in Hardware: Do-It-Yourself
Interfaces for Sound and Music Computing

Dan Overholt

Department of Architecture, Design
and Media Technology

Aalborg University, Denmark
Niels Jernes Vej 14, 3-107

dano@create.aau.dk

ABSTRACT
A system for Do-It-Yourself (DIY) interface designs focused
on sound and music computing has been developed. The
system is based on the Create USB Interface (CUI), which is an
open source microcontroller prototyping board together with
the GROVE system of interchangeable transducers. Together,
these provide a malleable and fluid prototyping process of
‘Sketching in Hardware’ for both music and non-music
interaction design ideas. The most recent version of the board is
the CUI32Stem, which is designed specifically to work hand-
in-hand with the GROVE elements produced by Seeed Studio,
Inc. GROVE includes a growing collection of open source
sensors and actuators that utilize simple 4-wire cables to
connect to the CUI32Stem. The CUI32Stem itself utilizes a
high-performance Microchip® PIC32 microcontroller, allowing
a wide range of programmable interactions. The development
of this system and its use in sound and music interaction design
is described. Typical use scenarios for the system may pair the
CUI32Stem with a smartphone, a normal computer, and one or
more GROVE elements via wired or wireless connections.

Keywords
Music Interaction Design, Sound and Music Computing
education, Microcontroller, Arduino language, StickOS
BASIC, Open Sound Control, Microchip PIC32, Wireless,
Zigflea, Wifi, 802.11, Bluetooth, CUI32, CUI32Stem

1. INTRODUCTION & BACKGROUND
The CUI32Stem follows in the footsteps of the author’s
previous circuit board designs, such as the original Create USB
Interface (CUI) [8] that utilized an older (8-bit) PIC18F4553
microcontroller and the currently available CUI32 [1]. The
CUI32Stem uses a modern 32-bit MCU (Microcontroller Unit)
running at 80MHz. This allows it to perform much faster than
the original CUI. In addition, the use of a free RTOS (Real-
Time Operating System) makes the system easier to use.

The StickOS RTOS [14] was created by Rich Testardi. It
includes an on-chip compiler for simple BASIC-language
programs, providing ease of use for beginners or even advanced
users who are interested in quick prototyping with the system.
In addition, the CUI32Stem includes an Arduino-compatible
bootloader, so that mid-level users are able to compile Arduino
“sketches” for the CUI32Stem (of which many examples are
available online). Finally, advanced users are free to compile C-
language programs for the CUI32Stem using Microchip’s free
development environment and compiler (MPLAB X / C32). All

of these programming methods are possible without having to
purchase a separate programmer device, thanks to the multi-
platform bootloader that is pre-installed.

Figure 1. The CUI32Stem. 4-pin headers for SeeedStudio’s

GROVE system will be placed at the top, where sensors and
actuators can be attached with no need for soldering

(header pins are not yet installed on this board)

2. THE CUI32Stem
As shown in figure 1 above, the CUI32Stem functions
primarily as a simple breakout board for the Microchip® PIC32
processor – a PIC32MX795F512H device. The ports are all
conveniently labeled on the board (both top and bottom sides),
saving users the hassle of referring to the datasheet for the
device in most cases.

The 4-pin headers at the top of the board are designed to
allow the GROVE elements (sensor and actuators) to be easily
attached. The top left set of 4-pins are for the Serial Peripheral

Copyright: © 2012 Dan Overholt. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License 3.0
Unported, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are credited.

Interface bus (SPI), while the 4-pins to the right of are for the
Inter-Integrated Circuit (I2C) bus. These are both digital bus
standards that many MCUs use of in order to send and receive
data with attached sensors and actuators. Next is a serial port
(labeled RX / TX for Receive and Transmit pins), followed by
pins E0-E7, which are for digital input or output. They are laid
out in pairs, together with access to V* (which is selectable as
either 3.3v or 5v, depending on the position of the jumper
placed lower on the board’s left side) and ground (GND).
Finally, there are 16 analog input pins (B0-B15), also laid out
in pairs together with V* and GND. These analog pins can also
be configured as digital I/O pins, but should never have more
than 3.3v applied to them. This is different from the digital ‘E’
pins (and all other pins on the board, including C, D, F and G),
as these are 5v-tolerant when used as inputs. Interfacing with
5v-systems is simple because of this, together with the fact that
most 5v-systems recognize a 3.3v output signal as a logic
‘high’ – if not, pins can be configured as ‘open drain’ outputs,
and external pull-up resistors to 5v can be used.

The software environment used for programming the
CUI32Stem in the Arduino language is the ChipKIT MPIDE
[6] (Multi-Platform Integrated Development Environment).
Ongoing work in the open source community continues to
improve MPIDE, by adding support for a variety of other
microcontroller boards as well. It is important to note that some
of the most recent design changes to the CUI32Stem board
were also made possible by the generous contribution of the
open source community. For example, the board layout for the
CUI32Stem has been refined by Markus Gritsch, and the
Arduino-compatible bootloader was written by Rich Testardi.

2.1 The GROVE system
SeeedStudio, Inc. is a purveyor of the GROVE system for
prototyping electronic interfaces. SeeedStudio is an ‘open
hardware facilitator’ based in China, but design contributions
are encouraged from all around the world (via the internet) to
add to the increasing collection of GROVE elements [3]. These
elements include a wide range of sensors and actuators that
may be useful in various research fields. The primary interest
here is in interaction design for sound and music computing.
Therefore, sensors that capture human input (as opposed to
environmental sensors or other types) come to the forefront.
Quite a few human input sensors are available as GROVE
elements. Another one of the goals of the system is to provide
accessibility to as many people as possible. As such, GROVE
elements (as well as the CUI32Stem itself) are not extremely
expensive to purchase.

There are many similar concepts to this GROVE system, as
can be seen in, for example, Teenage Engineering’s ‘Oplab’
[7], Teague’s ‘Teagueduino’ [13] as well as Microchip’s own
‘Digilent Cerebot with P-MOD’ (Peripheral-Modules) system
[2], all of which allow non-soldering approaches to interaction
design or other prototyping systems. While the Opblab is
specifically focused on music interfaces, the Teagueduino and
Microchip offerings are more general-purpose. The CUI32Stem
and the GROVE system can also be used as general interaction
design toolkits, but the author’s research focuses on interaction
design for sound and music computing. Nonetheless, a
somewhat generic approach facilitates teaching within many
areas, and the need for a more general-purpose system arises
commonly among educational programs.

3. WIRELESS AND OTHER EXAMPLES

The CUI32 has several options for wireless capabilities, three
of which have been recently explored by the author: ZigFlea,
Bluetooth, and WiFi. These are described only briefly below.

Readers wishing for a more thorough discussion of wireless
options can see [10]. A ‘Serial Bluetooth’ module1 is available
as part of the GROVE system. It provides a wireless link with
10 meters of range. Once paired, the Bluetooth connection
works in the same way as would a standard USB-cable
connected between the CUI32Stem and a computer, as
explained in the CUI32 website2, which includes downloads
with examples for PureData and MaxMSP (see Figure 2). With
this Bluetooth module, it is possible to remotely connect to
StickOS via a terminal program to re-program the CUI32Stem
wirelessly, if so desired. These examples are exactly the same
when using Bluetooth or USB, and other examples also exist
for interfacing the CUI32Stem to host software, such as
openFrameworks3.

Figure 2. Example MaxMSP and Pd patches, downloadable

via the Google Code website for the CUI32Stem:
http://code.google.com/p/cui32/

Figure 3. the ZigFlea add-on for the CUI32, developed by

Øyvind Nyborg Hauback at the University of Olso, Norway,
sold by www.seeedstudio.com

A ‘ZigFlea’ add-on board for the CUI32Stem is also

available from Seeed Studio4. It was designed to plug onto the
top of the CUI32Stem, without conflicting with any of the
GROVE headers (see figure 3). A CUI32 ZigFlea starter kit

1 GROVE Bluetooth-serial module,

http://www.seeedstudio.com/depot/grove-serial-bluetooth-p-
795.html

2 http://overtone-labs.ning.com/profiles/blogs/cui32-analog-
inputs-in-1

3 openFrameworks, http://www.openframeworks.cc/
4 ZigFlea, http://www.seeedstudio.com/depot/zigflea-p-

1146.html

software download is available at the Google Code website5,
and includes the necessary StickOS BASIC code as well as a
MaxMSP patch for receiving data from a remote node when
ZigFlea add-ons are attached to both CUI32Stems. It should be
noted that at the moment, the maximum data rate of ZigFlea in
StickOS is limited at the moment [15], however this will be
optimized in future StickOS releases.

Finally, 802.11b/g – commonly known as WiFi is an
upcoming wireless option to be available as a GROVE element.
The design uses a module called the WiFly (see Figure 4) that
is made by Roving Networks [11]. This module can be
configured to broadcast its own ‘AdHoc’ 802.11 base-station,
or join existing WiFi networks. It allows the CUI32Stem to
send raw UDP and/or TCP-based packets, and communicate
easily with any software that supports Open Sound Control
(OSC). One of the strengths of this approach is that the
CUI32Stem can be used directly with any iOS or Android
device, without having to use a laptop as a ‘bridge’. It should
also make it possible to develop future examples that serve
simple webpages from the CUI32Stem.

Figure 4. Rendering of the WiFly 802.11b/g radio module
developed by Tobias Thyrrestrup - this will be available
from Seeed Studio as the ‘Serial WiFi’ GROVE element

Figure 5. The WiFly / CUI32Stem configurations for using
them together to send/receive 802.11 data. This also allows
to ‘telnet’ into the CUI32Stem and write / debug a BASIC

program in StickOS interactively

For Sound and Music interaction design, the values from

sensors attached to the CUI32Stem (GROVE or otherwise) can
be used to control any parameters of real-time processes
running on a mobile device, such as audio synthesis or effects
algorithms in Pd (RjDj [12], LibPd [4]) or SuperCollider [5]
(ports to iOS and Android can be found). The mapping of such
controls to real-time parameter updates is of course a major
task given to a composer / performer / developer of the system,
as well as any haptic feedback for the user that may be
controlled by the CUI32Stem. The following are specific
examples for these use cases.

5 ZigFlea starter kit for the CUI32Stem,

http://code.google.com/p/cui32/downloads/list

 A major advantage of using WiFi 802.11b/g over either
ZigFlea or Bluetooth, is the much greater bandwidth and lower
latency it offers. Two examples of sending data to an iOS
device are shown below – one that sends UDP data to RjDj
(Pd-vanilla running on iOS), and another that sends Open
Sound Control (OSC) packets to SuperCollider running on the
iOS device. The first example (sending UDP data to RjDj,
which receives it via the [netreceive] object in Pd) is shown
below. Declaring an analog input variable as ‘debounced’
causes the raw ADC value from a sensor to be averaged over 3
samples at 4ms intervals.

Figure 6. StickOS BASIC program that sends the

CUI32Stem’s analog sensor inputs to the [netreceive] object
in the RjDj app on iOS, which is running a corresponding

RjDj “scene” (this patch is shown immediately below)

Figure 7. PureData patch used in RjDj to receive real-time
analog sensor data from the CUI32. On the left side, sliders
visually represent incoming sensor values, and on the right

side, a simple additive synthesizer generates different
timbres in response to the incoming sensor data

Some explanations are necessary for the BASIC code
shown in Figure 6. On line 10, the 2nd UART (the serial port of
the CUI32Stem that is connected to the WiFly) is initialized.
Lines 20 through 160 are declaring variables ‘a’ through ‘p’,
corresponding to the 16 analog input pins on the CUI32. Lines
170-210 create a connection between the iOS device and the
CUI32Stem (the iOS / Android device or computer must
already have joined the WiFly’s AdHoc network). Finally, line
220 enables an internal timer in the CUI32Stem (functionally
similar to the [metro] object in PureData), and configures it to
cause ‘interrupt’ events every 10 milliseconds. Every time one
of these events happens, line 230 sends the actual sensor values
to RjDj, which is running the PureData patch seen in Figure 9.

The list of sensor values is always preceded with a capital
“A”, and appended with a semicolon. In PureData, this
semicolon is needed by the [netreceive] object to signify the
end of an incoming packet, and the capital “A” is simply used
as an identifier to signify the beginning of the packet.
Therefore, the top [match] object in Figure 9 checks for the
capital “A” at the beginning of the string, so that
synchronization is always maintained.

While this example is specific to RjDj (as it uses PureData
internally), the same functionality can be achieved with other
applications that receive Open Sound Control, with just a few
modifications to the BASIC code. For example, SuperCollider
requires the use of OSC-format strings in order to receive UDP
data, so the addition of the proper OSC syntax (string
identifiers and 4-byte boundaries) is added. The example below
allows data to be received in any application that ‘understands’
OSC.

Figure 8. A StickOS BASIC program that sends all of the

CUI32Stem’s analog sensor inputs as OSC data.

This last example incorporates proper syntax elements
needed at the beginning of an OSC-formatted string. The
somewhat cryptic numbers in the array [s] in Figure 8 represent

the string “/s,iiiiiiiiiiiiiiii” as required at the beginning of the
OSC string. These are derived from the ASCII-equivalents of
the individual characters in this string, and aligned to 4-byte
boundaries as required by the Open Sound Control protocol
 In order to use the sensor data from the CUI32Stem with
interactive music programming environments, the data must be
formatted into either OSC as shown here, sent serially via USB,
or make use of another format that the application understands,
such as MIDI, HID mouse/keyboard data, etc. The examples
shown here focus on interaction design for sound and music
computing, and provide corresponding MaxMSP/Pd patches
that capture sensor values on the 16 analog input pins on the
CUI32Stem. There are of course many different types of analog
sensors that can be used with CUI32Stem, including those
already in the GROVE system. In addition, simple extensions
to the above examples would allow data from digital sensors
(such as those which communicate via I2C or SPI, some of
which are also included in the GROVE system) to be attached.
Extending these examples to incorporate the control of LEDs,
small motors, or other actuators for user feedback is also
possible.

4. INNOVATIONS AND AVAILABILITY

The main objective of the development of the CUI32 is to
pursue the author’s own long-term research focused on the
development of new electronically enhanced (augmented)
musical instruments. One of the aims of this is to explore the
potentials that such instruments have in the context of new
compositions and new methods of performance. The overall
goal is to add new dimensions and expressive possibilities to
the capabilities of traditional electronic and/or hybrid acoustic
instruments, and to explore these in contemporary music and
performance. The research can be seen as a process of
discovery, investigating the extension of musical instruments’
expressive and performative ranges. In addition, through
research-based teaching, students are exposed to the issues that
arise in this research, and asked to build significant group-
based projects through their semester work.
 For the sake of brevity, a complete discussion of the bigger
research challenges and innovations is not included here; One
example of a real musical instrument created by the author, that
uses the technology described herein, is the Overtone Fiddle
[9]. This document instead serves as collection of useful
technical information for those interested in working with the
CUI32Stem, the GROVE system, and their corresponding
methodologies.
 The CUI32Stem is available as a single item, or bundled
with an assortment of GROVE elements from Seeed Studio,
Inc. At the moment, a ‘CUI32Stem GROVE Dash Kit’6 bundle
has been put together (see Figure 9), and a larger bundle
focused on wireless (including 2 CUI32Stems and 2 ZigFlea
add-ons) is being prepared. Readers can check the SeeedStudio
online wiki for more information about these bundles. More
information about each of the individual GROVE elements is
also available online, including schematics and related files.

In addition all of the GROVE elements can be purchased
individually, if a specific design requires a certain sub or super-
set of these bundled ‘experimentation kits’. The bundles are
simply intended to provide a convenient way of obtaining a
collection of various sensors and actuators that support sound
and music interaction design (performance, composition,
installations, and other types of interfaces) in the context of lab,
experimental, and educational use.

6 CUI32Stem GROVE ‘Dash Kit’, from SeeedStudio

http://www.seeedstudio.com/wiki/CUI32Stem_GROVE_Dash_Kit

Figure 9. The CUI32Stem GROVE Dash Bundle. Note: the
CUI32Stem board will ship with header pins pre-installed
(not shown in the above photo) in this bundle, providing

soldering-free ‘sketching in hardware’ methodologies

The CUI32Stem GROVE Dash bundle includes:

 • 1 CUI32Stem board
 • 1 USB Host connector *
 • 10 Grove - Universal 4 Pin cables
 • 1 Grove - I2C 3-axis Accelerometer
 • 1 Grove - Rotary Angle Sensor
 • 1 Grove - PIR Motion Sensor
 • 1 Grove - Sound Sensor
 • 1 Grove - I2C Touch Sensor (with 4 Feelers)
 • 1 Grove - Collision Sensor
 • 1 Grove - Piezo Buzzer
 • 1 Grove - OLED Display 128x64
 • 1 Grove - 80cm Infrared Proximity Sensor
 • 1 Grove - Light Sensor

* Note: users must solder the USB Host connector onto

their CUI32Stem if desired. It is left unpopulated because it can
soldered on either the top or bottom side of the board (which
has footprints for the connector on both sides). This allows
users to choose the best position for their own project(s).

.
5. CONCLUSION

This system of DIY electronics for interface development –
described herein with a focus on ‘Sketching in Hardware’ for
music interaction design – was developed within research and
teaching areas related to sound and music computing. It is
shown in the examples provided that the use of a high-
performance microcontroller and a free RTOS brings about an
ease-of-use that can be good for end users, such as students and
researchers who do not wish to get ‘lost in the details’ while
first prototyping new ideas. This methodology is intended to
transcend many of the ‘nuts and bolts’ of technological issues
encountered when creating new forms of sound and music
interface design prototypes, thereby leaving more time and
effort to concentrate on the concept, research, and practice-

based exploration of the field. While the CUI32Stem and
GROVE system function as general-purpose toolkits, this paper
has focused specifically on sound and music interaction design
scenarios for their use.

6. ACKNOWLEDGEMENTS
The author would like to thank open source contributors
Markus Gritsch, Rich Testardi, Rick Anderson, Marc McComb,
Brian Schmalz, Philip Burgess, Øyvind Nyborg Hauback,
Tobias Thyrrestrup, and Nana Chou.

7. REFERENCES
[1] CUI32, as sold by SparkFun Electronics,

http://www.sparkfun.com/products/9645 See also: open
source firmware at http://code.google.com/p/cui32/ Both
accessed February 7, 2012.

[2] Digilent Cerebot and P-MODS system,
http://www.microchipdirect.com/searchparts.aspx?q=cereb
ot&resperpage=10, accessed February 7, 2012.

[3] GROVE system, from SeeedStudio Inc.,
http://www.seeedstudio.com/wiki/GROVE_System#Grov
e_elements accessed February 7, 2012.

[4] LibPd, http://gitorious.org/pdlib/ accessed February 7,
2012.

[5] McCartney, J. Rethinking the Computer Music Language:
SuperCollider. Computer Music Journal, 26(4), 61-68.
2002

[6] MPIDE, from ChipKIT,
http://www.chipkit.cc/wiki/index.php?title=MPIDE_Instal
lation accessed February 7, 2012.

[7] Oplab, from Teenage Engineering,
http://www.teenageengineering.com/products/oplab/
accessed February 7, 2012.

[8] Overholt, D. Musical interaction design with the CREATE
USB Interface: Teaching HCI with CUIs instead of
GUIs. Proc. of the 2006 International Computer Music
Conference, New Orleans, 2006.

[9] Overholt, D. The Overtone Fiddle: an Actuated Acoustic
Instrument. Proc. of the 2011 New Intefaces for Musical
Expression conference, Oslo, Norway, 2011.

[10] Overholt, D. Musical Interaction Design with the
CUI32Stem: Wireless Options and the GROVE system for
prototyping new interfaces. Proc. of the 2012 New
Intefaces for Musical Expression conference, Ann Arbor,
Michigan, USA, 2012.

[11] RjDj, http://www.rjdj.me/ accessed January 29, 2012.
[12] Roving Networks (WiFly GSX module),

http://rovingnetworks.com/ accessed January 29, 2012.
[13] Teagueduino, from Teague Labs, http://teagueduino.org/,

accessed January 29, 2012
[14] Testardi, R. (StickOS), http://cpustick.com/stickos.htm

accessed January 29, 2011.
[15] Tørresen, J., Hauback, Ø.N., Overholt, D., and Jensenius,

A.R., Development and Evaluation of a ZigFlea-based
Wireless Transceiver Board for CUI32. Proc of the 2012
New Interfaces for Musical Expression conference, Ann
Arbor, Michigan USA 2012.

