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Abstract

The Semantic Web has greatly grown in popularity in recent years, partly
due to the popularization of collaborative datasets as well as a multiplication
of applications and use cases. Among these, the Knowledge Graph (KG)
data model has seen a multiplication of use cases and applications due to
its flexibility to represent the semantics of relations between diverse entities.
The Resource Description Framework (RDF) has been widely adopted by the
community as a way to represent knowledge graphs.

With this increasing popularity, building and maintaining RDF datasets
has become more difficult for data producers. Similarly, many RDF datasets
are continuously updated and changed as potential errors are corrected and
new facts are added to them. For example, DBpedia sees an almost continu-
ous stream of updates that accumulates to millions of changes for every new
public release of the graph. Several applications require effective solutions to
keep track of these changes, such as version control systems, historical data
analytics, and knowledge graph building tools.

Traditional solutions for RDF management are insufficient for dealing
with such applications, as existing methods cannot efficiently handle the
increase in data to manage caused by having multiple versions. Similarly,
tracking versioning data also implies novel ways to access them, including
new kinds of queries that can be run over the entire history of an RDF
graph. These challenges and new usages have sparked the development of
new methods, algorithms, and systems.

In this thesis, we investigate the problem of managing large and evolving
knowledge graphs. To understand how popular knowledge graphs evolve
in practice, we propose an analysis of some of the most widely used open
knowledge graphs. In addition to this analysis, we investigate current solu-
tions for the management of evolving RDF datasets. We show that existing
solutions use a variety of architecture and storage paradigms. However, the
scalability of these solutions remains limited and cannot handle real-world
KGs with several versions due to their size.

Subsequently, I explore how indexing techniques can be adapted to the
dynamics of evolving knowledge graphs. We propose an in-memory index-
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ing scheme and dictionary, inspired by the trie tree data structure. This in-
dexing scheme is highly flexible and allows the versioning of RDF datasets
with any other type of metadata. Our experimental results show promising
performance against equivalent approaches. However, being an in-memory
solution, scalability remains a challenge for large datasets that could over-
whelm the main memory of a system. Similarly, the lack of on-disk storage
makes data persistence impossible.

To handle larger datasets, on-disk solutions are needed. We propose a
novel hybrid storage paradigm that uses multiple snapshots and delta chains
to scale to much larger datasets and more versions than was previously pos-
sible. In addition, we introduce several strategies to decide when to make a
new snapshot and delta chain. Using these strategies, we can optimize our
storage for ingestion speed, disk usage, or query performance. Our experi-
ments demonstrate the capability of this architecture to handle much larger
datasets than existing state-of-the-art solutions. Despite that, the querying
capabilities are limited and running complex queries is impossible.

Finally, we explore complex query processing on versioned RDF datasets.
Existing state-of-the-art solutions either do not have such querying capabili-
ties or are unable to handle real-world datasets. We combine our hybrid mul-
tiple delta chain architecture introduced earlier with the Comunica SPARQL
query engine that we adapted for processing versioned queries. SPARQL
queries are essential for complex applications relying on RDF data. Our
solution combines the scalability improvements brought about by our archi-
tecture with the ability to execute complex SPARQL queries. Our evaluation
shows that we can process complex queries on RDF datasets impossible be-
fore using existing solutions.

Overall, this thesis proposes a comprehensive overview of the field of ver-
sioned RDF management. The contributions from the papers included in this
thesis allow the management of much larger versioned knowledge graphs
than previously possible. With the implementation of full SPARQL process-
ing over versioned RDF graphs, we tackle several blockers to the adoption of
versioning for RDF datasets.



Resumé

Det Semantiske Web er blevet meget populært i de seneste år, delvist på
grund af populariseringen af samarbejdsdatasæt samt en mangfoldighed af
applikationer og anvendelser. Blandt disse har data modellen for Vidensgraf
(VG) set en mangfoldighed af anvendelser og applikationer på grund af dens
fleksibilitet til at repræsentere semantikken af relationer mellem forskelligar-
tede enheder. Ressource Description Framework (RDF) er blevet bredt adop-
teret af fællesskabet som en måde at repræsentere vidensgrafer på.

Med denne stigende popularitet er opbygning og vedligeholdelse af RDF-
datasæt blevet mere vanskelig for dataproducenter. På samme måde opdate-
res og ændres mange RDF-datasæt løbende, mens potentielle fejl rettes, og
nye fakta tilføjes til dem. For eksempel oplever DBpedia en næsten kontinu-
erlig strøm af opdateringer, der summerer sig til millioner af ændringer for
hver ny offentliggørelse af grafen. Flere applikationer kræver effektive løs-
ninger til at holde styr på disse ændringer, såsom versionsstyringssystemer,
historisk dataanalyse og værktøjer til opbygning af vidensgrafer.

Traditionelle løsninger til RDF-administration er utilstrækkelige til at
håndtere sådanne applikationer, da eksisterende metoder ikke effektivt kan
håndtere den stigende mængde data forårsaget af flere versioner. På samme
måde indebærer sporing af versionsdata også nye måder at få adgang til dem
på, herunder nye typer af forespørgsler, der kan køres over hele historien af
en RDF-graf. Disse udfordringer og nye anvendelser har ført til udviklingen
af nye metoder, algoritmer og systemer.

I denne PhD-afhandling undersøger vi problemet med at administrere
store og udviklende vidensgrafer. For at forstå hvordan populære vidensgra-
fer udvikler sig i praksis, foreslår vi en analyse af nogle af de mest anvendte
åbne vidensgrafer. Ud over denne analyse undersøger vi nuværende løsnin-
ger til administration af udviklende RDF-datasæt. Vi viser, at eksisterende
løsninger bruger en række forskellige arkitekturer og lagringsparadigmer.
Dog er skalerbarheden af disse løsninger stadig begrænset og kan ikke hånd-
tere virkelige vidensgrafer med flere versioner på grund af deres størrelse.

Derefter undersøger jeg, hvordan indekseringsteknikker kan tilpasses dy-
namikken i udviklende vidensgrafer. Vi foreslår en indekseringsskema og
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et ordbogsord inspireret af trie trædatastrukturen. Dette indekseringsskema
er meget fleksibelt og tillader versionering af RDF-datasæt med enhver an-
den type metadata. Vores eksperimentelle resultater viser lovende ydeevne
i forhold til tilsvarende tilgange. Dog er skalerbarhed stadig en udfordring
for store datasæt, der kunne overvælde hovedhukommelsen i et system. På
samme måde gør manglen på diskbaseret lagring dataudholdenhed umulig.

For at håndtere større datasæt er der brug for løsninger baseret på disk.
Vi foreslår et nyt hybridt lagringsparadigme, der bruger flere øjebliksbilleder
og delta-kæder til at skalere til meget større datasæt og flere versioner end
tidligere var muligt. Derudover introducerer vi flere strategier til at beslutte,
hvornår der skal oprettes et nyt øjebliksbillede og en delta-kæde. Ved at bruge
disse strategier kan vi optimere vores lagring til indtags- hastighed, diskfor-
brug eller forespørgselsydelse. Vores eksperimenter viser, at denne arkitektur
kan håndtere meget større datasæt end eksisterende state-of-the-art løsnin-
ger. Trods det er forespørgselsmulighederne begrænsede, og det er umuligt
at køre komplekse forespørgsler.

Endelig udforsker vi kompleks forespørgselsbehandling på versionere-
de RDF-datasæt. Eksisterende state-of-the-art løsninger har enten ikke så-
danne forespørgselsmuligheder eller er ude af stand til at håndtere da-
tasæt fra den virkelige verden. Vi kombinerer vores hybridmultiple del-
takædearkitektur, der blev introduceret tidligere, med Comunica SPARQL-
forespørgselsmotoren, som vi har tilpasset til at behandle versionerede fore-
spørgsler. SPARQL-forespørgsler er afgørende for komplekse applikationer,
der er afhængige af RDF-data. Vores løsning kombinerer de skaleringsforbed-
ringer, vores arkitektur bringer med sig, med evnen til at udføre komplekse
SPARQL-forespørgsler. Vores evaluering viser, at vi kan behandle komplekse
forespørgsler på RDF-datasæt, som var umulige før ved hjælp af eksisterende
løsninger.

Alt i alt foreslår denne afhandling et omfattende overblik over feltet for
versioneret RDF-administration. Bidragene fra de papirer, der er inkluderet
i denne afhandling, tillader administration af meget større versionerede vi-
densgrafer end tidligere muligt. Med implementeringen af fuld SPARQL-
behandling over versionerede RDF-grafer tackler vi flere forhindringer for
vedtagelsen af versionering til RDF-datasæt.
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Thesis Summary

1 Introduction

In this section, we introduce the context of the work presented in this thesis.
We first discuss the Semantic Web concepts and technologies and then de-
scribe the novel challenges and use cases related to the versioning of semantic
web data. Finally, we give a brief overview of the structure and contributions
of the remaining of this thesis.

1.1 Background and Motivation

The Semantic Web [9] is based on a set of standards proposed by the World
Wide Web Consortium1 to facilitate the sharing and use of data on the Web.
The Semantic Web has been designed to complement the World Wide Web
(WWW) in several ways. More specifically, the Semantic Web provides ways
for data processing by machines, as opposed to the WWW which focuses on
delivering human-readable content in various formats such as HTML, XML,
and plain text. Data accessible through the Web usually do not have clear
semantics, which is not the case with the Semantic Web.

RDF and SPARQL While there is no single data format used in a Seman-
tic Web context, the most common is the Resource Description Framework
(RDF) [51], the W3C-recommended data model for the Semantic Web. RDF
provides an expressive framework for representing and interlinking diverse
forms of knowledge and data in a machine-readable format. At its core, RDF
represents information through subject-predicate-object triples, which are often
referred to as RDF statements or simply triples. Triples are ordered in col-
lections named graphs, and as such RDF graphs are the basis for all RDF
datasets on the web.

Figure 1 illustrates and presents an RDF graph along its triple represen-
tation, as represented in the DBpedia [6] knowledge graph. Entities in an

1http://www.w3.com/
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dbr:Progressive_rock

dbr:Pink_Floyd

dbo:bandMember

dbo:genre

dbr:David_Gilmour

dbo:activeYearsStartYear

“1965-01-01”^^xsd:gYear

(a) RDF Graph example. Nodes in yellow are IRIs, nodes in blue are literals.

<dbr:Pink_Floyd, dbo:genre, dbr:Progressive_rock> .
<dbr:Pink_Floyd, dbo:bandMember, dbr:David_Gilmour> .
<dbr:Pink_Floyd, dbo:activeYearsStartYear, “1965-01-01”^^xsd:gYear> .

(b) RDF Graph triples

Fig. 1: RDF Graph example showcasing information about the Pink Floyd band as represented
in DBpedia [6]

RDF knowledge graph are identified by Internationalized Resource Identi-
fiers (IRI), which are built on top of the Uniform Resource Identifier (URI)
standard. For convenience, IRIs are often shortened to namespace:ressource
pairs. In our example Figure 1, the IRI "http://dbpedia.org/ontology/genre" can
be shorten to "dbo:genre". Data and property values are represented as strings
that can optionally be typed, called literals.

The W3C recommended standard for querying and managing RDF
graphs is the SPARQL [55] language. SPARQL is the equivalent of SQL in the
relational database world and is a specialized declarative language for han-
dling RDF data. The most elementary query atom in SPARQL is the triple
pattern, which is matched against the queried RDF graph. Triple patterns
are grouped into Basic Graph Patterns or BGPs. A SPARQL query contains
at least one BGP, which can be combined with other BGPs with optional lan-
guage constructs, such as, for example, "UNION" or "OPTIONAL".

PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT * WHERE
{

?band dbo:genre ?genre .
?band dbo:bandMember ?member .

}

Fig. 2: SPARQL query retrieving the name, genre, and members of bands in DBpedia.
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Figure 2 shows an example SPARQL query that retrieves the name, genre,
and members of bands in the DBpedia [6] knowledge graph. This query is
simple and features a single BGP.

Data Maintenance and Archiving for RDF The amount of RDF data has
steadily grown since the conception of the Semantic Web in 2001 [9] as more
and more organizations opt for RDF [51] as the format to publish semantic
data. For example, by July 2009 the Linked Open Data (LOD) cloud counted
more than 90 RDF datasets, adding up to almost 6.7B triples [10]. By 2023,
these numbers have increased to more than 650k datasets2 and at least 28B
triples3. This boom is due in part to the increasing number of data providers,
but also to the constant evolution of the data in the LOD cloud.

This increase in popularity, as well as the amount of data that produc-
ers need to maintain, has led to new use cases and needs. In fact, Semantic
Web datasets are not static; many of them are updated regularly. Some ap-
plications, such as version control systems, collaborative knowledge graph
building tools, or simply data archiving systems, require full access to the
entire edition history of an RDF dataset [5, 24, 49, 54]. However, mainstream
management systems for RDF datasets are usually unable to handle and store
updates in a graceful way. As such, the need for better techniques and sys-
tems to handle versioned RDF datasets has emerged in recent years and has
initiated research in the RDF Archiving field.

The example in Figure 3 displays a common case of update that occurs
during the maintenance of an RDF graph. In that case, incorrect information
was stored in the graph (the date is incorrect) and has to be corrected. Data
maintainers will delete the wrong triple and add a new, correct, triple. This
is illustrated in Figure 3c, the deleted triple is denoted by ∆− and the new
added triple by ∆+. The set of added and deleted triples is called a change-
set. Now, data maintainers have two different versions of the graph, the old
version and the new version, and are faced with the challenge of how to deal
with these data. Without any other options, the choice falls between simply
deleting the old version and losing the history of changes in the graph or to
keep both versions of the graph stored separately. The former means that
data is always lost after any change, which prevents any rollback if mistakes
are made during updating, and removes the ability to access the history of
the data. The latter option naturally has a significant cost in terms of storage
resources needed and can be costly for data maintainers.

Many use cases are enabled by RDF archiving, such as data analytics or
version control. However, these require efficient storage of the versioned
RDF graphs as well as expressive querying and management systems. This

2https://lod-cloud.net/
3http://lod-a-lot.lod.labs.vu.nl/
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dbr:Progressive_rock

dbr:Pink_Floyd

dbo:bandMember

dbo:genre

dbr:David_Gilmour

dbo:activeYearsStartYear

“1964-01-01”^^xsd:gYear

(a) RDF graph version 1

dbr:Progressive_rock

dbr:Pink_Floyd

dbo:bandMember

dbo:genre

dbr:David_Gilmour

dbo:activeYearsStartYear

“1965-01-01”^^xsd:gYear

(b) RDF graph version 2

<dbr:Pink_Floyd, dbo:genre, dbr:Progressive_rock> .
<dbr:Pink_Floyd, dbo:bandMember, dbr:David_Gilmour> .

Δ-
<dbr:Pink_Floyd, dbo:activeYearsStartYear, “1964-01-01”^^xsd:gYear> .
Δ+
<dbr:Pink_Floyd, dbo:activeYearsStartYear, “1965-01-01”^^xsd:gYear> .

(c) RDF graph triple update

Fig. 3: RDF graph example with an update to one triple to correct wrong information.

makes the design of RDF archiving systems particularly difficult: static RDF
datasets can already scale to very large sizes, with multiple billions of triples,
which is further accentuated by archiving, which multiply the amount of
data along the time axis. This requires RDF archiving systems to carefully
consider their storage architecture and also their querying algorithms. Both
go hand in hand and impact each other and need to be carefully considered
in the development of solutions for RDF archiving.

This thesis first offers a comprehensive examination of the state-of-the-art
in RDF archiving. This is used to draw the design of new data structures,
indexing schemes, and algorithms, to deal with the challenge of archiving
large RDF graphs, while supporting expressive querying capabilities.

1.2 Thesis Structure

This thesis is structured as follows. Part I motivates the thesis and provides a
summary of the contributions of the included papers. In Section 2, we inves-
tigate the current state of the RDF archiving literature. We provide a compre-
hensive overview of existing RDF archiving systems and evaluate their func-
tionality and availability. Moreover, we present a framework for analyzing
the evolution of RDF datasets over time through a set of metrics and use it to
analyze several major publicly available RDF datasets. This analysis is used
to draw design lessons for RDF archiving systems, which are paramount in
the following of this thesis. These contributions are presented in more detail
in Paper A. In Section 3, we present an in-memory indexing scheme inspired
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by Tries, designed for RDF data with additional metadata, such as version-
ing and provenance. This proposed data structure and the corresponding
algorithms offer a very flexible solution with an attractive trade-off in mem-
ory usage and query performance. This system is described in full detail in
Paper B. Our analysis of state-of-the-art systems showed the significant chal-
lenges that remain for handling RDF archives with a long revision history. We
address this issue by proposing in Section 4 a hybrid storage paradigm that
combines multiple delta chains with metadata compression. This permits the
management of large RDF archives with long revision histories at scales that
are not achievable by existing state-of-the-art systems. The hybrid storage
architecture is introduced in Paper C while the improvements to metadata
compression can be found in Paper D. In order to support more advanced
applications, a system requires expressive querying capabilities. In Section 5,
we describe our proposed implementation of versioned SPARQL query pro-
cessing on top of the hybrid storage architecture discussed previously. We
evaluated our solution on the BEAR-C benchmark [19], a first at the time of
writing and to the best of our knowledge. Details of this contribution can be
found in Paper D. To illustrate these querying capabilities, in Section 6 we
show a demonstration system that offers a user-friendly way to express and
execute versioned queries over an RDF archive. This system is presented in
further detail as part of Paper E. In Section 7, we discuss existing difficulties
in evaluating RDF archiving systems with standard, community-accepted,
benchmarks and propose directions for future work in that area. This is dis-
cussed in more details in Paper F. Finally, Section 8 summarizes the content
of this thesis and discusses possible future work avenues.

Part II, proposes a complete reproduction of the six papers that compose
this thesis, only modified in their layout to fit the format of the thesis. While
each paper is self-contained, it is recommended to read them sequentially, as
some contributions build on previous ones.

2 Archiving for RDF Datasets

This section gives an overview of Paper A [39] and reuses its content.

2.1 Motivation and Problem Statement

As mentioned in Section 1.1, the growth and wide availability of RDF datasets
on the Web led to the emergence of new challenges. The storage and querying
of the entire revision history of RDF datasets is prominent among them and
is called RDF archiving in the literature.

RDF archives demonstrate multifaceted utility within collaborative
projects, serving as a back-end for version control in collaborative environ-
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ments [3, 5, 21, 24, 32, 49, 54]. They also facilitate data evolution analysis for
providers [19], offering an avenue for error tracking and debugging method-
ologies. Furthermore, RDF archives find application within the domain of
RDF streaming applications relying on structured historical data [13, 27].
Moreover, the utility of these archives extends to consumer applications such
as data analytics, for example, the discernment of correction patterns [45, 46],
and historical trend analysis [28].

Consequently, a substantial body of literature has emerged that addresses
the challenges associated with RDF archiving [39, 49]. The existing landscape
of research endeavors encompasses a spectrum of solutions aimed at the stor-
age and querying of RDF archives [2, 4, 5, 14, 22, 24, 36, 50, 54, 58, 63], as well
as benchmarking frameworks [19, 31, 37] to facilitate the evaluation of these
engines, and an array of temporal extensions for SPARQL, each tailored to
address specific use cases [8, 20, 23, 48].

Despite the multitude of existing efforts, a comprehensive and fully devel-
oped solution for the effective management of large-scale and dynamic RDF
datasets remains absent. This gap in the current landscape can be attributed
to several contributory factors, including the inherent performance and func-
tionality limitations within RDF engines pertaining to metadata handling and
a lack of consideration for the evolution patterns observed within real-world
RDF data.

As such, Paper A investigates those points by conducting an in-depth sur-
vey of the prevailing state of the art, highlighting the limitations and intrica-
cies of existing approaches. Similarly, a comprehensive framework designed
to analyze the evolution patterns of RDF data is proposed. This framework
is applied in a study of three prominent large and dynamically evolving RDF
datasets, namely DBpedia [6], YAGO [57], and Wikidata [17].

2.2 Preliminaries

In this section, we introduce the concepts and notation for RDF archiving
and querying, which are used throughout the remainder of the thesis. This
section is adapted from [39, 44].

RDF Graphs

An RDF graph, denoted G, is defined as a set of triples t = ⟨s, p, o⟩, with s ∈
I ∪B, p ∈ I , and o ∈ I ∪L∪B [51]. I represents the set of Internationalized
Resource Identifiers (IRI), L the set of literals (strings, numbers, dates, . . . ),
and B the set of blank nodes (anonymous entities). The concept of graphs for
RDF comes from the fact that G can be modeled as a labeled directed graph.
As such, s and o represent the nodes and p the edge that connects them. A

8
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⟨s, p, o⟩, ⟨s, p, o, ρ⟩ triple and 4-tuple: subject, pred-
icate, object, graph revision

G an RDF graph
g a graph label

Gi the i-th version or revision of
the graph G

A = {G0, G1, . . . } an RDF graph archive
u = {u+, u−} an update or changeset with

sets of added and deleted
triples.

ui,j = {u+
i,j, u−i,j} the changeset between the

graph revisions i and j (j > i)
rv(ρ) revision number of the graph

revision ρ

ts(ρ) commit time of graph revision ρ

l(ρ), l(G) labels of graph revision ρ and
graph G

Table 1: RDF Graphs notations, from [39]

can graph G can be associated with a label g ∈ I ∪ B and become a named
graph. Table 1 summarizes the notations related to RDF graphs.

RDF Graphs Archives

G0 u1 G1 = u1(G0)

⟨:USA, a, :Country⟩
⟨:Cuba, a, :Country⟩
⟨:USA, :dr, :Cuba⟩

u+
1 = {⟨:France, a, :Country⟩}
u−1 = {⟨:USA, :dr, :Cuba⟩}}

⟨:USA, a, :Country⟩
⟨:Cuba, a, :Country⟩
⟨:France, : a, :Country⟩

Fig. 4: Two revisions G0, G1 and a changeset u1 of an RDF graph archive A. Taken from [39].

We now define an RDF graph archive, A, as the temporally ordered
collection of states that an RDF graph has had since its creation. Each
of the states can be viewed as an independent graph and consequently,
A = {Gs, Gs+i, . . . , Gs+n−1}, with Gs the graph representing the state at the
revision (or version) s ∈ N . We define Gs with s = 0 as the first revision
of the graph. Subsequent revisions Gi of the graph, with i > s, can be ob-
tained from their previous state Gi−1, by applying an update (or changeset)
ui = ⟨u+

i , u−i ⟩. u+
i correspond to the set of triples added between Gi−1 and Gi,

and u−i corresponds to the set of deleted triples. As such, we can formulate
Gi = ui(Gi−1) = (Gi−1 ∪ u+

i ) \ u−i . The notion of changeset can be further

9
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generalized to any pair of revisions i, j with i < j and denote ui,j = ⟨u+
i,j, u−i,j⟩

the changeset between Gi and Gj.
A graph archive can also be described as a set of 4-tuples (or quads)

⟨s, p, o, ρ⟩, where ρ ∈ I is the revision identifier i = rv(ρ). rv ⊂ I × N
is a function that assigns a revision identifier ρ to its corresponding natural
number identifier. We further define the function ts ⊂ I × N that assigns
a revision identifier ρ to its commit time or timestamp. This is particularly
useful for enabling time-travel queries or for timestamp-based approaches to
indexing, which we will describe in more detail in Section 2.3.

We illustrate an example graph archive in Figure 4, representing informa-
tion about countries and their diplomatic relationships (:dr).

RDF Dataset Archives

We now define the concept of the RDF dataset and summarize its corre-
sponding notation in Table 2. An RDF dataset is defined as a collection of
named graphs D = {G0, G1, . . . , Gm} with Gk the k-th graph in the dataset.
Each graph Gk ∈ D is associated with a label l(Gk) = gk ∈ I ∪ B with the
exception of G0, the default graph [51].

Similarly to RDF graph archives, we define a RDF dataset archive as A =
{D0, D1, . . . , Dl−1}, a temporally ordered set of RDF datasets. Like graph
archives, it is possible to obtain the state Dj of the dataset archive by applying
a dataset update, defined as Uj = {ûj, u0

j , . . . um
j }, to the revision Dj−1. A

dataset update consists of a set of updates, one for each graph in the dataset,
as well as a graph changeset ûj = ⟨û+

j , û−j ⟩. A graph changeset stores the
added and deleted graphs (identified by their label) between revision j − 1
and j. Consequently, any graph marked for deletion (in the set û−j ) cannot

have a set of changes uk
j ∈ Uj. Like for graph archives, the concept of dataset

update can be further generalized to any pair of revisions i, j with j > i,
which we denote Ui,j. We can further define ζ ∈ I as the global revision
identifier j = rv(ζ) of the RDF dataset archive. Therefore, the function ts(ζ)
returns the commit timestamp of the revision ζ.

Archives Queries

Querying an RDF graph or dataset archive is different from standard query-
ing in that results from different versions can be combined to form an an-
swer. Several works in the literature have proposed to categorize the types of
queries performed against RDF archives into several categories [19, 37]. Fer-
nández et al. [19] identify five different types of queries, which we illustrate
based on our previous RDF archive example in Figure 4:
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⟨s, p, o, æ, ı⟩ a 5-tuple subject, predicate, ob-
ject, graph revision, and dataset
revision

D = {G0, G1, . . . } an RDF dataset
A = {D0, D1, . . . } an RDF dataset archive

Dj the j-th version or revision of
the dataset D

Gk
i the i-th revision of the k-th

graph in a dataset archive
û = {û+, û−} a graph changeset with sets of

added and deleted graphs
U = {û, u0, . . . } a dataset update or changeset

consisting of a graph changeset
û and changesets ui associated
with graphs Gi

U+, U− the addition/deletion changes
of U: U+ = {û+, u0+, u1+, . . . }
, U− = {û−, u0−, u1−, . . . }

Ui,j the dataset changeset between
dataset revisions i and j (j > i)

rv(ζ) revision number of the dataset
revision ζ

ts(ζ) commit time of dataset revision
ζ

Υ(·) the set of terms (IRIs, literals,
and blank nodes) present in a
graph G, dataset D, changeset
u, and dataset changeset U.

Table 2: RDF Datasets notations, from [39]
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• Version Materialization (VM). VM queries are standard queries which
target a single revision, such as "what was the list of countries present at
revisions i?"

• Delta Materialization (DM). DM queries are standard queries targeting a
changeset ui,j, e.g., "which countries were added between revision i and j?"

• Version (V or VQ). V queries are standard queries where results are an-
notated with revision validity. The V query "what is the list of countries?"
would return the list of countries, each annotated with the revisions where
they are part of the graph.

• Cross-version (CV). CV queries combine (e.g., via joins, unions, aggrega-
tions, differences, etc.) the information from multiple revisions, e.g., "which
of the current countries has diplomatic relationships with countries present at re-
vision i?"

• Cross-delta (CD). CD queries result from the combination of the results of
multiple changesets, e.g., "what are the revisions j with the largest number of
country additions?"

In practice, CV and CD queries can be implemented as a combination of
VM, DM, or V queries, and as such, the minimal set of query types needed to
support the full expressiveness consists of VM, DM, and V queries. Through-
out the remainder of this thesis, we adopt the categorization of Fernández et
al. [19], as it has seen greater adoption by the community than the other
proposed categorizations [39, 58].

2.3 RDF Archiving Systems

Numerous systems have been developed to facilitate the storage and query-
ing of RDF datasets and graph archives. However, most existing systems
are designed to support the archiving of individual RDF graphs, with only
a limited number of approaches [4, 5, 24, 63] designed to accommodate full
dataset archives. For example, the OSTRICH system handles quads of the
form ⟨s, p, o, rv(ρ)⟩. On the contrary, certain alternatives opt instead for the
representation of temporal metadata, such as insertion and deletion time-
stamps, alongside validity timestamps for triples, by using the ρ-component
with ρ ∈ I . In practice and in the context of this work, both approaches can
be considered equivalent in terms of functionalities.

In the remainder of this section, we will define a categorization of state-
of-the-art approaches along several criteria.

• Storage paradigm. The storage paradigm is paramount to the architec-
ture, performance, and functionalities of a system. In practice we can
identify three main paradigms, independent copies (IC), change-based
(CB), and timestamp-based (TB), with some modern systems using a
combination of those. We discuss each of the paradigms in detail later

12
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Paradigm Queries BGPs Multi-graph Source

Dydra [4] TB all + + -
Ostrich [58] IC/CB/TB VM, DM, V -c - +
QuitStore [5] FB all + + +
RDF-TX [22] TB all + - -
R43ples [24] CB all + + +a

R&WBase [54] CB all + - +
RBDMS [29] CB all + - -
SemVersion [63] IC VM, DM - - -
Stardog [2] CB all + + -
v-RDFCSA [14] TB VM, DM, V - - -
x-RDF-3X [36] TB VM, V + - +b

a It needs modifications to have the console client running and working b Old source
code c Full BGP support is possible via integration with the Comunica query engine

Table 3: Functional-based categorization of existing RDF archiving systems, adapted from [39]

in this section.
• Query types. The types of archive queries supported natively by the

system (see Section 2.2).
• Full BGPs. If the system supports complex queries, with more than

one triple pattern.
• Multi-graph. Whether the system supports the archiving of multiple

graphs, i.e. if it supports RDF dataset archives.
• Source available. Finally, we also indicate whether the system is avail-

able and open source.

A more complete list of criteria can be found in Paper A, this summary limits
itself to the most important ones for the remainder of the thesis.

We now detail each storage paradigm in detail and discuss their trade-off
in terms of querying performance and disk usage.

Independent Copies Systems (IC)

Independent Copies systems store each revision of a dataset archive Di (or
graph) as a fully materialized independent dataset. This approach has a sig-
nificant cost in terms of disk usage, since redundancy is maximized, and is
only adapted to the versioning of small and simple datasets [63]. However,
IC approaches are particularly effective at answering VM and CV queries,
since neither will require any materialization cost before querying. The
most prominent system that implements an IC storage paradigm is SemVer-
sion [63], which offers functionalities similar to version control systems such
as CVS or SVN. All in all, IC approaches suffer from scalability issues, and
research has since moved to more efficient paradigms.
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Timestamp-based Systems (TB)

Timestamp-based solutions involve the storage of triples alongside associated
temporal metadata, such as temporal validity intervals or timestamps denot-
ing their insertion and deletion. VM and DM queries need a potentially
expensive materialization step in order to be executed, whereas V queries are
usually more straightforward. The effectiveness of the materialization step
depends on the specific indexing strategies used within the system. TB sys-
tems are typically more storage efficient than IC approaches, and as such,
have seen a lot more development.

x-RDF-3X [36] is an extension of the RDF-3X [35] engine which represents
quads in the form ⟨s, p, o, ρ⟩ where ρ represents all the revisions where the
triple exists, as well as the addition and deletion timestamps. x-RDF-3X, like
RDF-3X, features a full SPARQL query engine.

Dydra [4] is a TB system that supports the archiving of dataset archives.
Its data model consists of 5-tuples ⟨s, p, o, ρ, ζ⟩, and consequently does not
support a global revision identifier. The ρ component is mapped to addition
and deletion timestamps. Dydra supports full SPARQL queries and extends
the language with a REVISION clause which can be used to reference the
desired revision.

v-RDFCSA [14] proposes a TB storage scheme based on compact suffix-
array (CSA) [12] which supports graph archives. It offers unparalleled effi-
ciency in terms of storage and querying at the expense of update support.
As such, it is adapted for use on existing, static, graph archives. Contrary to
Dydra and x-RDF-3X, v-RDFCSA only supports single triple pattern queries
for the VM, DM, and V types.

Change-based Systems (CB)

Changed-based systems focus on minimizing redundancies by storing the
initial revision of a dataset D as a full snapshot. Subsequent revisions Dj
(s < j) are stored as deltas or changesets Uj. This sequence of deltas after
the initial snapshot is called a delta chain. CB systems usually propose great
storage efficiency, as long as the deltas do not become larger than the fully
materialized dataset, and can be convenient for DM and CD queries.

R&WBase [54] is one of the oldest CB-based archiving systems for RDF
graphs. Each update ui is stored in two new named graphs Gi+

g , Gi−
g for the

additions and deletions. R&WBase [54] does not support the versioning of
multiple named graphs.

R43ples [24] draws inspiration from R&WBase and extends its function-
alities to the versioning of named graphs. R43ples does not support global
revision identifiers, and each graph in the dataset is versioned independently.
R43ples offers full support for SPARQL and proposes the use of the REVI-
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SION clause to extend the language.

Hybrid Systems

Finally, some systems chose to implement a storage strategy that takes as-
pects from several of the aforementioned paradigms.

OSTRICH [58] proposes a storage paradigm that combines the charac-
teristics of CB and TB approaches. In practice, OSTRICH stores the initial
revision of a graph as a fully materialized snapshot via HDT [18]. Subse-
quent revisions i are stored as aggregated deltas u0,i in B+Trees, together with
TB-based versioning metadata. OSTRICH querying capabilities are limited
to single-triple-pattern queries of the DM, VM, or V kind. Overall, OSTRICH
shows through its experiments a good space and querying efficiency com-
pared to other alternatives.

QuitStore [5] proposes a Git-like version control system for RDF datasets
and makes use of PROV-O to model its metadata. In practice, QuitStore
always materializes the latest revision in an in-memory quad store, based
on the Python library RDFlib4. The data is otherwise stored on disk as N-
triples files in a Git-versioned directory. QuitStore has been designed for
collaborative dataset construction projects, and the need to materialize the
latest revision in-memory makes it unsuited for the archiving of large RDF
datasets.

2.4 Evaluation of the Existing Archiving Systems

After having presented the existing systems for RDF archiving in Section 2.3,
we evaluated the testable systems on several RDF graph archives.

Datasets

We chose several publicly available knowledge graphs, YAGO [57], DBpe-
dia [6] and Wikidata [17], for our evaluation. Each of these knowledge graphs
has seen several versions since their initial publication, and we consider each
as a separate revision in a graph archive. Due to the large size of these
datasets, we limit our evaluation data to some selected "themes" and ver-
sions. For DBpedia, we include the mapping-based objects and mapping-based
literals, as well as the instance-types and the ontology. For YAGO, we use the
facts, meta facts, literal facts, date facts, and labels themes. Finally, for Wikidata,
we chose simple-statements of the RDF Exports [1] for the period 2014-05 -
2016-08. Table 4 summarizes the versions used for each dataset.

4https://rdflib.dev/
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Revision DBpedia YAGO Wikidata
0 3.5 2s 2014-05-26
1 3.5.1 3.0.0 2014-08-04
2 3.6 3.0.1 2014-11-10
3 3.7 3.0.2 2015-02-23
4 3.8 3.1 2015-06-01
5 3.9 2015-08-17
6 2015-04 2015-10-12
7 2015-10 2015-12-28
8 2016-04 2016-03-28
9 2016-10 2016-06-21
10 2019-08 2016-08-01

Table 4: Datasets revision mapping, reproduced from [39]
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Fig. 5: OSTRICH’s ingestion time on the evaluation datasets, reproduced from [39]

Tested Systems

As shown in Table 3, existing RDF archiving systems vary significantly in
functionalities, but are all capable of versioning single graph archives. How-
ever, only five systems have their source code available to the public, which
limits possible evaluation. Among these systems, R43ples [24] was un-
able to ingest any of the datasets after more than four days of execution.
R&WBase [54] does not offer a bulk ingestion process, necessary to ingest
the large changesets of our evaluation datasets. Similarly, x-RDF-3X [36]
could not ingest any of the DBpedia changesets and needs modifications
to its source code to function on modern systems. QuitStore [5], was un-
able to ingest our tested datasets in either its persistence or lazy loading mode
due to crashes. Of all the available systems, only OSTRICH [58] was able to
successfully ingest our evaluation datasets.
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Evaluation Results

Because OSTRICH was the only system capable of ingesting our evaluation
datasets, its the only system included on our evaluation. Figure 5 shows the
ingestion time of OSTRICH for each of the evaluation datasets. The time
needed to ingest each revision follows an upward tendency for each dataset
with variations related to the size of the changesets. In general, the more
revisions there are, the longer it takes for the ingestion process. This can be
explained by the increase in redundancy within the deltas, since OSTRICH
stores the version j as an aggregated delta u0,j. As such the aggregated deltas
can only increase in size, and become more expansive to construct due to the
need to consider all previous changes. As a consequence, OSTRICH would
have difficulties scaling to datasets with long revision histories.

2.5 RDF Data Evolution Analysis

We now describe the analysis of the evolution of several RDF datasets. This
analysis will help establish the requirements for RDF archiving systems
by taking into account the evolution patterns of real-world datasets. The
datasets considered for this analysis are described in Section 2.4.

Metrics for RDF Archives Analysis

To describe the evolution of RDF archive datasets or graphs, we propose the
use of a set of metrics to quantify the changes between two revisions. We
divide those metrics into two categories: low-level change metrics and high-
level change metrics. In this analysis, we will focus on the application of these
metrics to RDF graph archives. A complete formalization for both graph and
dataset archives can be found in Paper A. Finally, a tool has been developed
to compute these metrics for any RDF archive.

Low-level changes metrics The low-level change metrics focus on the addi-
tion and deletion of triples as well as vocabulary elements. The vocabulary,
Υ ⊂ I ∪ L ∪ B , is the set of terms present in the triples of the graph or
dataset. Those metrics have been adapted from the state-of-the-art, notably
the work of Fernández et al. [19], and apply to arbitrary pairs of revisions i
and j.
Change-ratio. The change-ratio represents the ratio of changes between two
revisions against the joined size of those revisions, and is defined as:

δi,j(G) =
|u+

i,j|+ |u
−
i,j|

|Gi ∪ Gj|
. (1)
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Vocabulary dynamicity. The vocabulary dynamicity describes how much the
vocabulary set of graph evolves between two versions and is defined as:

vdyni,j(G) =
|Υ(ui,j)|

|Υ(Gi) ∪ Υ(Gj)|
(2)

Growth ratio. The growth ratio defines the pure change in size of a graph
archive between two revisions and is defined as:

Γi,j(G) =
|Gj|
|Gi|

(3)

High-level changes metrics Contrary to low-level metrics, high-level met-
rics aim to examine the semantics of the changes made to an RDF archive.
The notion of a high-level change can be application-specific, as shown
by [38, 52], however, here we focus on domain independent metrics, which
can be applied to any RDF archive.
Entity changes. This metrics describe the changes in RDF entities (s in ⟨s, p, o⟩)
between two revisions i and j. We define the entity change metric as:

eci,j(G) = |σi,j(G)| = |σ+
i,j(G) ∪ σ−i,j(G)| (4)

With σ+
i,j(G) the set of added entities, and σ−i,j(G) the set of deleted entities.

Triple-to-entity-change. The triple-to-entity-change score constitute the average
number of triples being part of an entity change. We define it as:

ecti,j(G) =
|⟨s, p, o⟩ ∈ ui,j : s ∈ σi,j(G)|

eci,j(G)
(5)

Object Updates. This metric aims at representing identifying changes to a
triple’s object. In that case, a triple ⟨s, p, o⟩ is deleted and a triple ⟨s, p, o′⟩
added, with o ̸= o′. Those changes can usually be interpreted as a correction
to the data of the RDF graph.
Orphan Object Additions/Deletions. Any triple ⟨s, p, o⟩ ∈ ui,j that are not part
of any other high-level change are considered orphan additions and deletions.

Analysis of an RDF Graph Archive

We now analyze the evolution of the DBpedia RDF graph archive with the
metrics described above. Paper A contains a more detailed analysis that
includes Wikidata and YAGO, as described in Section 2.4.

Figure 6a shows the change-ratio of DBpedia over its revision history. The
change-ratio is stable until revision 6 (release 2015-04) where a significant
spike of changes occurs. A similar high number of changes can be observed
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Fig. 6: Evolution of DBpedia, reproduced from [39]

for revision 10 (2019-08). This behavior can be found in the vocabulary dy-
namicity (Figure 6b) with distinctly higher values for revisions 6 and 10. For
entity-changes, revisions 6 and 10 feature a notably high number of entity
deletions, hinting at major refactoring work done by the DBpedia data main-
tainers for those revisions. All in all, we observe that DBpedia showcases a
release pattern with several minor revisions and periodic major revisions (6
and 10). This confirms the possibility of unpredictable variability in the num-
ber of changes occurring throughout the revision history of an RDF archive.
As such, any system designed to handle RDF archiving should be able to
handle possibly highly variable number of changes between revisions.

2.6 Conclusion

In this section, we have discussed the significance of RDF archiving for both
data maintainers and consumers. Our comprehensive survey of existing so-
lutions and benchmarks in the domain of RDF archiving reveals a limited
availability of downloadable and usable solutions. Among these, OSTRICH
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emerges as the sole system capable of effectively storing the release history of
notably large RDF datasets. However, it is imperative to note that, despite its
capabilities, OSTRICH’s design is not entirely up to the scaling requirements
posed by extended revision histories. Alternative available solutions, such as
R43ples [24], R&WBase [54], Quit Store [5], and x-RDF-3X [36], face signif-
icant challenges in managing extended revision histories. These challenges
are primarily attributed to their orientation toward collaborative version con-
trol, thereby imposing scalability limitations.

In addition, we have introduced a series of metrics designed to analyze
the evolution of RDF archives. The application of these metrics has been in-
strumental in conducting an analysis of the historical evolution of three RDF
datasets, specifically DBpedia, YAGO, and Wikidata. Through this analysis,
noticeable changes within their release histories have been identified, char-
acteristic of major/minor revision patterns. These insights can be used to
optimize resources in the archiving process. For example, the identification
of large changesets could prompt the creation of a new snapshot. It should be
noted that, within existing RDF archiving solutions, none currently leverages
these evolution patterns. This provides a promising avenue for new archiving
techniques capable of adapting to the dynamic nature of RDF archives.

3 Flexible In-memory Indexing for Metadata Aug-
mented RDF Data

This section gives an overview of Paper B [40] and reuses its content.

3.1 Motivation and Problem Statement

As discussed previously in Section 2, RDF usages in recent years have been
transformed from simple graphs to more advanced applications involving
RDF datasets with multiple versions and graphs. The difficulty in handling
such use cases comes from the lack of freely available solutions to index and
query such RDF datasets.

In Section 2.3, we have discussed the current state-of-the-art of RDF
archiving systems. Existing available solutions have several limitations,
which make them suboptimal for modern applications involving the version-
ing of multigraph RDF datasets. This notably includes a lack of concurrent
support for both versioning and named-graphs, to the lack of scalability for
larger datasets. Moreover, other applications of RDF may require additional
types of extensions to the triple model to accommodate additional metadata,
such as provenance annotations.

Paper B investigates solutions for these problems by introducing an in-
memory indexing scheme for arbitrary tuples, i.e. extended triples objects.

20



3. Flexible In-memory Indexing for Metadata Augmented RDF Data

The proposed indexing scheme is inspired by the trie data structure, and
we evaluate it on RDF datasets with a focus on versioning and provenance
annotations. The contributions of Paper B are summarized in this Section.
First, we introduce the concept of metadata augmented triples in Section 3.2,
thereafter, in Section 3.3, we present our in-memory indexing scheme for
such triples. Finally, we will discuss the evaluation experiments in Section 3.4
and conclude in Section 3.5.

3.2 Metadata Augmented RDF Triples

An RDF graph G is defined as a set of triples ⟨s, p, o⟩ with s ∈ I ∪ B, p ∈ I ,
and o ∈ I ∪ L ∪ B. See Section 2.2 for a more extensive overview of the
standard notation used throughout this thesis. We further define a metadata-
augmented RDF graph as a set of triples with a k-tuple of additional RDF
terms. In other words, a metadata-augmented RDF graph is a set of n-tuples
q =⟨ s, p, o, ... ⟩ with n = k + 3. As an example, a versioned RDF quad,
⟨s, p, o, ρ⟩, is an n-tuple with n = 4 and the fourth component, ρ, a graph
revision identifier.

To represent such metadata augmented with traditional RDF stores, one
will usually resort to reification. Reification consists in encoding n-ary state-
ments as a set of several binary statements. For example, a versioned triple
⟨ :Copenhagen, :capital, :Denmark, 2 ⟩ would be instead identified through
an IRI or blank node u. From there, statements about u can be expressed
via four standards triples: ⟨ u, :subject, :Copenhagen ⟩, ⟨ u, :predicate,
:capital ⟩, ⟨ u, :object, :Denmark ⟩, and ⟨ u, :version, 2 ⟩. Reification
has a notorious cost for both storage usage and querying performance due
to the extensive increase in statements needed to represent the same amount
of information but has the benefit of working natively with any RDF triple
store.

The limitations of reification have sparked the development of RDF-
star [26], which, at the time of writing, is considered for integration into the
RDF 1.2 standard5. RDF-star proposes nested triple statements, such as ⟨ ⟨
:Copenhagen, :capital, :Denmark ⟩, :version, 2 ⟩. Support for RDF-star
has increased in recent years among RDF systems; however, few approaches
document their indexing scheme in detail [61], and many have limitations on
the number of levels of nesting supported.

3.3 In-memory Indexing and Dictionary Encoding

We propose TrieDF, an in-memory indexing scheme for metadata-augmented
RDF triples. In practice, TrieDF stores RDF tuples of arbitrary length n > 3.

5https://www.w3.org/TR/rdf12-concepts/
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TrieDF takes inspiration from Tries – compact prefix trees for string repre-
sentation – and seeks to employ similar techniques for the benefit of RDF.
We approach RDF tuples as strings of items, where the items are RDF terms
(Υ ⊂ I ∪L∪B) instead of characters. In order to improve the compactness of
the representation, we employ a similar approach to dictionary encoding, i.e.
the substitution of strings by integer identifiers. An overview of the TrieDF
index and dictionary can be found in Figure 7.

Fig. 7: TrieDF index and dictionary, reproduced from [40]

Trie-based Indexes

TrieDF represents RDF tuples in several trie-indexes. Consider the example
in Figure 7, where versioned triples (quads) in the form ⟨ s, p, o, v ⟩ are stored
in an SPOV index. Each element of a tuple is associated with a node in the
trie index. Tuples share nodes in the tree when they share a common prefix.
For example, the tuples in Figure 7 all share node #1, since they all start with
the same IRI (http://dbpedia.org/resource/Denmark).

Trie-based Dictionaries

The mapping of RDF terms to integers is handled by the dictionary. In TrieDF,
in the same spirit as [7], we employ a trie-based approach for string repre-
sentation. The inherent redundancy of RDF IRI makes them ideal candidates
for such representation. Indeed, IRI often share prefixes which end up dupli-
cated in a traditional dictionary. Instead of using a node for each character,
as done in traditional tries, we coalesce IRI fragments between the character
"/" into single nodes as shown in Figure 7. Furthermore, the trie-based dic-
tionary is made bidirectional in TrieDF to permit both IRI-to-integer lookups
as well as integer-to-IRI "reverse" lookups in a single data structure.
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3.4 Evaluation

TrieDF has been evaluated on the data loading time and the retrieval time of
tuples that match a prefix. Three different use cases are used for the evalu-
ation of these metrics: standard RDF triples, versioned RDF triples (quads),
and versioned RDF triples with provenance annotation (5-tuples). We com-
pare TrieDF with comparable in-memory approaches to tuple indexing. We
select Jena and RDFlib for triples and quads. Both are industry standard
systems to handle RDF data, and are used extensively by the community.
For 5-tuples, due to the absence of RDF specific solutions, we resort to a re-
lational database, SQLite, which offers efficient in-memory storage. Results
from Paper B [40] are summarized in this Section. Additional analysis and
discussion can be found in the original paper.

Datasets

We chose DBpedia 2016-10 [6], YAGO 3.1 [57], YAGO 4 [62], and Wiki-
data [17] for our standard triple experiments. For the quad experiments,
we select a DBpedia archive composed of versions 3.5 to 2016-10, as well as
the BEAR-B Hourly and BEAR-C datasets from the BEAR [19] benchmark.
Finally, our 5-tuple evaluation is done with the NELL [33] dataset, which fea-
tures provenance and versioning information. The full details of the datasets
and their characteristics can be found in Paper B.

Loading Time

Table 5 shows the loading times of the different systems for triples, quads,
and 5-tuples. We note that, for standard triples, Jena is very fast to load data
compared to TrieDF and RDFlib. This can be explained by the mature batch-
loading system employed by Jena, as opposed to TrieDF, where triples are
currently loaded one by one into the indexes.

For quads, Jena is not able to load the DBpedia archive due to memory
constraints. Both RDFlib and TrieDF can load all datasets, with TrieDF gen-
erally outperforming the other solutions, except for BEAR-B.

Finally, in the 5-tuple experiment, SQLite is the fastest approach when
not using indexes. However, a more fair comparison is with indexes where
SQLite loads the data slower than TrieDF.

Retrieval Time

Figure 8 shows the retrieval time of triple, quad, and 5-tuple patterns in the
evaluation datasets. A full description on the choice and generation of query
patterns can be found in the original paper, Paper B [40]. Overall, TrieDF
displays a notably faster retrieval times than alternative approaches. This
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DBpedia YAGO 3.1 YAGO 4 Wikidata

Jena 587.14 1281.65 289.42 1665.48
RDFLib 2816.16 7102.30 1626.85 9587.51
TrieDF 727.20 2105.37 358.20 2800.77

(a) Loading time of the triples evaluation in seconds.

DBpedia BEAR-B BEAR-C

Jena - 1094.83 418.74
RDFLib 26433.76 4851.09 1663.40
TrieDF 16074.17 3743.55 387.68

(b) Loading time of the quads evaluation in seconds.

NELL

TrieDF 36.55
SQLite 16.98
SQLite w. indexes 47.27

(c) Loading time of the 5-tuple evaluation in seconds.

Table 5: Loading time for triples, quads, and 5-tuples, reproduced from [40].

is particularly noticeable on quad pattern queries, where all alternatives are
at least one order of magnitude slower. For 5-tuple pattern queries, both
TrieDF and SQLite with indexes are competitive with each other, with TrieDF
generally having lower median runtime but more variability.

3.5 Discussion and Future Work

We have proposed in Paper B an in-memory approach for the indexing of
metadata-annotated RDF triples. This approach, inspired by the trie-tree data
structure, offers a flexible indexing scheme for arbitrary-sized tuples. The ex-
perimental evaluation shows that this approach can outperform competing
approaches in retrieval time for tuple pattern queries, while keeping inges-
tion times reasonable. With the popularization of quoted triples with RDF-star
(and RDF 1.2) enabling more use cases for extended RDF tuples, TrieDF could
be used as baseline for the design of more general indexing scheme RDF data
with support for various levels of metadata.

Some of the drawbacks of TrieDF include its current limitation to in-
memory indexing, which is limiting when needing to handle larger datasets.
Furthermore, retrieval capabilities are currently limited to simple tuple pat-
terns queries. Although such queries can serve as the building blocks of more
complex queries, for example, in SPARQL or SPARQL-star [26], it can be in-
sufficient for some real-world usages. Finally, applications such as versioning
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Fig. 8: Retrieval time in microseconds for triples pattern queries and different types of quad and
5-tuple pattern queries (log scale), reproduced from [40].

have specific requirements as well as specific data semantics (see Section 2.2
for a detailed description) that are not easily captured by a general approach.

However, the versatility of the TrieDF approach is useful for general types
and possibly heterogeneous metadata. In the future, the implementation
of an on-disk representation would open the door for the support of larger
datasets, as well as reducing the burden on the system memory. Support
for full SPARQL and especially SPARQL-star would permit more complex
real-world applications.

4 Scaling Large RDF Archives to Very Long Histo-
ries

This section gives an overview of our hybrid multiple delta chain architecture
for on-disk RDF archives indexing. This is based on the work presented in
Paper C [44]. In this section, we also describe some contributions from Pa-
per D [41] on metadata compression, which are direct extensions of Paper C.

4.1 Motivation and Background

As discussed in Section 2, a large number of solutions for the storage and
querying of RDF archives has been proposed throughout the years. However,
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only a very limited number of them are available, most of them being either
closed source or with unpublished sources. This greatly limits the practical
use of RDF archiving solutions. Among the available solutions, scalability
remains a major challenge. The experimental results presented in Section 2.4
show that only OSTRICH [58] is capable of ingesting medium-sized real-
world RDF graph archives. Despite that, OSTRICH ingestion times increase
indefinitely with the number of versions in the archive, making longer histo-
ries and larger graph archives impractical in practice.

In Paper B [40] (summarized in Section 3), we have proposed an in-
memory indexing scheme capable of tackling the challenges of indexing RDF
graph archives. Its flexibility allows for efficient handling of RDF archives,
including datasets archives, with a good performance level. However, this so-
lution is limited to in-memory indexing and is therefore unsuitable for larger
archives that would exceed the memory capacity of a system. Moreover, lack
of on-disk storage makes persistence impossible. As a consequence, there is
a need for further advancements in on-disk solutions for RDF archiving.

In Paper C [44], we propose a new hybrid on-disk storage architecture,
based on the CB/TB aggregated changeset architecture proposed by OS-
TRICH, to scale to much larger and longer histories for RDF graph archives.
Furthermore, we propose in Paper D a new representation aimed at com-
pressing the versioning metadata of the indexes by reducing the amount of
redundancies. This improves both scalability in terms of the ingestion time of
new data and disk usage, while having no negative impact on query perfor-
mance. Both contributions from Paper C and Paper D allow handling large
RDF archives at a scale that was impossible before [39].

4.2 OSTRICH’s Hybrid Architecture

In this section, we elaborate on our base storage architecture, which is based
on the hybrid change-based(CB)/timestamp-based(TB) storage paradigm
proposed by OSTRICH. We chose it as our base, as OSTRICH is the only avail-
able system capable of ingesting moderately sized RDF graph archives [39].
Hybrid storage paradigms have been introduced by the most modern RDF
archiving systems to combine the strengths of different approaches and
achieve better efficiency [39, 58].

Aggregated Delta Chain

Approaches using a CB storage paradigm store the change history of an RDF
archive in a delta chain. A delta chain consists of an initial fully materialized
snapshot of the first revision of the archive, while subsequent revisions are
stored as deltas ui,j with i = j− 1. More details can be found in Section 2.3.
Unlike standard CB systems, OSTRICH instead opts for aggregated deltas,
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where revisions i > 0 are stored as deltas u0,i in the delta chain. Figure 9
illustrates the concepts of delta chain and aggregated delta chain.

Snapshot ∆ ∆ ∆ ∆

0 1 2 3 4
(a) Delta chain

Snapshot ∆ ∆ ∆ ∆

0 1 2 3 4
(b) Aggregated delta chain

Fig. 9: Delta chain architectures, reproduced from [44]

The use of aggregated deltas aims to address some weaknesses of stan-
dard delta chains at the cost of increasing redundancy. In standard delta
chains, since each delta is relative to the previous one, some queries can
become increasingly expensive to run as the delta chain grows. This is par-
ticularly problematic for version-materialization (VM) queries, which require
materialization of the desired data through the full iteration of the delta chain
up to the target revision. As such, aggregated deltas do not suffer from the
same drawback, as only a single delta is required to materialize any revision.

Versioning Metadata Representation

SPO POS OSP

+

Triple → {Version: Local Change}

SPO POS OSP

-

Triple → {Version: {Local Change, SP?, S?O, S??, ?PO, ?P?, ??O, ??? }}

Addition Counts

Fig. 10: OSTRICH delta chain storage overview, reproduced from [41]

Figure 10 illustrates how delta chains are structured in OSTRICH. At its
core, triples are divided into two separate triple stores, depending on whether
they have been added (t ∈ u+

i,j) or deleted (t ∈ u−i,j) in a delta. Each triple store
consists of three different indexes, in different orders: SPO, POS, and OSP.
OSTRICH also combines aggregated deltas with aspects of the TB storage
paradigm. In fact, triples within OSTRICH delta chains are also annotated
with versioning metadata. The purpose of these metadata is to reduce redun-
dancies, by storing each triple only once, and to improve querying runtimes.
Versioning metadata differs between the additions and deletions triples, as
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seen on Figure 10. Both additions and deletions are annotated with a collec-
tion of mappings of versions to a local-change flag. This contains the list of
versions (i.e., aggregated delta) where the triple has been added (respectively,
deleted) with respect to revision 0. The local-change flag indicates whether
the triple reverts a previous change in the delta chain, e.g. a triple deleted
and then added again in a later revision. Since the deltas are aggregated,
this information can be duplicated between revisions: A triple added in an
aggregated delta for revision i is also added in a revision i + 1 if it has not
been deleted instead. This creates redundancies within OSTRICH’s indexes
that can grow overtime, especially for long delta chains.

Furthermore, deletion triples are mapped to an additional vector of rel-
ative positions for each possible triple pattern order. This is used during
querying for fast offset computations and count estimations for deletions.
For additions, OSTRICH maintains a separate count index for each possible
triple patterns. More details about OSTRICH can be found in the original
paper [58].

It should be noted that aggregated deltas only grow with the number of
revisions in the delta chain. Their ever increasing size and redundancy make
the ingestion of long histories and large datasets prohibitive, as shown in
Section 2.4.

4.3 Scaling to Long Histories

Multiple Aggregated Delta Chains

We propose in Paper C to solve the increasing cost of aggregated deltas by
creating a new snapshot of the data that will serve as the starting point for
a new delta chain. We illustrate this multi-snapshot approach in Figure 11.
The main idea is that when the ingestion of new data becomes too prohibitive
in a single delta chain, a fresh snapshot will reduce the ingestion time of
subsequent revisions.

Snapshot ∆ ∆ ∆ ∆

0 1 2 3 4
(a) Aggregated delta chain

Snapshot ∆ ∆

0 1

Snapshot ∆ ∆

2 3 4
(b) Multiple aggregated delta chain

Fig. 11: Aggregated delta chains and multiple aggregated delta chains, reproduced from [44]

The use of multiple snapshots may have an impact on disk usage, as
multiple full snapshots of the data are now created. However, in cases
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where inner delta chain redundancy is high, this impact can instead be ben-
eficial. Querying will also be affected. Indeed, any version (V) or delta-
materialization (DM) query, as described in Section 2.2, would now need to
be evaluated across multiple delta chains. In practice, both query perfor-
mance and disk usage depend on the data itself, especially its size in number
of triples and revisions. This will be discussed in more detail in Section 4.5,
during the analysis of the experimental results. As seen in Figure 11, in our
proposed architecture, revisions stored as full snapshots are also stored as
an aggregated delta in the previous delta chain. While this increases redun-
dancy, it allows for some optimizations for DM queries.

When Should a Snapshot be Created?

With the multiple snapshot architecture discussed previously, the decision
to materialize a snapshot at a specific point will impact both the ingestion
time, disk usage, and query performance. This will be subject to a trade-off
between all these aspects and, as such, we propose multiple strategies to tackle
this problem. More formally, we define a snapshot oracle f : A×U→ {0, 1},
with A ∈ A an RDF archive with k revisions. The ingestion of a changeset
uk−1,k ∈ U triggers the decision of whether k should be materialized as a
snapshot or only stored as an aggregated delta.

Paper B proposes several possible strategies for implementing the snap-
shot oracle, which are briefly described here.

• Baseline. The baseline strategy never triggers the creation of a new
snapshot. This is tantamount to the behavior of OSTRICH [58].

• Periodic. The periodic strategy triggers the creation of a new snapshot
when a fixed number d of revisions has been ingested since the last
snapshot.

• Change-ratio. The change-ratio strategy takes into account the change
dynamics of the data, which is quantified with the change-ratio met-
ric [19] (see Section 2.5). The change-ratio, δi,j(A), is calculated between
a pair of revisions i and j. In an aggregated delta chain, we estimate
the overall level of changes by summing the change-ratio since the last
snapshot s. As such, the strategy consists in materializing a new snap-
shot when ∑k

i=s+1 δs,i ≥ γ, where γ is a fixed predefined threshold.
• Time. The time strategy aims to bound the amount of time it takes

to ingest a new revision. With tk the time taken to ingest revision k,
and s + 1 the first revision following the last snapshot s, the strategy
materializes a new snapshot when tk

ts+1
> θ, with θ being a user-defined

threshold.
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Versioning Metadata Compression

As discussed previously in Section 4.2, OSTRICH adds versioning metadata
to triples in aggregated deltas to prevent them from being stored multiple
times, as well as optimizing some querying processes. The drawback of this
representation is that it creates, in turn, metadata-level redundancies as meta-
data entries can be duplicated across multiple versions. This is illustrated in
Tables 6a and 6c. We can observe that redundant information is stored both
in the metadata associated with additions and in the metadata associated
with deletions. In this section, we describe our solution to this problem, as
proposed in Paper D [41].

Version 2 3 4 6
LC T T T T

(a) Original addition metadata in OSTRICH

Version [2,4) - - [5,∞)
LC [2,∞) - - -

(b) Compressed addition metadata

Version 2 3 4 6
LC F F F T
SP? 0 0 0 0
S?O 0 0 0 0
S?? 4 6 6 0
?PO 0 0 0 1
?P? 6 8 8 0
??O 0 0 0 0
??? 8 8 8 0

(c) Original deletion metadata in OSTRICH

Version [2,5) - - [6,∞)
LC - - - [6,∞)
SP? 0 - - -
S?O 0 - - -
S?? 4 +2 - -6
?PO 0 - - +1
?P? 6 +2 - -8
??O 0 - - -
??? 8 - - -8

(d) Compressed deletion metadata

Table 6: Representation of the versioning metadata in OSTRICH and compressed in our imple-
mentation. LC denotes the local change flag. Reproduced from [41].

Building and storing this metadata can become increasingly expensive
for long delta chains – the metadata size grows linearly with the number
of revisions – and is one of the scalability limitations of this storage archi-
tecture. Paper D proposes to replace this metadata representation by a new
compressed representation, greatly reducing redundancies. This new rep-
resentation is illustrated in Tables 6b and 6d. In this new representation,
version numbers and local change flags are instead stored as numerical inter-
vals, where their value does not change. As such, in the example in Table 6b,
the local change flag is represented as an [2,∞) interval which indicate that
the value is true from revision 2 onwards. Deletion metadata also contains a
relative position vector, as described in Section 4.2. This data is now replaced
by delta compressed vectors. The first vector in the metadata is stored plainly
and the subsequent vectors are stored as relative deltas, as illustrated in Ta-
ble 6d. With this representation, only the changes are actually stored in the
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metadata, leading to great reductions in size, especially for long delta chains.

4.4 Querying a Multiple Delta Chain Architecture

The introduction of multiple delta chains creates new challenges for querying
which need to be addressed by new algorithms. In this section, we detail our
multiple delta chains querying algorithms, as proposed in Paper C [44]. For
the sake of brevity, we assume that each algorithm has access to routines to
query individual delta chains. The full details of the single delta chain query
routines are available in Paper D [41] and are based on the work of Taelman
et al. [58].

Version Materialization Queries

Algorithm 1 VM query algorithm, reproduced from [41, 44]

1: function queryVM(i, p) ▷ version i, triple pattern p
2: sidi ← snapshot(i)
3: qi ← query(sidi, p) ▷ we query the triple pattern on the snapshot
4: if sidi = i then ▷ the target version correspond to a snapshot
5: return qi

6: u+ ← getAdditions(i, p)
7: u− ← getDeletions(i, p)
8: vmi ← qi \ u− ▷ filter out the deleted triples
9: vmi ← vmi ∪ u+ ▷ add the added triples

10: return vmi

Version Materialization (VM) queries target a specific revision of the
archive, and we detail the procedure to execute them in Algorithm 1. This
algorithm is similar in both a single-delta chain and a multiple-delta chain
contexts. This works by identifying the snapshot corresponding to the target
version (line 2). In a single delta chain case, this snapshot is always 0, i.e. the
first revision. From there, if the target revision is the snapshot (line 4), then it
is sufficient to return the triples that match the query pattern in the snapshot.
Otherwise, the triples matching the query pattern that were deleted w.r.t. the
snapshot at the target revision are removed from the result set (line 8), while
added triples are included in the results (line 9).

Delta Materialization Queries

Delta Materialization (DM) queries provide results for the delta between two
revisions. DM queries in a multiple delta chain context are much more com-
plicated. The procedure to execute DM queries for two revisions i and j on
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Algorithm 2 DM query algorithm, reproduced from [41, 44]

1: function queryDM(i, j, p) ▷ versions i, j, triple pattern p
2: sidi ← snapshot(i)
3: sidj ← snapshot(j)
4: if sidi = sidj then ▷ i and j are in the same delta-chain
5: delta← singleDCQueryDM(i, j, p)
6: else ▷ i and j are not in the same delta-chain
7: usi,sj ← snapshotDiff(sidi, sidj, p)
8: usi,i, usj,j ← ∅
9: if i ̸= sidi then ▷ test if version i is a delta

10: usi,i ← singleDCQueryDM(sidi, i, p)

11: if j ̸= sidj then ▷ test if version j is a delta
12: usj,j ← singleDCQueryDM(sidj, j, p)

13: ui,sj ← mergeBackwards(usi,i, usi,sj)
14: (ui, uj)← mergeForward(ui,sj, usj,j)

15: return ui, uj

multiple delta chains is described in Algorithm 2. The DM query algorithm
for multiple delta chains relies on two external routines: The first, called sin-
gleDCQueryDM, executes a DM query on a single delta chain. The second,
snapshotDiff, computes the difference between two different snapshots, i.e.
the set of added and deleted triples matching the given query pattern.

The first step in the algorithm consists of finding the respective snapshots
of the target revisions i and j (lines 2 and 3). If the snapshots are the same
(line 4), i and j belong to the same delta chain and the query boils down to
a single delta chain DM query (line 5). Otherwise, this means that the target
revisions are on different delta chains and the difference between their refer-
ence snapshots is computed in line 7. Then, if either i or j do not correspond
to a snapshot, the changesets between them and their reference snapshot are
computed on lines 10 and 12. Finally, in lines 13 and 14, the intermediary re-
sults are merged in order to form the final result set. This merging procedure
consists in two steps, mergeBackwards and mergeForward, which filter reverted
and contradicting changes in the intermediary results. These are explained
in more detail in Paper C.

Version Queries

Version Queries annotate results with the revision identifiers where they
hold. We detail the querying procedure for V queries in a multiple delta
chain context in Algorithm 3. This algorithm relies on the singleDCQueryV
function to execute V queries on single delta chains. This works by iterating
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Algorithm 3 V query algorithm, reproduced from [41, 44]

1: function queryV(p) ▷ p a triple pattern
2: r ← ∅
3: for c ∈ C do ▷ C the list of delta chains
4: v← singleDCQueryV(c, p)
5: r ← merge(r, v) ▷ merge intermediate results

6: return r

over all delta chains present in the archive (line 3) and executing singleDC-
QueryV. The obtained results are then merged with the existing results from
the previous loop iterations (line 5). When all iterations are completed, r
contains the final set of results.

4.5 Experimental Evaluation

In this Section, we summarize the experimental evaluation of our proposed
architecture. The full evaluation of all the proposed strategies for snapshot
materialization can be found in Paper C, while a complete analysis of the
impact of the compressed metadata representation can be found in Paper D.

Experimental Setup

Experimental evaluation is carried out on the BEAR RDF archiving bench-
mark [19]. BEAR comes in three different variants: BEAR-A, BEAR-B, and
BEAR-C. BEAR-A constitutes a large archive of 58 revisions containing up to
66M triples. BEAR-B is proposed in three different variants: Daily, Hourly,
and Instant. Each variant has versions containing up to 44K triples. BEAR-
B Daily proposes 89 revisions, BEAR-B Hourly 1299 revisions, and BEAR-B
Instant proposes 21046 revisions. Both BEAR-A and BEAR-B only propose
single triple pattern queries. In this summary of the experimental evalua-
tion, the results for BEAR-A and BEAR-B Hourly are included due to their
very different scale and challenges. The results of all other BEAR benchmark
datasets are available in Paper C. The characteristics of the datasets used in
this section are summarized in Table 7.

In this evaluation, two different strategies are included. First, the Baseline
strategy, which correspond to OSTRICH [58], the current state-of-the-art for
RDF archiving. Second, to represent the multiple delta chain architecture, the
Change-ratio (CR) strategy with a threshold value γ = 4.0 is chosen due to its
overall good performance in the experiments of Paper C. The CR results in-
clude the new compressed metadata representation described in Section 4.3.
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BEAR-A BEAR-B Hourly
# versions 58 1299
|Gi|’s range 30M - 66M 33K - 44K
|∆| 22M 198

# queries 368 62 (49 ?P? and 13 ?PO)

Table 7: Dataset characteristics. With |Gi | the size of the individual revisions, and |∆| the average
size of the changesets uk−1,k . Adapted from [44].
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Fig. 12: Ingestion time and disk usage for BEAR-A and BEAR-B Hourly, using our different
strategies.

Figure 12 displays the time needed and the disk used for ingestion of the
datasets. First, the time required to ingest the datasets has been drastically
reduced between the baseline and the multiple delta chain architecture. For
BEAR-A (Figure 12a), the ingestion time goes from 253676 minutes to 20053,
an order of magnitude speed-up. For BEAR-B Hourly (Figure 12b), the time
required to ingest the data by the baseline is 1473 minutes, while the mul-
tiple delta chain architecture with the change-ratio strategy takes only 4.41
minutes. This is a speed-up by a factor of 334. This confirms that the usage
of multiple delta chains is hugely beneficial for the scalability of the system.

Disk usage is also significantly improved by the CR strategy, although to
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a lesser extent. BEAR-A (Figure 12c) requires 45.9 GB using the baseline,
while the multiple delta chain CR strategy uses 31.7 GB. For BEAR-B Hourly
(Figure 12d), disk usage goes from 615 MB with the baseline to only 193
MB with the multiple delta chain alternative. These improvements can be
attributed in part by the use of multiple delta chains, which limit the size
reached by the aggregated deltas, and thus limit redundancies, but more
importantly by the use of compressed versioning metadata.

Querying Performance

The querying experiments are run for every revision present in the bench-
mark datasets: VM queries are run for each revision i ∈ A, while DM queries
are run on the changesets u0,i and u1,i for each revision i ∈ A. Each query is
run 5 times, and the runtimes averaged.

In Figure 13, the query runtime for DM, VM, and V queries on the BEAR-
A and BEAR-B hourly data set are displayed. The runtime of DM queries for
the multiple delta chain strategy is always better than the single delta chain
baseline. When using multiple delta chains, the runtime of DM queries is
reduced when the target revision i corresponds to a snapshot, as evidenced
by the downward spikes in Figures 13a and 13b. Overall, the short delta
chains and smaller aggregated deltas of the multiple delta chain approach
show clear benefits in querying performance on the two datasets, despite
their large differences in size and number of revisions.

For VM queries, the performance of the multiple delta chain approach is
also overall better for both datasets, with the exception of the last 20 revisions
of BEAR-A where the runtime is slightly worse than the baseline (Figure 13c).
Like for DM queries, runtime is significantly improved when the query di-
rectly targets a snapshot.

Finally, V queries is where the multiple delta chain approach loses to the
baseline. As described in Algorithm 3 (Section 4.4), V queries need to be
evaluated independently on all delta chains before obtaining the final results.
This is clearly detrimental to performance because the cost of the query in-
creases linearly with the number of delta chains.

4.6 Discussion and Future Work

In the section, we described our hybrid multiple snapshot architecture based
on aggregated changesets to provide indexing for RDF graph archives. This
architecture permits to overcome the limitations of previous single delta
chains approach, notably for the time needed to ingest new data. The cre-
ation of new snapshots, indicating the start of a new delta chain, is guided by
snapshot creation strategies. We propose multiple implementations of strategies
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Fig. 13: Querying runtime of DM, VM, and V queries for the BEAR-A and BEAR-B Hourly
dataset.

adapted to different scenarios. The evaluation shows notable gains in the in-
gestion times of RDF archives with up to an order of magnitude faster times.
This is especially notable for large RDF archives with long revision histories.
Querying performance on multiple delta chains is comparable to or better
than with a single delta chain, except for V queries, which are slower overall.
More details can be found in Paper C, where these contributions were first
introduced.

In addition to the multiple delta chain architecture, we introduce a new
versioning metadata representation to replace the one used by OSTRICH [58]
and Paper C. The new metadata representation offers the same expressivity
and features necessary for aggregated delta chains, but with compression
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and redundancy reductions. The results in greatly improved ingestion times,
without notable drawbacks to query performance. This new compressed
representation for versioning metadata is presented in more details in its
original paper, Paper D.

Overall, the contributions of Paper C, along with the improvements pro-
posed in Paper D, allows the archiving of much larger RDF archives than
before with state-of-the-art archiving systems. However, querying is still lim-
ited to single triple pattern queries, which is not sufficient for many real-
world applications, limiting the wider adoptions of archiving technologies
by the RDF community.

5 SPARQL Processing over RDF Archives

In this section, we provide an overview of our solution for full SPARQL
processing over RDF archives. The content of this section is based on Pa-
per D [41] and reuses its content.

5.1 Motivation

Previously, we have described the challenges related to handling large RDF
archives. In Section 2 (detailed in Paper A [39]), we have reviewed state-
of-the-art systems for RDF archiving and concluded that, except for OS-
TRICH [58], no system was able to deal with real-world RDF archives. Even
then, scalability remained a significant challenge. As such, in Section 4
(detailed in Paper C [44]) we have proposed a hybrid multiple delta chain
architecture, built on top of OSTRICH, capable of significantly improving
scalability for larger RDF archives. However, this system is still limited to
single triple pattern queries, which is insufficient for many real-world appli-
cations. Most uses of RDF data require full SPARQL processing, usually via
a SPARQL endpoint. A look at other available solutions for RDF archiving
shows that among the openly available systems, several of them offer some
kind of support for complex querying [5, 24, 36, 54]. However, their lack of
scalability, discussed in Section 2 (Paper A), makes them difficult to use with
real-world datasets and use cases.

In this section, we discuss our solution to the problem of SPARQL process-
ing over RDF archives. First, in Section 5.2, we describe the current solutions
for expressing versioned SPARQL queries. Subsequently, in Section 5.3, we
describe our solution for SPARQL processing RDF archives. This includes our
representation of versioned queries, as well as our concrete implementation.
In Section 5.4, we evaluate our implementation on the BEAR-C benchmark
for RDF archives. And finally, in Section 5.5, we will conclude with a dis-
cussion on our current implementation and future work. Additional details
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about these contributions can be found in the original paper, Paper D.

5.2 Related Work

Multiple efforts have been made to express complex queries with versioning
or temporal information. Many of such approaches rely on ad hoc extensions
of the SPARQL language to support temporal annotations [8, 20, 23, 48]. T-
SPARQL [23] proposes an extension to SPARQL, inspired by TSQL2 [56],
which allows triples to be annotated with temporal constraints. Such con-
straints can be a commit timestamp or time intervals. SPARQL-LTL [20] on
the other hand, works by annotating triples with version numbers, where
each version is stored as a named graph. Other SPARQL extensions [8, 48]
are more domain-specific and focus on the inclusion of temporal annotations
with geo-spatial data.

The BEAR [19] benchmark for RDF archiving proposes instead the use
of the AnQL [64] language to express versioned complex queries. AnQL
is a superset of SPARQL operating on quads instead of triples. The quad
component can be bound to any term u ∈ I ∪ L. In practice, BEAR suggests
the use of this component to represent time objects, such as timestamps or
version identifiers.

All in all, no formal standard exists for representing complex queries for
RDF archives, leaving existing systems with the responsibility of implement-
ing their own solution. This lack of standard hinders the wider adoption
of archiving technologies in the RDF community and limits the application
of these technologies to the real world. In this section, we adopt the use of
named graphs to represent version numbers, which we detail in Section 5.3.
We leave the development of a new standard for SPARQL archive queries to
future work.

5.3 SPARQL 1.1 for RDF Archives

In this section, we describe our implementation of versioned queries within
SPARQL 1.1. Our solution is built on top of our architecture described in Sec-
tion 4. First, we discuss how we tackle the formulation of versioned SPARQL
queries. Then, the details of the implementation, architecture, and query
engine will be discussed.

Versioned SPARQL Queries

As shown in Section 5.2, only a few efforts exists for the representation com-
plex versioned queries in SPARQL. Most solutions are based on ad-hoc ex-
tensions for the SPARQL language, and none has been widely adopted by
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the community. As such, we propose to stick to standard SPARQL, by mak-
ing use of the GRAPH keyword, in order to express versioning information
as named graphs. This is similar to other solutions, such as those proposed
by [24].

Version Materialization (VM) Delta Materialization (DM) Version Query (V)
Which countries were part Which countries joined Which countries were part
of the EU in 2003? the EU in 2004? of the EU in each year?
SELECT * WHERE { SELECT * WHERE { SELECT * WHERE {

GRAPH <version:2003> { GRAPH <version:2004> { GRAPH ?version {
?country rdf:type ex:country . ?country rdf:type ex:country . ?country rdf:type ex:country .
?country ex:member ex:EU . ?country ex:member ex:EU . ?country ex:member ex:EU .

} } FILTER (NOT EXISTS { }
} GRAPH <version:2003> { }

?country rdf:type ex:country .
?country ex:member ex:EU .

}
})

}
<ex:Austria> <ex:Cyprus> <ex:Austria> <version:1995>
<ex:Belgium> <ex:Czech Republic> <ex:Austria> <version:1996>
<ex:Denmark> <ex:Estonia> . . .
<ex:Finland> <ex:Hungary> <ex:Belgium> <version:1958>
. . . . . . . . .

Table 8: Example of SPARQL representation and results for VM, DM, and V queries. Repro-
duced from [41].

Table 8, provides examples of versioned full SPARQL queries for the VM,
DM, and V types, using our formulation. In this example, queries are defined
for an RDF archive A containing information on countries. Each graph revi-
sion Gi ∈ A represents the state of countries at a specific year, e.g., G2004 rep-
resents year 2004. As discussed earlier, we make use of the GRAPH keyword
to describe versioning information. For VM queries, the graph IRI specifies
the exact revision that is to be queried. DM queries are more complex and
combine the GRAPH keyword with a FILTER clause to only select changes
between revisions. Finally, V queries instead use a variable together with the
GRAPH keyword.

Implementation

The implementation of the SPARQL formulation discussed previously is
done on top of the multiple delta chain RDF archiving system presented
in Section 4 (Paper C with improvements from Paper D). Because this sys-
tem only supports single triple pattern queries, we chose the Comunica [60]
query engine to support SPARQL queries. Comunica is a flexible and modu-
lar query engine with full support for SPARQL 1.1. Its modularity naturally
allows for the inclusion of versioning into the engine via modules, and initial
work has been conducted by Taelman et al. [59] for an initial implementation,
although without V query support.
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This implementation has been extended to support the new multiple delta
chain architecture. This includes several optimizations to the communication
between the storage system and the query engine to reduce the number of
buffered triples during querying, which is beneficial for both memory usage
and response time. Moreover, full support for V queries has been imple-
mented, according to the syntax proposed in Section 5.3.

This implementation allows us to fully support the execution of arbitrary
SPARQL queries on RDF archives, with full support for all three main ver-
sioned query types. Together with the improvements in performance and
scalability provided by the multiple delta chain storage architecture, this en-
ables complex querying on much larger archives, something that was not
possible before.

5.4 Experimental Evaluation

We evaluated our versioned SPARQL implementation on the BEAR-C bench-
mark. BEAR-C is part of the BEAR benchmark suite [19] for RDF archives
and focuses on SPARQL query processing. BEAR-C is made up of 32 snap-
shots from the European Open Data portal, obtained from the Open Data
Portal Watch project [34]. In terms of size, BEAR-C is moderately large, with
snapshots ranging from 485K to 563K triples. The query workload consists of
11 full SPARQL queries of various complexity and selectivity. As discussed
previously, none of the other openly available RDF archiving systems can
process SPARQL queries over larger RDF archives [19, 39], which limits the
possible competitors for experimental evaluation. We selected both OSTRICH
and our multiple delta chain architecture for our experiments. OSTRICH uses
Comunica for SPARQL processing, with the same implementation described
in Section 5.3. We opt for the change-ratio strategy with γ = 4.0 and γ = 6.0
for our multiple delta chain system.

Figure 14 shows the aggregated average runtimes for the BEAR-C bench-
mark. Due to its small number of revisions, the BEAR-C dataset is not well
suited to a multiple delta chain approach, as it can already be handled effi-
ciently by a single one. However, for DM queries (Figure 14b), the change
ratio γ = 6.0 outperforms the baseline, while the change ratio γ = 4.0, which
produces a higher number of delta chains, is slightly slower. For VM queries
(Figure 14a), all systems perform closely to each other, except for the last
few revisions (25 to 32) where the baseline appears to be slightly outper-
formed. Finally, V queries is where the largest performance difference exists.
In that case, both multiple delta chains strategies significantly outperform
the baseline. Overall, the performance differential between the multiple delta
chain strategies and the baseline is small on this benchmark, mainly due to
its relatively small size and reduced number of revisions. Nonetheless, us-
ing multiple delta chains is still beneficial for querying, which together with
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Fig. 14: BEAR-C average query execution time in seconds for VM, DM, and V queries.

its performance advantage during ingestion, makes this solution the overall
best.

5.5 Conclusion and Future Work

In this section, we have described our implementation of full SPARQL query-
ing over RDF archives. This implementation is built on top of our multiple
delta chain architecture detailed in Section 4 (Paper C), with performance
and compression improvements proposed in Paper D. Our experiments illus-
trate the capabilities of our implementation by fully completing the BEAR-C
benchmark, a first to the best of our knowledge at the time of writing. Full
SPARQL querying over RDF archives is a challenging task, and our imple-
mentation constitutes a first step towards more advanced applications. More
details about our SPARQL processing implementation, as well as more exper-
iments, can be found in Paper D. However, the lack of a formal standard for
archiving queries currently limits advancements in that direction. Most solu-
tions, including our own, rely on ad hoc or application-specific extensions to
the SPARQL language, which limits their applicability to the real world. As
future work, we envision to propose a standard for the syntax and semantics
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of versioned queries.

6 Querying RDF Archives with GLENDA

This section describes a practical demonstration of SPARQL processing over
RDF archives, built on top of the work presented in Section 5. This section is
based on Paper E [42], and partially reuses its content.

6.1 Motivation

One of the key blocker to the adoption of archiving technologies by the wider
semantic web community is the lack of proper solutions for running com-
plex queries. In Section 5 (Paper D), we have described our solutions for
processing full SPARQL queries over RDF archives, combining the Comu-
nica [60] query engine with our multiple delta chain storage architecture [44].
Our experiments demonstrated our ability to effectively run complex queries
for the first time on the BEAR-C benchmark for SPARQL processing over
RDF archives. In this section, based on Paper E, we describe the use of our
SPARQL implementation to develop a demonstration system that provides a
practical and visual showcase of query processing over RDF archives. This
system, named GLENDA, includes an SPARQL endpoint usable by any other
application, as well as a front-end web application where the user can express
versioned queries with a user-friendly interface (UI).

6.2 Functionalities and Implementation

Web GUI

Query Engine 
(Comunica)

Storage Layer 
(OSTRICH)

Triple 
patterns

Triples 
streams

Triple 
bindings

SPARQL 
query

SPARQL Endpoint 
Connection

Storage 
API

Fig. 15: GLENDA’s components, reproduced from [42]

GLENDA is at its core a web application built on top of the Comunica
query engine and our multiple delta chain storage architecture. A simpli-
fied overview of the different components necessary for the functioning of
GLENDA is shown in Figure 15. As mentioned above, the storage layer is
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composed of our architecture presented in Section 4 (Paper C) including im-
provements to the versioning of metadata compression (Paper D). The query
engine is Comunica [60], with custom modules to enable the processing of
versioned SPARQL queries, while the web application is a traditional web-
site, implemented with HTML and JavaScript. Details about the processing
of SPARQL queries over our multiple delta chain architecture can be found
in Section 5 (Paper D).

The web application allows the user to run versioned queries in SPARQL
of any of the Delta Materialization (DM), Version Materialization (VM), or
Version Query (V) types (see Section 2.2 for a description of the query types).
UI elements facilitate the choice of query type and selection of the target
version(s) when relevant. Additionally, the interface offers the possibility to
display various statistics about the underlying RDF archive.

6.3 Conclusion

In this section, based on Paper E, we describe a concrete example of an ap-
plication for full SPARQL processing over RDF archives. Users can benefit
from the UI to express versioned SPARQL queries in a natural way and dis-
play various relevant statistics about the evolution of the underlying archive.
This tool constitutes a first step towards more concrete usage of archiving,
with a focus on the expression and execution of versioned queries. The tool
also exposes an SPARQL endpoint, which can be used directly by any other
application. As discussed in the conclusion of Section 5, the lack of a for-
mal standard to express SPARQL queries for RDF archives remains a crucial
limitation.

7 The Limits of RDF Archiving System Evaluation

This section discusses the problems related to the evaluation of RDF archiv-
ing systems with standard benchmarks. We describe there the current so-
lutions for benchmarking and their limitations with respect to the modern
challenges faced by RDF archiving systems. This section is based on the
work of Paper F [43] and partially reuses its content.

7.1 Motivation

Benchmarks are crucial for the scientific evaluation of systems and algo-
rithms. They propose standardized workloads and metrics that can be re-
peated and reproduced across systems. Similarly, benchmarks are used to
evaluate the compliance of systems and algorithms with community-defined
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feature sets. As such, the availability of a diverse set of up-to-date bench-
marks is a key element in the advancement of a field. Although there are
several standard benchmarks for regular RDF systems [11, 16, 25], the same
cannot be said for RDF archiving systems [37]. In this section, we examine
the current state of RDF archiving benchmarks and analyze their strengths
and limitations. We show how the current offer in benchmarks does not ad-
equately cover novel challenges faced by RDF archiving systems, and we use
this insight to sketch the requirements for future benchmarks.

7.2 Existing Benchmarks for RDF Archives

Several benchmarks for RDF archiving can be identified in the literature.
EvoGen [31], BEAR [19], and SPBv [37].

EvoGen [31] is a synthetic benchmark based on the LUBM [25] data gen-
erator, which has been extended to support archiving. By being synthetic,
this benchmark offers several configuration options for the number of ver-
sions and magnitude of changes between versions. Its querying workload is
made up of the 14 SPARQL queries from LUBM.

BEAR [19] is a benchmark extracted from real-world RDF datasets, which
we have used to evaluate our work in Papers C and D . It proposes three dif-
ferent archives, BEAR-A, BEAR-B, and BEAR-C, of different size and query
workloads. BEAR-A and BEAR-B focus on data scalability with only sin-
gle triple pattern queries, while BEAR-C proposes 11 full SPARQL queries.
BEAR does not offer configuration options, all workloads being predefined
and static.

SPBv [37] is a synthetic benchmark based on the Semantic Publishing
Benchmark (SPB) [30]. Like EvoGen, SPBv offers various parameters that the
user can configure to change the size of the generated data, the number of
queries, and how the data need to be generated (snapshots, deltas, or both).
The querying workload consists of full SPARQL queries.

7.3 Evaluating RDF Archives

Several aspects must be considered when designing a benchmark. We pro-
pose three overarching qualities to cover them:

• Reproducibility: how easy benchmarks results can be shared and repro-
duced.

• Realism: how well the benchmark emulates the real world through its
choice of data and querying workload.

• Configurability: how many configuration options the benchmark pro-
vides to scale and tune its workload.
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Existing benchmarks are either using synthetic data through a genera-
tor or derived from real-world datasets. Although synthetic benchmarks will
usually be highly configurable, they are often unrealistic, as discussed by Duan
et al. [16]. They propose, as a solution, the use of a coherence metric to enforce
the realism of the generated data. However, no benchmarks for RDF archiv-
ing currently use this solution, which means that real-world-based bench-
marks would be considered more realistic.

While testing early RDF archiving systems with single triple pattern
queries was sufficient, current progresses in storage architectures and scala-
bility suggest that a shift towards more comprehensive SPARQL query work-
loads is necessary. Many applications are using complex SPARQL queries,
which benchmarks would need to emulate to comply with real-world us-
ages. Indeed, SPARQL processing over RDF archives constitutes a significant
challenge that RDF archiving systems need to solve. As such, a realistic bench-
mark should provide carefully crafted SPARQL query workloads. However,
the lack of formal standards to formulate archiving queries in SPARQL is a
major hurdle that needs to be addressed in order to progress in that direction.

Dataset Reproducibility Realism (data) Realism (queries) Configurability

EvoGen [31] Synthetic -/+ - + +
BEAR [19] Real-world + + - -
SPBv [37] Synthetic -/+ - + +

Table 9: Comparison table of existing RDF Archiving benchmarks, reproduced from [43].

We summarize our categorization of the existing benchmarks for RDF
archives in Table 9. The main takeaway is that none of the benchmarks ful-
fills all of the three requirements. Synthetic benchmarks, namely EvoGen
and SPBv cannot ensure the realism of their generated data, but provide
full SPARQL query workloads. Oppositely, BEAR proposes real-world based
datasets, but only the BEAR-C variant offers SPARQL queries, which limits
BEAR ability to thoroughly evaluate RDF archiving systems with SPARQL
support.

7.4 Conclusion

In this section, we have discussed benchmarks for RDF archives. We showed
that the current offer for such benchmarks is limited, with only three avail-
able. Among these, none is fully satisfactory as a complete solution for eval-
uating the modern challenges in RDF archiving. We have proposed three
qualities that the benchmarks should have and showed that none of them
currently satisfies all of them. Benchmarks should be relevant to the novel
challenges faced by RDF applications, which include the ability to execute
complex queries over RDF archives. The lack of a formal standard for such
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queries limits the possibility of standardization and hinders the adoption of
archiving technologies by applications.

8 Conclusions and Future Work

The proliferation and widespread adoption of semantic web technologies has
increased in recent years. This surge is notably characterized by exponential
growth in RDF sources and datasets, thus accentuating the need for the track-
ing and management of metadata. Notably, a particular focus is observed on
managing the provenance and changes of triples within knowledge graphs.
These emergent tasks introduce substantial challenges for both data main-
tainers and end users, necessitating consideration of issues such as storage
usage, the means to access and use these metadata, and incorporation of
these metadata within diverse applications. The increasing volume of meta-
data, particularly when tracking changes to a knowledge graph, means that
existing storage solutions and algorithms are insufficient. In particular, none
can efficiently handle this kind of data on the scale required by real-world
RDF datasets. This realization has sparked the development of dedicated
methods, architectures, and algorithms by the scientific community.

In this thesis, we investigate the challenges in efficiently managing and
querying the evolution history of RDF knowledge graphs. Existing solutions
do not completely address the significant challenges involved in dealing with
the scale of current RDF archives. Similarly, making RDF archives usable
through expressive querying has not been addressed in the state of the art.
In summary, this thesis includes the following papers and contributions:

• In Paper A [39], we investigate the state-of-the-art in archiving RDF
datasets. We discuss the strengths and weaknesses of all different stor-
age paradigms employed by existing systems. We conducted an eval-
uation of available RDF archiving systems on real-world RDF archives,
and showed how current solutions have limitations, notably in scalabil-
ity. Furthermore, we propose a framework to analyze the evolution of
RDF datasets over time and use it on the Wikidata, DBpedia and YAGO
knowledge graph. We show that those KG often exhibit a "minor" and
"major" update pattern, which archiving systems would need to take
into account for the best efficiency.

• In Paper B [40], we investigate solutions for indexing RDF data with ar-
bitrary levels of metadata. We propose an in-memory indexing scheme
and dictionary, inspired by the trie data structure, capable of indexing
triples with any amount of metadata. We evaluate this solution with
versioning and provenance-annotated RDF triples and show promising
performance against other in-memory solutions.
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• In Paper C [44], we focus on the challenge of on-disk indexing and
querying of large RDF archives. Building on a top of state-of-the-art
RDF archiving system, OSTRICH [58], we propose a novel hybrid mul-
tiple delta chain storage architecture. We provide several strategies to
automatically make the decision to start a new delta chain. The differ-
ent strategies allow for optimizing disk usage, ingestion time, and af-
fect query performance. Our evaluation shows significantly improved
ingestion times for large RDF archives with competitive querying per-
formance against our baseline, OSTRICH.

• In Paper D [41], we build further on top of the contributions from Pa-
per C. We introduce a new compressed metadata representation for our
triple indexes, which significantly improves ingestion speed and stor-
age usage compared to the old metadata representation. Furthermore,
we detail our implementation of full SPARQL processing with version-
ing support over RDF archives, built on top of our storage solution
thanks to the Comunica query engine. We evaluated our SPARQL pro-
cessing capabilities on the BEAR-C benchmark. This is a first, to the
best of our knowledge and at the time of writing.

• In Paper E [42], we propose a demonstration of full SPARQL processing
over RDF archives. The demonstration consists of a web application
where users can express archive queries thanks to a specialized GUI.
The application is built on top of the system proposed in Paper C.

• In Paper F [43], we discuss current limitations in benchmarks designed
to evaluate RDF archiving systems. We show that the number of differ-
ent benchmarks is limited, with only three options. Among the avail-
able ones, we show that they do not adequately cover the modern chal-
lenges faced by RDF archiving systems, notably with SPARQL query
processing. We use these insights to outline the requirements of a mod-
ern benchmark for RDF archiving.

8.1 Future Work

The work presented in this thesis leads to several possible future work in the
domain of RDF archiving and metadata management.

First, improvements to scalability are still possible, notably to enable the
archiving of larger RDF archives, for example, the entirety of Wikidata or
DBpedia. Modern indexing schemes, such as v-HDT/v-RDFCSA [14] show
great efficiency at archiving static RDF archives. In the future, combining
such techniques with the one developed in this thesis could enable greater
storage efficiency and querying performance while still allowing live updates
with the use of delta chains. Furthermore, novel approaches for compact
representation of semantic data [47, 53] could be promising alternatives to
the B+Trees indexes currently used. In Paper C, we have introduced sev-
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eral strategies to dynamically decide when the materialization of new delta
chains while ingesting data is necessary. However, these strategies remain
straightforward. We envision the development of more advanced strategies,
possibly using machine learning techniques, to better handle the dynamicity
of RDF archives.

As discussed in Paper E and D, the options to express archive queries
in SPARQL are limited. Most solutions consist of ad hoc extensions to the
SPARQL languages, with various levels of expressivity and different seman-
tics. Our current proposal, presented in Paper D, makes use of the named
graph feature of SPARQL to refer to versions. However, this prevents the con-
current use of named graphs and versioning. In the future, a standardization
of archive queries in SPARQL should be undertaken to permit a wider use of
archiving technologies by the semantic web community. This effort could be
inspired by the RSP-QL [15] standardization effort for the processing of RDF
streams. During this process, the possible conceptual overlap between RDF
streams’ temporal graph and RDF archives should be carefully examined,
together with an analysis of real-world RDF archive usages.

Finally, the integration of multiple types of metadata together remains to
be fully explored. We have presented in Paper B a first step towards a more
general support for an arbitrary amount of metadata with RDF. However,
this solution remains limited to in-memory indexing, making large datasets
prohibitively expensive to manage. Furthermore, querying capabilities are
currently limited to single tuple queries. The recent development of RDF-
star [26] has allowed for graceful representation of metadata in a unified
format. At the time of writing this thesis, RDF-star is considered for inclu-
sion in the upcoming RDF 1.2 standard. The development of an RDF-star
compatible system with an archiving-optimized indexing scheme could en-
able the emergence of new RDF-star archives, i.e. the archiving of RDF data
with an arbitrary number of triple metadata.
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Abstract

The dynamicity of RDF data has motivated the development of solutions for archiv-
ing, i.e., the task of storing and querying previous versions of an RDF dataset.
Querying the history of a dataset finds applications in data maintenance and ana-
lytics. Notwithstanding the value of RDF archiving, the state of the art in this field
is under-developed: (i) most existing systems are neither scalable nor easy to use, (ii)
there is no standard way to query RDF archives, and (iii) solutions do not exploit
the evolution patterns of real RDF data. On these grounds, this paper surveys the
existing works in RDF archiving in order to characterize the gap between the state of
the art and a fully-fledged solution. It also provides RDFev, a framework to study the
dynamicity of RDF data. We use RDFev to study the evolution of YAGO, DBpedia,
and Wikidata, three dynamic and prominent datasets on the Semantic Web. These
insights set the ground for the sketch of a fully-fledged archiving solution for RDF
data.
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1. Introduction

1 Introduction

The amount of RDF data has steadily grown since the conception of the Se-
mantic Web in 2001 [17], as more and more organizations opt for RDF [69]
as the format to publish and manage semantic data [42, 44]. For exam-
ple, by July 2009 the Linked Open Data (LOD) cloud counted a few more
than 90 RDF datasets adding up to almost 6.7B triples [18]. By 2020, these
numbers have catapulted to 1200+ datasets1 and at least 28B triples2, al-
though estimates based on LODStats [25] suggest more than 10K datasets
and 150B+ triples if we consider the datasets with errors omitted by the LOD
Cloud [62]. This boom does not only owe credit to the increasing num-
ber of data providers and availability of Open Government Data [1, 4, 10],
but also to the constant evolution of the datasets in the LOD cloud. This
phenomenon is especially true for community-driven initiatives such as DB-
pedia [13], YAGO [77], or Wikidata [26], and also applies to automatically
ever-growing projects such as NELL [21].

Storing and querying the entire edition history of an RDF dataset, a task
we call RDF archiving, has plenty of applications for data producers. For in-
stance, RDF archives can serve as a backend for fine-grained version control
in collaborative projects [9, 12, 32, 36, 52, 72]. They also allow data providers
to study the evolution of the data [29] and track errors for debugging pur-
poses. Likewise, they can be of use to RDF streaming applications that rely
on a structured history of the data [20, 43]. But archives are also of great
value for consumer applications such as data analytics, e.g., mining correc-
tion patterns [64, 65] or historical trend analysis [45].

For all the aforementioned reasons, a significant body of literature has
started to tackle the problem of RDF archiving. The current state of the art
ranges from systems to store and query RDF archives [3, 11, 12, 23, 34, 36,
59, 67, 72, 78, 81], to benchmarks to evaluate such engines [29, 51], as well as
temporal extensions for SPARQL [16, 30, 35, 66]. Diverse in architecture and
aim, all these works respond to particular use cases. Examples are solutions
such as R&Wbase [72], R43ples [36], and Quit Store [12] that provide data
maintainers with distributed version control management in the spirit of Git.
Conversely, other works [34, 66] target data consumers who need to answer
time-aware queries such as “obtain the list of house members who sponsored
a bill from 2008”. In this case the metadata associated to the actual triples is
used to answer domain-specific requirements.

Despite this plethora of work, there is currently no available fully-fledged
solution for the management of large and dynamic RDF datasets. This situ-
ation originates from multiple factors such as (i) the performance and func-

1https://lod-cloud.net/
2http://lod-a-lot.lod.labs.vu.nl/
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tionality limitations of RDF engines to handle metadata, (ii) the absence of a
standard for querying RDF archives, and (iii) a disregard of the actual evo-
lution of real RDF data. This paper elaborates on factors (i) and (ii) through
a survey of the state of the art that sheds light on what aspects have not yet
been explored. Factor (iii) is addressed by means of a framework to study
the evolution of RDF data applied to three large and ever-changing RDF
datasets, namely DBpedia, YAGO, and Wikidata. The idea is to identify the
most challenging settings and derive a set of design lessons for fully-fledged
RDF archive management. We therefore summarize our contributions as fol-
lows:

1. RDFev, a metric-based framework to analyze the evolution of RDF
datasets;

2. A study of the evolution of DBpedia, YAGO, and Wikidata using RDFev;
3. A detailed survey of existing work on RDF archive management systems

and SPARQL temporal extensions;
4. An evaluation of Ostrich [78] on the history of DBpedia, YAGO, and Wiki-

data. This was the only system that could be tested on the experimental
datasets;

5. The sketch of a fully-fledged RDF archiving system that can satisfy the
needs not addressed in the literature, as well as a discussion about the
challenges in the design and implementation of such a system.

This paper is organized as follows. In Section 2 we introduce preliminary
concepts. Then, Section 3 presents RDFev, addressing contribution (1). Con-
tribution (2) is elaborated in Section 4. In the light of the evolution of real-
world RDF data, we then survey the strengths and weaknesses of the different
state-of-the-art solutions in Section 5 (contribution 3). Section 6 addresses
contribution (4). The insights from the previous sections are then used to
drive the sketch of an optimal RDF archiving system in Section 7, which
addresses contribution (5). Section 8 concludes the paper.

2 Preliminaries

This section introduces the basic concepts in RDF archive storage and query-
ing, and proposes some formalizations for the design of RDF archives.

2.1 RDF Graphs

We define an RDF graph G as a set of triples t = ⟨s, p, o⟩, where s ∈ I ∪ B,
p ∈ I , and o ∈ I ∪ L ∪ B are the subject, predicate, and object of t, respec-
tively. Here, I ,L, and B are sets of IRIs (entity identifiers), literal values (e.g.,

58



2. Preliminaries

⟨s, p, o⟩,
⟨s, p, o, ρ⟩ triple and 4-tuple: subject,

predicate, object, graph revi-
sion

G an RDF graph
g a graph label
Gi the i-th version or revision of

graph G
A =

{G0, G1, . . . } an RDF graph archive

u = {u+, u−} an update or changeset with
sets of added and deleted
triples.

ui,j = {u+
i,j, u−i,j} the changeset between graph

revisions i and j (j > i)
rv(ρ) revision number of graph re-

vision ρ
ts(ρ) commit time of graph revi-

sion ρ
l(ρ), l(G) labels of graph revision ρ

and graph G

Table A.1: Notation related to RDF Graphs.
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⟨s, p, o, æ, ı⟩ a 5-tuple subject, predicate,
object, graph revision, and
dataset revision

D =
{G0, G1, . . . } an RDF dataset

A =
{D0, D1, . . . } an RDF dataset archive

Dj the j-th version or revision of
dataset D

Gk
i the i-th revision of the k-th

graph in a dataset archive
û = {û+, û−} a graph changeset with sets

of added and deleted graphs
U = {û, u0, . . . } a dataset update or change-

set consisting of a graph
changeset û and changesets
ui associated to graphs Gi

U+, U− the addition/deletion
changes of U: U+ =
{û+, u0+, u1+, . . . } ,
U− = {û−, u0−, u1−, . . . }

Ui,j the dataset changeset be-
tween dataset revisions i and
j (j > i)

rv(ζ) revision number of dataset
revision ζ

ts(ζ) commit time of dataset revi-
sion ζ

Υ(·) the set of terms (IRIs, liter-
als, and blank nodes) present
in a graph G, dataset D,
changeset u, and dataset
changeset U.

Table A.2: Notation related to RDF Datasets.
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strings, integers, dates), and blank nodes (anonymous entities) [69]. The no-
tion of a graph is based on the fact that G can be modeled as a directed labeled
graph where the predicate p of a triple denotes a directed labeled edge from
node s to node o. The RDF W3C standard [69] defines a named graph as an
RDF graph that has been associated to a label l(G) = g ∈ I ∪B. The function
l(·) returns the associated label of an RDF graph, if any. Table A.1 provides
the relevant notation related to RDF graphs.

2.2 RDF Graph Archives

Intuitively, an RDF graph archive is a temporally-ordered collection of all the
states an RDF graph has gone through since its creation. More formally, a
graph archive A = {Gs, Gs+i, . . . , Gs+n−1} is an ordered set of RDF graphs,
where each Gi is a revision or version with revision number i ∈ N , and Gs
(s ≥ 0) is the graph archive’s initial revision. A non-initial revision Gi (i >
s) is obtained by applying an update or changeset ui = ⟨u+

i , u−i ⟩ to revision
Gi−1. The sets u+

i , u−i consist of triples that should be added and deleted
respectively to and from revision Gi−1 such that u+

i ∩u−i = ∅. In other words,
Gi = ui(Gi−1) = (Gi−1 ∪ u+

i ) \ u−i . Figure A.1 provides a toy RDF graph
archive A that models the evolution of the information about the country
members of the United Nations (UN) and their diplomatic relationships (:dr).
The archive stores triples such as ⟨ :USA, a, :Country ⟩ or ⟨ :USA, :dr, :Cuba
⟩, and consists of two revisions {G0, G1}. G1 is obtained by applying update
u1 to the initial revision G0. We extend the notion of changesets to arbitrary
pairs of revisions i, j with i < j, and denote by ui,j = ⟨u+

i,j, u−i,j⟩ the changeset
such that Gj = ui,j(Gi).

We remark that a graph archive can also be modeled as a collection of 4-
tuples ⟨s, p, o, ρ⟩, where ρ ∈ I is the RDF identifier of revision i = rv(ρ) and
rv ⊂ I ×N is a function that maps revision identifiers to natural numbers.
We also define the function ts ⊂ I ×N that associates a revision identifier ρ
to its commit time, i.e., the timestamp of application of changeset ui. Some
solutions for RDF archiving [12, 34, 36, 59, 72, 78] implement this logical
model in different ways and to different extents. For example, R43ples [36],
R&WBase [72] and Quit Store [12] store changesets and/or their associated
metadata in additional named graphs using PROV-O [24]. In contrast, x-
RDF-3X [59] stores the temporal metadata in special indexes that optimize
for concurrent updates at the expense of temporal consistency, i.e., revision
numbers may not always be in concordance with the timestamps.

2.3 RDF Dataset Archives

In contrast to an RDF graph archive, an RDF dataset is a set D =
{G0, G1, . . . , Gm} of named graphs. Differently from revisions in a graph
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G0 u1 G1 = u1(G0)

⟨:USA, a, :Country⟩
⟨:Cuba, a, :Country⟩
⟨:USA, :dr, :Cuba⟩

u+
1 = {⟨:France, a, :Country⟩}
u−1 = {⟨:USA, :dr, :Cuba⟩}}

⟨:USA, a, :Country⟩
⟨:Cuba, a, :Country⟩
⟨:France, : a, :Country⟩

Fig. A.1: Two revisions G0, G1 and a changeset u1 of an RDF graph archive A

archive, we use the notation Gk for the k-th graph in a dataset, whereas Gk
i

denotes the i-th revision of Gk. The notation related to RDF datasets is de-
tailed in Table A.2. Each graph Gk ∈ D has a label l(Gk) = gk ∈ I ∪ B.
The exception to this rule is G0, known as the default graph [69], which is
unlabeled.

Most of the existing solutions for RDF archiving can handle the history
of a single graph. However, scenarios such as data warehousing [33, 38,
39, 47–50, 56, 57] may require to keep track of the common evolution of an
RDF dataset, for example, by storing the addition and removal timestamps
of the different RDF graphs in the dataset. Analogously to the definition of
graph archives, we define a dataset archive A = {D0, D1, . . . , Dl−1} as a tem-
porally ordered collection of RDF datasets. The j-th revision of A (j > 1) can
be obtained by applying a dataset update Uj = {ûj, u0

j , u1
j , . . . um

j } to revision

Dj−1 = {G0
j−1, G1

j−1, . . . Gm
j−1}. Uj consists of an update per graph plus a spe-

cial changeset ûj = ⟨û+
j , û−j ⟩ that we call the graph changeset (û+

j ∩ û−j = ∅).

The sets û+
j , û−j store the labels of the graphs that should be added and

deleted in revision j respectively. If a graph Gk is in û−j (i.e., it is sched-

uled for removal), then Gk as well as its corresponding changeset uk
j ∈ Uj

must be empty. It follows that we can obtain revision Dj by (i) applying the
individual changesets uk

j (G
k
j−1) for each 0 ≤ k ≤ m, (ii) removing the graphs

in û−j , and (iii) adding the graphs in û+
j .

Figure A.2 illustrates an example of a dataset archive with two revisions
D0 and D1. D0 is a dataset with graphs {G0

0 , G1
0} both at local revision 0. The

dataset update U1 generates a new global dataset revision D1. U1 consists
of three changesets: u0

1 that modifies the default graph G0, u1
1 that leaves G1

untouched, and the graph update û2 that adds graph G2 to the dataset and
initializes it at revision s = 1 (denoted by G2

1).
As proposed by some RDF engines [31, 76], we define the master graph

GM ∈ D (with label M) as the RDF graph that stores the metadata about all
the graphs in an RDF dataset D. If we associate the creation of a graph Gk

with label gk to a triple of the form ⟨gk, rdf:type, η:Graph⟩ in GM for some
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D0 U1 D1 = U1(D0)

G0
0 = {⟨:USA, a, :Country⟩,

⟨:Cuba, a, :Country⟩,
⟨:USA, :dr, :Cuba⟩}

G1
0 = {⟨x:JFK, a, x:Airport⟩}

û1 = {û+
1 = {G2}, û−1 = ∅}

u0
1 = {u0+

1 = {⟨:France, a, :Country⟩},
u0−

1 = {⟨: USA, :dr, :Cuba⟩}}

u1
1 = {∅, ∅}

G0
1 = {⟨:USA, a, :Country⟩

⟨:Cuba, a, :Country⟩
⟨:France, a, :Country⟩}

G1
1 = {⟨x:JFK, a, x:Airport⟩}

G2
1 = ∅

Fig. A.2: A dataset archive A with two revisions D0, D1. The first revision contains two graphs,
the default graph G0 and G1. The dataset update Û1 (i) modifies G0, (ii) leaves G1 untouched,
and (iii) and creates a new graph G2, all with local revision 1.

namespace η, then we can model a dataset archive as a set of 5-tuples
⟨s, p, o, ρ, ζ⟩. Here, ρ ∈ I is the RDF identifier of the local revision of the
triple in an RDF graph with label g = l(ρ) (Table A.2). Conversely, ζ ∈ I
identifies a (global) dataset revision j = rv(ζ). Likewise, we overload the
function ts(ζ) (defined originally in Table A.1) so that it returns the times-
tamp associated to the dataset revision identifier ζ. Last, we notice that the
addition of a non-empty graph to a dataset archive generates two revisions:
one for creating the graph, and one for populating it. A similar logic applies
to graph deletion.

2.4 SPARQL

SPARQL 1.1 is the W3C standard language to query RDF data [74]. For the
sake of brevity, we do not provide a rigorous definition of the syntax and
semantics of SPARQL queries; instead we briefly introduce the syntax of a
subset of SELECT queries and refer the reader to the official specification [74].
SPARQL is a graph-based language whose building blocks are triple patterns.
A triple pattern t̂ is a triple ⟨ŝ, p̂, ô⟩ ∈ (I ∪B ∪V)× (I ∪ V)× (I ∪B ∪L∪V),
where V is a set of variables such that (I ∪ B ∪ L) ∩ V = ∅ (variables are
always prefixed with ? or $). A basic graph pattern (abbreviated BGP) Ĝ is the
conjunction of a set of triple patterns { t̂1 . t̂2 . . . . t̂m }, e.g.,

{ ?s a :Person . ?s :nationality :France }

When no named graph is specified, the SPARQL standard assumes that the
BGP is matched against the default graph in the RDF dataset. Otherwise, for
matches against specific graphs, SPARQL supports the syntax GRAPH ḡ {Ĝ},
where ḡ ∈ I ∪ B ∪ V . In this paper we call this, a named BGP denoted by Ĝḡ.
A SPARQL select query Q on an RDF dataset has the basic form “SELECT V
(FROM NAMED ḡ1 FROM NAMED ḡ2 . . . ) WHERE {Ĝ′ Ĝ′′ . . . Ĝḡ1 Ĝḡ2 . . . },
with projection variables V ⊂ V . SPARQL supports named BGPs Ĝḡ with
variables ḡ ∈ V . In some implementations [31, 76] the bindings for those
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variables originate from the master graph GM. The BGPs in the expression
can contain FILTER conditions, be surrounded by OPTIONAL clauses, and
be combined by means of UNION clauses.

2.5 Queries on Archives

Queries on graph/dataset archives may combine results coming from dif-
ferent revisions in the history of the data collection in order to answer
an information need. The literature defines five types of queries on RDF
archives [29, 78]. We illustrate them by means of our example graph archive
from Figure A.1.

• Version Materialization. VM queries are standard queries run against a
single revision, such as what was the list of countries according to the UN at
revision j?

• Delta Materialization. DM queries are standard queries defined on a
changeset uj = ⟨u+

j , u−j ⟩, e.g., which countries were added to the list at revision
j?

• Version. V queries ask for the revisions where a particular query yields
results. An example of a V query is: in which revisions j did USA and Cuba
have diplomatic relationships?

• Cross-version. CV queries result from the combination (e.g., via joins,
unions, aggregations, differences, etc.) of the information from multiple
revisions, e.g., which of the current countries was not in the original list of UN
members?

• Cross-delta. CD queries result from the combination of the information
from multiple sets of changes, e.g., what are the revisions j with the largest
number of UN member adhesions?

Existing solutions differ in the types of queries they support. For example,
Ostrich [78] provides native support for queries of types VM, DM, and V on
single triple patterns, and can handle multiple triple patterns via integration
with external query engines. Dydra [11], in contrast, has native support for
all types of queries on BGPs of any size. Even though our examples use the
revision number rv(ρ) to identify a revision, some solutions may directly use
the revision identifier ρ or the revision’s commit time ts(ρ). This depends on
the system’s data model.

3 Framework for the Evolution of RDF Data

This section proposes RDFev, a framework to understand the evolution of
RDF data. The framework consists of a set of metrics and a software tool to
calculate those metrics throughout the history of the data. The metrics quan-
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tify the changes between two revisions of an RDF graph or dataset and can
be categorized into two families: metrics for low-level changes, and metrics
for high-level changes. Existing benchmarks, such as BEAR [29], focus on
low-level changes, that is, additions and deletions of triples. This, however,
may be of limited use to data maintainers, who may need to know the se-
mantics of those changes, for instance, to understand whether additions are
creating new entities or editing existing ones. On these grounds, we propose
to quantify changes at the level of entities and object values, which we call
high-level.

RDFev takes each version of an RDF dataset as an RDF dump in N-
triples format (our implementation does not support multi-graph datasets
and quads for the time being). The files must be provided in chronologi-
cal order. RDFev then computes the different metrics for each consecutive
pair of revisions. The tool is implemented in C++ and Python and uses the
RocksBD3 key-value store as storage and indexing backend. All metrics are
originally defined for RDF graphs in the state of the art [29], and have been
ported to RDF datasets in this paper. RDFev’s source code is available at our
project website4.

3.1 Low-level Changes

Low-level changes are changes at the triple level. Indicators for low-level
changes focus on additions and deletions of triples and vocabulary elements.
The vocabulary Υ(D) ⊂ I ∪ L ∪ B of an RDF dataset D is the set of all the
terms occurring in triples of the dataset. Tracking changes in the number
of triples rather than in the raw size of the RDF dumps is more informative
for data analytics, as the latter option is sensitive to the serialization format.
Moreover an increase in the vocabulary of a dataset can provide hints about
the nature of the changes and the novelty of the data incorporated in a new
revision. All metrics are defined by Fernández et al. [29] for pairs of revisions
i, j with j > i.

Change ratio. The authors of BEAR [29] define the change ratio between
two revisions i and j of an RDF graph G as

δi,j(G) =
|u+

i,j|+ |u
−
i,j|

|Gi ∪ Gj|
. (A.1)

δi,j compares the size of the changes between two revisions w.r.t. the revi-
sions’ joint size. Large values for δi,j denote important changes in between

3http://rocksdb.org
4https://relweb.cs.aau.dk/rdfev
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the revisions. For a more fine-grained analysis, Fernández et al. [29] also
proposes the insertion and deletion ratios:

δ+i,j =
|u+

i,j|
|Gi|

(A.2) δ−i,j =
|u−i,j|
|Gi|

. (A.3)

We now adapt these metrics for RDF datasets. For this purpose, we de-
fine the size of a dataset D as sz(D) = ∑G∈D |G| and the size of a dataset
changeset U as sz(U) = sz(U+) + sz(U−) with sz(U+) = ∑u∈U |u+| and
sz−(U) = ∑u∈U |u−|. With these definitions, the previous formulas can be
ported to RDF datasets as follows:

δi,j(D) =
sz(U)

∑G∈Di∩Dj |Gi ∪ Gj|+ ∑G∈Di△Dj |G|
(A.4)

δ+i,j(D) =
sz(U+)

sz(Di)
(A.5) δ−i,j(D) =

sz(U−)
sz(Di)

(A.6)

Here, Di △ Dj denotes the symmetric difference between the sets of
RDF graphs in revisions i and j.

Vocabulary dynamicity. The vocabulary dynamicity for two revisions i and
j of an RDF graph is defined as [29]:

vdyni,j(G) =
|Υ(ui,j)|

|Υ(Gi) ∪ Υ(Gj)|
(A.7)

Υ(ui,j) is the set of vocabulary terms – IRIs, literals, or blank nodes – in the
changeset ui,j (Table A.1). The literature also defines the vocabulary dynam-
icity for insertions (vdyn+i,j) and deletions (vdyn-i,j):

vdyn+i,j(G) =
|Υ(u+

i,j)|
|Υ(Gi) ∪ Υ(Gj)|

(A.8)

vdyn-i,j(G) =
|Υ(u−i,j)|

|Υ(Gi) ∪ Υ(Gj)|
. (A.9)

The formulas are analogous for RDF datasets if we replace G by D and ui,j
by Ui,j.

Growth ratio. The grow ratio is the ratio between the number of triples in
two revisions i, j. It is calculated as follows for graphs and datasets:

Γi,j(G) =
|Gj|
|Gi|

(A.10) Γi,j(D) =
sz(Dj)

sz(Di)
. (A.11)
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3.2 High-level Changes

A high-level change confers semantics to a changeset. For example, if an
update consists of the addition of triples about an unseen subject, we can
interpret the triples as the addition of an entity to the dataset. High-level
changes provide deeper insights about the development of an RDF dataset
than low-level changes. In addition, they can be domain-dependent. Some
approaches [63, 71] have proposed vocabularies to describe changesets in
RDF data as high-level changes. Since our approach is oblivious to the do-
main of the data, we propose a set of metrics on domain-agnostic high-level
changes.

Entity changes. RDF datasets describe real-world entities s by means of
triples ⟨s, p, o⟩. Hence, an entity is a subject for the sake of this analysis. We
define the metric entity changes between revisions i, j in an RDF graph as:

eci,j(G) = |σi,j(G)| = |σ+
i,j(G) ∪ σ−i,j(G)| (A.12)

In the formula, σ+
i,j is the set of added entities, i.e., the subjects present in

Υ(Gj) but not in Υ(Gi) (analogously the set of deleted entities σ−i,j is defined
by swapping the roles of i and j). This metric can easily be adapted to an RDF
dataset D if we define ec(G) (with no subscripts) as the number of different
subjects in a graph G. It follows that,

eci,j(D) = ∑
G∈Di∩Dj

eci,j(G) + ∑
G∈Di△Dj

ec(G). (A.13)

We also propose the triple-to-entity-change score, that is, the average num-
ber of triples that constitute a single entity change. It can be calculated as
follows for RDF graphs:

ecti,j(G) =
|⟨s, p, o⟩ ∈ u+

i,j ∪ u−i,j : s ∈ σi,j(G)|
eci,j(G)

(A.14)

We port this metric to RDF datasets by first defining U+ =
⋃

u∈U+ u and
U− =

⋃
u∈U− u and plugging them into the formula for ecti,j:

ecti,j(D) =
|⟨s, p, o⟩ ∈ U+

i,j ∪U−i,j : s ∈ σi,j(D)|
eci,j(D)

(A.15)

Object Updates and Orphan Object Additions/Deletions. An object up-
date in a changeset ui,j is defined by the deletion of a triple ⟨s, p, o⟩ and the
addition of a triple ⟨s, p, o′⟩ with o ̸= o′. Once a triple in a changeset has been
assigned to a high-level change, the triple is consumed and cannot be assigned
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Low-level changes

Change ratio
Insertion and deletion ratios
Vocabulary dynamicity
Growth ratio

High-level changes

Entity changes
Triple-to-entity-change score
Object updates
Orphan object additions and deletions

Table A.3: RDFev’s metrics

to any other high-level change. We define orphan object additions and dele-
tions respectively as those triples ⟨s+, p+, o+⟩ ∈ u+

i,j and ⟨s−, p−, o−⟩ ∈ u−i,j
that have not been consumed by any of the previous high-level changes. The
dataset counterparts of these metrics for two revisions i, j can be calculated
by summing the values for each of the graphs in Di ∩ Dj.
Table A.3 summarizes all the metrics defined by RDFev.

4 Evolution Analysis of RDF Datasets

Having introduced RDFev, we use it to conduct an analysis of the revision
history of three large and publicly available RDF knowledge bases, namely
YAGO, DBpedia, and Wikidata. The analysis resorts to the metrics defined
in Sections 3.1 and 3.2 for every pair of consecutive revisions.

4.1 Data

We chose the YAGO [77], DBpedia [13], and Wikidata [26] knowledge bases
for our analysis, because of their large size, dynamicity, and central role in
the Linked Open Data initiative. We build an RDF graph archive by consid-
ering each release of the knowledge base as a revision. None of the datasets
is provided as a monolithic file, instead they are divided into themes. These
are subsets of triples of the same nature, e.g., triples with literal objects ex-
tracted with certain extraction methods. We thus focus on the most popular
themes. For DBpedia we use the mapping-based objects and mapping-based lit-
erals themes, which are available from version 3.5 (2015) onwards. Addition-
ally, we include the instance-types theme as well as the ontology. For YAGO,
we use the knowledge base’s core, namely, the themes facts, meta facts, literal
facts, date facts, and labels available from version 2 (v.1.0 was not published in
RDF). As for Wikidata, we use the simple-statements of the RDF Exports [2]
in the period from 2014-05 to 2016-08. These dumps provide a clean subset
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1 2 3 4 5 6 7 8 9 10
Revisions

0
20
40
60
80

100
120
140
160

Ra
tio

 (%
)

Change ratio
Insertion ratio
Deletion ratio

(a) Change-ratio for DBpedia
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(b) DBpedia’s vocabulary dynam-
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(c) Growth ratio for DBpedia
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(d) Change-ratio for YAGO
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(e) YAGO’s vocabulary dynamicity
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(f) Growth ratio for YAGO
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(g) Change-ratio for Wikidata
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(h) Wikidata’s vocabulary dynam-
icity
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Fig. A.3: Change ratio, vocabulary dynamicity, and growth ratio

of the dataset useful for applications that rely mainly on Wikidata’s ency-
clopedic knowledge. All datasets are available for download in the RDFev’s
website https://relweb.cs.aau.dk/rdfev. Table A.4 maps revision num-
bers to releases for the sake of conciseness in the evolution analysis.

4.2 Low-level Evolution Analysis

Change ratio. Figures A.3a, A.3d and A.3g depict the evolution of the
change, insertion, and deletion ratios for our experimental datasets. Up to the
release 3.9 (rev. 5), DBpedia exhibits a steady growth with significantly more
insertions than deletions. Minor releases such as 3.5.1 (rev. 1) are indeed
minor in terms of low-level changes. Release 2015-04 (rev. 6) is an inflexion
point not only in terms of naming scheme (see Table A.4): the deletion rate
exceeds the insertion rate and subsequent revisions exhibit a tight difference
between the rates. This suggests a major design shift in the construction of
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Revision DBpedia YAGO Wikidata
0 3.5 2s 2014-05-26
1 3.5.1 3.0.0 2014-08-04
2 3.6 3.0.1 2014-11-10
3 3.7 3.0.2 2015-02-23
4 3.8 3.1 2015-06-01
5 3.9 2015-08-17
6 2015-04 2015-10-12
7 2015-10 2015-12-28
8 2016-04 2016-03-28
9 2016-10 2016-06-21
10 2019-08 2016-08-01

Table A.4: Datasets revision mapping

DBpedia from revision 6.
As for YAGO, the evolution reflects a different release cycle. There is

a clear distinction between major releases (3.0.0 and 3.1, i.e., rev. 1 and 4)
and minor releases (3.0.1 and 3.0.2, i.e., rev. 2 and 3). The magnitude of
the changes in major releases is significantly higher for YAGO than for any
DBpedia release. Minor versions seem to be mostly focused on corrections,
with a low number of changes.

Contrary to the other datasets, Wikidata shows a slowly decreasing
change ratio that fluctuates between 5% (rev. 10) and 33% (rev. 3) within
the studied period of 2 years.

Vocabulary dynamicity. As shown in Figures A.3b, A.3e, and A.3h, the vo-
cabulary dynamicity is, not surprisingly, correlated with the change ratio.
Nevertheless, the vocabulary dynamicity between releases 3.9 and 2015-14
(rev. 5 and 6) in DBpedia did not decrease. This suggests that DBpedia 2015-
04 contained more entities, but fewer – presumably noisy – triples about those
entities. The major releases of YAGO (rev. 1 and 4) show a notably higher vo-
cabulary dynamicity than the minor releases. As for Wikidata, slight spikes
in dynamicity can be observed at revisions 4 and 9, however this metric re-
mains relatively low in Wikidata compared to the others bases.

Growth ratio. Figures A.3c, A.3f, and A.3i depict the growth ratio of our
experimental datasets. In all cases, this metric is mainly positive with low
values for minor revisions. As pointed out by the change ratio, the 2015-04
release in DBpedia is remarkable as the dataset shrank and was succeeded
by more conservative growth ratios. This may suggest that recent DBpedia
releases are more curated. We observe that YAGO’s growth ratio is signifi-
cantly larger for major versions. This is especially true for the 3.0.0 (rev. 1)

70



4. Evolution Analysis of RDF Datasets

release that doubled the size of the knowledge base.

4.3 High-level Evolution Analysis
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(c) Dbpedia object updates
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(d) Entity changes for YAGO
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(f) YAGO object updates
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(g) Entity changes for Wikidata
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(h) Triple-to-entity changes in
Wikidata
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(i) Wikidata object updates

Fig. A.4: Entity changes and object updates

Entity changes

Figures A.4a, A.4d, and A.4g illustrate the evolution of the entity changes,
additions, and deletions for DBpedia, YAGO and Wikidata. We also show the
number of triples used to define these high-level changes (labeled as affected
triples). We observe a stable behavior for these metrics in DBpedia except
for the minor release 3.5.1 (rev. 1). Entity changes in Wikidata also display a
monotonic behavior, even though the deletion rate tends to decrease from rev.
4. In YAGO, the number of entity changes peaks for the major revisions (rev.
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1 and 4), and is one order of magnitude larger than for minor revisions. The
minor release 3.0.2 (rev. 3) shows the lowest number of additions, whereas
deletions remain stable w.r.t release 3.0.1 (rev. 2). This suggests that these two
minor revisions focused on improving the information extraction process,
which removed a large number of noisy entities.

Figure A.4b shows the triple-to-entity-change score in DBpedia. Before
the 2015-14 release, this metric fluctuates between 2 and 12 triples without
any apparent pattern. Conversely subsequent releases show a decline, which
suggests a change in the extraction strategies for the descriptions of entities.
The same cannot be said about YAGO and Wikidata (Figures A.4e and A.4h),
where values for this metric are significantly lower than for DBpedia, and re-
main almost constant. This suggests that minor releases in YAGO improved
the strategy to extract entities, but did not change much the amount of ex-
tracted triples per entity.

Object Updates and Orphan Object Additions/Deletions
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Fig. A.5: Orphan object additions and deletions

We present the evolution of the number of object updates for our exper-
imental datasets in Figures A.4c, A.4f, and A.4i. For DBpedia, the curve is
consistent with the change ratio (Figure A.3a). In addition to a drop in size,
the 2015-04 release also shows the highest number of object updates, which
corroborates the presence of a drastic redesign of the dataset.

The results for YAGO are depicted in Figure A.4f, where we see larger
numbers of object updates compared to major releases in DBpedia. This is
consistent with the previous results that show that YAGO goes through big-
ger changes between releases. The same trends are observed for the number
of orphan object additions and deletions in Figures A.5a and A.5b. Com-
pared to the other two datasets, Wikidata’s number of object updates, shown
in Figure A.4i, is much lower and constant throughout the stream of revi-
sions.

Finally, we remark that in YAGO and DBpedia, object updates are 4.8 and
1.8 times more frequent than orphan additions and deletions. This entails
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that the bulk of editions in these knowledge bases aims at updating existing
object values. This behavior contrasts with Wikidata, where orphan object
updates are 3.7 times more common than proper object updates. As depicted
in Figure A.5c, Wikidata exhibits many more orphan object updates than the
other knowledge bases. Moreover, orphan object additions are 19 times more
common than orphan object deletions.

4.4 Conclusion

In this section we have conducted a study of the evolution of three large RDF
knowledge bases using our proposed framework RDFev, which resorts to a
domain-agnostic analysis from two perspectives: At the low-level it studies
the dynamics of triples and vocabulary terms across different versions of
an RDF dataset, whereas at the high-level it measures how those low-level
changes translate into updates to the entities described in the experimental
datasets. All in all, we have identified different patterns of evolution. On the
one hand, Wikidata exhibits a stable release cycle in the studied period, as our
metrics did not exhibit big fluctuations from release to release. On the other
hand, YAGO and DBpedia have a release cycle that distinguishes between
minor and major releases. Major releases are characterized by a large number
of updates in the knowledge base and may not necessarily increase its size.
Conversely, minor releases incur in at least one order of magnitude fewer
changes than major releases and seem to focus on improving the quality of
the knowledge base, for instance, by being more conservative in the number
of triple and entity additions. Unlike YAGO, DBpedia has shown decreases
in size across releases. We argue that an effective solution for large-scale RDF
archiving should be able to adapt to different patterns of evolution.

5 Survey of RDF Archiving Solutions

We structure this section in three parts. Section 5.1 surveys the existing en-
gines for RDF archiving and discusses their strengths and weaknesses. Sec-
tion 5.2 presents the languages and SPARQL extensions to express queries on
RDF archives. Finally, Section 5.3 introduces various endeavors on analysis
and benchmarking of RDF archives.

5.1 RDF Archiving Systems

There are plenty of systems to store and query the history of an RDF dataset.
Except for a few approaches [11, 12, 36, 81], most available systems support
archiving of a single RDF graph. Ostrich [78], for instance, manages quads
of the form ⟨s, p, o, rv(ρ)⟩. Other solutions do not support revision numbers
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and use the ρ-component ρ ∈ I to model temporal metadata such as inser-
tion, deletion, and validity timestamps for triples [34]. In this paper we make
a distinction between insertion/deletion timestamps for triples and validity
intervals. While the former are unlikely to change, the latter are subject to
modifications because they constitute domain information, e.g., the validity
of a marriage statement. This is why the general data model introduced in
Section 2 only associates revision numbers and commit timestamps to the
fourth component ρ, whereas other types of metadata are still attached to
the graph label g = l(ρ). We summarize the architectural spectrum of RDF
archiving systems in Table A.5 where we characterize the state-of-the-art ap-
proaches according to the following criteria:

• Storage paradigm. The storage paradigm is probably the most impor-
tant feature as it shapes the system’s architecture. We identify three main
paradigms in the literature [29], namely independent copies (IC), change-
based (CB), and timestamp-based (TB). Some systems [78] may fall within
multiple categories, whereas Quit Store [12] implements a fragment-based
(FB) paradigm.

• Data model. It can be quads or 5-tuples with different semantics for the
fourth and fifth component.

• Full BGPs. This feature determines whether the system supports BGPs
with a single triple pattern or full BGPs with an unbounded number of
triple patterns and filter conditions.

• Query types. This criterion lists the types of queries on RDF archives (see
Section 2.5) natively supported by the solution.

• Branch & tags. It defines whether the system supports branching and
tagging as in classical version control systems.

• Multi-graph. This feature determines if the system supports archiving of
the history of multi-graph RDF datasets.

• Concurrent updates. This criterion determines whether the system sup-
ports concurrent updates. This is defined regardless of whether conflict
management is done manually or automatically.

• Source available. We also specify whether the system’s source code is
available for download and is usable, that is, whether it can be compiled
and run in modern platforms.

In the following, we discuss further details of the state-of-the-art systems,
grouped by their storage paradigms.

Independent Copies Systems

In an IC-like approach, each revision Di of a dataset archive A =
{D1, D2, . . . , Dn} is fully stored as an independent RDF dataset. IC ap-
proaches shine at the execution of VM and CV queries as they do not in-

74



5. Survey of RDF Archiving Solutions

Storage paradigm Data model Full BGPs Queries

Dydra [11] TB 5-tuples + all
Ostrich [78] IC/CB/TB quads +a VM, DM, V
QuitStore [12] FB 5-tuples + all
RDF-TX [34] TB quads + all
R43ples [36] CB 5-tuplesb + all
R&WBase [72] CB quads + all
RBDMS [46] CB quads + all
SemVersion [81] IC 5-tuplesb - VM, DM
Stardog [3] CB 5-tuples + all
v-RDFCSA [23] TB quads - VM, DM, V
x-RDF-3X [59] TB quads + VM, V
a Full BGP support is possible via integration with the Comunica query engine
b Graph local revisions

Branch & tags Multi-graph Concurrent Updates Source available

Dydra [11] - + - -
Ostrich [78] - - - +
QuitStore [12] + + + +
RDF-TX [34] - - - -
R43ples [36] + + + +c

R&WBase [72] + - + +
RBDMS [46] + - + -
SemVersion [81] + - + -
Stardog [3] + - -
v-RDFCSA [23] - - - -
x-RDF-3X [59] - - - +d

c It needs modifications to have the console client running and working d Old source code

Table A.5: Existing RDF archiving systems
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cur any materialization cost for such types of queries. Conversely, IC sys-
tems are inefficient in terms of disk usage. For this reason they have mainly
been proposed for small datasets or schema version control [61, 81]. SemVer-
sion [81], for instance, is a system that offers similar functionalities as classical
version control systems (e.g., CVS or SVN), with support for multiple RDF
graphs and branching. Logically, SemVersion supports 5-tuples of the form
⟨s, p, o, l(ρ), rv(ρ)⟩, in other words, revision numbers are local to each RDF
graph. This makes it difficult to track the addition or deletion of named
graphs in the history of the dataset. Lastly, SemVersion provides an HTTP
interface to submit updates either as RDF graphs or as changesets. Despite
this flexibility, new revisions are always stored as independent copies. This
makes its disk-space consumption prohibitive for large datasets like the ones
studied in this paper.

Change-based Systems

Solutions based on the CB paradigm store a subset Â ⊂ A of the revisions
of a dataset archive as independent copies or snapshots. On the contrary, all
the intermediate revisions Dj (p < j < q) between two snapshots Dp and
Dq, are stored as deltas or changesets Uj. The sequence of revisions stored
as changesets between two snapshots is called a delta chain. CB systems are
convenient for DM and CD queries. Besides, they are obviously considerably
more storage-efficient than IC solutions. Their weakness lies in the high ma-
terialization cost for VM and CV queries, particularly for long delta chains.

R&WBase [72] is an archiving system that provides Git-like distributed
version control with support for merging, branching, tagging, and concur-
rent updates with manual conflict resolution on top of a classical SPARQL
endpoint. R&WBase supports all types of archive queries on full BGPs. The
system uses the PROV-Ontology (PROV-O) [24] to model the metadata (e.g.,
timestamps, parent branches) about the updates of a single RDF graph. An
update ui generates two new named graphs Gi+

g , Gi−
g containing the added

and deleted triples at revision i. Revisions can be materialized by process-
ing the delta chain back to the initial snapshot, and they can be referenced
via aliases called virtual named graphs. In the same spirit, tags and branches
are implemented as aliases of a particular revision. R&WBase has inspired
the design of R43ples [36]. Unlike the former, R43ples can version multiple
graphs, although revision numbers are not defined at the dataset level, i.e.,
each graph manages its own history. Moreover, the system extends SPARQL
with the clause REVISION j (j ∈ N ) used in conjunction with the GRAPH
clause to match a BGP against a specific revision of a graph. Last, the ap-
proach presented by Dong-hyuk et al. [46] relies on an RDBMS to store
snapshots and deltas of an RDF graph archive with support for branching
and tagging. Its major drawback is the lack of support for SPARQL queries:
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while it supports all the types of queries introduced in Section 2.5, they must
be formulated in SQL, which can be very tedious for complex queries.

Stardog [3] is a commercial RDF data store with support for dataset snap-
shots, tags, and full SPARQL support. Unlike R43ples, Stardog keeps track
of the global history of a dataset, hence its logical model consists of 5-tuples
of the form ⟨s, p, o, l(ρ), ζ⟩ (i.e., metadata is stored at the dataset level). While
the details of Stardog’s internal architecture are not public, the documenta-
tion5 suggests a CB paradigm with a relational database backend.

Timestamp-based Systems

TB solutions store triples with their temporal metadata, such as domain tem-
poral validity intervals or insertion/deletion timestamps. Like in CB solu-
tions, revisions must be materialized at a high cost for VM and CV queries.
V queries are usually better supported, whereas the efficiency of materializ-
ing deltas depends on the system’s indexing strategies.

x-RDF-3X [59] is a system based on the RDF-3X [58] engine. Logically
x-RDF-3X supports quads of the form ⟨s, p, o, ρ⟩ where ρ ∈ I is associated to
all the revisions where the triple was present as well as to all addition and
deletion timestamps. The system is a fully-fledged query engine optimized
for highly concurrent updates with support for snapshot isolation in transac-
tions. However, x-RDF-3X does not support versioning for multiple graphs,
neither branching nor tagging.

Dydra [11] is a TB archiving system that supports archiving of multi-
graph datasets. Logically, Dydra stores 5-tuples of the form ⟨s, p, o, l(ρ), ζ⟩,
that is, revision metadata lies at the dataset level. In its physical design,
Dydra indexes quads ⟨s, p, o, l(ρ)⟩ and associates them to visibility maps and
creation/deletion timestamps that determine the revisions and points in time
where the quad was present. The system relies on six indexes – gspo, gpos,
gosp, spog, posg, and ospg implemented as B+ trees – to support arbitrary
SPARQL queries (g = l(ρ) is the graph label). Moreover, Dydra extends the
query language with the clause REVISION x, where x can be a variable or a
constant. This clause instructs the query engine to match a BGP against the
contents of the data sources bound to x, namely a single database revision
ζ, or a dataset changeset Uj,k. A revision can be identified by its IRI ζ, its
revision number rv(ζ) or by a timestamp τ′. The latter case matches the
revision ζ with the largest timestamp τ = ts(ζ) such that τ ≤ τ′. Alas,
Dydra’s source is not available for download and use.

RDF-TX [34] supports single RDF graphs and uses a multiversion B-tree
(MVBT) to index triples and their time metadata (insertion and deletion ti-
mestamps). An MVBT is actually a forest where each tree indexes the triples

5https://github.com/stardog-union/stardog-examples/tree/
d7ac8b562ecd0346306a266d9cc28063fde7edf2/examples/cli/versioning

77

https://github.com/stardog-union/stardog-examples/tree/d7ac8b562ecd0346306a266d9cc28063fde7edf2/examples/cli/versioning
https://github.com/stardog-union/stardog-examples/tree/d7ac8b562ecd0346306a266d9cc28063fde7edf2/examples/cli/versioning


Paper A.

that were inserted within a time interval. RDF-TX implements an efficient
compression scheme for MVBTs, and proposes SPARQL-T, a SPARQL exten-
sion that adds a fourth component ĝ to BGPs. This component can match
only time objects τ of type timestamp or time interval. The attributes of such
objects can be queried via built-in functions, e.g., year(τ). While RDF-TX
offers interval semantics at the query level, it stores only timestamps.

v-RDFCSA [23] is a lightweight and storage-efficient TB approach that
relies on suffix-array encoding [19] for efficient storage with basic retrieval
capabilities (much in the spirit of HDT [27]). Each triple is associated to a
bitsequence of length equals the number of revisions in the archive. That
is, v-RDFCSA logically stores quads of the form ⟨s, p, o, rv(ρ)⟩. Its query
functionalities are limited since it supports only VM, DM, and V queries on
single triple patterns.

Hybrid and Fragment-based Systems

Some approaches can combine the strengths of the different storage
paradigms. One example is Ostrich [78], which borrows inspirations from
IC, CB, and TB systems. Logically, Ostrich supports quads of the form
⟨s, p, o, rv(ρ)⟩. Physically, it stores snapshots of an RDF graph using HDT [27]
as serialization format. Delta chains are stored as B+ trees timestamped with
revision numbers in a TB-fashion. These delta chains are redundant, i.e., each
revision in the chain is stored as a changeset containing the changes w.r.t. the
latest snapshot – and not the previous revision as proposed by Dong-hyuk
et al. [46]. Ostrich alleviates the cost of redundancy using compression. All
these design features make Ostrich query and space efficient, however its
functionalities are limited. Its current implementation does not support more
than one (initial) snapshot and a single delta chain, i.e., all revisions except for
revision 0 are stored as changesets of the form u0,i. Multi-graph archiving as
well as branching/tagging are not possible. Moreover, the system’s querying
capabilities are restricted to VM, DM, and V queries on single triple patterns.
Support for full BGPs is possible via integration with the Comunica query
engine6.

Like R43ples [36], Quit Store [12] provides collaborative Git-like version
control for multi-graph RDF datasets, and uses PROV-O for metadata man-
agement. Unlike R43ples, Quit Store provides a global view of the evolution
of a dataset, i.e., each commit to a graph generates a new dataset revision.
The latest revision is always materialized in an in-memory quad store. Quit-
Store is implemented in Python with RDFlib and provides full support for
SPARQL 1.1. The dataset history (RDF graphs, commit tree, etc.) is physi-
cally stored in text files (i.e. N-quads files resp. N-triples files in the latest
implementation) and is accessible via a SPARQL endpoint on a set of virtual

6https://github.com/rdfostrich/comunica-actor-init-sparql-ostrich
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graphs. However, the system only stores snapshots of the modified files in
the spirit of fragment-based storage. Quit Store is tailored for collaborative
construction of RDF datasets, but its high memory requirements make it un-
suitable as an archiving backend. As discussed in Section 7, fully-fledged
RDF archiving can provide a backend for this type of applications

5.2 Languages to Query RDF Archives

Multiple research endeavors have proposed alternatives to succinctly formu-
late queries on RDF archives. The BEAR benchmark [29] uses AnQL to ex-
press the query types described in Section 2.5. AnQL [82] is a SPARQL exten-
sion based on quad patterns ⟨ŝ, p̂, ô, ĝ⟩. AnQL is more general than SPARQL-
T (proposed by RDF-TX [34]) because the ĝ-component can be bound to any
term u ∈ I ∪ L (not only time objects). For instance, a DM query asking for
the countries added at revision 1 to our example RDF dataset from Figure A.1
could be written as follows:

SELECT * WHERE {
{ (?x a :Country ): [1] } MINUS
{ (?x a :Country ): [0] }

}
T-SPARQL [35] is a SPARQL extension inspired by the query language

TSQL2 [75]. T-SPARQL allows for the annotation of groups of triple patterns
with constraints on temporal validity and commit time, i.e., it supports both
time-intervals and timestamps as time objects. T-SPARQL defines several
comparison operators between time objects, namely equality, precedes, overlaps,
meets, and contains. Similar extensions [16, 66] also offer support for geo-
spatial data.

SPARQ-LTL [30] is a SPARQL extension that makes two assumptions,
namely that (i) triples are annotated with revision numbers, and (ii) revi-
sions are accessible as named graphs. When no revision is specified, BGPs
are iteratively matched against every revision. A set of clauses on BGPs can
instruct the SPARQL engine to match a BGP against other revisions at each
iteration. For instance the clause PAST in the expression PAST{ q } MINUS { q
} with q = ⟨?x a :Country⟩ will bind variable ?x to all the countries that were
ever deleted from the RDF dataset, even if they were later added.

5.3 Benchmarks and Tools for RDF Archives

BEAR [29] is the state-of-the-art benchmark for RDF archive solutions. The
benchmark provides three real-world RDF graphs (called BEAR-A, BEAR-B,
and BEAR-C) with their corresponding history, as well as a set of VM, DM,
and V queries on those histories. In addition, BEAR allows system designers
to compare their solutions with baseline systems based on different storage
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strategies (IC, CB, TB, and hybrids TB/CB, IC/CB) and platforms (Jena TDB
and HDT). Despite its multiple functionalities and its dominant position in
the domain, BEAR has some limitations: (i) It assumes single-graph RDF
datasets; (ii) it does not support CV and CD queries, moreover VM, DM, and
V queries are defined on single triple patterns; and (iii) it cannot simulate
datasets of arbitrary size and query workloads.

EvoGen [51] tackles the latter limitation by extending the Lehigh Univer-
sity Benchmark (LUBM) [37] to a setting where both the schema and the data
evolve. Users can not only control the size and frequency of that evolution,
but can also define customized query workloads. EvoGen supports all the
types of queries on archives presented in Section 2.5 on multiple triple pat-
terns.

A recent approach [79] proposes to use FCA (Formal Concept Analysis)
and several data fusion techniques to produce summaries of the evolution
of entities across different revisions of an RDF archive. A summary can, for
instance, describe groups of subjects with common properties that change
over time. Such summaries are of great interest for data maintainers as they
convey edition patterns in RDF data through time.

6 Evaluation of the Related Work
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Fig. A.6: Ostrich’s performance on multiple revisions of DBpedia and YAGO

In this section, we conduct an evaluation of the state-of-the-art RDF
archiving engines. We first provide a global analysis of the systems’ func-
tionalities in Section 6.1. Section 6.2 then provides a performance evaluation
of Ostrich (the only testable solution) on our experimental RDF archives from
Table A.4. This evaluation is complementary to the Ostrich’s evaluation on
BEAR (available in [78]), as it shows the performance of the system in three
real-world large RDF datasets.
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6. Evaluation of the Related Work

6.1 Functionality Analysis

As depicted in Table A.5, existing RDF archiving solutions differ greatly in
design and functionality. The first works [22, 59, 81] offered mostly storage
of old revisions and support for basic VM queries. Consequently, subsequent
efforts focused on extending the query capabilities and allowing for concur-
rent updates as in standard version control systems [12, 36, 46, 72]. Such so-
lutions are attractive for data maintainers in collaborative projects, however
they still lack scalability, e.g., they cannot handle large datasets and change-
sets, besides conflict management is still delegated to users. More recent
works [23, 78] have therefore focused on improving storage and querying
performance, alas, at the expense of features. For example, Ostrich [78] is
limited to a single snapshot and delta chain. In addition to the limitations
in functionality, Table A.5 shows that most of the existing systems are not
available because their source code is not published. While this still leaves us
with Ostrich [78], Quit Store [12], R&WBase [72], R43ples [36] and x-RDF-3X
as testable solutions, only [78] was able to run on our experimental datasets.
To carry out a fair comparison with the other systems, we tried Quit Store
in the persistence mode, which ingests the data graphs into main memory at
startup – allowing us to measure ingestion times. Unfortunately, the system
crashes for all our experimental datasets7. We also tested Quit Store in its
default lazy loading mode, which loads the data into main memory at query
time. This option throws a Python MemoryError for our experimental queries.
In regards to R43ples, we had to modify its source code to handle large files8.
Despite this change, the system could not ingest a single revision of DBpedia
after four days of execution. R&WBase, on the other hand, accepts updates
only through a SPARQL endpoint, which cannot handle the millions of up-
date statements required to ingest the changesets. Finally, x-RDF-3X’s source
code does not compile out of the box in modern platforms, and even after
successful compilation, it is unable to ingest one DBpedia changeset.

6.2 Performance Analysis

We evaluate the performance of Ostrich on our experimental datasets in
terms of storage space, ingestion time – the time to generate a new revi-
sion from an input changeset – and query response time. The changesets
were computed with RDFev from the different versions of DBpedia, YAGO,
and Wikidata (Table A.4). All the experiments were run on a server with a
4-core CPU (Intel Xeon E5-2680 v3@2.50GHz) and 64 GB of RAM.

7The Python interpreter reports a UnboundLocalError.
8The code creates an array that exceeds the maximal array size in Java.
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DBpedia YAGO
Triple Patterns VM V DM VM V DM

? p ? 92.81(0) 118.64(0) 91.78(0) 2.9(3) - (5) 1.82(3)
? <top p> o 112.81(0) 283.59(0) 130.88(0) 35.08(2) 69.65(4) 137.16(4)

? p o 96.74(0) 92.04(0) 91.93(0) 2.38(4) 2.35(4) 2.35(2)
s p ? 94.99(0) 91.67(0) 92.81(0) 2.42(2) 2.36(3) 2.41(1)

Wikidata
Triple Patterns VM V DM

? p ? 281.41(0) 302.26(0) 303.73(0)
? <top p> o 347.06(0) 499.77(0) 285.02(0)

? p o 284.74(0) 281.4(0) 281.2(0)

Table A.6: Ostrich’s Query Performance in seconds

Storage space. Figure A.6a shows the amount of storage space (in GB) used
by Ostrich for the selected revisions of our experimental datasets. We provide
the raw sizes of the RDF dumps of each revision for reference. Storing each
version of YAGO separately requires 36 GB, while Ostrich uses only 4.84 GB.
For DBpedia compression goes from 39 GB to 5.96 GB. As for Wikidata, it
takes 131 GB to stores the raw files, but only 7.88 GB with Ostrich. This
yields a compression rate of 87% for YAGO, 84% for DBpedia and 94% for
Wikidata. This space efficiency is the result of using HDT [27] for snapshot
storage, as well as compression for the delta chains.

Ingestion time. Figure A.6b shows Ostrich’s ingestion times. We also pro-
vide the number of triples of each revision as reference. The results suggest
that this measure depends both on the changeset size, and the length of the
delta chain. However, the latter factor becomes more prominent as the length
of the delta chain increases. For example, we can observe that Ostrich re-
quires ∼22 hours to ingest revision 9 of DBpedia (2.43M added and 2.46M
deleted triples) while it takes only ∼14 hours to ingest revision 5 (12.85M
added and 5.95M deleted triples). This confirms the trends observed in [78]
where ingestion time increases linearly with the number of revisions. This
is explained by the fact that Ostrich stores the i-th revision of an archive as
a changeset of the form u0,i. In consequence, Ostrich’s changesets are con-
structed from the triples in all previous revisions, and can only grow in size.
This fact makes it unsuitable for very long histories.

Query runtime. We run Ostrich on 100 randomly generated VM, V, and
DM queries on our experimental datasets. Ostrich does not support queries
on full BGPs natively, hence the queries consisted of single triple patterns of
the most common forms, namely ⟨ ?, p, ? ⟩, ⟨ s, p, ? ⟩, and ⟨ ?, p, o ⟩ in
equal numbers. We also considered queries ⟨ ?, <top p>, o ⟩, where <top
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p> corresponds to the top 5 most common predicates in the dataset. Revi-
sion numbers for all queries were also randomly generated. Table A.6 shows
Ostrich’s average runtime in seconds for the different types of queries. We
set a timeout of 1 hour for each query, and show the number of timeouts
in parentheses next to the runtime, which excludes queries that timed out.
We observe that Ostrich is roughly one order of magnitude faster on YAGO
than on DBpedia and Wikidata. To further understand the factors that impact
Ostrich’s runtime, we computed the Spearman correlation score between Os-
trich’s query runtime and a set of features relevant to query execution. These
features include the length of the delta chain, the average size of the relevant
changesets, the size of the initial revision, the average number of deleted and
added triples in the changesets, and the number of query results. The results
show that the most correlated features are the length of the delta chain, the
standard deviation of the changeset size, and the average number of deleted
triples. This suggests that Ostrich’s runtime performance will degrade as the
history of the archive grows and that massive deletions actually aggravate
that phenomenon. Finally, we observe some timeouts in YAGO in contrast
to DBpedia and Wikidata. We believe this is mainly caused by the sizes of
the changesets, which are on average of 3.72GB for YAGO, versus 2.09GB for
DBpedia and 1.86GB for Wikidata. YAGO’s changesets at revisions 1 and 4
are very large as shown in Section 4.

7 Towards Fully-fledged RDF Archiving

We now build upon the findings from previous sections to derive a set of
lessons towards the design of a scalable fully-fledged solution for archiving
of large RDF datasets. We structure this section in two parts. Section 7.1
discusses the most important functionalities that such a solution may offer,
whereas Section 7.2 discusses the algorithmic and design challenges of pro-
viding those functionalities.

7.1 Functionalities

Global and local history. Our survey in Section 5.1 shows that R43ples [36]
and Quit Store [12] are the only available solutions that support both archiv-
ing of the local and joint (global) history of multiple RDF graphs. We argue
that such a feature is vital for proper RDF archiving: It is not only of great
value for distributed version control in collaborative projects, but can also
be useful for the users and maintainers of data warehouses. Conversely, ex-
isting solutions are strictly focused on distributed version control and their
Git-based architectures make them unsuitable to archive the releases of large
datasets such as YAGO, DBpedia, or Wikidata as explained in Section 6. From
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(a) Revision identifiers hold revision-related
metadata. Provenance as well as temporal
domain-specific metadata are in green. (b) Revision identifiers hold all the metadata.

Fig. A.7: Two logical models to handle metadata in RDF archives. The namespace prov: corre-
sponds to the PROV-O namespace.

an engineering and algorithmic perspective, this implies to redesign RDF so-
lutions to work with 5-tuples instead of triples. We discuss the technical
challenges of such requirement in Section 7.2.

Temporal domain-specific vs. revision metadata. Systems and language
extensions for queries with time constraints [34, 35], treat both domain-
specific metadata (e.g., triple validity intervals) and revision-related anno-
tations (e.g., revision numbers) in the same way. We highlight, however, that
revision metadata is immutable and should therefore be logically placed at
a different level. In this line of thought we propose to associate revision
metadata for graphs and datasets, e.g., commit time, revision numbers, or
branching & tagging information, to the local and global revision identifiers
ρ and ζ, whereas depending on the application, domain-specific time objects
could be modeled either as statements about the revisions or as statements
about the graph labels g = l(ρ). The former alternative enforces the same
temporal domain-specific metadata to all the triples added in a changeset,
whereas the latter option makes sense if all the triples with the same graph
label are supposed to share the same domain-specific information – which
can still be edited by another changeset on the master graph. We depict both
alternatives in Figure A.7. We remark that such associations are only defined
at the logical level.

Provenance. Revision metadata is part of the history of a triple within a
dataset. Instead, its complete history is given by its workflow provenance.
The W3C offers the PROV-O ontology [24] to model the history of a triple
from its sources to its current state in an RDF dataset. Pretty much like
temporal domain-specific metadata, provenance metadata can be logically
linked to either the (local or global) revision identifiers or to the graph labels
(Figure A.7). This depends on whether we want to define provenance for
changesets because the triples added to an RDF graph may have different
provenance workflows. A hybrid approach could associate a default prove-
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nance history to a graph and use the revision identifiers to override or extend
that default history for new triples. Moreover, the global revision identifier
ζ provides an additional level of metadata that allow us to model the prove-
nance of a dataset changeset.

Concurrent updates & modularity. We can group the existing state-of-the-
art solutions in three categories regarding their support for concurrent up-
dates, namely (i) solutions with limited or no support for concurrent up-
dates [11, 23, 34, 67, 78], (ii) solutions inspired by version control systems
such as Git [12, 36, 46, 72, 81], and (iii) approaches with full support for highly
concurrent updates [59]. Git-like solutions are particularly interesting for col-
laborative efforts such as DBpedia, because it is feasible to delegate users the
task of conflict management. Conversely, fully automatically constructed KBs
such as NELL [21] or data-intensive (e.g., streaming) applications may need
the features of solutions such as x-RDF-3X [59]. Consequently, we propose a
modular design that separates the concurrency layer from the storage back-
end. Such a middleware could take care of enforcing a consistency model for
concurrent commits either automatically or via user-based conflict manage-
ment. The layer could also manage the additional metadata for features such
as branching and tagging. In that light, collaborative version control systems
for RDF [12, 36, 72] become an application of fully-fledged RDF archiving.

Formats for publication and querying. A fully functional archiving
solution should support the most popular RDF serialization formats for data
ingestion and dumping. For metadata enhanced RDF, this should include
support for N-quads, singleton properties, and RDF-star. Among those,
RDF-star [40] is the only one that can natively support multiple levels of
metadata (still in a very verbose fashion). For example RDF-star could
serialize the tuple ⟨:USA, :dr, :Cuba, ρ, ζ⟩ with graph label (:gl) l(ρ) = :UN
and global timestamp (:ts) ts(ζ) =2020-07-09 as follows:

<<<:USA :dr :Cuba> :gl :UN> :ts “2020-07-09”ˆˆxsd:date>
The authors of [40] propose this serialization as part of the Turtle-star
format. Moreover, they propose SPARQL-star that allows for nested triple
patterns. While SPARQL-star enables the definition of metadata constraints
at different levels, a fully archive-compliant language could offer further
syntactic sugar such as the clauses REVISION [11, 36] or DELTA to bind the
variables of a BGP to the data in particular revisions or deltas. We propose
to build such an archive-compliant language upon SPARQL-star.

Support for different types of archive queries. Most of the studied archiv-
ing systems can answer all the query types defined in the literature of RDF

85



Paper A.

archives [29, 78]. That said, more complex queries such as CD and CV
queries, or queries on full BGPs are sometimes supported via query middle-
wares and external libraries [12, 78]. We endorse this design philosophy be-
cause it eases modularity. Existing applications in mining archives [45, 64, 65]
already benefit from support for V, VM, and DM queries on single triple pat-
terns. By guaranteeing scalable runtime for such queries, we can indirectly
improve the runtime of more complex queries. Further optimizations can be
achieved by proper query planning.

7.2 Challenges

Trade-offs on storage, query runtime, and ingestion time. RDF archiving
differs from standard RDF management in an even more imperative need for
scalability, in particular storage efficiency. As shown by Taelman et al. [78],
the existing storage paradigms shine at different types of queries. Hence,
supporting arbitrary queries while being storage-efficient requires the best
from the IC, CB, FB, and TB philosophies. A hybrid approach, however, will
inevitably be more complex and introduce further parameters and trade-offs.
The authors of Ostrich [78], for instance, chose to benefit faster version ma-
terialization via redundant deltas at the expense of larger ingestion times.
Users requiring shorter ingestion times could, on the other hand, opt for non-
redundant changesets, or lazy non-asynchronous ingestion (at the expense of
data availability). We argue that the most crucial algorithmic challenge for a
CB archiving solution is to decide when to store a revision as a snapshot or as
a delta, which is tantamount to trading disk space for faster VM queries. This
could be formulated as an (multi-objective) minimization problem whose ob-
jective might be a function of response time for triple patterns in VM, CV
and V queries with constraints on available disk space and average ingestion
time. When high concurrency is imperative, the objective function could also
take query throughput into account. In the same vibe, a TB solution could
trigger the construction of further indexes (e.g., new combinations of com-
ponents, incremental indexes in the concurrent setting) based on a careful
consideration of disk consumption and runtime gain. Such scenarios would
not only require the conception of a novel cost model for query runtime in
the archiving setting, but also the development of approximation algorithms
for the underlying optimization problems, which are likely NP-Hard. Finally,
since fresh data is likely to be queried more often than stale data, we believe
that fetch time complexity9 on the most recent(s) version(s) of the dataset
should not depend on the size of the archive history. Hence, and depending
on the host available main memory, an RDF archiving system could keep the
latest revision(s) of a dataset (or parts of it) in main memory or in optimized

9For single triple patterns on VM queries
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disk-based stores for faster query response time (as done by QuitStore [12]).
Hence, main memory consumption could also be part of the optimization
objective.

Internal serialization. Archiving multi-graph datasets requires the serial-
ization of 5-tuples, which complexifies the trade-offs between space (i.e., disk
and main memory consumption) and runtime efficiency (i.e., response time,
ingestion time). For example, dealing with more columns increases the num-
ber of possible index combinations. Also, it leads to more data redundancy,
since a triple can be associated to multiple values for the fourth and fifth
component. Classical solutions for metadata in RDF include reification [70],
singleton properties [60], and named graphs [69]. Reification assigns each
RDF statement (triple or quad) an identifier t ∈ I that can be then used to
link the triple to its ρ and ζ components in the 5-tuples data model intro-
duced in Section 2.3. While simple and fully compatible with the existing
RDF standards, reification is well-known to incur serious performance issues
for storage and query efficiency, e.g., it would quintuple the number of triple
patterns in SPARQL queries. On those grounds, Nguyen et al. [60] proposes
singleton properties to piggyback the metadata in the predicate component.
In this strategy, predicates take the form p#m ∈ I for some m ∈ N and ev-
ery triple with p in the dataset. This scheme gives p#m the role of ρ in the
aforementioned data model reducing the overhead of reification. However,
singleton properties would still require an additional level of reification for
the fifth component ζ. The same is true for a solution based on named graphs.
A more recent solution is HDTQ [28], which extends HDT with support for
quads. An additional extension could account for a fifth component. Sys-
tems such as Dydra [11] or v-RDFCSA [23] resort to bit vectors and visibility
maps for triples and quads. We argue that vector and matrix representations
may be suitable for scalable RDF archiving as they allow for good compres-
sion in the presence of high redundancy: If we assume a binary matrix from
triples (rows) to graph revisions (columns) where a one denotes the presence
of a triple in a revision, we would expect rows and columns to contain many
contiguous ones – the logic is analogous for removed triples.

Accounting for evolution patterns. As our study in Section 4 shows, the
evolution patterns of RDF archives can change throughout time leading even,
to decreases in dataset size. With that in mind, we envision an adaptive
data-oriented system that adjusts its parameters according to the archive’s
evolution for the sake of efficient resource comsumption. Parameter tuning
could rely on the metrics proposed in Section 3. Nonetheless, these desider-
ata translate into some design and engineering considerations. For example,
we saw in Section 6 that a large number of deletions can negatively impact
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Ostrich’s query runtime, hence, such an event could trigger the construction
of a complete snapshot of the dataset in order to speed-up VM queries (as-
suming the existence of a cost model for query runtime). In the same spirit
and assuming some sort of dictionary encoding, an increase in the vocabulary
dynamicity could increase the number of bits used to encode the identifiers
of RDF terms in the dictionary. Those changes could be automatically carried
out by the archiving engine, but could also be manually set up by the sys-
tem administrator after an analysis with RDFev. A design philosophy that
we envision to explore divides the history of each graph in the dataset in
intervals such that each interval is associated to a block file. This file con-
tains a full snapshot plus all the changesets in the interval. It follows that
the application of a new changeset may update the latest block file or create
a new one (old blocks could be merged into snapshots to save disk space).
This action could be automatically executed by the engine or triggered by the
system administrator. For instance, if the archive is the backend of a version
control system, new branches may always trigger the creation of snapshots.
This base architecture should be enhanced with additional indexes to speed
up V queries and adapted compression for the dictionary and the triples.

Finally as we expect long dataset histories, it is vital for solutions to im-
prove their ingestion time complexity, which should depend on the size of
the changesets rather than on history size—contrary to what we observed
in Section 6 for Ostrich. This constraint could be taken into account by the
storage policy for the creation of storage structures such as deltas, snapshots,
or indexes (e.g., by reducing the length of delta chains for redundant change-
sets). Nevertheless, very large changesets may still be challenging, specially
in the concurrent scenario. This may justify the creation of temporary incre-
mental (in-memory) indexes and data structures optimized for asynchronous
batch updates as proposed in x-RDF-3X [59].

8 Conclusions

In this paper we have discussed the importance of RDF archiving for both
maintainers and consumers of RDF data. Besides, we have discussed the im-
portance of evolution patterns in the design of a fully-fledged RDF archiving
solution. On these grounds, we have proposed a metric-based framework to
characterize the evolution of RDF data, and we have applied our framework
to study the history of three challenging RDF datasets, namely DBpedia,
YAGO, and Wikidata. This study has allowed us to characterize the history
of these datasets in terms of changes at the level of triples, vocabulary terms,
and entities. It has also allowed us to identify design shifts in their release
history. Those insights can be used to optimize the allocation of resources
for archiving, for example, by triggering the creation of a new snapshot as a
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response to a large changeset.
In other matters, our survey and study of the existing solutions and

benchmarks for RDF archiving has shown that only a few solutions are avail-
able for download and use, and that among those, only Ostrich can store
the release history of very large RDF datasets. Nonetheless, its design still
does not scale to long histories and does not exploit the data evolution pat-
terns. R43ples [36], R&WBase [72], Quit Store [12], and x-RDF-3X [59] are
also available, however they are still far from tackling the major challenges of
this task, mainly because, they are conceived for collaborative version control,
which is an application of RDF archiving in itself. Our survey also reveals
that the state of the art lacks a standard to query RDF archives. We think
that a promising solution is to use SPARQL-star combined with additional
syntactic sugar as proposed by some approaches [11, 30, 36]

Finally, we have used all these observations to derive a set of design
lessons in order to overcome the gap between the literature and a fully func-
tional solution for large RDF archives. All in all, we believe that such a solu-
tion should (i) support global histories for RDF datasets, (i) resort to a mod-
ular architecture that decouples the storage from the application layers, (iii)
handle provenance and domain-specific temporal metadata, (iv) implement
a SPARQL extension to query archives, (v) use a metric-based approach to
monitor the data evolution and adapt resource consumption accordingly, and
(vi) provide a performance that does not depend on the length of the history.
The major algorithmic challenges in the field lie in how to handle the inherent
trade-offs between disk usage, ingestion time, and query runtime. With this
detailed study and the derived guidelines, we aim at paving the way towards
an ultimate solution for this problem. In this sense, we envision archiving
solutions to not only serve as standalone single server systems but also as
components of the RDF ecosystem on the Web in all its flavors covering fed-
erated [5, 55, 68, 73] and client-server architectures [6, 14, 15, 41, 53, 54, 80] as
well as peer-to-peer [7, 8] solutions.
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Abstract

Metadata, such as provenance, versioning, temporal annotations, etc., is vital for the
maintenance of RDF data. Despite its importance in the RDF ecosystem, support
for metadata-augmented RDF remains limited. Some solutions focus on particular
annotation types but no approach so far implements arbitrary levels of metadata in
an application-agnostic way. We take a step to tackle this limitation and propose
an in-memory tuple store architecture that can handle RDF data augmented with
any type of metadata. Our approach, called TrieDF, builds upon the notion of tries
to store the indexes and the dictionary of a metadata-augmented RDF dataset. Our
experimental evaluation on three use cases shows that TrieDF outperforms state-of-
the-art in-memory solutions for RDF in terms of main memory usage and retrieval
time, while remaining application-agnostic.
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1. Introduction

1 Introduction

During the last 20 years, the Web has seen a proliferation of large collections
of RDF data, i.e., triples ⟨ subject, predicate, object ⟩ describing real-world
concepts ranging from common-sense to specialized domains. The triples
are structured in what we call an RDF graph or knowledge graph (KG). KGs
find applications in multiple AI-related tasks, such as question answering,
information retrieval, smart assistants, etc.

Building and maintaining a large-scale KG is a titanic effort. It does not
only require sophisticated RDF stores and collaborative tools, but also pro-
cedures and protocols to extract, cleanse, and integrate data from potentially
heterogeneous sources. This is true regardless of whether the KG is manually
or (semi-)automatically populated. A central aspect in KG construction is
metadata management. RDF metadata includes, but is not limited to, prove-
nance, validity intervals, spatial annotations, confidence statements, and ver-
sioning. As existing KGs grow and new initiatives come to existence, the
need to manage statements about triples, i.e., RDF tuples, becomes more and
more crucial.

There exist multiple solutions to represent metadata about RDF triples.
Popular solutions are named graphs and reification. That said, these ap-
proaches are not free of limitations. A large number of fine-grained RDF
graphs can be a challenge for quad stores [5]. Reification, on the other hand,
quintuples the number of statements in a dataset; not to mention the fact
that it also complexifies the queries. For these reasons, RDF engines support
at most one level of metadata in an out-of-the-box fashion. This means that
current stores can model statements about triples, but not statements about
quads, i.e., 5-tuples. They can neither model a versioned collection of graphs
nor RDF statements originating from different sources with multiple validity
intervals. Support for higher levels of metadata – equivalent to n-ary rela-
tionships – remains limited to very specific scenarios such as archiving [17].

This work takes a step to tackle the aforementioned limitations and pro-
poses TrieDF, an in-memory RDF tuple store. TrieDF stores tuples of arbitrary
length in a trie, an in-memory prefix-based tree originally used for compact
storage and efficient retrieval of strings. TrieDF models everything as a trie,
namely all indexes and the dictionary. Our evaluation shows that such an
architecture yields a significant speed-up in retrieval with little penalty in
memory consumption w.r.t. existing triple/quad stores. We also illustrate
the utility of TrieDF at handling 5-tuples in the context of provenance and
version management.
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2 Preliminaries

RDF Graphs. An RDF graph G ⊆ (I ∪ B)× I × T is a set of triples ⟨ s, p, o
⟩, with subject s, predicate p, and object o that model binary assertions about
entities, for example, ⟨ :Denmark, :locatedIn, :Europe ⟩. The sets I , B, and T
are countably infinite sets of IRIs, blank nodes, and RDF terms respectively,
with T = I ∪ B ∪ L and L the set of literals. IRIs are web-scoped iden-
tifiers for entities such as http://dbpedia.org/resource/Denmark (abbre-
viated :Denmark for default prefix http://dbpedia.org/resource/); blank
nodes are anonymous file-scoped identifiers; literals are non-referenceable
data such as strings, numbers, and dates.
Metadata-augmented RDF Graphs. Given an RDF graph G, a metadata-
augmented graph Γ : G → T n is an injective function that annotates each
triple of the graph with a k-tuple of RDF terms. We can also see Γ as a set of
n-tuples q =⟨ s, p, o, ... ⟩ with n = k + 3. Metadata-augmented RDF graphs
can model n-ary relationships in contrast to standard RDF graphs that can
only model binary relationships.

3 Related Work

The need to store and manage metadata for RDF triples has given rise to a
large literature body that we survey in two stages. First, we survey different
techniques to encode metadata-augmented triples and store them in triple
stores. In a second stage we discuss existing solutions to manage additional
components in triples.

3.1 Encoding Metadata-augmented Triples

Reification is the process of encoding an n-ary statement through a set of
binary relationships. For instance, consider the versioned triple ⟨ :Aalborg,
:cityIn, :Denmark, 3 ⟩ – that states that the triple is present in revision 3 of
the graph. Under the standard reification, the triple is assigned a surrogate
IRI (or blank node) u that is linked to all the components of the quad, re-
sulting in 4 new triples: ⟨ u, :subject, :Aalborg ⟩, ⟨ u, :predicate, :cityIn
⟩, ⟨ u, :object, :Denmark ⟩, and ⟨ u, :version, 3 ⟩. Since reification incurs
a significant overhead both for storage and querying, other approaches have
proposed more compact encoding strategies. The authors of [15] propose
singleton properties as unique keys for statements in a context. In our ex-
ample, such a context could be the graph revision where a triple occurs, e.g.,
⟨ :Aalborg, cityIn#3, :Denmark ⟩. A more flexible scheme, called compan-
ion properties [10], proposes singleton properties per subject, for example, ⟨
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3. Related Work

:Aalborg, cityIn#3.si, :Denmark ⟩, where si is a local identifier that can be
used to model subject-level metadata.

Reification and single properties have been used to encode one level
of metadata, e.g., versioning, probabilities, provenance, temporal validity,
etc. However, porting these strategies to scenarios with arbitrary levels of
statement-centered metadata, e.g., provenance plus versioning, requires a
careful application-dependent combination of the different schemes. This
need has motivated the development of RDF-star [9], a data model that treats
triples as first-class citizens and allows for nested statements such as ⟨ ⟨
:Aalborg, :cityIn, :Denmark ⟩, :version, 3 ⟩. Support for RDF-star is
gaining traction in current RDF engines. Some commercial solutions such as
RDFox, GraphDB, and Stardog can parse TriG, an RDF-star serialization text
format. That said, none of those solutions can so far handle arbitrary levels
of nestedness.

3.2 Beyond RDF Triples

RDF Named Graphs. Even though the RDF graph data model can be used to
store metadata for RDF statements “natively”, it was rather conceived as an
analogy to documents and database tables. A named RDF graph is associated
to an IRI g, and stores a presumably large collection of triples within a well-
defined context, e.g., a particular data source. Nevertheless, named graphs
have been used to store more fine-grained metadata such as validity intervals,
revision numbers, and changesets [5, 17]. This can represent a challenge for
classical RDF graph stores, such as Jena, Virtuoso, RDF4J, etc., that are not
optimized for a large number of small RDF graphs. Since RDF named graphs
cannot model metadata for quads, a few approaches have proposed highly
specific solutions in the context of RDF/S inference [16].
Property Graphs. In this data model, both nodes (entities) and edges (re-
lationships) can be assigned attributes, such as labels, timestamps, proba-
bilities, sources, etc. Despite this flexibility, property graphs cannot store
arbitrary levels of metadata for triples out of the box. Like named graphs,
they rather provide a generic solution to store metadata about triples. This
agnosticism has propelled adaptations of the graph model and existing en-
gines (e.g., Neo4J, GraphDB) to particular applications, such as version and
history management [7] and workflow provenance [6, 8, 12]. As for named
graphs, solutions are application-dependent and not trivially portable to ar-
bitrary settings.
Relational Databases. Notable designs to store RDF in tables are the three-
column table and the entity-relationship model (a relation per class, a column
per predicate). Storing metadata about RDF in a relational setting does not
require any extension to the original data model, and standard engines pro-
vide efficient support for the most common metadata types such as temporal
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metadata [13], version control [11], and validity intervals. That said, the re-
lational model is not optimized for the schema-free nature of RDF, which in
the first place motivated the design of triple stores.

4 TrieDF

We now elaborate on TrieDF, our in-memory architecture to manage
metadata-augmented RDF. TrieDF stores RDF tuples of arbitrary length in
different indexes. The indexes do not store actual RDF terms but rather ref-
erences to those terms in a space efficient dictionary (Figure B.1b).

TrieDF borrows inspiration from tries – prefix-based trees for string stor-
age. Nodes in a trie store single characters and each string is associated to a
path in the tree. Strings with the same prefix, e.g., web, weave, weasel, share
common nodes. TrieDF treats tuples as “strings” of items. Those items are ei-
ther references to RDF terms (for indexes) or IRI chunks (for the dictionary).
We elaborate on these use cases in the following sections.

4.1 Trie-based Indexes

Consider a version annotated RDF graph with quads ⟨ s, p, o, v ⟩ such that v
models the versions where the triple ⟨ s, p, o ⟩ is present. Figure B.1b depicts
an SPOV index for the quads ⟨ 1, 2, 3, 1 ⟩, ⟨ 1, 2, 3, 2 ⟩, and ⟨ 1, 5, 6, 2 ⟩
– the triples are encoded using a dictionary. We can infer that the triple ⟨ 1,
5, 6 ⟩ was added in the second revision of the graph. We now describe the
implementation of TrieDF and the operations it supports.
Implementation. Logically, each element of a tuple is associated to a node
in the tree. Physically, nodes store only references to their children. Those
references are organized in a red-black tree keyed by the value of the child
node. If |T| is the number of nodes in a trie T, an index in TrieDF has a space
complexity of O(|T|cmax), where cmax is the highest out-degree of a node in
T. This happens because red-black trees exhibit O(n) space complexity in the
number of keys.

Tries are optimized for tuple lookup and prefix-based retrieval. These
operations, as well as additions and deletions, are implemented as in stan-
dard tries. Therefore, looking up a tuple q incurs a time complexity of
O(|q|log(cmax)).

Users of TrieDF can define indexes of arbitrary depth for all permutations
of the elements of a tuple. Moreover, TrieDF can also operate as a standard
triple store. In that case, the system stores triples in indexes SPO, POS, and
OSP in line with standard engines. The nodes in the indexes store integers,
precisely the memory addresses of the RDF terms in the dictionary [2], which
is also implemented as a trie as explained next.
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(a) A standard trie (b) Trie-based index and dictionary

Fig. B.1: Example tries

4.2 Trie-based Dictionary Encoding

Dictionary encoding maps the terms of an RDF dataset to an integer space
for the sake of efficient space consumption and query processing. Dictionary
encoding is often implemented using two hash tables, i.e., one for encoding
(string to integer) and one for decoding (integer to string).

Even though dictionary encoding reduces memory consumption drasti-
cally for RDF engines, it does not tackle the inherent redundancy of RDF
terms. For instance, common prefixes in IRIs are still stored multiple times.
Similarly to the work of Bazoobandi et al. [2], the dictionary for IRIs is stored
in an trie. In [2], a node is usually associated to a single character, although
multiple nodes can be compressed (fusioned) into a single node if they form
a single branch subtree. A drawback of such an approach is that updates
may cause fusioned nodes to split. In that case the tree must be rearranged,
which increases update time. To make updates simpler – at the expense of
some redundancy – TrieDF compresses IRIs by automatically coalescing all
the nodes that lie between occurrences of the “/” character [21]. In other
words, each node is logically associated to a chunk of an IRI as depicted in
Figure B.1b. If a node marks the end of an IRI, the memory address of the
node serves as the integer identifier used by the tuple indexes described in
the previous section.

In practice dictionary tries are bidirectional. That is, nodes store refer-
ences to their children and parent. That way, a dictionary can retrieve the
identifier associated to an IRI (lookup) and vice versa (reverse lookup). (Fig-
ure B.1b). Because the benefit of a prefix-based representation is significantly
less pronounced for literals [2, 20], they are currently stored in one-node
tries.
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5 Experiments

We evaluate TrieDF along three dimensions: loading time, main-memory
consumption, and retrieval time (i.e., the time to return all the tuples that
match a prefix). For this purpose, we test it in three use cases and compare it
to other relevant in-memory solutions. Our scenarios cover a standard RDF
graph, a versioned RDF graph (requiring quads), and a collection of 5-tuples.

TrieDF was written in C++. All experiments were run in a server with
256 GB of RAM, a 16-core CPU (AMD EPYC 7281), and an 8 TB HDD. The
source code and experimental data is available at https://relweb.cs.aau.
dk/triedf.

5.1 TrieDF for Triples

We first assess the performance of TrieDF when used as a standard in-
memory triple store on DBpedia 2016-10 [1], YAGO 3.1 [18], YAGO 4 [19],
and Wikidata [3]. For DBpedia we use the themes mapping-based objects and
mapping-based literals. For YAGO 3.1 we consider the knowledge base’s core,
namely, the themes facts, meta facts, literal facts, date facts, and labels. For
YAGO 4, we use the facts theme from the English only distribution. In regards
to Wikidata we chose the simple-statements file of the 2016-08 RDF export1.
Details about the dataset sizes are available in Table B.1. in which we com-
pare TrieDF with Jena2 and RDFLib3, two fully-fledged in-memory platforms
for RDF/SPARQL management. They are widely used in production envi-
ronments and offer mature and well-tested implementations.

DBpedia YAGO 3.1 YAGO 4 Wikidata

Triples 38M 85M 22M 138M
Size 4.9GB 12GB 3.0GB 17GB
RDF terms 11M 59M 8.5M 54M

Table B.1: Details about the experimental datasets for the triples evaluation.

Loading time. Table B.2 shows the loading times of Jena, RDFLib, and TrieDF
for the experimental datasets. Jena is consistently faster than the others sys-
tems, which can be explained by (i) a fast dictionary, (ii) a highly optimized
RDF parser, and (iii) batching of insertions. Jena stores the dictionary in
classical hash tables, which allows for constant time lookup and insertion
of terms, in contrast to TrieDF that incurs a logarithmic lookup complexity.

1http://tools.wmflabs.org/wikidata-exports/rdf/index.html
2https://jena.apache.org/
3https://rdflib.readthedocs.org
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5. Experiments

This, in contrast, optimizes for compactness (see paragraph on memory con-
sumption). That said, TrieDF ranks second close to Jena, and outperforms
RDFLib by a large margin.

DBpedia YAGO 3.1 YAGO 4 Wikidata

Jena 587.14 1281.65 289.42 1665.48
RDFLib 2816.16 7102.30 1626.85 9587.51
TrieDF 727.20 2105.37 358.20 2800.77

Table B.2: Loading time of the triples evaluation in seconds.

Retrieval time. We measure the average runtime of the different systems
on single triple pattern queries of the following shapes: (i) ⟨ s, p, ?o ⟩, (ii) ⟨
?s, p, o ⟩, (iii) ⟨ s, ?p, ?o ⟩, (iv) ⟨ ?s, ?p, o ⟩, and (v) ⟨ ?s, p, ?o ⟩ (? denotes
a variable). For each query shape, we generated 200 queries by drawing the
bound components randomly from the datasets, and then adding variables
to the unbounded components as in [17]. The queries are implemented as
classical retrieval operations, e.g., ⟨ :Denmark, :capital, ?o ⟩ retrieves all
tuples prefixed with ⟨ :Denmark, :capital ⟩ in the SPO trie index.
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Fig. B.2: Query runtime (microseconds) for triples queries (log scale)

Figure B.2 depicts the query runtime of the tested systems on the different
datasets. The results show that TrieDF is at least one order of magnitude
faster than the competitors for queries with one variable. When there are
two variables, TrieDF still exhibits lower median runtimes, but its variance is
large, specially for YAGO. This can be explained by the fact that those queries
may sometimes have a large number of results. This phenomenon also affects
Jena. While RDFLib is mostly insensitive to large result sets, it lags behind
the other systems in terms of average retrieval time.
Memory consumption. Figure B.3a shows the peek memory consumption of
the different systems during loading and query execution. We observe that
TrieDF outperforms Jena in all datasets, and all the competitors in YAGO
3. For the other datasets, our approach uses at most 13% more memory
than RDFLib. This happens for two reasons. First, RDFLib’s indexes are
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Fig. B.3: Peek memory usage in gigabytes (GB)

of fixed depth, which allows for some space savings: leaves do not need
to accommodate for an additional pointer to its potential children. Second,
RDFLib does not implement explicit dictionary encoding but rather relies
on Python’s internal variable handling (Python variables are actually keys
pointing to their actual value in a hash table) to store references to RDF
terms in the indexes. Relying on Python incurs important memory savings
for RDFLib, however, the system remains two orders of magnitude slower
than TrieDF at retrieval.

5.2 TrieDF for Quads

In this section we evaluate TrieDF at managing RDF quads ⟨ s, p, o, v ⟩,
that represent triples annotated with a revision number v. Our evaluation
is based on the BEAR [4] benchmark datasets, and an archive consisting of
the DBpedia versions from the 3.5 to the 2016-10 release, where one release
is equivalent to one revision [17]. For each release, we use the same DBpedia
themes as in our experiments with triples. As for BEAR, we use both the
BEAR-B and BEAR-C datasets. We omitted BEAR-A because our competitors
could not parse the input files due to formatting issues.

In order to provide versioning capabilities to TrieDF, we store RDF quads
in SPOV, POSV, and OSPV indexes. We also compare TrieDF with the Jena in-
memory models and RDFLib. For both competitors, we use named graphs to
store each revision. This storage strategy, called independent copies, optimizes
for data retrieval [4, 17] at the expense of high memory consumption.
Loading time. Table B.3 shows the loading times of the evaluated systems.
No results are provided for Jena in DBpedia, since the system runs out of
memory. RDFLib lags behind Jena and TrieDF, with TrieDF being the fastest
at loading the bulky revisions of BEAR-C, and Jena being the fastest at load-
ing the more granular revisions of BEAR-B.
Retrieval time. We measure the average runtime of the different systems on
100 single triple pattern queries of different types on versioned RDF graphs,
namely version materialization (VM), delta materialization (DM), and ver-
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DBpedia BEAR-B BEAR-C

Jena - 1094.83 418.74
RDFLib 26433.76 4851.09 1663.40
TrieDF 16074.17 3743.55 387.68

Table B.3: Loading time of the quads evaluation in seconds.

sion queries (VQ). The queries were randomly generated according to the
experimental setup in [17].
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Fig. B.4: Query runtime for quads and 5-tuples (log scale)

Figure B.4 shows the runtime of the evaluated systems for each type of query.
We observe that TrieDF outperforms all the competitors by far, although the
performance gap can vary drastically. In particular, TrieDF’s indexes are
optimized for VQ queries, for which they are 3 orders of magnitude faster
than the competitors. Even though the independent copies approach used in
Jena and RDFLib is optimal for VM queries (and to a lesser extent for DM
queries), TrieDF is still one order of magnitude faster than the competitors.
Memory consumption. Figure B.3b shows the peek memory consumption of
the different systems during loading and query execution. We first highlight
that Jena uses much more memory than the other systems. The reason is
that Jena implements a classical independent copies approach, where each
revision is entirety stored in a different graph. This leads to a lot of dupli-
cated data. In contrast, RDFLib stores graphs (called contexts) in separate
hash tables that map triples to graphs and graphs to triples. This mitigates
redundancy. In the same vibe, TrieDF stores version identifiers in the last
component of each index, which reduces redundancy. While RDFLib show-
cases the lowest memory consumption, TrieDF strikes the best trade-off with
at most 28% more peek memory usage than RDFLib in exchange for a speed-
up of 3 orders of magnitude for retrieval.
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5.3 TrieDF for 5-tuples

In this section we evaluate TrieDF on a 5-tuples setup where triples are an-
notated with provenance and version identifiers q, v, i.e., we store tuples ⟨ s,
p, o, q, v ⟩. We use a dump4 of 27M tuples of the NELL [14] dataset. The
NELL extractors collect metadata-augmented knowledge iteratively from the
Web. This metadata includes, among other fields, confidence scores for the
extracted triples, extraction sources, extraction methods, and the iteration of
promotion, i.e., the iteration at which a triple is considered true and “offi-
cially” added to the knowledge base. We use the two latter fields in this
evaluation. Since RDF storage systems do not support 5-tuples, we compare
TrieDF against relational database systems with support for in-memory ta-
bles. After a comparison between SQLite and MariaDB, we chose the former
due to its good performance in our setting. 5-tuples in TrieDF are represented
via SPOQV, POSQV, and OSPQV indexes. We test SQLite with and without
those indexes.
Loading time. We report loading times of 36.55s, 16.98s, and 47.27s for
TrieDF, SQLite, and SQLite with indexes respectively. We observe that SQLite
loads data significantly faster when no indexes are built, however when in-
dexing is enabled, TrieDF is faster.
Retrieval time. We tested both systems on 100 queries of the same types
defined for the quads evaluation with randomly bounded q and v. As sug-
gested by Figure B.4d, TrieDF achieves similar retrieval performance than an
indexed 5-column SQLite in-memory table. The median runtime of TrieDF is
better for VM and VQ queries.
Memory consumption. Figure B.3c shows the peak memory usage of both
SQLite and TrieDF when loading and querying the NELL dataset. We observe
that indexing multiplies memory consumption by a factor of 3 in SQLite.
TrieDF still uses 26% more memory than indexed SQLite, however TrieDF
cannot leverage its trie-based dictionary to its full capacity. This happens
because NELL does not use prefixed IRIs. Despite this rather suboptimal
setting, TrieDF still shows comparable performance to SQLite.

6 Conclusion

We have presented an in-memory architecture based on tries to index and
access annotated RDF triples efficiently. Our solution provides the user with
a flexible architecture to manage arbitrary RDF metadata in main memory.
Our experimental evaluation has shown that such as an approach strikes
an interesting trade-off between retrieval time and memory footprint: it can
yield a speed-up of up to 3 orders of magnitude in retrieval time in return to

4http://rtw.ml.cmu.edu/rtw/resources
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References

little (and sometimes no penalty) in memory usage. We believe that TrieDF
is a first step towards a holistic solution to manage knowledge beyond RDF
triples. As future work we envision to explore different strategies to reduce
TrieDF’s memory footprint. We also envision to couple our architecture with
suitable in-disk storage and provide SPARQL query support.
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Abstract

In recent years, research in RDF archiving has gained traction due to the ever-
growing nature of semantic data and the emergence of community-maintained knowl-
edge bases. Several solutions have been proposed to manage the history of large RDF
graphs, including approaches based on independent copies, time-based indexes, and
change-based schemes. In particular, aggregated changesets have been shown to be
relatively efficient at handling very large datasets. However, ingestion time can still
become prohibitive as the revision history increases. To tackle this challenge, we pro-
pose a hybrid storage approach based on aggregated changesets, snapshots, and mul-
tiple delta chains. We evaluate different snapshot creation strategies on the BEAR
benchmark for RDF archives, and show that our techniques can speed up ingestion
time up to two orders of magnitude while keeping competitive performance for ver-
sion materialization and delta queries. This allows us to support revision histories of
lengths that are beyond reach with existing approaches.
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1. Introduction

1 Introduction

The ever-growing nature of RDF data and the emergence of large collabo-
rative knowledge graphs have propelled research in efficient techniques for
RDF archiving [5, 9], which is the task of keeping track of an RDF graph’s
change history. RDF archiving is of great value to both maintainers and
consumers of RDF data. To the former, archives are the basis of version con-
trol [2], which opens the door not only to novel data processing tasks, e.g.,
mining of temporal and correction patterns [10], but also to temporal data
analytics [3, 12]. For data consumers, archives are a way to query the past
and study the evolution of a given domain of knowledge [1, 7, 17].

From a technical point of view, building and maintaining RDF archives
is a very challenging endeavor, primarily due to the massive size of current
knowledge graphs. As of April 2022, DBpedia accounts for 220M entities
and 1.45B facts1, and changes from one release to the next one can be in the
order of millions [9]. However, large changesets are not the only issue that
challenges state-of-the-art RDF archive systems. For instance, DBpedia Live2

receives continuous updates with changes made by the Wikipedia commu-
nity. This dynamicity makes DBpedia’s revision history extremely long, and
exacerbates the challenges of managing an archive for a dataset of that nature.
As shown in our experimental section, existing approaches for RDF archiv-
ing cannot ingest long histories on large datasets, even when the changes
between revisions are small.

We therefore propose an approach to ingest, store, and query long revi-
sion histories on very large RDF graphs. Our techniques rely on a combi-
nation of dataset snapshots and sequences of aggregated changesets – called
delta chains [16] in the literature. We evaluate our approaches on the BEAR
benchmark [5] and show that our techniques can ingest the BEAR-B instant
dataset in no more than 2 hours – something that so far has been beyond
reach. Moreover, our techniques exhibit competitive runtimes for most types
of queries on RDF archives. We implemented our approach on top of OS-
TRICH [16], a state-of-the-art engine for archiving large RDF graphs.

The remainder of this paper is structured as follows. Section 2 elaborates
on the background concepts and the state of the art in RDF archiving. Our
storage techniques are detailed in Section 3, while Section 4 explains how to
query archives with multiple snapshots and delta chains. Section 5 provides
details of our implementation. The viability of our techniques is evaluated in
Section 6. Finally, Section 7 concludes the paper and discusses future work.

1https://www.dbpedia.org/resources/knowledge-graphs/
2https://www.dbpedia.org/resources/live/
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2 Background and Related Work

2.1 RDF Graphs and RDF Archives

An RDF graph G (also called a knowledge graph) consists of a set of triples
⟨ s, p, o ⟩ with subject s ∈ I ∪ B, predicate p ∈ I , and object o ∈ I ∪ L ∪ B,
where I is a set of IRIs, L is a set of literals, and B is a set of blank nodes [11].
RDF graphs are queried using SPARQL [14], whose building blocks are triple
patterns, i.e., triples that allow variables (prefixed with a ‘?’) in any position,
e.g., ⟨ ?x, cityIn, USA ⟩ matches all American cities in G.

An RDF archive A is a temporally ordered collection of RDF graphs that
represents all the states of the graph throughout its history of updates. This
can be formalized as A = {G0, . . . , Gk}, with Gi being the graph at version
(or revision) i ∈ Z≥0. The transition from Gi−1 to version Gi is implemented
via an update operation Gi = (Gi−1 \ u−i )∪ u+

i , where u+
i and u−i are disjoint

sets of added and deleted triples. We call the pair ui = ⟨u+
i , u−i ⟩ a changeset

or delta. We can generalize changesets to any pair of versions, i.e., ui,j =

⟨u+
i,j, u−i,j⟩ defines the changes between versions i and j. When a triple ⟨ s, p,

o ⟩ is present in a version i of the archive, we write it as a quad ⟨ s, p, o, i ⟩.

2.2 Querying RDF Archives

The literature identifies five types of queries over RDF archives [5, 16]. We
explain them next and provide examples with a single triple pattern for sim-
plicity.

• Version Materialization (VM). These are standard SPARQL queries run
against a single version i, e.g., ⟨ ?s, type, Country, 5 ⟩ returns the
countries present in version i = 5.

• Delta Materialization (DM). These are queries defined on changesets
ui,j = ⟨u+

i,j, u−i,j⟩, e.g., the query asking for the countries added between
versions i = 3 and j = 5, which implies to run ⟨ ?s, type, Country ⟩ on
u+

3,5.
• Version Query (V). These are standard SPARQL queries that provide

results annotated with the versions where those results hold. An ex-
ample is ⟨ ?s, type, Country, ?v ⟩, which returns pairs ⟨ country,
version ⟩.

• Cross-version (CV). CV queries combine results from multiple versions,
for example: which of the countries in the latest version have diplomatic
relationships with the countries in revision 0?

• Cross-delta (CD). CD queries combine results from multiple change-
sets, for example: in which versions were the most countries added?

Both CV and CD queries build upon the other types of queries, i.e., V and
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DM queries. Therefore, full support for VM, DM, and V queries suffices for
applications relying on RDF archives.

2.3 Solutions for RDF Archive Management

Several solutions have been proposed for managing the history of RDF
graphs efficiently. We review the most prominent approaches in this section
and refer the reader to [9] for a detailed survey.

In the literature, RDF archive approaches are typically categorized ac-
cording to their storage architecture. We distinguish three major design
paradigms: independent copies (IC), change-based solutions (CB), and
timestamp-based systems (TB). IC approaches, such as [18], implement full
redundancy: all triples present in a version i are stored as an independent
RDF graph Gi. While IC approaches excel at executing VM queries, they
are impractical for today’s knowledge graphs due to their prohibitive stor-
age footprint. This fact has shifted the research trend towards CB and TB
systems. In a CB solution, some versions are stored as changesets (also called
deltas) w.r.t. a previous reference version stored as a snapshot. We call a se-
quence of changesets – representing an arbitrary sequence of versions – and
its corresponding reference revision, a delta chain. CB approaches require less
disk space than IC architectures and are optimal for DM queries – at the ex-
pense of efficiency for VM queries. This makes them particularly attractive
for version-control systems, e.g., [2, 6], where changesets are rather small
and frequent. TB solutions, on the other hand, optimize for V queries as
they store temporal metadata, such as validity intervals or insertion/deletion
timestamps [8] in specialized indexes.

Recent approaches borrow inspiration from more than one paradigm.
QuitStore [2], for instance, stores the data in fragments, for which it im-
plements a selective IC approach. This means that only modified fragments
generate new copies, whereas the latest version is always materialized in
main memory. OSTRICH [16] combines the advantages of CB and TB ap-
proaches in a single delta chain; an initial snapshot stores revision 0, whereas
a new revision i is built from a changeset of the form ui−1,i and stored as
an aggregated changeset u0,i, i.e. the changes between the snapshot to i.
This storage architecture is depicted in Figure C.1a. OSTRICH supports VM,
DM, and V queries on single triple patterns natively. CV, CD, and arbitrary
SPARQL queries can be executed by connecting OSTRICH to a query engine.
Aggregated changesets have been shown to speed up VM and DM queries
significantly w.r.t. a standard CB approach. As shown in [9, 16], OSTRICH
is the only solution that can handle histories for large RDF graphs, such as
DBpedia. That said, scalability still remains a challenge for OSTRICH be-
cause aggregated changesets grow monotonically. This leads to prohibitive
ingestion times for large histories [9, 15] – even when the original changesets
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are small. In this paper, we build upon OSTRICH and propose a solution to
this problem.

3 Storing Archives with Multiple Delta Chains

As discussed in Section 2, ingesting new revisions as aggregate changesets
can quickly become prohibitive for long revision histories when the RDF
archive is stored in a single delta chain (see Figure C.1a). In such cases, we
propose the creation of a fresh snapshot that becomes the new reference for
subsequent deltas. Those new deltas will be smaller, and thus easier to build
and maintain. They will also constitute a new delta chain as depicted in
Figure C.1b.

Snapshot ∆ ∆ ∆ ∆

0 1 2 3 4

(a) Single delta chain

Snapshot ∆ ∆

0 1

Snapshot ∆ ∆

2 3 4
(b) Multiple delta chains

Fig. C.1: Delta chain architectures

3.1 Delta Chains

While creating a fresh snapshot with a new delta chain should presumably
reduce ingestion time for subsequent revisions, its impact on query efficiency
seems mixed. V queries, for instance, will have to be evaluated on multiple
delta chains, becoming more challenging to answer. In contrast, VM queries
defined on revisions already materialized as snapshots should be executed
much faster. Storage size and DM response time may be highly dependent
on the actual evolution of the data. If a new version includes many dele-
tions, fresh snapshots may be smaller than aggregated deltas. We highlight
that in our proposed architecture, revisions stored as snapshots also exist as
aggregated deltas w.r.t. the previous snapshot – as shown for revision 2 in
Figure C.1b. Such a design decision allows us to speed up DM queries as
explained later.

It follows from the previous discussion that introducing multiple snap-
shots and delta chains raises a natural question: "When is the right moment
to create a snapshot?" We elaborate on this question from the perspectives of
storage, ingestion time, and query efficiency next. We then explain how to
query archives in a multi-snapshot setting in Section 4.
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3.2 Strategies for Snapshot Creation

A key aspect of our proposed design is to determine the right moment to
place a snapshot, as this decision is subject to a trade-off among ingestion
speed, storage size, and query performance. We formalize this decision via
an abstract snapshot oracle f : A×U → {0, 1} that, given an archive A ∈ A

with k revisions and a changeset uk−1,k ∈ U, decides whether revision k
should (1) or should not (0) be materialized as a snapshot – otherwise the
revision is stored as an aggregated delta. The oracle can rely on properties
of the archive and the input changeset to make a decision. In the following,
we describe some natural alternatives for our snapshot oracle f and illustrate
them with a running example (Table C.1). All strategies start with a snapshot
at revision 0. Note that we do not provide an exhaustive list of all possible
strategies one could implement.
Baseline. The baseline oracle never creates snapshots, except for the very
first revision, i.e., f (A, u) ≡ (A = ∅). This is akin to OSTRICH’s snapshot
policy [16].
Periodic. A new snapshot is created when a fixed number d of versions has
been ingested as aggregated deltas, i.e., f (A, u) ≡ (|A| mod (d + 1) = 0). We
call d the period.
Change-ratio. Long delta chains do not only incur longer ingestion times but
also higher disk consumption due to redundancy in the aggregated change-
sets. When low disk usage is desired, the snapshot strategy may take into
account the editing dynamics of the RDF graph. This notion has been quan-
tified in the literature via the change ratio score [5]:

δi,j(A) =
|u+

i,j|+ |u
−
i,j|

|Gi ∪ Gj|
(C.1)

Given two revisions i and j, the change ratio normalizes the number of
changes (additions and deletions) between the revisions by their joint size.
If we aggregate the change ratios of all the revisions coming after a snapshot
revision s, we can estimate the level of redundancy in the current delta chain.
A reasonable snapshot strategy would therefore bound ∑k

i=s+1 δs,i, put dif-
ferently: f (A, u) ≡ (γ ≤ ∑k

i=s+1 δs,i) for some user-defined budget threshold
γ ∈ R>0.
Time. If we denote by tk the time required to ingest revision k as an aggre-
gated changeset in an archive A, this oracle is implemented as f (A, u) ≡
( tk

ts+1
> θ), where s + 1 is the first revision stored as an aggregated changeset

in the current delta chain. This strategy therefore creates a new snapshot as
soon as ingestion takes θ times longer than the ingestion of version s + 1.
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Version (k) 0 1 2 3 4 5
|u+

i,j| 100 20 20 20 20 20
|u−i,j| 0 10 10 10 10 10

∑k
i=s+1 δs,i - 0.23 0.61 1.08 0.19 0.51

tk - 1.00 1.50 2.25 3.38 1.0

Baseline S ∆ ∆ ∆ ∆ ∆
Periodic (d = 2) S ∆ S ∆ S ∆

Change ratio (γ = 1.0) S ∆ ∆ S ∆ ∆
Time (θ = 3.0) S ∆ ∆ ∆ S ∆

Table C.1: Creation of snapshots according to the different strategies on a toy RDF graph com-
prised of 100 triples and 5 revisions defined by changesets. An S denotes a snapshot whereas a
∆ denotes an aggregated changeset.

4 Querying Archives with Multiple Delta Chains

In the following, we detail our algorithms to compute version material-
ization (VM), delta materialization (DM), and V (version) queries on RDF
archives with multiple delta chains. As is common in other RDF archiving
approaches [16], we focus our algorithms on answering single triple patterns
queries, since they constitute the building blocks for more complex query an-
swering, which is outside the scope of this work. All the routines described
next are defined w.r.t. to an implicit RDF archive A.

4.1 VM Queries

In a single delta chain with aggregated deltas and reference snapshot s, exe-
cuting a VM query with triple pattern p on a revision i requires us to materi-
alize the target revision as Gi = (Gs ∪ u+

s,i) \ u−s,i and then execute p on Gi. In
our baseline, s = 0; in the presence of multiple delta chains s = snapshot(i)
corresponds to i’s reference snapshot in the archive’s history. Our implemen-
tation relies on OSTRICH, which can efficiently compute Gi and run queries
on top of it.

4.2 DM Queries

The procedure queryDM in Algorithm 4 describes how to answer a DM query
on two revisions i and j (i < j) with triple pattern p on an RDF archive with
multiple delta chains. The algorithm relies on two important sub-routines.
The first one, denoted deltaDiff, executes standard DM queries on single triple
patterns over a single delta chain as proposed by OSTRICH [16]. The second
routine, called snapshotDiff, computes the difference between the results of
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Algorithm 4 DM query algorithm

1: function snapshotDiff (Si, Sj, p)
▷ snapshots Si, Sj, triple pattern p

2: d← distance(i, j)
3: if d > 1 then
4: qi ← query(Si, p); qj ← query(Sj, p)
5: delta← (qj \ qi) ∪ (qi \ qj)
6: else
7: delta = deltaDiff(i, j, p)
8: return delta
9:

10: function queryDM(i, j, p) ▷ versions i, j, triple pattern p
11: sidi ← snapshot(i); sidj ← snapshot(j)
12: if sidi = sidj then ▷ i and j in the same delta-chain
13: delta← deltaDiff(i, j, p)
14: else ▷ i and j not in the same delta-chain
15: usi,sj ← snapshotDiff(sidi, sidj, p)
16: usi,i, usj,j ← ∅
17: if i ̸= sidi then ▷ test if version i is a delta
18: usi,i ← deltaDiff(sidi, i, p)

19: if j ̸= sidj then ▷ test if version j is a delta
20: usj,j ← deltaDiff(sidj, j, p)

21: ui,sj ← mergeBackwards(usi,i, usi,sj)
22: delta← mergeForward(ui,sj, usj,j)

23: return delta

p on two reference snapshots Si, Sj. It works by first testing if the delta
chains of Si and Sj are not consecutive (line 2). If they are not, snapshotDiff
implements a set-difference between p’s results on Si and Sj (lines 4–5). In
case the snapshots define consecutive delta chains, we leverage the fact that Sj
also exists as an aggregated delta w.r.t. Si (see Section 3.1). We can therefore
treat this case efficiently as a standard DM query via deltaDiff (line 7).

We now have the elements to explain the main DM query procedure
(queryDM). First, it checks whether both revisions are in the same delta chain,
i.e., if they have the same reference snapshot (line 14). If so, the problem boils
down to a single delta chain DM query that can be answered with deltaDiff
(line 15). Otherwise, we invoke the routine snapshotDiff on the reference snap-
shots (line 17) to compute the results’ difference between the delta chains.
This is denoted by ds.

If revisions i and j are not snapshots themselves, lines 20 and 23 compute
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the changes between the target versions and their corresponding reference
snapshots – denoted by usi,i and usj,j. The last steps, i.e., lines 25 and 26,
merges the intermediate results to produce the final output. First, the routine
mergeBackwards merges usi,sj, i.e., the changes between the two delta chains,
with usi,i, i.e., the changes within the first delta chain. This routine is designed
as a regular sorted merge because triples are already sorted in the OSTRICH
indexes. Unlike a classical merge routine, mergeBackwards inverts the flags of
the changes present in usi,i but not in usi,sj. Indeed, if a change in usi,i did
not survive to the next delta chain, it means it was later reverted in revision
sidj. The result of this operation are therefore the changes between revisions
i and sidj, which we denote by ui,sj. The final merge step, mergeForward,
combines ui,sj with the changes in the second delta chain, i.e., usj,sj. The
routine mergeForward runs also a sorted merge, but now triples with opposite
change flag present in both changesets are filtered from the final output as
they indicate revertion operations.

4.3 V Queries

Algorithm 5 V query algorithm

1: function queryV(p) ▷ p a triple pattern
2: r ← ∅
3: for c ∈ C do ▷ C the list of delta chains
4: v← singleQueryV(c, p)
5: r ← merge(r, v) ▷ merge intermediate results

6: return r

Algorithm 5 describes the process of executing a V query p over multiple
delta chains. This relies on the capability to execute V queries on individual
delta chains implemented in OSTRICH [16] via the function singleQueryV.
The routine iterates over the list of delta chains (line 3), and runs singleQueryV
on each delta chain (line 4). This gives us triples annotated with lists of
versions within the range of the delta chain. At each iteration we carry out a
merge step (line 5) that consists of a set union of the triples from the current
delta chain and the results seen so far. When a triple is present in both sets,
we merge their lists of versions.

5 Implementation

We implemented the proposed snapshot creation strategies and query algo-
rithms for RDF archives on top of OSTRICH [16]. We briefly explain the most
important aspects of our implementation.
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Storage. An RDF archive consists of a snapshot for revision 0 and a single
delta chain of aggregated changesets for the upcoming revisions (Fig. C.1a).
The snapshot is stored as an HDT [4] file, whereas the delta chain is material-
ized in two stores: one for additions and one for deletions. Each store consists
of 3 indexes in different triple component orders, namely SPO, OSP, and POS,
implemented as B+trees. Keys in those indexes are individual triples linked
to version metadata, i.e., the revisions where the triple is present and absent.
Besides the change stores, there is an index with addition and deletion counts
for all possible triple patterns, e.g., ⟨ ?s, ?p, ?o ⟩ or ⟨ ?s, cityIn, ?o ⟩, which
can be used to efficiently compute cardinality estimations – particularly use-
ful for SPARQL engines.
Dictionary. As common in RDF stores [8, 19], RDF terms are mapped to an
integer space to achieve efficient storage and retrieval. Two disjoint dictio-
naries are used in each delta chain: the snapshot dictionary (using HDT) and
the delta chain dictionary. Hence, our multi-snapshot approach uses D × 2
(potentially non-disjoint) dictionaries, where D is the number of delta chains
in the archive.
Ingestion. The ingestion routine depends on whether a revision will be
stored as an aggregated delta or as a snapshot. For revision 0, our inges-
tion routine takes as input a full RDF graph to build the initial snapshot. For
subsequent revisions, we take as input a standard changeset uk−1,k (|A| = k),
and use OSTRICH to construct an aggregated changeset of the form us,k,
where revision s = snapshot(k) is the latest snapshot in the history. When
the snapshot policy decides to materialize a revision s′ as a snapshot, we
use the aggregated changeset us,s′ to compute the snapshot efficiently as
Gs′ = (Gs \ u−s,s′) ∪ u+

s,s′ .
Change-ratio estimations. The change-ratio snapshot strategy computes the
cumulative change ratio of the current delta chain w.r.t. a reference snapshot
s to decide whether to create a new snapshot or not. We therefore store
the approximated change ratios δs,k of each revision in a key-value store.
To approximate each δs,k according to Equation C.1, we rely on OSTRICH’s
count indexes. The terms |u+

s,k| and |u−s,k| can be obtained from the count
indexes of the fully unbounded triple pattern ⟨ ?s, ?p, ?o ⟩ in O(1) time. We
estimate |Gs ∪ Gj| as |Gs|+ |u+

s,j|, where |Gs| is efficiently provided by HDT.
The source code of our implementation as well as the experimental scripts

to reproduce this paper are available in a Zenodo archive3.

3https://doi.org/10.5281/zenodo.7256988
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6 Experiments

To determine the effectiveness of our multi-snapshot approach for RDF
archiving, we evaluate the four proposed snapshot creation strategies along
three dimensions: ingestion time (Section 6.2), disk usage (Section 6.3), and
query runtime for VM, DM, and V queries (Section 6.4).

6.1 Experimental Setup

We resort to the BEAR benchmark for RDF archives [5] for our evaluation.
BEAR comes in three flavors: BEAR-A, BEAR-B, and BEAR-C, which com-
prise a representative selection of different RDF graphs and query loads. We
omit BEAR-C from our experiments because its query load consists of full
SPARQL queries and diverse constructs, which are not supported by our
implementation, nor by any other RDF archiving approaches. Table C.2 sum-
marizes the characteristics of the experimental datasets and query loads. Due
to the very long history of BEAR-B instant, OSTRICH could only ingest one
third of the archive’s history (7063 out 21046 revisions) after one month of
execution. In a similar vibe, OSTRICH took one month to ingest the first 18
revisions (out of 58) of BEAR-A. Despite the dataset’s short history, change-
sets in BEAR-A are in the order of millions of changes, which also makes
ingestion intractable in practice. On these grounds, the original OSTRICH
paper [16] omitted BEAR-B instant and included only the first 10 versions
of BEAR-A. Multi-snapshot solutions, on the other hand, allow us to manage
these datasets. All our experiments were run on a Linux server with a 16-core
CPU (AMD EPYC 7281), 256 GB of RAM, and 8TB hard disk drive.

BEAR-B

BEAR-A Daily Hourly Instant
# versions 58 89 1299 21046
|Gi|’s range 30M - 66M 33K - 44K 33K - 44K 33K - 44K
|∆| 22M 942 198 23

# queries 368 62 (49 ?P? and 13 ?PO)

Table C.2: Dataset characteristics. |Gi | is the size of the individual revisions, |∆| denotes the
average size of the individual changesets uk−1,k .

We evaluate the different strategies for snapshot creation detailed in Sec-
tion 3.2 along ingestion speed, storage size, and query runtime. Except for
our baseline (OSTRICH), all our strategies are defined by parameters that we
adjust according to the dataset:
Periodic. This strategy is defined by the period d. We set d ∈ {2, 5} for
BEAR-A, d ∈ {5, 10} for BEAR-B daily, d ∈ {50, 100} for BEAR-B hourly, and
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d ∈ {100, 500} for BEAR-B instant. Values of d were adjusted per dataset
experimentally w.r.t. the length of the revision history and the baseline in-
gestion time. High periodicity, i.e., smaller values for d, lead to more and
shorter delta chains.
Change-ratio (CR). This strategy depends on a cumulative change-ratio bud-
get threshold γ. We set γ ∈ {2.0, 4.0} for all the tested datasets. γ = 2.0 yields
10 delta chains for BEAR-A, as well as 5, 23, and 151 delta chains for BEAR-B
daily, hourly, and instant, respectively. For γ = 4.0, we obtain instead 6 delta
chains for BEAR-A, and 3, 16, and 98 for the BEAR-B alternatives.
Time. This strategy depends on the ratio θ between the ingestion time of
the new revision and the ingestion time of the first delta in the current delta
chain. We set θ = 20 for all datasets. This produces 3, 26, and 293 delta
chains for the daily, hourly, and instant variants of BEAR-B respectively, and
2 delta chains for BEAR-A.
We omit the reference systems included with the BEAR benchmark since they
are outperformed by OSTRICH [16].

BEAR-B

BEAR-A Daily Hourly Instant
High Periodicity 13472.16 0.67 12.95 57.89
Low Periodicity 14499.45 0.98 23.05 298.36

CR γ = 2.0 20505.93 1.88 13.79 77.01
CR γ = 4.0 21588.25 2.34 19.47 114.83
Time θ = 20 49506.15 2.64 15.83 43.53

Baseline - 6.89 1514.85 -

Table C.3: Ingestion times in minutes

BEAR-B

BEAR-A Daily Hourly Instant
High Periodicity 72417.47 199.17 322.34 2283.43
Low Periodicity 49995.00 102.96 185.33 787.75

CR γ = 2.0 47335.74 51.49 284.47 1690.38
CR γ = 4.0 42203.04 37.91 211.71 1175.15
Time θ = 20 46614.98 38.33 325.13 3972.32

Baseline - 19.82 644.50 -

Table C.4: Disk usage in MB

6.2 Ingestion Time

Table C.3 depicts the total time to ingest the experimental datasets. Since
we always test two different values of d for the periodic strategy on each
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(c) BEAR-B Instant

Fig. C.2: Detailed ingestion times (log scale) per revision. We include the first 1500 revisions for
BEAR-B instant since the runtime pattern is recurrent along the entire history.

dataset, in both Table C.3 and C.4, we refer to them as “high” and “low”
periodicity. This is meant to abstract away the exact parameters, which vary
for each dataset, so that we can focus instead on the effects of higher/lower
periodicity. We remind the reader that the baseline (OSTRICH) cannot ingest
BEAR-A and BEAR-B instant in a reasonable amount of time. This explains
their absence in Table C.3. But even when OSTRICH can ingest the entire
history (in less than 26 hours), a multi-snapshot strategy still incurs a signif-
icant speed-up. This becomes more significant for long histories as observed
for BEAR-B hourly, where the speed-up can reach two orders of magnitude.
The good performance of the high periodicity strategy and change-ratio with
the smaller budget threshold γ = 2.0 suggests that shorter delta chains are
beneficial for ingestion time. This is confirmed by Fig. C.2, where we also
notice that ingestion time reaches a minimum for the revisions following a
snapshot.

6.3 Disk Usage

Unlike ingestion time where shorter delta changes are clearly beneficial, the
gains in terms of disk usage need fine-grained tuning because they depend
on the dataset as shown in Table C.4. Overall, more delta chains tend to
increase disk usage. For BEAR-B daily, frequent snapshots (high periodicity
d = 5) incur a large overhead w.r.t. the baseline because the changesets are
small and the revision history is short. Similar results are observed for BEAR-
A and BEAR-B instant, even though we still need multiple snapshots to be
able to ingest the data. BEAR-B hourly is interesting because it shows that for
long histories, a single delta chain can be inefficient in terms of disk usage.
Interestingly for BEAR-A, the change-ratio γ = 4.0 uses less storage than
the time strategy with θ = 20, despite using more delta chains. This hints
that very large aggregated deltas are also inefficient compared to multiple
delta chains with smaller aggregated deltas. For BEAR-B instant, the good
performance of the change-ratio strategies and the low periodicity strategy
(d = 500) suggests that a few delta chains can provide significant space sav-
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ings. On the other hand, the time strategy with θ = 20 performs slight worse
because it creates too many delta chains.

6.4 Query Runtime

In this section we evaluate the impact of our snapshot creation strategies on
query runtime. We use the queries provided with the BEAR benchmark for
BEAR-A and BEAR-B. These are DM, VM, and V queries on single triple
patterns. Each individual query was executed 5 times and the runtimes av-
eraged. All the query results are depicted in Figure C.3.
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Fig. C.3: Query results for the BEAR benchmark
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VM queries

We report the average runtime of the benchmark VM queries for each version
i in the archive. The results are depicted in Figures C.3a, C.3d, C.3g, and C.3j.
We report runtimes in micro-seconds for all strategies.

Using multiple delta chains is consistently beneficial for VM query run-
time, which is best when the target revision was materialized as a snapshot.
When it is not the case, runtime is proportional to the size of the delta chain,
which depends on its length and the volume of changes that must be ap-
plied to the snapshot before running the query. This is obvious for BEAR-A
with the time θ = 20 strategy, which splits the history into two imbalanced
delta-chains, where one of them contains the first 53 revisions (out of 58).

DM Queries

We report for each revision i in the archive the average runtime of the bench-
mark DM queries between revisions ⟨ 0, i ⟩ and ⟨ 1, i ⟩. Such a setup tests
the query routine in all possible scenarios: between two snapshots, between
a snapshot and a delta (and vice versa), and between two deltas. The results
are depicted in Figures C.3b, C.3e, C.3h, and C.3k. The results shows a rather
mixed benefit of multiple delta chains in query runtime: highly positive for
the long history of BEAR-B hourly and negligible for BEAR-B daily. Overall,
DM queries benefit from short delta chains as illustrated by Figure C.3b and
to a lesser degree by the periodic strategy with d = 5 in Figure C.3e. All
our strategies beat the baseline by a large margin on BEAR-B hourly because
delta operations become very expensive as the single delta chain grows. That
said, the baseline runtime tends to decrease slightly with i because the data
from two distant versions tends to diverge more, which requires the engine
to filter fewer results from the aggregated deltas. For BEAR-B daily, mul-
tiple delta chains may perform comparably or slightly worse – by no more
than 20% – than the baseline. This happens because BEAR daily’s history
is short, and hence efficiently manageable with a single delta chain. In this
case the overhead of multiple snapshots and delta chains does not bring any
advantage for DM queries.

V Queries

Figure C.3c, C.3f, C.3i, and C.3l show the total runtime of the benchmark V
queries on the different datasets. V queries are the most challenging queries
for the multi-snapshot archiving strategies as suggested by Figures C.3f
and C.3i. As described in Algorithm 5, answering V queries requires us to
query each delta chain individually, buffer the intermediate results, and then
merge them. It follows that runtime scales proportionally to the number of
delta chains, which means that contrary to DM and VM queries, many short
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delta chains are detrimental to V query performance. Nonetheless, query-
ing datasets such as BEAR-A and BEAR-B instant is only possible with a
multi-snapshot solution.

6.5 Discussion

We now summarize our findings and draw a few design lessons for RDF
archives.

• For small datasets, small changesets, or relatively short histories, the over-
head of multi-snapshot strategies does not pay off in terms of query run-
time and disk usage. This observation is particularly striking for V queries
for which runtime increases with the number of delta chains.

• While many short delta chains are detrimental to V queries and often to
storage consumption, they are mostly benefitial for VM and DM queries
because these query types require us to iterate over changes within delta
chains (two in the worst case of DM queries). Moreover, short delta chains
reduce ingestion time systematically.

• Disk usage usually benefit from less numerous delta chains, except for
long change history and large aggregated deltas.

• Change-ratio strategies strike an interesting trade-off because they take
into account the amount of data stored in the delta chain as criterion to
create a snapshot. This ultimately has a direct positive effect on ingestion
time, VM/DM querying, and storage size.

The bottom line is that the snapshot creation strategy for RDF archives is
subject to a trade-off among ingestion time, disk consumption, and query
runtime for VM, DM, and V queries. As shown in our experimental section,
there is no one-size-fits-all strategy. The suitability of a strategy depends on
the application, namely the users’ priorities or constraints, the characteristics
of the archive (snapshot size, history length, and changeset size), and the
query load. For example, implementing version control for a collaborative
RDF graph will likely yield an archive like BEAR-B instant, i.e., a very long
history with many small changes and VM/DM queries mostly executed on
the latest revisions. Depending on the server’s capabilities and the frequency
of the changes, the storage strategy could therefore rely on the change ratio or
the ingestion time ratio and be tuned to offer arbitrary latency guarantees for
ingestion. On a different note, a user doing data analytics on the published
versions of DBpedia (as done in [9]) may be confronted to a dataset like
BEAR-A and therefore resort to numerous snapshots, unless their query load
includes many real-time V queries.
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7 Conclusion

In this paper we have presented a hybrid storage approach for RDF archiv-
ing based on multiple snapshots and chains of aggregated deltas. We studied
different snapshot creation strategies and discussed the trade-offs in terms of
ingestion time, storage size, and query runtime. Our experimental evaluation
shows that our techniques allow us to handle very long revision histories that
could not be managed by previous approaches. Moreover, we drew a set of
design lessons for RDF archive design that can help users decide the best
strategy based on the application scenario. As future work, we plan to de-
velop more complex snapshot strategies, e.g., based on machine learning.
Moreover, the development of more efficient encoding and serialization tech-
niques for timestamped deltas is a promising research avenue to further lower
storage size. We also plan to study the impact of our techniques on the per-
formance of SPARQL query execution and consider improvements within the
landscape of alternative RDF representations and indexing approaches [13].
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Abstract

The proliferation of large and ever-growing RDF datasets has sparked a need for
robust and performant RDF archiving systems. In order to tackle this challenge, sev-
eral solutions have been proposed throughout the years, including archiving systems
based on independent copies, time-based indexes, and change-based approaches. In
recent years, modern solutions combine several of the above mentioned paradigms.
In particular, aggregated changesets of time-annotated triples have showcased a note-
worthy ability to handle and query relatively large RDF archives. However, such
approaches still suffer from scalability issues, notably at ingestion time. This makes
the use of these solutions prohibitive for large revision histories. Furthermore, appli-
cations for such systems remain often constrained by their limited querying abilities,
where SPARQL is often left out in favour of single triple-pattern queries. In this pa-
per, we propose a hybrid storage approach based on aggregated changesets, snapshots,
and multiple delta chains that additionally provides full querying SPARQL on RDF
archives. This is done by interfacing our system with a modified SPARQL query
engine. We evaluate our system with different snapshot creation strategies on the
BEAR benchmark for RDF archives and showcase improvements of up to one order
of magnitude in ingestion speed compared to state-of-the-art approaches, while keep-
ing competitive querying performance. Furthermore, we demonstrate our SPARQL
query processing capabilities on the BEAR-C variant of BEAR. This is, to the best
of our knowledge, the first openly-available endeavour that provides full SPARQL
querying on RDF archives.

The layout has been revised.



1. Introduction

1 Introduction

The exponential growth of RDF data and the emergence of large collaborative
knowledge graphs have driven research in the field of efficient RDF archiv-
ing [9, 19], the task of managing the change history of RDF graphs. This
offers invaluable benefits to both data maintainers and consumers. For data
maintainers, RDF archives serve as the foundation for version control [4].
This not only enables data mining tasks, such as identifying temporal and
corrections patterns [23], but in general opens the door to advanced tem-
poral data analytics of evolving graphs [6, 14, 26, 28]. For data consumers,
RDF archives provide a valuable means to access historical data and delve
into the evolution of specific knowledge domains [2, 15, 35]. In essence, these
archives offer a way to query past versions of RDF data, allowing for a deeper
understanding of how knowledge has developed over time.

However, building and maintaining RDF archives presents substantial
technical challenges, primarily due to the large size of contemporary knowl-
edge graphs. For instance, DBpedia, as of April 2022, comprises 220 million
entities and 1.45 billion triples1. The number of changes between consecutive
releases can reach millions [19]. Yet, dealing with large changesets is not the
sole obstacle faced by state-of-the-art RDF archive systems. Efficient querying
also remains an open challenge since support for full SPARQL is rare among
existing systems [9, 19].

To address these challenges, we propose an approach for ingesting, stor-
ing, and querying long revision histories on large RDF archives. Our ap-
proach, which combines multiples snapshots and delta chains, has been pre-
viously detailed in our prior work [22] and outperforms existing state-of-the-
art systems in terms of ingestion time and query runtime for archive queries
on single triple patterns. This paper builds on top of this prior work and
extends it with the following contributions:

• The design and implementation of a full SPARQL querying middle-
ware on top of our multi-snapshot RDF archiving engine.

• A novel representation for the versioning metadata stored in our in-
dexes. This representation is designed to improve ingestion time and
disk usage without increasing query runtime.

• An evaluation of the two aforementioned contributions in addition to
an extended evaluation of our prior work with additional baselines.

In general, we evaluate the effectiveness of our enhanced approach using
the BEAR benchmark [9], our results demonstrate remarkable improvements,
namely, up to several order of magnitude faster ingestion times, reduced disk

1https://www.dbpedia.org/resources/knowledge-graphs/
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usage, and overall improved querying speed compared to existing baselines.
Additionally, we showcase our new SPARQL querying capabilities on the
BEAR-C variant of the BEAR benchmark. This is the first time, to the best of
our knowledge, that a system complete this benchmark suite and publish its
results.

The remainder of this paper is organized as follows: Section 2 explains
the background concepts used throughout the paper. In Section 3 we discuss
the state of the art in RDF archiving, in particular existing approaches to store
and query RDF archives. In Section 4, we detail our storage architecture that
builds upon multiple delta chains, and proposes several strategies to han-
dle the materialization of new delta chains. Section 5 details the algorithms
employed for processing single triple patterns over our multiple-delta-chain-
architecture, while Section 6 describes our new versioning metadata serializa-
tion method, and showcases how it improves ingestion times and disk usage.
In Section 7, we explain our solution to support full SPARQL 1.1 archives
queries on top of our storage architecture. Section 8 describes our extensive
experimental evaluation. The paper concludes with Section 9, which summa-
rizes our contributions and discusses future research directions.

2 Preliminaries

An RDF graph G (also called a knowledge graph) consists of a set of triples
⟨ s, p, o ⟩ with subject s ∈ I ∪ B, predicate p ∈ I , and object o ∈ I ∪ L ∪ B,
where I is a set of IRIs, L is a set of literals, and B is a set of blank nodes [27].
RDF graphs are queried using SPARQL [30], whose building blocks are triple
patterns, i.e., triples that allow variables (prefixed with a ‘?’) in any position,
e.g., ⟨ ?x, cityIn, USA ⟩ matches all American cities in G.

An RDF archive A is a temporally ordered collection of RDF graphs that
represents all the states of the graph throughout its history of updates. This
can be formalized as A = {G0, . . . , Gk}, with Gi being the graph at version
(or revision) i ∈ Z≥0. The transition from Gi−1 to version Gi is implemented
via an update operation Gi = (Gi−1 \ u−i )∪ u+

i , where u+
i and u−i are disjoint

sets of added and deleted triples. We call the pair ui = ⟨u+
i , u−i ⟩ a changeset

or delta. We can generalize changesets to any pair of versions, i.e., ui,j =

⟨u+
i,j, u−i,j⟩ defines the changes between versions i and j. When a triple ⟨ s, p,

o ⟩ is present in a version i of the archive, we write it as a quad ⟨ s, p, o, i ⟩.
We summarize the notations used throughout the paper in Table D.1.

3 Related Work
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⟨ s, p, o ⟩ an RDF triple
⟨ s, p, o, i ⟩ a versioned triple, i.e., an

RDF quad
G an RDF graph
Gi the i-th version or revision of

graph G
A an RDF graph archive

ui = ⟨u+
i , u−i ⟩ a changeset with sets of

added and deleted triples for
version i

ui,j = ⟨u+
i,j, u−i,j⟩ the changeset between graph

versions i and j (j > i)

Table D.1: Notations summary.

In this section, we discuss the current state of RDF archiving in the literature.
We will first present how RDF archives are usually queried. We then discuss
the existing storage paradigms for RDF archives and how they perform on the
different query types. We conclude this section by detailing the functioning
of OSTRICH, a prominent solution for managing RDF archives, which we
use as baseline for our proposed design.

3.1 Querying RDF Archives

In contrast to conventional RDF, the presence of multiple versions within an
RDF archive requires the definition of novel query categories. Some catego-
rizations for versioning queries over RDF Archives has been proposed in the
literature [9, 18, 26]. In this work we build upon the proposal of Fernández et
al. [9] due to its greater adoption by the community. They identify five query
types, which we explain in the following through a hypothetical RDF archive
that stores information about countries and their diplomatic relationships:

• Version Materialization (VM). These are standard SPARQL queries run
against a single version i, e.g., ⟨ ?s, type, Country, 5 ⟩ returns the
countries present in version i = 5.

• Delta Materialization (DM). These are queries defined on changesets
ui,j = ⟨u+

i,j, u−i,j⟩, e.g., the query asking for the countries added between
versions i = 3 and j = 5, which implies to run ⟨ ?s, type, Country ⟩ on
u+

3,5.
• Version Query (V). These are standard SPARQL queries that provide

results annotated with the versions where those results hold. An ex-
ample is ⟨ ?s, type, Country, ?v ⟩, which returns pairs ⟨ country,
version ⟩.
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• Cross-version (CV). CV queries combine results from multiple versions,
for example: which of the countries in the latest version have diplomatic
relationships with the countries in revision 0?

• Cross-delta (CD). CD queries combine results from multiple change-
sets, for example: in which versions were the most countries added?

Both CV and CD queries build upon the other types of queries, i.e., V and DM
queries. Therefore, full support for VM, DM, and V queries is the minimum
requirement for applications relying on RDF archives. Papakonstantinou et
al. [18], on the other hand, propose a categorisation into two main categories,
version and delta queries, which can be of any of three types: Materializa-
tion, Single version, or Cross Version. As such, materialization queries request
the full set of triples present in a given version, while single version queries
are answered by applying restrictions or filters on the triples of that version.
Cross version queries instead needs access to multiple versions of the data. In
practice, the categorizations of [18] and [9] are equally expressive. Polleres
et al. [26] propose two categories of versioned queries: Version Materialization
and Delta Materialization. Those are identical to the categories used by Fer-
nández et al. [9] and described above. Queries applied to multiple versions
are categorized as Cross Version, which includes the Version Queries (V) from
Fernández et al. [9]’s classification.

SPARQL is the recommended W3C standard to query RDF data, how-
ever adapting versioned query types to standard SPARQL remains one of the
main challenges in RDF archiving. Indeed, current RDF archiving systems
are often limited to queries on single triple patterns [19, 32]. This puts the
burden of combining the results of single triple pattern queries onto the user,
further raising the barrier for the adoption of RDF archiving systems. While
support for standard SPARQL on RDF archives is nonexistent, multiple en-
deavors have proposed either novel query languages or temporal extensions
for SPARQL. Fernández et al. [9] for example, formulates their categories of
versioning queries using the AnQL [38] query language. AnQL is a SPARQL
extension operating on quad patterns instead of triples pattern. The addi-
tional component can be mapped to any term u ∈ I ∪L, and is used to repre-
sent time objects such as timestamps or version identifiers. Other works have
focused on expressing SPARQL queries with temporal constraints [5, 11, 25].
T-SPARQL for example, takes inspiration from the TSQL2 language and can
match triples annotated with validity timestamps. SPARQL-LTL [10] on the
other hand, supports triples annotated with versions numbers, which are
implemented as named graphs.

All in all, there is currently no widely accepted standard for representa-
tion of versioned queries over RDF archives within the community. Instead
current proposals are often tailored to specific use cases and applications,
and no standardization effort has been proposed.
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In this work we formulate complex queries on RDF archives as standard
SPARQL queries, but we assume that revisions in the archive are modeled
logically as RDF graphs named according to a particular convention (ex-
plained in Section 7). This design decision makes our solution suitable to
any standard RDF/SPARQL engine with support for named graphs.

3.2 Main Storage Paradigms for Storing RDF Archives

Several solutions have been proposed for storing the history of RDF graphs
efficiently. We review the most prominent approaches in this section and
refer the reader to [19] for a detailed survey. We distinguish three major
design paradigms: independent copies (IC), change-based solutions (CB),
and timestamp-based systems (TB).

Independent copies (IC) systems, such as SemVersion [36], implement full
redundancy: all triples present in a version i are stored as an independent
RDF graph Gi. While IC approaches excel at executing VM queries, DM
and V queries suffer from the need to execute queries independently across
multiple versions, requiring subsequent result set integration and filtering.
Similarly, IC approaches are impractical for today’s knowledge graphs due
to their prohibitive storage footprint. This fact has shifted the research trend
towards CB and TB systems.

Change-based (CB) solutions store their initial version as a full snapshot
and subsequent versions Gj as changesets ui,j (also called deltas) where j > i.
We call a sequence of changesets – representing an arbitrary sequence of
versions – and its corresponding reference revision i, a delta chain. CB ap-
proaches usually require less disk space than IC architectures and are optimal
for DM queries – at the expense of efficiency for VM queries. R43ples [12] is
a prominent example of a system employing a CB storage paradigm.

Timestamp-based (TB) systems store triples annotated with versioning
metadata such as temporal validity intervals, addition/deletion timestamps,
and list of valid versions among others. This makes TB solutions usually well
suited to efficiently answer V queries, while VM and DM queries still neces-
sitate further processing. The storage efficiency of TB solutions depends on
the representation chosen to serialize the versioning metadata. TB systems
notably include x-RDF-3X [17], Dydra [3], and v-RDFCSA/v-HDT [7]. The
latter has been showed to provide excellent storage efficiency and query per-
formance. However, this is achieved at the cost of flexibility, by limiting itself
to storing and indexing existing full archives, and leaving out the possibility
of subsequent updates. Moreover, no implementation of their method has
been made publicly available at the time of writing. Dydra is only available
through their cloud service and is otherwise closed source, which makes a
fair comparative evaluation in an independent and controlled setup impossi-
ble.

137



Paper D.

Finally, recent approaches borrow inspiration from more than one
paradigm. QuitStore [4], for instance, stores the data in fragments, for which
it implements a selective IC approach. This means that only modified frag-
ments generate new copies, whereas the latest version is always material-
ized in main memory. OSTRICH [32] proposes a customized CB based ap-
proach based on aggregated changesets with version-annotated triples. This
approach has showed great potential both in terms of scalability and query
performance [19, 32]. For this reason our solutions use this system as under-
lying architecture. We describe OSTRICH in detail in the following section.

3.3 OSTRICH’s Architecture and Storage Paradigm

Change-based (CB) approaches work by storing the first revision of an archive
as a fully materialized snapshot, and subsequent versions as deltas ui,j with
i = j − 1 (see Figure D.2a for an illustration). This approach provides bet-
ter storage efficiency than approaches based on independent copies (IC), as
long as the deltas between versions are not larger than the materialized re-
visions. Also, CB approaches provide good query performance for delta-
materialization (DM) queries. However, some queries can become increas-
ingly expensive as the delta chain grows, because each delta is relative to
the previous one. For instance version-materialization (VM) queries require
the iteration of the full delta chain, up to the target version, in order to re-
construct the needed data on which the query will be executed. Similarly,
version queries (V) need to iterate over the entire delta chain to provide a
complete list of the valid version numbers for each solution of a query. On
long delta chains this process can become prohibitive.

As such, OSTRICH [32] proposes instead the use of aggregated delta chains,
as illustrated in Figure D.2b. An aggregated delta chain works by storing an
initial reference snapshot, as conventional delta chains do, and then storing
subsequent versions as deltas u0,j with 0 being the reference version. Such
an approach allows for a more efficient version materialization process com-
pared to conventional delta chains, since only one delta needs to be consid-
ered to reconstruct any version.

OSTRICH stores the initial snapshot in a HDT file [8] , which provides a
dictionary and a compressed, yet easy to read, serialization for the triples. As
standard for RDF engines, the dictionary maps RDF terms to integer identi-
fiers, which are used in all data structures for efficiency.

In contrast to the initial snapshot, the delta chain is stored in two sepa-
rate triple stores, one for additions and one for deletions. Each triple store
is comprised of three differently ordered indexes (SPO, POS, and OSP), as
illustrated in Figure D.1. Each triple is annotated with versioning metadata,
which is used for several purposes: First, this reduces data redundancy in the
delta chain, allowing each triple to be stored only once. Secondly, the meta-
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SPO POS OSP

+

Triple → {Version: Local Change}

SPO POS OSP

-

Triple → {Version: {Local Change, SP?, S?O, S??, ?PO, ?P?, ??O, ??? }}

Addition Counts

Fig. D.1: OSTRICH Delta Chain Storage Overview

data can be used to accelerate query processing. As seen in Figure D.1, this
metadata differs between additions and deletions triples. All triples feature
a collection of mappings from version to a local change flag, which indicates
whether the triple reverts a previous change in the delta chain. For instance,
consider the quad ⟨ s, p, o, 0 ⟩ and a changeset in revision 2 that removes the
triple ⟨ s, p, o ⟩. If a subsequent change adds this triple again, let us say in
revision 4, then the entry for triple ⟨ s, p, o ⟩ will contain the entries {4 : true}
and {2 : false} for the addition and deletion indexes respectively. This flag
can be used to filter triples early during querying. Since deltas in OSTRICH
are aggregated, entries in the versioning metadata are copied for each version
where a change is relevant. From the previous example, the entry {2 : false}
in the deletion index will also exist for revision 3 as {3 : false}, since the triple
is deleted in both u0,2 and u0,3. This can create redundancies, especially in
long delta chains.

We notice that deleted triples are associated to an additional vector that
stores the triple’s relative position in the delta for every possible triple pattern
order. This allows OSTRICH to optimize for offset queries, and enables fast
computation of deletion counts for any triple pattern and version. Since HDT
files cannot be edited, the delta chain has also its own writable dictionary for
the RDF terms that were added after the first snapshot. More details about
OSTRICH’s storage system can be found in the original paper [32].

OSTRICH supports VM, DM, and V queries on single triple patterns na-
tively. Aggregated changesets have been shown to speed up VM and DM
queries significantly w.r.t. a standard CB approach. As shown in [19, 32], OS-
TRICH is the only available solution that can handle histories for large RDF
graphs, such as DBpedia. That said, scalability still remains a challenge for
OSTRICH because aggregated changesets grow monotonically. This leads to
prohibitive ingestion times for large histories [19, 31] – even when the origi-
nal changesets are small. In this paper, we build upon OSTRICH and propose
a solution to this problem.
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4 Storing Archives with Multiple Delta Chains

Snapshot ∆ ∆ ∆ ∆

0 1 2 3 4

(a) Single delta chain

Snapshot ∆ ∆ ∆ ∆

0 1 2 3 4

(b) Single aggregated delta chain

Snapshot ∆ ∆

0 1

Snapshot ∆ ∆

2 3 4

(c) Multiple aggregated delta chains

Fig. D.2: Delta chain architectures

4.1 Multiple Delta Chains

As discussed in Section 3.3, ingesting new revisions as aggregate changesets
can quickly become prohibitive for long revision histories when the RDF
archive is stored in a single delta chain (see Figure D.2b). In such cases, we
propose the creation of a fresh snapshot that becomes the new reference for
subsequent deltas. Those new deltas will be smaller, and thus easier to build
and maintain. They will also constitute a new delta chain as depicted in
Figure D.2c.

While creating a fresh snapshot with a new delta chain should presum-
ably reduce ingestion time for subsequent revisions, its impact on query ef-
ficiency remains unclear. V queries, for instance, will have to be evaluated
on multiple delta chains, becoming more challenging to answer. In contrast,
VM queries defined on revisions already materialized as snapshots should
be executed much faster. Storage size and DM response time may be highly
dependent on the actual evolution of the data. If a new version includes
many deletions, fresh snapshots may be smaller than aggregated deltas. We
highlight that in our proposed architecture, revisions stored as snapshots also
exist as aggregated deltas w.r.t. the previous snapshot – as shown for revision
2 in Figure D.2c. Such a design decision allows us to speed up DM queries
as explained later.

It follows from the previous discussion that introducing multiple snap-
shots and delta chains raises a natural question: When is the right moment to
create a snapshot? We elaborate on this question from the perspectives of stor-
age, ingestion time, and query efficiency next. We then explain how to query
archives in a multi-snapshot setting in Section 5.
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4.2 Strategies for Snapshot Creation

A key aspect of our proposed design is to determine the right moment to
place a snapshot, as this decision is subject to a trade-off among ingestion
speed, storage size, and query performance. We formalize this decision via
an abstract snapshot oracle f : A×U → {0, 1} that, given an archive A ∈ A

with k revisions and a changeset uk−1,k ∈ U, decides whether revision k
should (1) or should not (0) be materialized as a snapshot – otherwise the
revision is stored as an aggregated delta. The oracle can rely on properties
of the archive and the input changeset to make a decision. In the following,
we describe some natural alternatives for our snapshot oracle f and illustrate
them with a running example (Table D.2). All strategies start with a snapshot
at revision 0. Note that we do not provide an exhaustive list of all possible
strategies one could implement.
Baseline. The baseline oracle never creates snapshots, except for the very
first revision, i.e., f (A, u) ≡ (A = ∅). This is akin to OSTRICH’s snapshot
policy [32].
Periodic. A new snapshot is created when a fixed number d of versions has
been ingested as aggregated deltas, i.e., f (A, u) ≡ (|A| mod (d + 1) = 0). We
call d the period.
Change-ratio. Long delta chains do not only incur longer ingestion times but
also higher disk consumption due to redundancy in the aggregated change-
sets. When low disk usage is desired, the snapshot strategy may take into
account the editing dynamics of the RDF graph. This notion has been quan-
tified in the literature via the change ratio score [9]:

δi,j(A) =
|u+

i,j|+ |u
−
i,j|

|Gi ∪ Gj|
(D.1)

Given two revisions i and j, the change ratio normalizes the number of
changes (additions and deletions) between the revisions by the joint size of
the revisions. If we aggregate the change ratios of all the revisions coming af-
ter a snapshot revision s, we can estimate the amount of data not materialized
in the snapshot for the current delta chain. A reasonable snapshot strategy
would therefore bound the aggregated change ratios ∑k

i=s+1 δs,i, put differ-
ently: f (A, u) ≡ (∑k

i=s+1 δs,i) ≥ γ for some user-defined budget threshold
γ ∈ R>0.
Time. If we denote by tk the time required to ingest revision k as an aggre-
gated changeset in an archive A, this oracle is implemented as f (A, u) ≡
( tk

ts+1
> θ), where s + 1 is the first revision stored as an aggregated changeset

in the current delta chain. This strategy therefore creates a new snapshot as
soon as ingestion time exceeds θ times the ingestion time of version s + 1.
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Version (k) 0 1 2 3 4 5
|u+

i,j| 100 20 20 20 20 20
|u−i,j| 0 10 10 10 10 10

∑k
i=s+1 δs,i - 0.25 0.68 1.24 0.20 0.55

tk - 1.00 1.50 2.25 3.38 1.00

Baseline S ∆ ∆ ∆ ∆ ∆
Periodic (d = 2) S ∆ S ∆ S ∆

Change ratio (γ = 1.0) S ∆ ∆ S ∆ ∆
Time (θ = 3.0) S ∆ ∆ ∆ S ∆

Table D.2: Creation of snapshots according to the different strategies on a toy RDF graph com-
prised of 100 triples and 5 revisions defined by changesets. An S denotes a snapshot whereas a
∆ denotes an aggregated changeset.

4.3 Implementation

We implemented the proposed snapshot creation strategies and query algo-
rithms for RDF archives on top of OSTRICH [32]. We briefly explain the most
important aspects of our implementation.
Storage. In OSTRICH, an RDF archive consists of a snapshot for revision 0
and a single delta chain of aggregated changesets for the upcoming revisions
(Fig. D.2b). The snapshot is stored as an HDT [8] file, whereas the delta
chain is materialized in two stores: one for additions and one for deletions.
Each store consists of 3 indexes in different triple component orders, namely
SPO, OSP, and POS, implemented as B+trees. Keys in those indexes are
individual triples linked to version metadata, i.e., the revisions where the
triple is present and absent. Besides the change stores, there is an index with
addition and deletion counts for all possible triple patterns, e.g., ⟨ ?s, ?p, ?o
⟩ or ⟨ ?s, cityIn, ?o ⟩, which can be used to efficiently compute cardinality
estimations – particularly useful for SPARQL engines.
Dictionary. As common in RDF stores [17, 37], RDF terms are mapped to an
integer space to achieve efficient storage and retrieval. Two disjoint dictio-
naries are used in each delta chain: the snapshot dictionary (using HDT) and
the delta chain dictionary. Hence, our multi-snapshot approach uses D × 2
(potentially non-disjoint) dictionaries, where D is the number of delta chains
in the archive.
Ingestion. The ingestion routine depends on whether a revision will be
stored as an aggregated delta or as a snapshot. For revision 0, our inges-
tion routine takes as input a full RDF graph to build the initial snapshot. For
subsequent revisions, we take as input a standard changeset uk−1,k (|A| = k),
and use OSTRICH to construct an aggregated changeset of the form us,k,
where revision s = snapshot(k) is the latest snapshot in the history. When
the snapshot policy decides to materialize a revision s′ as a snapshot, we
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use the aggregated changeset us,s′ to compute the snapshot efficiently as
Gs′ = (Gs \ u−s,s′) ∪ u+

s,s′ .
Change-ratio estimations. The change-ratio snapshot strategy computes the
cumulative change ratio of the current delta chain w.r.t. a reference snapshot
s to decide whether to create a new snapshot or not. We therefore store
the approximated change ratios δs,k of each revision in a key-value store.
To approximate each δs,k according to Equation D.1, we rely on OSTRICH’s
count indexes. The terms |u+

s,k| and |u−s,k| can be obtained from the count
indexes of the fully unbounded triple pattern ⟨ ?s, ?p, ?o ⟩ in O(1) time. We
estimate |Gs ∪ Gj| as |Gs|+ |u+

s,j|, where |Gs| is efficiently provided by HDT.
The source code of our implementation as well as the experimental scripts

to reproduce the results of this paper are available in a Zenodo archive2.

5 Single Queries on Archives with Multiple Delta
Chains

In the following, we detail our algorithms to compute version materialization
(VM), delta materialization (DM), and V (version) queries on RDF archives
with multiple delta chains. Our algorithms focus on answering single triple
patterns queries, since they constitute the building blocks for answering ar-
bitrary SPARQL queries – which we address in Section 7. All the routines
described next are defined w.r.t. to an implicit RDF archive A.

5.1 VM Queries

In a single delta chain with aggregated deltas and reference snapshot s, exe-
cuting a VM query with triple pattern p on a revision i requires us to mate-
rialize the target revision as Gi = (Gs ∪ u+

s,i) \ u−s,i and then execute p on Gi.
In our baseline OSTRICH, s = 0. In the presence of multiple delta chains, we
define s = snapshot(i) as the revision number of i’s reference snapshot in the
archive’s history.

Algorithm 1 provides a high level description of the query algorithm used
for version materialization queries (VM). Our baseline, OSTRICH, uses a sim-
ilar algorithm where sidi = 0. The algorithm starts by getting the correspond-
ing snapshot of the target version (line 2), and retrieving the matches of the
query triple pattern (line 3) on the snapshot – as a stream of results. If the
target version correspond to the snapshot, the query stops there and we re-
turn the results stream (line 5). Otherwise, the algorithm retrieves, from the
delta chain indexes, those added and deleted triples of the target version that
match the given query pattern (line 7 and 8). The deleted triples are then

2https://doi.org/10.5281/zenodo.7256988
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Algorithm 6 VM query algorithm

1: function queryVM(i, p) ▷ version i, triple pattern p
2: sidi ← snapshot(i)
3: qi ← query(sidi, p) ▷ we query the triple pattern on the snapshot
4: if sidi = i then ▷ the target version correspond to a snapshot
5: return qi

6: u+ ← getAdditions(i, p)
7: u− ← getDeletions(i, p)
8: vmi ← qi \ u− ▷ filter out the deleted triples
9: vmi ← vmi ∪ u+ ▷ add the added triples

10: return vmi

filtered out from the snapshot results (line 9), which are extended with the
added triples (line 10). It is important to note that this process is imple-
mented in a streaming way, and is therefore computed lazily, as needed by
the query consumer.

5.2 DM Queries

Algorithm 7 DM query algorithm on a single delta chain

1: function singleDCQueryDM(i, j, p) ▷ versions i, j, triple pattern p
2: sidi ← snapshot(i)
3: if sidi = i then ▷ the start version correspond to the snapshot
4: u+

j ← getAdditions(j, p)
5: u−j ← getDeletions(j, p)
6: return u+

j , u−j
7: else
8: u+

i ← getAdditions(i, p); u+
j ← getAdditions(j, p)

9: u−i ← getDeletions(i, p); u+
j ← getDeletions(j, p)

10: u+
i,j ← u+

j \ u+
i

11: u−i,j ← u−j \ u−j
12: return u+

i,j, u−i,j

Algorithm 7 describes the procedure singleDCQueryDM that answers DM
queries with start and end versions i, j on a single delta chain for triple
pattern p. This procedure is crucial for handling DM query algorithms on
multiple delta chains. This algorithm consists of two cases: The first case,
described on lines 3–6, is met when the start version i corresponds to the
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snapshot of the delta chain. When this is the case, the execution of the query
is trivial as triple pattern p can be directly evaluated on the corresponding
aggregated delta ui,j. The second case, starting from line 7, deals with a start
version stored as a delta. We get the changes (additions and deletions) for
both the start and end versions (lines 8–9), and filter the additions and dele-
tions so that the ones from the end version j prevail (lines 10–11). The results
consist of the combination of the newly computed addition and deletion sets.
In practice, this can be efficiently implemented as a sort-merge join operation
where triples are emitted only when present for version j, or when their ad-
dition flag for i and j is different (in which case the flag for version j is kept).

Algorithm 8 DM query algorithm on multiple delta chains

1: function snapshotDiff (Si, Sj, p) ▷ snapshots Si, Sj, triple pattern p
2: d← j− i
3: if d > 1 then
4: qi ← query(Si, p); qj ← query(Sj, p)
5: delta← (qj \ qi) ∪ (qi \ qj)
6: else
7: delta = singleDCQueryDM(i, j, p)
8: return delta
9:

10: function queryDM(i, j, p) ▷ versions i, j, triple pattern p
11: sidi ← snapshot(i); sidj ← snapshot(j)
12: if sidi = sidj then ▷ i and j are in the same delta-chain
13: delta← singleDCQueryDM(i, j, p)
14: else ▷ i and j are not in the same delta-chain
15: usi,sj ← snapshotDiff(sidi, sidj, p)
16: usi,i, usj,j ← ∅
17: if i ̸= sidi then ▷ test if version i is a delta
18: usi,i ← singleDCQueryDM(sidi, i, p)

19: if j ̸= sidj then ▷ test if version j is a delta
20: usj,j ← singleDCQueryDM(sidj, j, p)

21: ui,sj ← mergeBackwards(usi,i, usi,sj)
22: (ui, uj)← mergeForward(ui,sj, usj,j)

23: return ui, uj

We now turn our attention to archives with multiple delta chains. The
procedure queryDM in Algorithm 8 describes how to answer a DM query on
two revisions i and j (i < j) with triple pattern p on an RDF archive with mul-
tiple delta chains. The algorithm relies on two important sub-routines, which
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we now explain. The first one, singleDCQueryDM, was already described in
Algorithm 7 and executes standard DM queries on single triple patterns over
a single delta chain. The second routine, called snapshotDiff, computes the
difference between the results of p on two reference snapshots Si and Sj. It
works by first testing if the delta chains of Si and Sj are not consecutive (line
2 in Algorithm 8). If they are not, snapshotDiff implements a set-difference
between p’s results on Si and Sj (lines 4–5). In case the snapshots define con-
secutive delta chains, we leverage the fact that Sj also exists as an aggregated
delta w.r.t. Si (see Section 4.1). We can therefore treat this case efficiently as
a standard DM query via singleDCQueryDM (line 7).

We now have the elements to explain the main DM query procedure
(queryDM). First, the procedure checks whether both revisions are in the
same delta chain, i.e., if they have the same reference snapshot (line 14).
If so, the problem boils down to a single delta chain DM query that can be
answered with singleDCQueryDM (line 15). Otherwise, we invoke the rou-
tine snapshotDiff on the reference snapshots (line 17) to compute the results’
difference between the delta chains. This is denoted by usi,sj.

If revisions i and j are not snapshots themselves, lines 20 and 23 compute
the changes between the target versions and their corresponding reference
snapshots – denoted by usi,i and usj,j. The last steps, i.e., lines 25 and 26,
merge the intermediate results to produce the final output. First, the routine
mergeBackwards merges usi,sj, i.e., the changes between the two delta chains,
with usi,i, i.e., the changes within the first delta chain. This routine is designed
as a regular sorted merge because triples are already sorted in the OSTRICH
indexes. Unlike a classical merge routine, mergeBackwards inverts the flags of
the changes present in usi,i but not in usi,sj. Indeed, if a change in usi,i did
not survive to the next delta chain, it means it was later reverted in revision
sidj. The result of this operation are therefore the changes between revisions
i and sidj, which we denote by ui,sj. The final merge step, mergeForward,
combines ui,sj with the changes in the second delta chain, i.e., usj,j. The
routine mergeForward runs also a sorted merge, but now triples with opposite
change flag present in both changesets are filtered from the final output as
they indicate reversion operations.

5.3 V Queries

Algorithm 9 describe how V queries are executed in a single delta chain
setup. This is akin to how our baseline, OSTRICH, processes queries, and
is used by our multiple snapshot query algorithm. We assume that each
triple is annotated with its version validity, i.e. a vector of versions in which
the triple exists. In OSTRICH, this is stored directly in the delta chain as
versioning metadata, and therefore does not need additional computation.
For the deletion triples, this metadata contains the list of versions where the
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Algorithm 9 V query algorithm for single delta chains

1: function singleDCQueryV(c, p) ▷ c is a delta chain, p is a triple pattern
2: v← ∅
3: s← getSnapshot(c) ▷ we get the snapshot of the delta chain
4: qs ← query(s, p) ▷ query the snapshot with p
5: qa ← queryAdditions(c, p) ▷ query the delta chain additions with p
6: for t ∈ qs ∪ qa do ▷ we iterate the triples from the queries
7: tdel ← getDeletionTriple(t, c) ▷ get the triple from the deletion set

of the delta chain
8: if tdel ̸= ∅ then
9: t.versions ← t.versions \ tdel .versions ▷ filter the deleted ver-

sions from the triple valid versions

10: v.add(t)
11: return v

triple is absent instead. The core of the algorithm iterates over the triples
(line 6) that match triple pattern p in the snapshot. Each triple is queried for
its existence in the deletion delta chain (line 7). If the triple exists there, then
it has been deleted in a subsequent revision. We remove the versions where
the triple is absent from the version validity set of the triple (line 9). Finally,
we add the triple to the result set in line 11. Like the other algorithms,
this routine can also be implemented in a streaming way, where each loop
iteration is triggered on demand.

Algorithm 10 V query algorithm for multiple delta chains

1: function queryV(p) ▷ p a triple pattern
2: r ← ∅
3: for c ∈ C do ▷ C the list of delta chains
4: v← singleDCQueryV(c, p)
5: r ← merge(r, v) ▷ merge intermediate results

6: return r

Algorithm 10 describes the process of executing a V query p over multiple
delta chains. This relies on the capability to execute V queries on individual
delta chains via the function singleQueryV described above. The routine iter-
ates over the list of delta chains (line 3), and runs singleQueryV on each delta
chain (line 4). This gives us triples annotated with lists of versions within the
range of the delta chain. At each iteration we carry out a merge step (line 5)
that consists of a set union of the triples from the current delta chain and the
results seen so far. When a triple is present in both sets, we merge their lists
of versions.
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6 Optimization of Versioning Metadata Serializa-
tion

The versioning metadata stored in the delta chain indexes is paramount to
functioning of our solution, and influences the multiple aspects of the sys-
tem’s performance. One of the current limitations of our architecture based
on aggregated deltas, is that it does not scale well in terms of ingestion speed
and disk usage, when the number of versions grows. As we show in this
section, this happens because the delta chain indexes still contain a lot of
redundancy that could be removed with a proper compression scheme. In
this section, we therefore discuss the limitations of the current serialization
of the versioning metadata, and propose an alternative serialization scheme
that brings significant improvements in terms of ingestion speed and disk
usage.

6.1 Versioning Metadata Encoding

As discussed in Section 3.3, OSTRICH indexes additions and deletions in
separate triple stores for each delta chain. Because aggregated deltas intro-
duce redundancy, OSTRICH annotates triples with additional version meta-
data that prevents the system from storing the same triple multiple times.
This versioning metadata is in turn leveraged during querying to filter triples
based on their version validity.

Version 2 3 4 6
LC T T T T

(a) Original addition metadata in OSTRICH

Version [2,4) - - [5,∞)
LC [2,∞) - - -

(b) Compressed addition metadata

Version 2 3 4 6
LC F F F T
SP? 0 0 0 0
S?O 0 0 0 0
S?? 4 6 6 0
?PO 0 0 0 1
?P? 6 8 8 0
??O 0 0 0 0
??? 8 8 8 0

(c) Original deletion metadata in OSTRICH

Version [2,5) - - [6,∞)
LC - - - [6,∞)
SP? 0 - - -
S?O 0 - - -
S?? 4 +2 - -6
?PO 0 - - +1
?P? 6 +2 - -8
??O 0 - - -
??? 8 - - -8

(d) Compressed deletion metadata

Table D.3: Representation of the versioning metadata in the indexes for arbitrary example triples
in OSTRICH and compressed in our new implementation. LC denotes the local change flag.

In Table D.3, we show side-by-side the versioning metadata of an arbitrary
triple as stored by OSTRICH (see Section 3.3), and as stored using our pro-
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posed representation. Even though triples are stored only one, we observe
that the index entries still store a lot of repeated information. Consider the
example in Table D.3a where we can see that the local change flag is always
set to true for each version. Our proposed representation compresses this in-
formation by storing intervals of versions where the value does not change.
In our example, in Table D.3b, the local change flag is stored as an interval
[2,∞), meaning that the flag is true starting from revision 2. We highlight
that the version numbers are also stored as intervals. Similarly to the uncom-
pressed metadata, the logical model is one of a mapping from version to a
local change flag. In practice, this means that if a version is not present in
any of the intervals, then there is no corresponding valid local change flag,
regardless of the content of the local change intervals.

Deletion indexes contain more metadata than the addition indexes. In-
deed, they also store the relative position of the triple within its respective
delta for all triple pattern combinations, as illustrated in Table D.3c. This
data can be large, especially for long delta chains, and can be both costly to
create during ingestion and to deserialize during querying. OSTRICH allevi-
ates these issues by restricting this metadata to the SPO index. We propose to
replace this representation by a delta-compressed vector list, as illustrated in
Table D.3d. This first position vector in the list is stored plainly, as before, but
we only store deltas for subsequent changes. In case where no changes occur
in a given revision, like in version 4 of our example, the vector is empty. In
next section we elaborate on the implementation details of this serialization
scheme.

6.2 Implementation Considerations

Uncompressed: SP? = 0 S?O = 0 S?? = 6 ?PO = 0 ?P? = 8 ??O = 0 ??? = 8

7× 8B = 56B

Compressed: Version = 3 Header = 0x14 S?? = 2 ?P? = 2

8B + 1B + 2× 8B = 25B

Fig. D.3: Representation of the positions vectors for version 3 of our example, without and with
compression.

As depicted in Figure D.3d, some of the entries in the position vectors of
the deleted triples can be empty. We handle those empty entries by means of
a 8-bit header mask that precedes the position vector. Consider the second
column vector (version 3) in our example Table D.3d. This vector contains
two values: +2 for the triple pattern S?? in the the third position and +2
for the triple pattern ?P? in the fifth position. As such, the 8-bits header
would be the string “0010100” (or 14 in hexadecimal), with 1s indicating the
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positions where valid values exists. Notice that this header mask is preceded
by the version identifier, since this number cannot be easily inferred from the
intervals. Figure D.3 offers a visual representation of the serialization of the
position vectors for our example D.3. This compressed representation uses
only 25 bytes, versus the 56 bytes required by the original serialization.

Furthermore, we highlight a key advantage of delta encoding: since most
vector entries consist of small values, our representation can benefit from
further compression via variable size integer encoding. The compression is
ultimately dependant on how often the value of the positions change be-
tween versions. Our experiments Section 8.4 demonstrate the efficacy of our
approach in practice.

7 SPARQL 1.1 support for RDF Archives

Section 5 described the algorithms to answer versioned queries on single
triple patterns on top of our multi-snapshot storage engine. In this section
we describe our solution to support SPARQL queries over RDF Archives. We
will first discuss how to formulate versioned queries using SPARQL. We then
provide details of the proposed architecture and query engine.

7.1 SPARQL Versioned Queries

As discussed in Section 2, there have been a few efforts to write versioned
queries comprising multiple triple patterns. All those endeavors rely on ad-
hoc extensions to the SPARQL language. For this reason, none of those ex-
tensions has reached broad community acceptance. As consequence, we have
opted for a query middle-ware based on native SPARQL that models revi-
sions as named graphs [12]. Versioning requirements are therefore expressed
using the SPARQL GRAPH keyword on named graphs with URIs of the form
<version:i>, e.g., <version:0> denotes the initial revision. Our SPARQL engine
interprets the provided graph URI and translates it into a proper retrieval
operation within the physical data model described earlier in this paper. Our
approach supports the base versioned query types, namely Version Material-
ization (VM), Delta Materialization (DM), and Version (V) queries.

We illustrate the different queries with an example RDF Archive A de-
scribing information about countries. For the sake of simplicity, we assume
that each version of the graph Gi represents a specific year, e.g., G2003 contains
information about countries in the year 2003. Table D.4 illustrates different
versioned queries asking for country membership in the European Union
(EU). First, VM queries are similar to standard SPARQL queries where the
GRAPH clause is used to limit query evaluation to the target version. DM
queries require the use of FILTER sub-queries to select the changes between
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Version Materialization (VM) Delta Materialization (DM) Version Query (V)
Which countries were part of the EU in 2003? Which countries joined the EU in 2004? Which countries were part of the EU

in each year?
SELECT * WHERE { SELECT * WHERE { SELECT * WHERE {

GRAPH <version:2003> { GRAPH <version:2004> { GRAPH ?version {
?country rdf:type ex:country . ?country rdf:type ex:country . ?country rdf:type ex:country .
?country ex:member ex:EU . ?country ex:member ex:EU . ?country ex:member ex:EU .

} } FILTER (NOT EXISTS { }
} GRAPH <version:2003> { }

?country rdf:type ex:country .
?country ex:member ex:EU .

}
})

}
<ex:Austria> <ex:Cyprus> <ex:Austria> <version:1995>
<ex:Belgium> <ex:Czech Republic> <ex:Austria> <version:1996>
<ex:Denmark> <ex:Estonia> . . .
<ex:Finland> <ex:Hungary> <ex:Belgium> <version:1958>
. . . . . . . . .

Table D.4: Example of SPARQL representation and results for VM, DM, and V queries using the
GRAPH keyword.

versions as exemplified in Table D.4. The example DM query retrieves the
countries that joined in revision 2004, i.e., EU members in u+

2003,2004. In our
design, a query on u−2003,2004 (deletions) has the same form but the version
numbers are swapped. Finally, V queries can be expressed with the GRAPH
keyword followed by a variable.

7.2 Architecture and Implementation

In order to support full SPARQL query processing over RDF archives, we
make use of the Comunica [34] query engine deployed on top of our multi-
snapshot storage layer and our algorithms for processing single triple pat-
terns (described in Section 5). Comunica is a scalable and extensible query
engine written in TypeScript with full support for the SPARQL 1.1 language.
Due to its modularity, it is a natural choice for extending our system, and ini-
tial work was already done by Taelman et al. [33] to support archives queries
(although without V queries support). We have adapted this implementa-
tion to our multi-snapshot storage architecture, and extended it to support V
queries. We have also implemented several optimizations, notably in regards
to the communication between the query engine and the storage layer. Previ-
ously, results from a triple pattern query would be buffered in OSTRICH until
all results have been gathered. Because Comunica is designed to work with
streams of triples, this create locking in the query processing while waiting
for the availability of the triples. Instead, we now buffer triples into smaller
buffers of configurable size. When a buffer is filled, the triples it contains
can be sent to Comunica without waiting the remaining triples. This permit
shorter locking time in Comunica and allows us to take better advantage of
its asynchronous query processing capabilities.
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1: Parsing 2: Preprocessing

Comunica

Pattern 
processing

Modified
OSTRICH

Triple-patterns Triple-streams

Versioned 
SPARQL

query
Solution-mappings

SPARQL
with versioning context 

4: Execution3: Query Planning

Fig. D.4: SPARQL query processing pipeline

Figure D.4 illustrates the query processing pipeline of our solution for
SPARQL queries on RDF archives. There are two main software components
interacting with each other: the first is the storage layer consisting of our
multi-snapshot version of OSTRICH (see Sections 4 and 5), and the second is
the Comunica [34] query engine, which includes several modules.

A versioned SPARQL query like the ones in Table D.4 (Section 7.1), is
first transformed back to a graph- and filter-free SPARQL query, i.e. with-
out the special GRAPH URIs and/or FILTER clauses, and annotated with a
versioning context. This versioning context depends on the query type (e.g.,
revisions for VM queries, changesets for DM queries) and the target ver-
sion(s) when relevant, and is used to select the type of triple pattern queries
to send for execution by OSTRICH. The communication between Comunica
and OSTRICH is done through a NodeJS native addon. Our implementation
is open source34 and a demonstration system is available at [20].

8 Experiments

To determine the effectiveness of our multi-snapshot approach for RDF
archiving, we evaluate the four proposed snapshot creation strategies de-
scribed in Section 4 along three dimensions: ingestion time (Section 8.2), disk
usage (Section 8.2), and query runtime for VM, DM, and V queries (Sec-
tion 8.3). Thereafter, in Section 8.4, we delve into the effectiveness of our
versioning metadata representation described in Section 6. This is done by
comparing its performance against the original representation – across the
three aforementioned evaluation dimensions. Section 8.5 concludes our ex-
periments with an evaluation of our full SPARQL query capabilities.

3https://github.com/dkw-aau/ostrich-node
4https://github.com/dkw-aau/comunica-feature-versioning
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8. Experiments

8.1 Experimental Setup

We resort to the BEAR benchmark for RDF archives [9] for our evaluation.
BEAR comes in three flavors: BEAR-A, BEAR-B, and BEAR-C, which com-
prise a representative selection of different RDF graphs and query loads.
Table D.5 summarizes the characteristics of the experimental datasets and
query loads. Due to the very long history of BEAR-B instant, OSTRICH
could only ingest one third of the archive’s history (7063 out 21046 revisions)
after one month of execution – before crashing. In a similar vibe, OSTRICH
took one month to ingest the first 18 revisions (out of 58) of BEAR-A. Despite
the dataset’s short history, changesets in BEAR-A are in the order of mil-
lions of changes, which also makes ingestion intractable in practice. On these
grounds, the original OSTRICH paper [32] excluded BEAR-B instant from
the evaluation, and considered only the first 10 versions of BEAR-A. Multi-
snapshot solutions, on the other hand, allow us to manage these datasets.
We provide, nevertheless, the results of the baseline strategy (OSTRICH) for
entire history of BEAR-A. We emphasize however that ingesting this archive
was beyond what would be considered reasonable for any use case: it took
more than five months of execution. We provide those results as a baseline
(although an easy one) to highlight the challenge of scaling to large datasets.
All our experiments were run on a Linux server with a 16-core CPU (AMD
EPYC 7281), 256 GB of RAM, and 8TB hard disk drive.

BEAR-B

BEAR-A Daily Hourly Instant BEAR-C
# versions 58 89 1299 21046 32
|Gi|’s range 30M - 66M 33K - 44K 33K - 44K 33K - 44K 485K - 563K
|∆| 22M 942 198 23 568K

# queries 368 62 (49 ?P? and 13 ?PO) 11 (SPARQL)

Table D.5: Dataset characteristics. |Gi | is the size of the individual revisions, |∆| denotes the
average size of the individual changesets uk−1,k .

We evaluate the different strategies for snapshot creation detailed in Sec-
tion 4.2 along ingestion speed, storage size, and query runtime. Except for
our baseline (OSTRICH), all our strategies are defined by parameters that we
adjust according to the dataset:
Periodic. This strategy is defined by the period d. We set d ∈ {2, 5} for
BEAR-A and BEAR-C, d ∈ {5, 10} for BEAR-B daily, d ∈ {50, 100} for BEAR-
B hourly, and d ∈ {100, 500} for BEAR-B instant. Values of d were adjusted
per dataset experimentally w.r.t. the length of the revision history and the
baseline ingestion time. High periodicity, i.e., smaller values for d, lead to
more and shorter delta chains.
Change-ratio (CR). This strategy depends on a cumulative change-ratio bud-
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get threshold γ. We set γ ∈ {2.0, 4.0} for all the tested datasets. γ = 2.0
yields 10 delta chains for BEAR-A, 9 for BEAR-C, as well as 5, 23, and 151
delta chains for BEAR-B daily, hourly, and instant, respectively. For γ = 4.0,
we obtain instead 6 delta chains for BEAR-A, 6 for BEAR-C, and 3, 16, and
98 for the BEAR-B datasets.
Time. This strategy depends on the ratio θ between the ingestion time of
the new revision and the ingestion time of the first delta in the current delta
chain. We set θ = 20 for all datasets. This produces 3, 26, and 293 delta
chains for the daily, hourly, and instant variants of BEAR-B respectively, and
2 delta chains for BEAR-A. As for BEAR-C, no new delta chains are created
with θ = 20, and so it is equivalent to the baseline.
We omit the reference systems included with the BEAR benchmark since they
are outperformed by OSTRICH [32].

8.2 Results on Resource Consumption

BEAR-B

BEAR-A Daily Hourly Instant BEAR-C
High Periodicity 13472.16 0.67 12.95 57.89 43.97
Low Periodicity 14499.45 0.98 23.05 298.36 96.38

CR γ = 2.0 20505.93 1.88 13.79 77.01 75.61
CR γ = 4.0 21588.25 2.34 19.47 114.83 111.78
Time θ = 20 49506.15 2.64 15.83 43.53 543.82

Baseline 253676.98 6.89 1514.85 - 550.90

(a) Ingestion times in minutes

BEAR-B

BEAR-A Daily Hourly Instant BEAR-C
High Periodicity 72417.47 199.17 322.34 2283.43 1149.63
Low Periodicity 49995.00 102.96 185.33 787.75 890.44

CR γ = 2.0 47335.74 51.49 284.47 1690.38 920.46
CR γ = 4.0 42203.04 37.91 211.71 1175.15 939.30
Time θ = 20 46614.98 38.33 325.13 3972.32 1365.10

Baseline 45965.40 19.82 644.50 - 1365.10

(b) Disk usage in MB

Table D.6: Time and disk usage used by our different strategies to ingest the data of the BEAR
benchmark datasets.

Ingestion Time

Table D.6a depicts the total time to ingest the experimental datasets. Since
we always test two different values of d for the periodic strategy on each
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(c) BEAR-B Instant

Fig. D.5: Detailed ingestion times (log scale) per revision. We include the first 1500 revisions for
BEAR-B instant since the runtime pattern is recurrent along the entire history.

dataset, in both Table D.6a and D.6b, we refer to them as “high” and “low”
periodicity. This is meant to abstract away the exact parameters, which vary
for each dataset, so that we can focus instead on the effects of higher/lower
periodicity. We remind the reader that the baseline (OSTRICH) cannot ingest
BEAR-B instant, which explains its absence in Table D.6a. But even when
OSTRICH can ingest the entire history (in around 26 hours), a multi-snapshot
strategy still incurs a significant speed-up. This becomes more significant for
long histories as observed for BEAR-B hourly, where the speed-up can reach
two orders of magnitude. The good performance of the high periodicity
strategy and change-ratio with the smaller budget threshold γ = 2.0 suggests
that shorter delta chains are beneficial for ingestion time. This is confirmed
by Fig. D.5, where we also notice that ingestion time reaches a minimum for
the revisions following a snapshot.

Disk Usage

Unlike ingestion time where shorter delta changes are clearly beneficial, the
gains in terms of disk usage depend on the dataset as shown in Table D.6b.
Overall, more delta chains tend to increase disk usage. For BEAR-B daily,
frequent snapshots (high periodicity d = 5) incur a large overhead w.r.t. the
baseline because the changesets are small and the revision history is short.
Similar results are observed for BEAR-A and BEAR-B instant, even though
we still need multiple snapshots to be able to ingest the data. BEAR-B hourly
is interesting because it shows that for long histories, a single delta chain can
be inefficient in terms of disk usage. Interestingly for BEAR-A, the change-
ratio γ = 4.0 uses less storage than the both the time strategy with θ = 20
and the baseline, despite using more delta chains. This hints that very large
aggregated deltas can be less efficient than multiple delta chains with smaller
aggregated deltas. For BEAR-B instant, the good performance of the change-
ratio strategies and the low periodicity strategy (d = 500) suggests that a
few delta chains can provide significant space savings. On the other hand,
the time strategy with θ = 20 performs slight worse because it creates too
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many delta chains. The bottom line is that redundancies in the delta chains
explain the storage overhead in archives, can be caused either by very long
delta chains (BEAR-B Hourly and Instant), or by large delta chains (BEAR-
A), i.e., delta chains with voluminous changesets. Multiple snapshots tackle
the redundancy of long delta chains naturally, but can also be beneficial for
bulky delta chains, as demonstrated by the BEAR-A results with change-ratio
γ = 4.0.

8.3 Query Runtime Evaluation

In this section we evaluate the impact of our snapshot creation strategies on
query runtime. We use the queries provided with the BEAR benchmark for
BEAR-A and BEAR-B. These are DM, VM, and V queries on single triple
patterns. Each individual query was executed 5 times and the runtimes av-
eraged. All the query results are depicted in Figure D.6.

VM queries

We report the average runtime of the benchmark VM queries for each version
i in the archive. The results are depicted in Figures D.6a, D.6d, D.6g, and D.6j.
We report runtimes in micro-seconds for all strategies.

Using multiple delta chains is consistently beneficial for VM query run-
time, which is best when the target revision is materialized as a snapshot.
When it is not the case, runtime is proportional to the size of the delta chain,
which depends on its length and the volume of changes that must be ap-
plied to the snapshot before running the query. This is obvious for BEAR-A
with the baseline strategy or with the time θ = 20 strategy. The latter strat-
egy splits the history into two imbalanced delta-chains, where one of them
contains the first 53 revisions (out of 58). Both strategies are significantly
outperformed by the other multi-snapshot strategies. Similar results can be
observed on the BEAR-B variants, particularly for BEAR-B Hourly, where the
baseline strategy is outperformed by all the strategies with more than one
snapshot.

DM Queries

We report for each revision i in the archive the average runtime of the bench-
mark DM queries on changesets u0,i and u1,i. As described in Section 5.2, DM
queries are executed on both the additions and deletions indexes in order to
retrieve the full set of results for the given query pattern. Such a setup tests
the query routine in all possible scenarios: between two snapshots, between
a snapshot and a delta (and vice versa), and between two deltas. The results
are depicted in Figures D.6b, D.6e, D.6h, and D.6k. The results shows a rather
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Fig. D.6: Query results for the BEAR benchmark

mixed benefit of multiple delta chains in query runtime: highly positive for
the long history of BEAR-B hourly and modest for BEAR-B daily. Overall,
DM queries benefit from short delta chains as illustrated by Figure D.6b and
to a lesser degree by the periodic strategy with d = 5 in Figure D.6e. All
our strategies beat the baseline by a large margin on BEAR-B hourly because
delta operations become very expensive as the single delta chain grows. That
said, the baseline runtime tends to decrease slightly with i because the data
from two distant versions tends to diverge more, which requires the engine
to filter fewer results from the aggregated deltas. For BEAR-B daily, mul-
tiple delta chains may perform comparably or slightly worse – by no more
than 20% – than the baseline. This happens because BEAR daily’s history
is short, and hence efficiently manageable with a single delta chain. In this
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case the overhead of multiple snapshots and delta chains does not bring any
advantage for DM queries.

V Queries

Figure D.6c, D.6f, D.6i, and D.6l show the total runtime of the benchmark V
queries on the different datasets. V queries are the most challenging queries
for the multi-snapshot archiving strategies as suggested by Figures D.6f
and D.6i. As described in Algorithm 10, answering V queries requires us to
query each delta chain individually, buffer the intermediate results, and then
merge them. It follows that runtime scales proportionally to the number of
delta chains, which means that contrary to DM and VM queries, many short
delta chains are detrimental to V query performance. The only exception
is BEAR-A, where the change-ratio strategies can outperform the baseline
strategy. This indicates that delta chains with very large aggregated deltas
can also be detrimental to V query performance. However, BEAR-A is the
only dataset showcasing such a behavior in our experiments. Nonetheless,
due to their prohibitive ingestion cost, querying datasets such as BEAR-A
and BEAR-B instant is only possible with a multi-snapshot solution.

8.4 Experiments on the Metadata Representation

We now evaluate our proposed encoding for versioning metadata, described
in Section 6. We conduct the evaluation across the dimensions of inges-
tion time, disk usage, and query performance on the BEAR-B variants of the
BEAR benchmark. For the sake of legibility, we apply our new encoding on
archives stored using a single-snapshot strategy, i.e., the baseline OSTRICH,
and one multi-snapshot strategy. We chose the change-ratio strategy with
γ = 4.0 in this case since it exhibited overall good performance across the
different evaluation criteria in Section 8.2. We omit the baseline strategy for
BEAR-B Instant since we could not ingest it using a single snapshot.

Figure D.7 shows the ingestion time and disk usage of the BEAR-B vari-
ants with the original versioning metadata encoding as used in OSTRICH
and our proposed compressed encoding – denoted with the “Comp.” prefix
in the graphs. The new encoding incurs a drastic decrease in ingestion time.
This is particularly notable for the baseline strategy where ingestion times
are reduced by as much as a factor of 40 on the BEAR-B hourly dataset, as
illustrated by Figure D.7b. Here, the ingestion time drops from 1473 minutes
to just 36 minutes. Disk usage is also notably improved with the new en-
coding. This is particularly obvious for the baseline strategy, because larger
delta chains imply more redundancy, which in turn means more room for
compression. In the most remarkable case, disk usage is reduced from 615
MB to just 25 MB for BEAR-B hourly when using the baseline strategy. The
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Fig. D.7: Ingestion times (top row) and disk usage (bottom row) for OSTRICH and a multi-
snapshot storage strategy applied on the different BEAR-B flavours with the original version
metadata representation and our new compressed representation.

improvements in disk usage are more modest on multiple snapshot strate-
gies, as expected from the smaller delta chains. In those cases, the snapshots
account for more of the disk usage of the whole archive. For example, on
BEAR-B hourly, disk usage is only reduced from 212 MB to 193 MB.

In Figure D.8, we show the performance of queries with the two encodings
of versioning metadata. Contrary to ingestion times and disk usage, the pic-
ture for query runtime is more nuanced. Overall, our new encoding scheme
does not provide a clear advantage over the previous encoding in terms of
query performance. For BEAR-B Daily, as shown in Figures D.8a, D.8b and
D.8c, the archives using the new encoding are systematically slower at re-
solving queries than the archives with the original encoding. As for BEAR-B
Hourly, Figures D.8d, D.8e, and D.8c, we note that queries are faster with the
new encoding on the baseline strategy, but slightly slower with the change-
ratio strategy. We can explain this by the large amounts of data that must be
retrieved from long delta chains. In such cases, the gains obtained by reading
less data – thanks to compression – outweight the costs of decompression,
which translates into overall faster retrieval times. Finally, for BEAR-B In-
stant, the compressed representation is slower for VM queries, similar for
DM queries, and slightly faster for V queries when compared to the origi-
nal representation. All in all, compressing the versioned metadata reduces
the redundancy in the delta chains, which goes in the same direction as us-
ing shorter delta chains. This explains why the compressed representation
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Fig. D.8: Query results for the BEAR benchmark with the original version metadata encoding
and the new compressed encoding.

performs worst for querying on multiple delta chains: redundancy has been
already (or partially) reduced by the use of multiple snapshots. This dimin-
ishes the gains of further compression with our approach, which comes with
a performance penalty due to decompression.

8.5 SPARQL Performance Evaluation on BEAR-C

We evaluate our solution for full SPARQL support on the BEAR-C dataset.
BEAR-C is based on 32 weekly snapshots of the European Open Data por-
tal taken from the Open Data Portal Watch project [16]. Each version con-
tains between 485K and 563K triples, which puts BEAR-C between BEAR-B
Daily and BEAR-A in terms of size. Table D.5 in Section 8.1 summarizes the
characteristics of the datasets. BEAR-C’s query workload consists of 11 full
SPARQL queries. The queries contain between 2 and 12 triple patterns and
include the operators FILTER, OPTIONAL , UNION, LIMIT and OFFSET. In com-
pliance with our experimental setup, we run each query 5 times and report
the average runtime. Since there are no other publicly available SPARQL-
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compliant RDF archiving systems [19], we compare our change-ratio (CR)
multi-snapshot strategy (γ = 4.0 and γ = 6.0) to the baseline. We chose
the CR multi-snapshot strategy due to its good overall performance in our
evaluations in Sections 8.2 and 8.3. We include the strategy CR γ = 6.0 that
generates snapshots less often than CR γ = 4.0 (used in the previous exper-
iments). This is due to the smaller size of BEAR-C when compared to more
challenging datasets such as BEAR-A or BEAR-B instant. Finally, we make
use of the compressed representation for the versioning metadata presented
in Section 6, and evaluated earlier in this section.
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Fig. D.9: BEAR-C average query execution time in seconds for VM, DM, and V queries. (log
scale)

0 5 10 15 20 25 30
Version

0

5

10

15

20

Lo
ok

up
 (s

)

DM-Baseline
DM-CR-4.0
DM-CR-6.0

VM-Baseline
VM-CR-4.0
VM-CR-6.0

(a) DM and VM runtime for BEAR-C query
#1

0 5 10 15 20 25 30
Version

0

100

200

300

400

500

600

700

Lo
ok

up
 (s

)

DM-Baseline
DM-CR-4.0
DM-CR-6.0

VM-Baseline
VM-CR-4.0
VM-CR-6.0

(b) DM and VM runtime for BEAR-C query
#2

Fig. D.10: BEAR-C average query execution time in seconds for VM, DM, and V queries.

Figure D.9 illustrates the average execution time for each category of ver-
sioned query (VM, DM, V) on BEAR-C. The results are displayed per indi-
vidual query and averaged across all revisions for VM queries, and pairs of
revisions ⟨ 1, i ⟩ and ⟨ 0, i ⟩ for DM queries – in concordance with our exper-
imental protocol. We note that the results are consistent with our single-triple
patterns evaluation on the other BEAR datasets. That is, BEAR-C’s relatively
short history (32 versions) puts our CR stategies in disadvantage w.r.t. to the
baseline strategy. The query runtime of the change-ratio strategies and the
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baseline are almost identical for VM queries, with the change-ratio strategies
having a slight advantage for some queries (notably, queries 1, 3, and 7). For
DM queries, runtimes are also closely matched between the different strate-
gies. Overall, the CR γ = 6.0 strategy performs best on average. Finally,
we can observe large differences in runtimes between the different strategies
on the V queries. While all strategies are closely matched overall, we can
notice that the baseline strategy gets significantly outperformed on query 9
and 10, whereas it outperforms the CR strategies on query 6. The CR γ = 4.0
is notably faster than the alternatives on query 1 and 3. The overall good
performance of the change-ratio strategies seems to contradict our previous
findings, as V queries tend to become more expensive with more delta chains.
However, we observed a similar behavior on BEAR-A in our previous exper-
iments (Section 8.3), so to say, that the baseline strategy was outperformed
by multi-snapshot strategies on V queries. This confirms the hypothesis that
bulky deltas – common for BEAR-A and to a lesser extent for BEAR-C – are
also detrimental to V query performance, justifying the use of multiple less
voluminous delta chains.

In Figure D.10 we plot the runtime of VM and DM queries across revi-
sions for queries #1 and query #2 of BEAR-C. The figures for all the other
queries can be found in Section 10. We selected those queries due to their
representative runtime behaviour. Query #1 has a relatively stable runtime
for VM queries, with a slight increase in later revisions. Oppositely, query
#2 sees a linear increase in runtime for VM queries as the target revision in-
creases. In contrast, the runtime of DM queries is stable. We can observe
that the CR strategies consistently outperform the baseline strategy on VM
queries, while the baseline is faster on average for DM queries on query #1,
and on par with CR γ = 6.0 for query #2. Overall, the differences between
strategies are small, and vary depending on the query, as seen on Figure D.9.

8.6 Discussion

We now summarize our findings in previous sections and draw a few design
lessons for efficient RDF archiving.

• The disk usage and overall performance in querying of a storage ap-
proach based on aggregated delta chains depends on the amount of
redundancy present in the delta chain. This redundancy can be caused
by various factors, such as large changesets, long change histories, but
also by the nature of the changes, e.g., changes that revert previous
changes.

• It follows that for small datasets, small changesets, or relatively short
histories, the overhead of multi-snapshot strategies does not pay off in
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terms of query runtime and disk usage. This observation is particularly
striking for V queries for which runtime increases with the number of
delta chains.

• Short delta chains are mostly beneficial for VM and DM queries be-
cause these query types require us to iterate over changes within two
delta chains in the worst case (for DM queries). They also translate
systematically into faster ingestion times. In contrast, numerous short
delta chains are detrimental to storage consumption and V query per-
formance.

• That said, when individual deltas are very bulky, as with BEAR-A
and BEAR-C, multiple delta chains can be beneficial to V query per-
formance, and can use less disk space than a single-snapshot storage
strategy.

• Change-ratio strategies strike an interesting trade-off because they take
into account the amount of data stored in the delta chain as criterion
to create a snapshot. This ultimately has a direct positive effect on
ingestion time, VM/DM querying, and storage size.

• In general, compressing the version metadata stored in the delta chain
is a sensible alternative: compression increases ingestion speed and
reduces disk storage. While it can increase query runtime, its impact is
usually minimal and depends on the amount of data that needs to be
fetched from disk. For very large delta chains (e.g., delta chains with
big deltas), compression can even be beneficial for query performance
because the overhead of decompression is insignificant compared to the
savings in terms of retrieved data. This observation holds promise for
distributed settings.

• The performance of full SPARQL queries on RDF archives is subject to
same performance trade-off as queries on single triple patterns.

The bottom line is that the snapshot creation strategy for RDF archives is
subject to a trade-off among ingestion time, disk consumption, and query
runtime for VM, DM, and V queries. As shown in our experimental section,
there is no one-size-fits-all strategy. The suitability of a strategy depends on
the application, namely the users’ priorities or constraints, the characteristics
of the archive (snapshot size, history length, and changeset size), and the
query load. For example, implementing version control for a collaborative
RDF graph will likely yield an archive like BEAR-B instant, i.e., a very long
history with many small changes and VM/DM queries mostly executed on
the latest revisions. Depending on the server’s capabilities and the frequency
of the changes, the storage strategy could therefore rely on the change ratio or
the ingestion time ratio and be tuned to offer arbitrary latency guarantees for
ingestion. On a different note, a user doing data analytics on the published
versions of DBpedia (as done in [19]) may be confronted to a dataset like
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BEAR-A and therefore resort to numerous snapshots, unless their query load
includes many real-time V queries.

Furthermore, we showcased our results for full SPARQL processing over
RDF archives on the BEAR-C benchmark. To the best of our knowledge, this
is the first approach that provides a solution for BEAR-C. Nonetheless, there
are still several opportunities for future work in field of SPARQL querying
over RDF archives. First, we highlight the lack of standardization for SPARQL
querying on RDF archives. This has encouraged solution providers to come
up with their own language extensions and ad-hoc implementations. None
of them, however, has attained wide acceptance within the research and de-
veloper communities. Second, we note that the number and diversity of
benchmarks for SPARQL query workloads on RDF archives is limited [21].
In BEAR, for example, only the BEAR-C dataset offers full SPARQL queries.
Those 11 queries, are alas, insufficient to provide a comprehensive evaluation
of the capabilities of novel systems. Alternatives, such as SPBv [18] have not
seen similar adoption by the community, probably because they are not easy
to deploy5. We expect this work to prepare the ground for the emergence
of more efficient, standardized, and expressive solutions for managing RDF
archives.

9 Conclusion

In this paper, we have presented a hybrid storage architecture for RDF archiv-
ing based on multiple snapshots and chains of aggregated deltas with sup-
port for full SPARQL versioned queries. We have evaluated this architecture
with several snapshot creation strategies on ingestion times, disk usage, and
query performance using the BEAR benchmark. The benefits of this archi-
tecture are bolstered thanks to a novel and efficient compression scheme for
versioning metadata, which has yielded impressive improvements over the
original serialization scheme. This has further improved the scalability of our
system when handling large datasets with long version histories. All these
building blocks cleared the way to introduce a new SPARQL processing sys-
tem on top of our storage architecture. We are now capable of answering full
SPARQL VM, DM or V queries over RDF archives.

Our evaluation shows that our architecture can handle very long version
histories, at a scale not possible before with previous techniques. We used our
experimental results on the different snapshot creation strategies to draw a
set of design lessons that can help users choose the best storage policy based
on their data and application needs. We showcased our ability to handle the
BEAR-C variant of the BEAR benchmark – the first evaluation on this dataset

5We could not use the benchmark because it relies on outdated and unsatisfiable software
dependencies.
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to the best of our knowledge. This is a first step towards the support of more
sophisticated applications on top of large RDF archives, and we hope it will
expedite research and development in this area.

As future work, we plan to further explore different snapshot creation
strategies, e.g., using machine learning, to further improve the management
of complex and large RDF archives. Furthermore, we plan to investigate
novel approaches in the compact representation of semantic data [24, 29],
which could lead to a promising alternative to the use of B+ trees. We en-
vision further efforts towards the practical implementation of versioning use
cases of RDF, such as the implementation of version control features, like
branching and tagging, into our system. Such features are paramount to real
world usages of versioning software, and can benefit RDF dataset maintain-
ers [4, 12]. With the recent popularity of RDF-star [1, 13], which can be used
to capture versioning in the form of metadata, we also plan to look into recent
advances in this area. Finally, the lack of an accepted standard for expressing
versioning queries with SPARQL limits the wider adoption of RDF archiving
systems. We aim to work towards a standardization effort, notably on a novel
syntax and a formal definition of the semantics of versioned queries.
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10 Additional SPARQL Results

0 5 10 15 20 25 30
Version

0

5

10

15

20

Lo
ok

up
 (s

)

DM-Baseline
DM-CR-4.0
DM-CR-6.0

VM-Baseline
VM-CR-4.0
VM-CR-6.0

(a) BEAR-C Query #3

0 5 10 15 20 25 30
Version

0

20

40

60

80

Lo
ok

up
 (s

)

DM-Baseline
DM-CR-4.0
DM-CR-6.0

VM-Baseline
VM-CR-4.0
VM-CR-6.0

(b) BEAR-C Query #4

0 5 10 15 20 25 30
Version

0

250

500

750

1000

1250

1500

Lo
ok

up
 (s

)

DM-Baseline
DM-CR-4.0
DM-CR-6.0

VM-Baseline
VM-CR-4.0
VM-CR-6.0

(c) BEAR-C Query #5

0 5 10 15 20 25 30
Version

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Lo
ok

up
 (s

)

DM-Baseline
DM-CR-4.0
DM-CR-6.0

VM-Baseline
VM-CR-4.0
VM-CR-6.0

(d) BEAR-C Query #6

0 5 10 15 20 25 30
Version

0

5

10

15

20

25

30

35

Lo
ok

up
 (s

)

DM-Baseline
DM-CR-4.0
DM-CR-6.0

VM-Baseline
VM-CR-4.0
VM-CR-6.0

(e) BEAR-C Query #7

0 5 10 15 20 25 30
Version

0

250

500

750

1000

1250

1500

1750

Lo
ok

up
 (s

)

DM-Baseline
DM-CR-4.0
DM-CR-6.0

VM-Baseline
VM-CR-4.0
VM-CR-6.0

(f) BEAR-C Query #8

0 5 10 15 20 25 30
Version

0

1

2

3

4

5

6

Lo
ok

up
 (s

)

DM-Baseline
DM-CR-4.0
DM-CR-6.0

VM-Baseline
VM-CR-4.0
VM-CR-6.0

(g) BEAR-C Query #9

0 5 10 15 20 25 30
Version

0

5

10

15

20

Lo
ok

up
 (s

)

DM-Baseline
DM-CR-4.0
DM-CR-6.0

VM-Baseline
VM-CR-4.0
VM-CR-6.0

(h) BEAR-C Query #10

0 5 10 15 20 25 30
Version

0

500

1000

1500

2000

Lo
ok

up
 (s

)

DM-Baseline
DM-CR-4.0
DM-CR-6.0

VM-Baseline
VM-CR-4.0
VM-CR-6.0

(i) BEAR-C Query #11

Fig. D.11: Individual runtime of DM and VM SPARQL queries for BEAR-C.
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Abstract

The dynamicity of semantic data has propelled the research on RDF Archiving, i.e.,
the task of storing and making the full history of large RDF datasets accessible. How-
ever, existing archiving techniques fail to scale when confronted with very large RDF
datasets and support only simple SPARQL queries. In this demonstration, we there-
fore showcase GLENDA, a system that can run full SPARQL 1.1 compliant queries
over large RDF archives. We achieve this through a multi-snapshot change-based
storage architecture that we interface using the Comunica query engine. Thanks to
this integration we demonstrate that fast SPARQL query processing over multiple
versions of a knowledge graph is possible. Moreover, our demonstration provides dif-
ferent statistics about the history of RDF datasets that can be useful for tasks beyond
querying and by providing insights about the evolution dynamics of the data.
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1. Introduction

1 Introduction

Despite most approaches assuming RDF datasets on the Web to be static
and providing optimizations for this case, in reality most RDF datasets are
consistently evolving [3, 5]. Although there has been some work on archiving,
where the focus has been more on storing previous versions, research has
not yet been paid much attention to efficiently querying past versions of a
knowledge graph without depending on specific system setups [1].

A straightforward way to keep track of the history of RDF data is to
store each revision of the dataset as an independent copy. Intuitively, this
does not scale well and can become prohibitive for large RDF datasets with
long histories. While few efficient solutions for RDF archiving have been
proposed [6, 9], they support queries on single triple patterns only. This
means that executing full SPARQL queries on RDF archives still requires
additional post-processing.

In this demo paper, we therefore present GLENDA, a system for executing
full SPARQL queries over RDF archives. GLENDA is built on top of a multi-
snapshot change-based storage system for RDF archives [6] that has been
integrated with the Comunica [11] SPARQL engine. In the remainder of
this paper, we first detail the technical architecture of GLENDA in Section 2.
Then, we describe and illustrate GLENDA’s main functionalities in Section
3. Finally, we conclude and discuss future work in Section 4.

2 The GLENDA system

Overview. At its core, GLENDA is composed of three distinct and indepen-
dents components, namely (i) a storage layer composed and an RDF archive
store, (ii) a query engine that communicates with the storage layer via an
API, and (iii) a user interface in the form of a web application. The query
engine is accessible by the client through a SPARQL endpoint.

Web GUI

Query Engine 
(Comunica)

Storage Layer 
(OSTRICH)

Triple 
patterns

Triples 
streams

Triple 
bindings

SPARQL 
query

SPARQL Endpoint 
Connection

Storage 
API

(a) GLENDA components.

Snapshot ∆ ∆

0 1

Snapshot ∆ ∆

2 3 4

(b) Storage layer’s architecture.

Fig. E.1: GLENDA architecture and components
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Figure E.1a illustrates the high level architecture of GLENDA. The user
interacts with a web-based GUI, where they can write SPARQL 1.1 [8] com-
pliant queries. The query engine is exposed through a SPARQL endpoint
with support for versioned queries. The query engine decomposes the full
SPARQL query written by the user into versioned triple pattern queries that
can be executed natively by the storage layer, which returns answers as triple
streams.

Storage layer. We make use of an extension of the OSTRICH [6] system
as storage layer. OSTRICH is a scalable engine for RDF archiving that stores
the history of an RDF dataset in a single delta chain. A delta chain is com-
prised of an initial snapshot followed by a sequence of aggregated changesets
(Figure E.1b). OSTRICH supports versioned queries on single triple patterns
with optional offsets. It also provides efficient cardinality estimations for
triple patterns. We resort to an extension of OSTRICH, presented in [6], that
models revision histories using multiple delta chains. As shown in [6], this
improves the ingestion time of new revisions drastically – in particular for
very long histories.

Query engine. We chose the Comunica [11] query engine to build our
SPARQL endpoint. Comunica is a modular, high-performance RDF query
engine with full support for the SPARQL 1.1 standard. Building on top of the
work from Taelman et al. [10], we opted for a minimal change to the SPARQL
language, as a full extension is outside the scope of this demonstration. The
semantic of the GRAPH keywork is changed so that it references versions
instead of graphs. We implemented support for three standard types of ver-
sioned SPARQL queries [2] described in the following.

• Version Materialization (VM). These are queries over a specific version
of the RDF Archive. These queries use the notation GRAPH <version:k>
for k ∈ {0, 1, . . . }.

• Delta Materialization (DM). These are SPARQL queries over the
changeset between two versions. This is achieved by using the nota-
tion for VM queries in combination with the FILTER (NOT EXISTS)
construct.

• Version Queries (VQ). These are SPARQL queries that yield version-
annotated query results. They resort to the notation GRAPH ?version.

User Interface. We build our GUI as a regular web-page using HTML,
CSS, and Javascript. We resort to the Yasgui1 library for the SPARQL query
interface, and the Plotly2 library for our graphics and visualizations. More
details about the user interface and its functionalities can be found next in
Section 3.

1https://triply.cc/docs/yasgui-api
2https://plotly.com/javascript/
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3. Demonstration of GLENDA

3 Demonstration of GLENDA

We now demonstrate the capabilities of GLENDA on the BEAR-C dataset [2],
which provides 32 snapshots from the Open Data Portal Watch project [4]
together with ten full SPARQL queries . To the best of our knowledge, no
publicly available system is currently capable of running the queries of this
benchmark.

Figure E.2a depicts GLENDA’s query interface, where the user can write
and execute SPARQL 1.1 queries, optionally using our versioning constructs.
The queries from the BEAR-C benchmark can be chosen from the dropdown
menu on top. The query type can be chosen among VM, DM and VQ queries,
and the provided sliders can help the user chose the versions to query.

By selecting the tab “Statistics”, the user can have access to various statis-
tics about the underlying dataset (Figure E.2b). These are state-of-the-art
metrics that describe the dynamics of an RDF archive [5]. Explanations for
the metrics are available as tooltips triggered by hovering the mouse over the
metric’s name. A video showing all the capabilities of GLENDA can be found
on YouTube3. The system is publicly available at https://glenda.cs.aau.dk
and more information can be found on our project webpage4.

4 Conclusion

We have presented GLENDA, a system to execute full SPARQL queries on
RDF archives. We detailed the technical makeup of the system and how its
different components interact with each other. We explained how queries
over archives can be executed with full SPARQL 1.1 via the use of special
URIs for named graphs. GLENDA presents itself as a web interface to the
user, with user-friendly tools to build and execute queries over RDF archives.
We have demonstrated, GLENDA’s capabilities on the BEAR-C dataset and
queries, which no other system can currently fully support.

In our future work we have planned to consider the development and
study of alternative snapshot strategies. Moreover, we envision to reduce the
required storage space via more efficient serialization techniques for times-
tamped deltas. We also expect to improve query processing with advanced
RDF representations and novel indexing approaches [7]. Similarly, we envi-
sion to study the use of dedicated extensions to the SPARQL language for
versioned queries, which would allow for greater flexibility in the querying
process, while enabling the simultaneous use of graphs and versions. Finally,
we plan to improve the performance of the system further by implementing

3https://youtu.be/DoNjw3V6oSo
4https://relweb.cs.aau.dk/glenda/
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(a) GLENDA main page and query interface.

(b) GLENDA statistics page.

Fig. E.2: GLENDA’s user interface
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a more efficient streaming of the results from the storage layer to the query
engine.
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Abstract

Advancements and popularity of Semantic Web technologies in the last decades have
led to an exponential adoption and availability of Web-accessible datasets. While
most solutions consider such datasets to be static, they often evolve over time. Hence,
efficient archiving solutions are needed to meet the users’ and maintainers’ needs.
While some solutions to these challenges are being provided, standardized benchmarks
are needed that systematically test the different capabilities of existing solutions and
identify their limitations. Unfortunately, the development of new benchmarks has not
kept pace with the evolution of RDF archiving systems. In this paper, we therefore
identify the current state of the art in RDF archiving benchmarks and discuss to
what degree such benchmarks reflect the current needs of real-world use cases and
their requirements. Through this empirical assessment, we highlight the need for the
development of more advanced and comprehensive benchmarks that align with the
evolving landscape of RDF archiving.

© The authors 2023. Published by CEUR-WS Proceedings in Open Access
under the Creative Commons License Attribution 4.0 (CC BY 4.0). Reprinted
with permission of Olivier Pelgrin, Ruben Taelman, Luis Galárraga, and Katja
Hose.
Pelgrin, O., Taelman, R., Galárraga, L., Hose, K. (2023). The Need for Better
RDF Archiving Benchmarks. In: Managing the Evolution and Preservation
of the Data Web, MEPDaW 2023, Volume 3565, Pages 50–54, 2023.
The layout has been revised.



1. Introduction

1 Introduction

The continuous advancement and widespread adoption of Semantic Web
technologies have generated a growing demand for robust systems for man-
aging knowledge graphs. This demand is particularly pronounced for RDF,
the Semantic Web’s most prevalent and accessible data model. Along with
the rest of the Web, Semantic Web data is continuously evolving [5, 9, 13].
This has raised the need to keep track of the revision history of those datasets
for the sake of multiple applications, such as version control or historical data
analytics. This, in turn introduces new challenges for both data maintainers
and users, sparking the development of dedicated techniques and systems
for RDF archiving [13].

The availability of widely adopted benchmarks is of crucial importance
for the development of RDF archiving systems. Standardized benchmarks
enable the impartial evaluation of new indexing and storage techniques, as
well as the performance of query engines. Although numerous benchmarks
have been designed specifically for evaluating RDF stores [2, 4, 8], the number
of benchmarking options for RDF archiving systems remains limited [12].

In this paper, we present an analysis of the current state of RDF archiv-
ing benchmarks, evaluating their strengths and limitations. We show that
despite advancements in the field, current benchmarks do not sufficiently
capture emerging challenges faced by archiving systems. We use this finding
to derive a set of requirements, that we believe, are essential for benchmarks
to advance research and development of RDF archives.

The remainder of this paper is organized as follows. First, we discuss
the current state of RDF archiving research and relevant benchmarks in Sec-
tion 2. Second, in Section 3, we discuss the shortcomings of current RDF
archiving benchmarks and our recommendations and requirements for the
future. Finally, Section 4 concludes the paper.

2 Related Work

In this section, we provide a brief survey of the available systems as well
as existing languages and SPARQL extensions specifically designed for RDF
archives. Furthermore, this section delves into existing benchmarks tailored
for assessing the performance of RDF archive systems.

2.1 RDF Archiving

RDF archiving, at its core, consists of storing and querying the entire evo-
lution history of an RDF graph. Efficient indexing and querying of RDF
archives has proven to be a challenging task due to the additional temporal
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dimension compared to traditional RDF stores. While the design of efficient
indexing and querying systems for RDF archives is still an ongoing effort,
multiple approaches have been proposed throughout the years [13]. Existing
works can generally be categorized into three main paradigms [5], Indepen-
dent Copies (IC), Change-based (CB), and Timestamp-based (TB), with some
modern approaches proposing the use of a combination of those [1, 14–16].
Some approaches are now able to scale to much larger RDF archives com-
pared to early proposals [15], however querying capabilities still remain very
limited. Efficient processing of complex archive queries remains one of the
key areas of development for the future of RDF archiving systems.

Relative to conventional RDF, the existence of multiple versions within an
RDF archive introduces the need for novel query types that can be hardly
expressed in the standard SPARQL language. Some approaches propose the
extension of SPARQL to support temporal queries, i.e. specifying a times-
tamp or interval in which the query results should hold [6, 7]. Other works
attempt to formally categorize the different types of queries possible on RDF
archives [5, 12], but do not address the implementation of these categoriza-
tions via formal SPARQL extensions.

2.2 Benchmarks for RDF Archives

Benchmarks play a crucial role in guiding the development of systems by
facilitating their evaluation and enabling comparisons with existing systems
in terms of implementation and design. Due to being a relatively new area
in RDF data management, we only account for three benchmarks tailored for
RDF archiving in the literature: EvoGen [11], BEAR [5], and SPBv [12].

EvoGen [11] is a benchmark based on the LUBM [8] data generator ex-
tended to support evolving RDF scenarios. The benchmark data can be con-
figured on the desired number of versions and the magnitude of changes.
The querying workload is derived from the 14 LUBM queries and includes
variations of materialization, delta, and mixed queries. Due to the nature
of the LUBM queries, support for RDFS reasoning is needed to resolve the
complete result sets.

BEAR [5] is a benchmark for RDF archives consisting of three different
RDF archives. Those different flavours, namely BEAR-A, BEAR-B and BEAR-
C, are extracted from real-world datasets, and are characterised by their var-
ious sizes and change behaviour. BEAR comes with predefined query work-
loads, based on single triple-patterns queries for both BEAR-A and BEAR-B,
while for BEAR-C, a set of 10 different full SPARQL queries are proposed.

SPBv [12] is a benchmark for RDF archives that consists of a data genera-
tor based on the Semantic Publishing Benchmark (SPB) [10] from the Linked
Data Benchmark Council (LDBC) [2]. The number of versions and the size of
the data can be configured, as well as the number of generated queries. The
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generated data comes as full versions, changesets, or both. The query work-
load consists of SPARQL queries where versions are represented as named
graphs.

3 Benchmarking RDF Archives

In this section, we examine the qualities and features that a benchmark for
RDF Archiving should strive to possess. We propose that benchmarks for
RDF Archives should strive for three main overarching qualities, namely re-
producibility, realism, and configurability. Reproducibility represents the ease at
which the benchmark results can be shared and reproduced by others. Re-
alism is about how the benchmark setting, both in the choice of dataset and
query loads, models or emulates the real world. Configurability represents the
ability of the benchmark to propose workloads of various sizes, relevant for
a wide range of system configurations and use cases. We further detail our
recommendations of a concrete implementation of the aforementioned qual-
ities by first detailing the choice of data. We then will discuss the design of
query workloads, and finally, we discuss whether existing benchmarks fulfil
those requirements.

3.1 Dataset

The choice of data is an important aspect when designing a benchmark. Cur-
rent benchmarks use either configurable generator for synthetic data [11, 12],
or directly provide data based on existing real world datasets [5]. As dis-
cussed by Duan et al. [4], many data generators produce data that is not
necessarily representative of real-world RDF datasets. However, they also
demonstrate the possibility to make generators truer to the real world by tak-
ing into account their proposed coherence metric in the generation process.
We are although not aware of any other generator-based benchmark for RDF
archiving making use of this metric, which would improve the realism of the
generated data.

Most importantly, a benchmark should cover different, realistic, scaling
options. In the RDF archiving world, the scaling options do not only cover
different data sizes, but also the temporal size, i.e. the number of versions and
the magnitude of changes within each version. Generator-based benchmarks
should provide users with all the necessary scaling parameters, while real-
world-based benchmarks should offer different datasets scaling along those
axes.
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3.2 Query Workload

Early RDF archiving systems could be adequately tested with single triple
pattern queries, but contemporary archiving benchmarks should prioritize
comprehensive SPARQL query workloads. We believe that efficient support
for full SPARQL in RDF Archiving represents a major challenge that RDF
archiving systems currently need to solve. Consequently, in order to fullfil
our realism requirement, benchmarks should provide comprehensive assess-
ment of those capabilities, guiding the development of existing and new sys-
tems. Benchmark query workloads should be meticulously designed to align
with real-world use cases. Following recommendations from the LDBC [2], a
"choke-point" approach to the design of the benchmark should be considered
through a comprehensive evaluation of real-world RDF archives usages.

Finally, the lack of a widely accepted standard to formulate archiving
queries into SPARQL is a major brake for the design of benchmark queries.
Addressing this issue necessitates a dedicated standardization effort, poten-
tially drawing inspiration from the RDF stream community, and the RSP-QL
standardization effort [3]. Such a solution would however require a more
extensive study of the overlap between RDF streams processing and RDF
archiving, notably on the relation between streams’ temporal graphs and
archives.

3.3 Comparison of Existing RDF Archiving Benchmarks

Dataset Reproducibility Realism (data) Realism (queries) Configurability

EvoGen [11] Synthetic -/+ - + +
BEAR [5] Real-world + + - -
SPBv [12] Synthetic -/+ - + +

Table F.1: Comparison table of existing RDF Archiving benchmarks.

Table F.1 summarizes the characteristics of the existing RDF archiving
benchmarks. Among the available benchmarks, two of them rely on synthetic
data generated through a data generator. Generator-based systems fulfil the
configurability criteria easily due to their nature, but may fall short of also
proving their realism, while their reproducibility is dependent on the sharing
of the exact parameters and random seed. Both EvoGen [11] and SPBv [12]
provide SPARQL queries of varied nature, but only focus on the generation
of one restrictive type of datasets, which have not been evaluated for their re-
alism, for example via the coherence metric. BEAR [5] on the other hand pro-
vides datasets of various size and based on real-world data. This increase the
reproducibility and relevance of the benchmark compared to generator-based
ones. The number of scalability options is however necessarily more lim-
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ited, but BEAR still offers five different alternative datasets. However, full
SPARQL queries are only provided for one of the options, the others being
limited to single triple-patterns queries. As discussed in Section 3.2, it lim-
its BEAR’s realism, and makes the evaluation of SPARQL-capable archiving
systems greatly limited.

4 Conclusion

In this paper, we presented the current state in RDF archives systems and
benchmarks. We have proposed a set of requirements that benchmarks
should have in order to contribute to the advancement of the field. We
showed that among the only three available benchmarks for RDF archiving
systems, none of them proposes a satisfactory set of features. This ranges
from a general lack of realism w.r.t. the real world, lack of SPARQL support,
or concerns with reproducibility. We see several areas open for future work.
First, precisely defining the semantics and syntax of SPARQL archive queries
would benefit greatly to the wider RDF community. This would open the
door for standardized support across various RDF stores and research sys-
tems. Secondly, benchmarks relevant to the modern challenges faced by RDF
archiving applications and systems are needed to guide and evaluate efforts
in that area. We believe that this is paramount to current development efforts
of fully-fledged RDF archiving systems.
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