
Image and Video Analysis for
Intelligent Driver Monitoring in Car

Cabins

Mathias Viborg Andersen

Computer Engineering, CE10, May 31, 2024



Copyright © Aalborg University 2024
Electronic Systems
Fredrik Bajers Vej 7B
9220 Aalborg Øst

Title:

Image and Video Analysis for Intelligent
Driver Monitoring in Car Cabins

Theme:

Masters Thesis: Computer Engineering: AI,
Vision and Sound

Project:

P10 - Master Project

Project Period:

Spring 2024

Project Group:

CE AVS 1045a

Participant:

Mathias Viborg Andersen

Supervisor:

Andreas Møgelmose, Aalborg University

Co-supervisors:

Ross Greer, UC San Diego
Mohan M. Trivdei, UC San Diego

Pages: 83
Date of Completion: May 31, 2024

Abstract:

This work consists a master’s thesis con-
ducted in Computer Engineering: AI, Vision
& Sound. It describes the work conducted
during a semester abroad at UC San Diego.
It is research-oriented and is therefore struc-
tured in separate parts to align with the flow of
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exploration of synthetic generation of missing
thermal video frames, generalizable driver
activity classification and driver drowsiness
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well-performing results through the use of
conditional Generative Adversarial Networks
(cGANs). Additionally, an experiment utilizing
multiple camera angles in Vision-Language
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conducted, showcasing promising results for
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more, a study utilizing Video Transformers in
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conducted detailing the accuracy of video detail
needed for the task, and includes a custom
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Abstract:

Dette arbejde består af et kandidatspeciale i
Computer Engineering: AI, Vision & Sound.
Det beskriver det arbejde, der er udført under
et semesterophold ved UC San Diego. Det er
forskningsorienteret og struktureret i separate
dele for at tilpasse sig forskningsflowet i mod-
sætning til en lineær udviklingsproces.

Det primære omfang af denne rapport har været
undersøgelsen af syntetisk generering af man-
glende termiske video-frames, generaliserbar
klassificering af chaufføraktivitet og registrering
af førertræthed, alt sammen inden for kontek-
sten af en bilkabine. Denne rapport inkluderer
et forslag til generering af manglende termiske
rammer fra RGB, hvor der opnås brugbare
resultater ved brug af conditional Generative
Adversarial Networks (cGANs). Derudover er
der udført et eksperiment med anvendelse af
flere kameravinkler i Vision-Language modeller
til aktiviteter i bilkabinen, som viser lovende
resultater for generaliserbare Vision-Language
modeller. Ydermere er der udført en under-
søgelse, der benytter Video Transformers i
forsøget på at klassificere træthed, som detal-
jerer den nødvendige videodetalje for opgaven,
og inkluderer en ansigtstilpasset version af
datasættet UTA-RLDD.

Dette arbejde har resulteret i en accepteret
artikel til det 35. IEEE Intelligent Vehicles
Symposium (IV) samt en accept ved Computer
Vision and Pattern Recognition (CVPR) Vision
and Language for Autonomous Driving and
Robotics Workshop.
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Introduction 1
This thesis is the result of my stay at LISA and CVRR at UC San Diego spanning three main
work areas all in relation to intelligent vehicles. Research has been conducted on thermal video
frame generation, classification using generalizable representations from Vision-Language models,
and drowsiness detection. These studies are detailed in Chapter 2, Chapter 3, and Chapter 4,
respectively. The work has resulted in two scientific papers, both accepted for publication. Both
papers are attached in Appendix D.

• Learning to Find Missing Video Frames with Synthetic Data Augmentation: A General
Framework and Application in Generating Thermal Images Using RGB Cameras. Accepted
at the 35th IEEE Intelligent Vehicles Symposium (IV).

• Driver Activity Classification Using Generalizable Representations from Vision-Language
Models. Accepted at the Computer Vision and Pattern Recognizion (CVPR) Vision and
Language for Autonomous Driving and Robotics Workshop.

It is expected that the paper Driver Activity Classification Using Generalizable Representations
from Vision-Language Models will also be submitted elsewhere and may take another form after
the submission of this report, as the CVPR workshop is non-archival.

The work has been carried out with the supervision of PhD candidate Ross Greer from UCSD
and associate professor Andreas Møgelmose from Aalborg University. Chapter 3 has been carried
out in collaboration with Ross Greer, with the main contributions being done by me.

A common theme across all chapters is that they focus on activities within the vehicle cabin,
looking in, and are centered on human interaction, though in different specific areas. The report
does not have a linear flow as a result, with each chapter focusing on independent areas. Below
is a brief overview of the chapters:

1.1 Chapter 2: Learning to Find Missing Video Frames with
Synthetic Data Augmentation

In Chapter 2, the generation of thermal frames from corresponding RGB frames is explored to
address the issue of missing data due to sensor frame rate mismatches. By leveraging conditional
Generative Adversarial Networks (cGANs), specifically comparing the pix2pix and CycleGAN
architectures, this chapter demonstrates the potential of generative models in creating realistic
thermal images. The experimental results indicate that pix2pix outperforms CycleGAN and that
using multi-view input styles, particularly stacked views, enhances the accuracy of thermal image
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1.2. Chapter 3: Driver Activity Classification Using Generalizable Representations from
Vision-Language Models AAU

generation. This work contributes to advancing driver state monitoring systems by providing a
method to maintain data integrity when frame rates diverge.

1.2 Chapter 3: Driver Activity Classification Using
Generalizable Representations from Vision-Language
Models

Chapter 3 presents a novel approach for driver activity classification using Vision-Language
models. This research leverages generalizable representations to classify in-cabin activities such
as drinking, talking on the phone, and texting, without the need for extensive model fine-
tuning. The study applies theoretical concepts to practical scenarios, including the 2024 AI
City Challenge, specifically Track 3: Naturalistic Driving Action Recognition. This chapter
underscores the flexibility of Vision-Language models and their applicability to a broad range of
tasks, showcasing their potential for robust driver monitoring systems.

1.3 Chapter 4: Drowsiness Detection Utilizing Video
Transformers

Chapter 4 delves into the detection of driver drowsiness using Video Transformers, specifically
the TimeSformer model. This chapter discusses the indicators of drowsiness and related works,
followed by a temporal analysis strategy employing TimeSformer. The research demonstrates
how TimeSformer can effectively process and analyze video data to identify drowsiness,
highlighting its competitive performance in action recognition tasks.

1.4 Utilized hardware

Throughout the development of the project, three primary hardware configurations were
employed: two desktops, LISA Desktop 1 and LISA Desktop 2, and a cloud instance, AAU
Strato Cloud Instance. As projects often have been running simultaneously each chapter has had
a main place of operation. Chapter 2 has mainly utilized LISA desktop 1, Chapter 3 has mainly
utilized LISA desktop 2, and Chapter 4 has mainly utilized AAU Strato Cloud Instance.

LISA desktop 1:

• CPU: AMD Ryzen 9 5950X 16-Core Pro-
cessor.

• GPU: NVIDIA GeForce RTX 3090.

AAU Strato Cloud Instance:

• CPU: Intel Xeon Processor (Icelake).
• GPU: NVIDIA A10.

LISA desktop 2:

• CPU: AMD Ryzen 9 7950X 16-Core Pro-
cessor.

• GPU: NVIDIA GeForce RTX 4090.
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Learning to Find Missing
Video Frames with Synthetic

Data Augmentation 2
This work has been accepted for the 35th IEEE Intelligent Vehicles Symposium (IV), scheduled
for June 2 to June 5, 2024. An article of the name Learning to Find Missing Video Frames with
Synthetic Data Augmentation: A General Framework and Application in Generating Thermal
Images Using RGB Cameras can be found in Appendix D. It is advisable to read the article
before engaging with this chapter, as this chapter build upon the article’s understanding.

This chapter aims to explore the generation of thermal frames from a corresponding RGB frame
given a sensor frame rate mismatch. Building on the insights from the attached article and
Section 4.3, where the challenge of dealing with varying frame rates in datasets is detailed (as
depicted in Figure 4.3a), the significance of maintaining data integrity when frame rates diverge
is underscored.

2.1 Generative strategy

When exploring the generation of non-existent thermal data frames from corresponding existing
RGB frames that capture the same elements, conditional Generative Adversarial Networks
(cGANs) present a promising approach [1]. These networks extend the standard Generative
Adversarial Network (GAN) architecture [2] by incorporating a conditional element, allowing for
targeted generation of images based on given inputs. Unlike traditional GANs, which solely rely
on a generator and discriminator competing in a minimax game, cGANs introduce an additional
condition, typically in the form of a class label or related data, to guide the image generation
process more precisely as on Figure 2.1.
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2.1. Generative strategy AAU

Figure 2.1. GAN and cGAN compared. G is generator, D is discriminator, X represents samples from
dataset and generated samples, c the added class or label [3].

Two notable examples of cGAN architectures tailored for image-to-image translation tasks are
pix2pix [4] and CycleGAN [5]. Both will be further explained in this section.

2.1.1 pix2pix

The pix2pix framework is designed for tasks where paired input-output examples are available,
facilitating direct translations from one domain to another. This approach is particularly useful
for applications requiring precise alignment between the input and generated images, as it
leverages the explicit correspondence between the pairs, as in Figure 2.2.

Figure 2.2. Example from the pix2pix architecture directly translating from one modality to another,
depending on paired inputs and outputs [4].

The generator (G) in pix2pix aims to produce output images that are indistinguishable from real
images in the target domain. Unlike conventional GANs, the pix2pix generator takes an image
from the source domain as input and generates a corresponding image in the target domain,
instead of using random noise Z. The generator architecture is based on a U-Net structure,
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2.1. Generative strategy AAU

which features a series of down-sampling layers followed by up-sampling layers, connected with
residual connections. The U-Net architecture enables the network to capture context from the
input image at different levels of detail and efficiently reconstruct the output image with high
fidelity. The function of the discriminator (D) is to differentiate between real images from the
target domain and fake images produced by the generator. The pix2pix discriminator operates
on patches of the image, a design known as PatchGAN. This design allows the discriminator
to focus on high-frequency details by classifying each patch as real or fake, making it more
effective in assessing the authenticity of local image textures and structures compared to looking
at individual pixels (PixelGAN) or full images (ImageGAN).

Figure 2.3. The flow of pix2pix applied in this work.

The pix2pix training process involves a combination of two main loss functions:

Adversarial Loss: This loss measures how well the discriminator is able to distinguish between
real and generated images. The generator is trained to minimize this loss by trying to produce
images that the discriminator will classify as real. This creates a competitive game between the
generator and discriminator, driving the generator to produce increasingly realistic images. In
this implementation, binary cross-entropy (BCE) loss is used [6].

L1 Loss: To ensure that the generated images not only fool the discriminator but also are close
to the real images in a meaningful way, pix2pix includes an L1 loss (also known as the mean
absolute error) between the generated image and the real target image. This loss encourages the
generated image to be similar to the target image on a pixel-by-pixel basis, thus preserving the
content of the input image in the generated output. The authors argue that it encourages less
blurring than L2 loss.

These two losses are collected in equation 2.1, which is the final objective of the pix2pix cGAN.

G∗ = argmin
G

max
D

LcGAN(G,D) + λL1(G) (2.1)
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2.1. Generative strategy AAU

G∗ The generator model that minimizes the combined adver-
sarial and L1 losses to produce images closest to the target
distribution.

LcGAN(G,D) The adversarial loss calculated from both the generator’s
and the discriminator’s perspectives. The generator aims
to minimize this loss by generating images that the
discriminator mistakes as real, while the discriminator
aims to maximize it by accurately distinguishing real from
generated images.

λ A weighting factor that balances the contribution of the L1
loss in the overall objective function of the generator.

L1(G) The L1 loss that measures the pixel-wise absolute difference
between the generated images and the target images, encour-
aging the generator to produce accurate reconstructions.

+λ · L1(G) This term is added only to the generator’s loss function
to enforce similarity to the target images in the generated
output.

2.1.2 CycleGAN

On the other hand, CycleGAN addresses scenarios where paired examples are not available by
learning to translate between two unpaired image domains, by continuing the approach of pix2pix.
Through the introduction of a Cycle Consistency Loss, CycleGAN ensures that an image can
be translated from one domain to the other and back again, retaining its original identity. This
allows for effective translation even in the absence of direct correspondences between the source
and target domains, making it suitable for a wider range of applications, as in Figure 2.4.

Figure 2.4. Example from the cycleGAN architecture converting unpaired images [5].

CycleGAN consists of two generators and two discriminators, structured into two mirroring GAN
setups — each responsible for learning the translation in one direction between the two domains
(Domain X to Domain Y, and Domain Y to Domain X), as in Figure 2.5. The generators, labeled
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2.1. Generative strategy AAU

G and F, serve specific roles: G translates images from Domain X to Domain Y, while F performs
the reverse, translating images from Domain Y to Domain X. Similar to the approach in pix2pix,
each generator’s goal is to produce images that are indistinguishable from real images within the
target domain. The discriminators, denoted as DX and DY, have their distinct functions as well:
DX discriminates between real images from Domain X and those translated by F, whereas DY

differentiates real images from Domain Y and those translated by G.

Figure 2.5. (a) The CycleGAN framework comprises two generative adversarial networks, each with a
generator and a discriminator. (b) The translation process begins with an image x from domain X, which
is passed through generator G to produce the fake image ŷ, an imitation of domain Y. Discriminator DY
assesses the authenticity of ŷ. The translated image ŷ is then cycled back using generator F to recreate
the original image x, with the fake image denoted as x̂. (c) Same process as in (b) is repeated for the
image y [5].

An important component for the CycleGAN architecture is the Cycle Consistency Loss. This
component ensures that an image translated from one domain to the other can be translated
back to the original domain, closely resembling the original image and encourages the model to
be able to fully get back to the starting point, as denoted in Equation 2.2.

Lcyc(G, F) = Ex∼pdata(x)
[∥F(G(x)) – x∥1] + Ey∼pdata(y)

[∥G(F(y)) – y∥1] (2.2)
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2.2. Dataset AAU

Lcyc(G, F) The cycle consistency loss that ensures the mappings G and
F are consistent with each other by enforcing that an image
translated to the target domain and then back to the original
domain should look like the original image.

Ex∼pdata(x)
[∥F(G(x)) – x∥1] The forward cycle consistency loss which measures the

average absolute difference (L1 norm) between the original
image x and the image obtained after passing x through the
generator G and then the inverse generator F.

Ey∼pdata(y)
[∥G(F(y)) – y∥1] The backward cycle consistency loss which measures the

average absolute difference (L1 norm) between the original
image y and the image obtained after passing y through the
generator F and then the inverse generator G.

G The generator that maps images from domain X to domain
Y.

F The generator that maps images from domain Y to domain
X.

∥ · ∥1 The L1 norm used to measure the pixel-wise absolute differ-
ences between images, promoting accurate reconstructions.

x ∼ pdata(x) The distribution of images in the source domain X.
y ∼ pdata(y) The distribution of images in the target domain Y.

This cycle consistency is fundamental to CycleGAN’s ability to learn meaningful translations
without paired data, as it ensures a balanced translation and prevent the learned mappings from
contradicting eachother. It effectively means that G(F(x)) ≈ x ∧ F(G(y)) ≈ y.

This results in a final objective similair to the one of pix2pix, but with an extended generator
and discriminator part, as in Equation 2.3.

G∗, F∗ = argmin
G,F

max
Dx,Dy

L(G, F,Dx, Dy) (2.3)

Where

L(G, F,Dx, Dy) = LGAN(G,Dy, X,Y) + LGAN(F,Dx, Y,X) + λLcyc(G, F) (2.4)

Both CycleGAN and pix2pix architectures represent significant advancements in conditional
GAN research, offering paths for generating realistic images across different domains. Whether
dealing with paired or unpaired data, these frameworks provide powerful tools for researchers
and practitioners looking to bridge the gap between different image modalities, such as RGB and
thermal imaging, providing the path for further experimentation.

2.2 Dataset

To proceed with further experimentation, a domain-paired dataset is required. The dataset
used for the experiment includes recordings of 17 subjects seated in a simulated driver’s seat,
undergoing a complete simulation drive. The dataset captures RGB images at approximately
30 frames per second (fps), while the thermal images are recorded using a thermal camera
operating at less than 9 fps. This makes it a pertinent case for this study. The thermal images
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2.2. Dataset AAU

cover a temperature range from -20°C to 300°C, and are scaled to the 0-255 range. The data
collection setup included four RGB cameras and one thermal camera. The arrangement of
these components is illustrated in Figure 2.6. The cameras each save individual frames with a
timestamp. All cameras are connected to the same desktop, providing the timestamps for the
images.

Figure 2.6. The Driving Simulator is equipped with a driver’s seat, an interactive steering column, and
three screens that display the simulated driving environment. It features four cameras, a microphone,
and a thermal camera for sensing purposes.

The dataset, originally designed for use in driver feature extraction projects, was not initially
intended for this experiment. However, it has proven to be well-suited for this study.

During the dataset creation, several factors affected its consistency. Cameras were
unintentionally moved between subjects, some subject frames included test personnel, and
contamination is part of the dataset, such as different furniture appearing in the background
for some subjects actively making some classification tasks easier.

RGB Cameras 1-4: Logitech Brio Camera [7]
Four RGB cameras are positioned around the test subject, as illustrated in 2.6. Each camera
operates at a resolution of 1920x1080p, with a 90-degree field of view and a frame rate of 30 fps.

Sensor Resolution Field of View Frame Rate

1920x1080p 90 deg 30 fps

Thermal Camera: Seek Thermal Micro Core Starter Kit [8]
The dataset consists of an additional camera with thermal capabilities, mounted parallel to
Camera 1 as shown in Figure 2.6. The thermal camera has a resolution of 200x150p, 61 deg field
of view, and a frame rate of < 9Hz.

Sensor Resolution Field of View Frame Rate

200x150p 61 deg < 9Hz
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2.2. Dataset AAU

2.2.1 Camera viewpoints

Thermal Camera is mounted parallel to Camera 1 to capture the thermal signatures from the
subject’s face.

Camera 1 (front) is mounted directly above the center screen and captures the subject’s face.
This camera is meant to capture gaze features and a full frontal view of the eyes and face.

Camera 2 (overhead) is mounted directly above the subject’s head and captures body and
hand positions.

Camera 3 (profile) is also mounted behind the steering wheel, but in addition to the driver’s
face, provides another view of the subject’s body posture. In particular, this view is meant
to capture auxiliary information on the driver’s entry into the seat and general posture
changes and movement, for possible analysis of driver behavior when entering the vehicle.

Camera 4 (tablet) is mounted behind the subject’s right shoulder to capture potential hand
attention to a given task on a tablet.

Examples of each camera view are shown in Figure 2.7. Only the presented subject denoted as
0 has given consent to be utilized for display in this report.

Figure 2.7. The five views of the driver: overhead view, face view, thermal view, profile view, and
tablet view. The first three views represent the driver-center views, while the last two views represent a
view for entry pose analysis and tablet-related features.
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2.2. Dataset AAU

2.2.2 Multi-sensor synchronization

In order to establish a reliable ground truth for
the generation of frames, synchronizing the views
captured by different cameras is important. Each
camera provides a unique perspective of the scene,
and aligning their timestamps ensures that the
captured events are accurately correlated across all
viewpoints. As the timestaps are generated by a
desktop possibly affected by latency and load of
frames, all timestaps may not be fully accurate.
However, when investigating the data, it aligns for
the purpose of this experiment.
The chosen synchronization methodology employs
a binary search algorithm to align timestamps of
images captured by different cameras, included in the
process described in Figure 2.8.
Binary search operates on the principle of dividing
the search space in half repeatedly until the de-
sired timestamp is located, as portrayed in Figure 2.9.

Algorithm:
Start in the Middle: The search begins by ex-
amining the image in the middle of the chronologi-
cally ordered collection. Since the images are sorted
by timestamp, this middle image represents the mid-
point of the entire time range covered by the images.
Comparison: The timestamp of the middle image
is compared to the target timestamp (the timestamp
of the image you’re looking for).
Narrowing Down: Based on this comparison,
it’s determined whether the target image would be
located to the left or right of the current image in
chronological order. This halves the search space.
Repeat: The search process is then repeated with
the half of the collection where the target image is
likely to be found. This process continues recursively
until the target image is located.
By repeatedly halving the search space, binary search
quickly narrows down the possible locations of the
target image, making it a highly efficient method
for image retrieval based on timestamps. Once the
algorithm can no longer divide the search space
further, it selects the timestamp that is closest to
the target timestamp within the remaining range [9].

Figure 2.8. Synchronization procedure
utilizing Binary Search.
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Figure 2.9. Flowchart for Binery Searh algorithm [10].

2.3 Experimental evaluation

This chapter will test the discussed methods by using different input layouts of the dataset, as
in Figure 2.10. The metric used to evaluate the generated quality will be L1 loss, as this is the
metric used by the corresponding papers and there will be a ground truths for all tests. All tests
performed with standard settings recommended from the pix2pix [4] and CycleGAN [5] papers,
unless otherwise stated. Implementations with inspiration from [11, 12, 13, 14].

(a) Thermal ground
truth.

(b) Front-View. (c) Four-View, Tessel-
lated.

(d) Four-View,
Stacked.

Figure 2.10. Different inputs for the experiments. All were evaluated on their potential for generating
an image similar to the thermal ground truth.

As the dataset comprises individual subjects it’s chosen to keep initial testing on an individual
basis, as different subjects can have different RGB and thermal characteristics. Therefore, a
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model is trained for each subject. From each subject a collection of 500 thermal + RGB image
synchronous groups is created, to align with the subject that holds the minimum amount of
data. In each experiment, an allocation of 80 % for training, 10 % for validation, and 10 %
for testing has been used. All training curves are displayed up to 20,000 steps (≈ 40 epochs),
as there are no significant changes observed beyond this point, unless specified otherwise. All
examples provided pertain to the subject identified as 0, who has granted permission for the use
of their photographs.

2.3.1 Front-View

As the wanted output is a thermal image of the front view, naturally the Front-View RGB is
selected as the first testing point. Thermal Front-View as the ground truth and the Front-View
RGB image is selected as the input to generate the thermal images. It’s anticipated that an
RGB to thermal image mapping can be created from a Front-View RGB image, as this is the
most corresponding image. An example of an element in the dataset is seen in Figure 2.11.
Experiments will be conducted for both pix2pix, CycleGAN and a combination of all subject
data.

(a) Thermal ground truth. (b) Front-View.

Figure 2.11. Input style for Front-View experiment.

pix2pix

First experiment is conducted using pix2pix, achieving training metrics in Figure 2.12. These
metrics illustrate the model’s performance throughout the training process, thereby establishing
whether the model potentially fits the intended criteria or not.
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Figure 2.12. Generator L1, adversarial, adversarial + λ ·L1 loss and discriminator adverserial loss for
the front single subject test. Training curves showing average values and standard deviation over the 17
subjects.

When looking at this data, it’s observed that the L1 loss of the generator is steadily going
down and improving, resulting in a minimum average loss of 0.0363 (σ .0047), indicating that
the generator is producing images close to the ground truth. However, when looking at the
individual adversarial loss of the generator and discriminator, there is an indication of a winner to
the minimax game. The discriminator is increasingly improving while the generator is declining,
indicating that it’s too easy to differentiate between real and generated images. The validation
accuracy demonstrates signs of overfitting between steps 15,000 and 20,000, corresponding to
when the generator begins to visibly fall behind the descriminator. The model chosen for testing
is based on the lowest validation loss achieved, which for the example of the average validation
loss in this instance is 0.697 (σ 0.012) at step 14,000, as shown in Figure 2.13.
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Figure 2.13. Validation L1 loss for the Front-View test, resulting in a lowest score of average score of
0.697 (σ .012).

However, despite the relatively high losses, when looking at the images, the similarity is fairly
close as in Figure 2.14. Figure A.1 in Appendix A displays different iterations starting from
generated noise to an approximation, showcasing the iterative process of the minimax game.

Figure 2.14. Single-Subject Front-View Prediction Example. L1 Loss of 0.0625.

The final testing results, as depicted in Table 2.1, reveal notable variations in the performance
metrics among the subjects tested. These disparities can be attributed to several factors, which
may include but are not limited to, different subjects possessing distinct thermal characteristics
and varying camera setups that can influence the outcome of the tests.
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Subject Test/Average L1 Loss
0 0.048
1 0.072
2 0.079
3 0.070
4 0.076
5 0.049
6 0.088
7 0.067
8 0.066
9 0.071
10 0.065
11 0.064
12 0.062
13 0.084
14 0.069
15 0.065
16 0.054

Average: 0.0676 (σ 0.0106)

Table 2.1. Test/Average L1 Loss by subject for pix2pix front camera only. Worth noting for subject
0 is that this is the only subject wearing a mask. Full subject list to indicate the loss range.

Different subjects may have unique thermal profiles due to variations in factors such as clothing,
movement of the camera, and ambient conditions during the tests. For example, subject 0, who
was wearing a mask, showed a distinctively lower L1 loss compared to others, suggesting that
masks might make the thermal prediction easier, as it removes details and thus the performance
of the model. The relocation of the camera and variations in subject height present known
challenges for maintaining a consistent field of view. This often results in compromised data
quality, as illustrated in Figure 2.15, where obstructions such as the steering wheel obscure
significant portions of the subject’s face in the thermal view, but not in the RGB view.

CE AVS 1045a May 31, 2024 Page 16 of 83



2.3. Experimental evaluation AAU

Figure 2.15. Obstacles can occur in the dataset with a frequent one being the steering wheel covering
large parts of the face in the thermal point of view, potentially confusing models. This also illustrates the
possible mismatch when sensors operate at different rates, as it is possible that the temporally-nearest
measurement to a given instance may have taken place before a significant action for one sensor, and after
the action for another. In the above example, the driver has abruptly moved his face to front camera
looking position, captured by the RGB camera; however, the thermal camera has not yet processed
another signal to capture this motion, and is still capturing the subject looking to the side. This given
subject has not been utilized for this experiment.

CycleGAN

The same experiment has been conducted using CycleGAN. Results are shown for 100,000
steps (≈ 200 epochs). The expectation of using CycleGAN is that it can perform a better
generalization, as it’s domain-focused and not paired translations as pix2pix.

Analysis of the training characteristics reveals that the Cycle Consistency Loss for the RGB
domain (generator F) underperforms relative to the thermal domain (generator G) as displayed
in Figure 2.16. This discrepancy is likely due to the higher detail complexity in RGB images,
which makes the RGB domain more challenging to predict accurately compared to the less
detail-intensive thermal images.
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Figure 2.16. Cycle Consistency Loss for the thermal and the RGB training inputs. Training curves
showing average values and standard deviation over the 17 subjects.

Further inspection of the CycleGAN training dynamics, Figure 2.17, Generator G, tasked with
synthesizing thermal images, demonstrates a steady decline in adversarial loss, reflecting its
growing proficiency in creating images that are increasingly difficult for its paired Discriminator
X to classify as fake. Meanwhile, Generator F, which generates RGB images, shows higher
variability and overall loss, indicating a struggle to produce realistic RGB images convincingly.

Conversely, the corresponding discriminator for the RGB domain, Discriminator Y, exhibits a
higher adversarial loss than Discriminator X, suggesting that it has more difficulty distinguishing
between real and generated RGB images. This could imply that even though Generator F is
less effective at producing realistic images compared to Generator G, Discriminator Y is also less
effective at detecting the forgeries, making the task seem relatively more complex for the RGB
domain.
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Figure 2.17. Adversarial losses for generators G and F, and discriminators X and Y, over 100 k steps,
illustrating the competitive training dynamics in CycleGAN. Training curves showing average values and
standard deviation over the 17 subjects.

The L1 loss data for individual samples are summarized in Table 2.2. The variance in performance
across subjects, as indicated by the standard deviation, provides further insights into the model’s
consistency and underscores the challenge of generalizing across varied inputs. Notably, the
average L1 loss computed across all subjects offers an overall measure of the model’s predictive
accuracy.
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Subject Test/Average L1 Loss
0 0.165
1 0.238
2 0.128
3 0.213
4 0.255
5 0.070
6 0.097
7 0.168
8 0.110
9 0.151
10 0.104
11 0.083
12 0.194
13 0.247
14 0.205
15 0.143
16 0.226

Average: 0.1644 (σ 0.0585)

Table 2.2. Test/Average L1 Loss by subject for the CycleGAN front camera only. Full subject list to
indicate the loss range.

In comparison to the pix2pix framework, the CycleGAN’s performance exhibits less precision,
with an average L1 loss of 0.1644, as opposed to the more favorable average loss of 0.0675 observed
in pix2pix. This disparity in accuracy can be attributed to the inherent challenges in cycling
a precise RGB image—a process intrinsic to CycleGAN but absent in the pix2pix architecture,
which likely accounts for the latter’s enhanced performance. An illustrative CycleGAN prediction
is presented in Figure 2.18, demonstrating a well-made mirrored prediction. While this example
stands out as one of the more successful outcomes within the CycleGAN tests, it does not achieve
the same level of fidelity seen in the pix2pix predictions. Given these findings, the CycleGAN
architecture will not be further explored in this work.

Figure 2.18. Single-Subject Front-View CycleGAN prediction example. L1 loss of 0.163.

Training on multiple subjects, combined dataset

In pursuit of deploying the model in practical applications, a step of the way to achieve this goal
is to ensure it generalizes effectively across different subjects. To this end, it’s wanted to assess
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its performance using a consolidated dataset that encompasses samples from all subjects. Due
to limitations of used training infrastructure, a representative subset of 5,000 randomly selected
samples from the collective 8,500 available is selected.

The same pix2pix training characteristics as in the previous Front-View experiment are present,
but with a clear tendency of declining performance. Figure 2.19 displayes a greater generator L1
loss while training, as well as the discriminator having a lower adversarial loss, indicating that
the generator is performing worse.

Figure 2.19. Generator L1, adversarial, adversarial + λ ·L1 loss and discriminator adverserial loss for
a combination of all subjects.

Figure 2.20a & b reveal that the model struggles to generate accurate thermal image predictions,
likely due to the increased diversity within the dataset.
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(a)

(b)

Figure 2.20. Multi-Subject Front-View Prediction Example. L1 loss of 0.1002 (a) and 0.162 (b).

The example from Figure 2.20b has an L1 loss of .1002. This however, has a large potential of
being the result of the given example subject wearing a face mask, as the 16 other subject do
not wear a face mask, and the model struggles to generalize with this. When looking at the
predicted data, this appears to be the case as most outliers belong to subject 0, with the face
mask, while other subjects still not being as well predicted as training and testing on a single
subject. It’s important to note that each subject has unique seat settings and height, and the
cameras were slightly moved, albeit unintentionally, between some subjects. This variability
introduced additional complexity for the model, potentially affecting its performance in the
combined subject space. As there is no permission to show the the data of the other subjects,
this can not be further discussed in this report.

Using the same training procedures and architectures as before, the best validation accuracy of
.106 is achieved, resulting in a further test accuracy of .112. A similar average performance of
.103 is acchieved testing without subject 0.
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2.3.2 Four-View

As the data is available from different angles covering the same subject, investigation as to how
the thermal generation would benefit from using more camera views in a single image, potentially
providing a better generalization, is started. The two views as in Figure 2.10c, Tessellated, and
2.10d, Stacked, will be investigated. As the performance of CycleGAN and the combination
of all subjects to one dataset did not perform as well as the pix2pix architecture and single
subject testing, these are excluded from further testing in this section. The pix2pix training
characteristics for both the Tessellated and Stacked can be seen in Figure 2.21, along with a
comparison to the Front-View only training characteristics.

Figure 2.21. Generator L1, adversarial, adversarial + λ · L1 loss and discriminator adversarial loss
comparison for the Four-View Tessellated, Stacked and the Front-View. For better comparison, running
average [15] has been applied with a smoothing factor of 10 to the Generator L1 Loss graph. Training
curves showing average values and standard deviation over the 17 subjects.

It’s observed that these perform very similarly both in training performance and tendencies,
indicating that the extra detail did not change anything significantly for the training process.
The discriminator is still winning the minimax game, and generator seems to be declining.
However, the generators L1 loss for the Four-View seems to be slightly higher, indicating that
it’s not as easy to fit to the training data. This has shown to be beneficial when investigating
the validation and test loss in Figure 2.22, indicating better generalizability for the thermal
prediction.
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Figure 2.22. Compared validation loss and test loss for Four-View Tessellated, Stacked and the Front-
View.

Prediction examples in Figure 2.23, indicating a close similarity between the original and
prediction for both, but with a clear indication of the Stacked (b) as being the most accurate.

(a)

(b)

Figure 2.23. Four-View, (a) Tessellated Prediction Example, (b) Stacked Prediction Example.

CE AVS 1045a May 31, 2024 Page 24 of 83



2.4. Concluding remarks AAU

2.3.3 Summarized results

Method Average Test L1 Error Standard Deviation
CycleGAN 0.1644 0.0633
pix2pix 0.0676 0.0585

Table 2.3. Comparison of Model Architectures when training Front-View.

Dataset Average Test L1 Error Standard Deviation
Front-View 0.0676 0.0106

Four-View, Tessellated 0.0587 0.0109
Four-View, Stacked 0.0559 0.0093

Table 2.4. Comparison of input style; average performance across 17 subjects.

Dataset Average Test L1 Error Std. Deviation
Single-Subject Training 0.0676 0.0106

Multi-Subject Training 0.1116 0.0186

Table 2.5. Comparison of single vs. multi-subject training on Front View. Single-subject is the average
of 17 subjects while multi-subject is the average of 17 identical runs.

2.4 Concluding remarks

In exploring the generation of thermal frames from RGB frames using cGANs, this work
utilized pix2pix and CycleGAN as the primary frameworks. The Stacked generation approach
proved most successful, emphasizing the importance of spatial relationships. Despite these
advancements, the model’s generalization between subjects remains the worst performer,
warranting continued efforts for improved adaptability across diverse scenarios so that singular
models may be trained and deployed, and motivating research into the potential of small-
data fine-tuning for model customization to individual drivers. While these models, especially
pix2pix, have demonstrated well performing, the integration of other sophisticated methods could
potentially enhance the model’s accuracy and robustness.

Worth noting for the pix2pix runs is that they are of a minimal training time, with the best
performing run Four-View, Stacked only averaging 8 min and 2 seconds (σ of 7 s), as displayed
in Table 2.6, making it relevant in a use-case scenario.

Dataset Average Training Time Std.
Front-View 7 min. 55 s. 10 s.

Four-View, Tessellated 7 min. 54 s. 5 s.
Four-View, Stacked 8 min. 2 s. 7 s.

Combined 23 min. 55 s. 4 s.
CycleGAN 31 min. 31 s. 37 s.

Table 2.6. Comparison of Input Style; average training time across 17 subjects. All of the above
was trained on a NVIDIA GeForce RTX 3090. The combined was re-trained 17 times for more accurate
comparison.
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Use of inbetweening with conditional GANs
The concept of inbetweening, or frame interpolation, combined with a conditional GAN
framework poses an interesting potential advancement. Such integration could facilitate the
generation of intermediate frames not only with enhanced visual quality but also with better
temporal coherence between successive frames. Although this approach was not implemented in
the current study, it could potentially address the challenges related to the generalizability of
the pix2pix model and to generating large sequences of frames as noted in Google’s inbetweening
paper [16]. By exploring scalable solutions that combine the strengths of inbetweening and
conditional GANs, longer video sequences could potentially be generated while maintaining
temporal coherence and visual integrity, as a model can struggle to predict non-logical movements
between frames [16, 17]. As an example, a given 25-year-old male human can reach an object
31cm±3cm away in 226ms [18], advocating that sudden non predictable movements can happen
inbetween frames, benefitting from the use of a corresponding source.

Evaluation Metrics
During this work, it’s chosen not to apply more common image generative metrics such as the
Inception Score, commonly used in scenarios where no ground truth data is available, because
the dataset included labelled pais of thermal and RGB images [19]. Instead, the use of the L1
loss metric was deemed sufficient as it aligns with the evaluation methods used in the pix2pix
framework and the initial results were promising. While this study was primarily explorative
in nature, focusing on the analysis of individual frames rather than complete video sequences,
further insights into the temporal consistency and visual quality of the generated frames could be
gained by exploring additional metrics. One such metric is the Frechet Video Distance (FVD),
which offers a comprehensive assessment of model performance across video sequences [20].
Although the generation of full video sequences was not deemed necessary for this phase of
the research, employing FVD in future evaluations could provide deeper insights into how well
the generated frames align over time, thus offering a more complete understanding of the model’s
capabilities in handling dynamic content.

Camera Placement and Data Quality

The strategic placement of cameras is essential for effectively pairing thermal and RGB images,
as illustrated in the example shown in Figure 2.24. This example highlights how the alignment
and positioning of cameras significantly impact the quality and utility of the captured data.

Figure 2.24. Thermal prediction example from the front camera, highlighting imperfections in camera
placement. The image shows how one camera captures the arm in its field of view while the other does
not, which could lead to potential confusion for a given model prediction.

The figure underscores a prevalent challenge where improper camera positioning can result in
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’areas of confusion’ in the captured images. In this specific case, two cameras were employed to
record RGB and thermal data from the same position; however, their differing viewing angles
caused a significant discrepancy in coverage. Notably, the arm of the subject is clearly visible in
the field of view of the RGB camera but is partially or entirely missed by the thermal camera.
This inconsistency complicates the interpretation of data, potentially affecting the accuracy of
thermal predictions, as it can confuse the model.

Similarly, the thermal camera has been moved in between subjects, causing the thermal imaging
to differentiate more than necessary, making a generalization between subjects unnecessarily
more complicated.

Model Enhancements
The Stacked Four-View architecture has shown better performance during validation and testing
phases, yet it exhibits higher training losses, suggesting potential overfitting tendency as others
performed better while training but worse during inference. Employing a deeper generator could
help mitigate this issue by improving the model’s ability to generalize better to unseen data.
Further, replacing the fused input image with a dedicated fusion network might not only preserve
and process RGB data streams more effectively but also enhance the precision of the synthesized
thermal images, despite the added complexity this might introduce. Expanding the generator’s
capacity and employing a larger, more complex model could further improve the detailed capture
of thermal imagery nuances. Additionally, it could be interesting to explore the use of diffusion
models, which have demonstrated significant improvements in generating high-quality, realistic
images and could potentially provide more accurate and detailed thermal images [21].

In summary, the generative approach shows potential to address the missing frames problem
(caused by sensor frame rate mismatches and intermittent failures), providing a means for higher
frequency driver state monitoring for enhanced intelligent vehicle awareness and rapid, safe
decision-making.
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Driver Activity Classification
Using Generalizable

Representations from
Vision-Language Models 3

This work has been accepted at the Computer Vision and Pattern Recognizion (CVPR) Vision
and Language for Autonomous Driving and Robotics Workshop scheduled for June 18 2024. The
work has been carried out in collaboration with PhD candidate Ross Greer, a member of LISA.

An article of the name Driver Activity Classification Using Generalizable Representations from
Vision-Language Models can be found in Appendix D. It is advisable to read the article before
engaging with this chapter, as this chapter build upon the article’s understanding.

This chapter aims to explore the potential of using Vision-Language models for predicting in-car
cabin activities—such as drinking, talking on the phone, and texting—utilizing multiple camera
views without the need for fine-tuning already existing generalizable models while applying
minimal post-processing. It highlights the flexibility of Vision-Language models, demonstrating
their applicability to a broad range of tasks beyond mere linguistic functions.

AI City Challenge: Naturalistic Driving Action Recognition

This chapter applies theoretical concepts to a practical scenario presented by the 2024 AI City
Challenge at CVPR, specifically Track 3: Naturalistic Driving Action Recognition. This track
addresses the critical issue of distracted driving, which is a significant safety concern in the
United States, responsible for approximately eight fatalities daily. [22]

The challenge utilizes synthetic naturalistic video data that captures driver actions from multiple
camera angles within the vehicle, aiming to identify and mitigate distracted behaviors such as
using a phone or eating. It offers a dataset depicting drivers engaged in 16 different tasks that
could distract them from driving, as in Table 3.1, captured in a real-world-like environment, from
the angles pictured in Figure 3.1. All data was recorded inside a stationary car, with participants
performing a series of staged actions. The dataset comprises two parts, a labeled part A and an
unlabelled part B, with part A being utilized in this work. It includes approximately 62 hours of
footage featuring 69 subjects, recorded at 30 frames per second. Part A comes in 7 folders each
containing a set amount of subjects. This split will be utilized during experimentation.
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Figure 3.1. Illustration of multi-perspective in-cabin camera views for monitoring driver behavior
under the class ’0: Normal Forward Driving’. (1) Dashboard view. (2) Rear-view. (3) Side view.

Class Activity Label Dist. % Number of Used Frames
0 Normal Forward Driving 59.01 1176316
1 Drinking 1.49 29781
2 Phone Call (right) 2.78 55732
3 Phone Call (left) 2.97 59231
4 Eating 3.29 65601
5 Text (Right) 3.44 68655
6 Text (Left) 3.56 70878
7 Reaching behind 1.40 27983
8 Adjust control panel 2.42 48320
9 Pick up from floor (Driver) 1.31 26121
10 Pick up from floor (Passenger) 2.15 42825
11 Talk to passenger at the right 3.52 70215
12 Talk to passenger at backseat 3.46 68986
13 Yawning 1.87 37217
14 Hand on head 3.45 68871
15 Singing or dancing with music 3.85 76665

Table 3.1. Table of driver activity classes and class distributions.

The goal is to correctly and easily classify the given classes. More commonly, tasks similar to this
are approached by training or fine-tuning vision classifiers, such as Convolutional Neural Net-
works (CNNs) or Vision Transformers. Ultimately, utilizing a model with video understanding
is the more logical solution. The best performing model from the corresponding 2023 challenge
utilizes a Video Transformer per camera view and utilizes the embeddings from those to train a
seperate network [23] acchieving a validation accuracy of approximately 76.6 % (utilizing only
five-folds). This however, as observed in Chapter 4 is a costly process due to the usage of Video
Transformers. This, as well as a model perfectly trained and fitted to a specific situation would
require adjustments if new classes or functionalities were introduced.

This work explores the application of generalizable Vision-Language models to classify these
activities without extensive tuning utilizing single frames, emphasizing the use of pre-trained
models to predict in-car activities based solely on visual inputs.
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3.1 Vision Language Models: Bridging Visual and Linguistic
Representation

Vision-Language models represent a significant advancement in the field of artificial intelligence,
where the convergence of visual and linguistic data processing leads to a more integrated
understanding of multimodal inputs [24, 25]. These models are designed to comprehend and
generate responses based on a combination of visual cues and textual data, facilitating numerous
applications such as image captioning and visual question answering.

This dual-input capability is typically achieved through the use of neural networks that process
images and text separately but in parallel. The image processing component usually employs
Convolutional Neural Networks (CNNs) or Vision Transformers. On the other hand, the textual
component often utilizes Transformers to handle linguistic encoding.

3.1.1 CLIP: Contrastive Language–Image Pre-training

CLIP (Contrastive Language–Image Pre-training) represents a significant leap in Vision-
Language models, offering a novel approach to learning visual concepts directly from natural
language descriptions. Developed by OpenAI, CLIP offers a bridge for the gap between visual
data and textual information by learning to associate images with captions. This model is capable
of understanding and predicting complex visual concepts in a zero-shot framework, meaning it
can classify images it has never seen during training based solely on textual descriptions, making
it relevant for this experiment. [24]

Architecture and Pre-training

CLIP is dual-structured, comprising two primary components: an image encoder and a text
encoder. The utilized image encoder is Vision Transformer [26], while the text encoder utilizes
a Transformer architecture. These encoders transform their respective inputs—images and
text—into a shared embedding space, with an example as in Figure 3.2.

Figure 3.2. Example of the shared CLIP embedding, representing the similarities between the image
and text inputs.

The core innovation in CLIP lies in its training methodology, which employs a contrastive learning
objective. The fundamental idea behind contrastive learning is to learn an embedding space
where similar items are brought closer together and dissimilar items are pushed apart [27]. The
usecase for CLIP is however, as illustrated in Figure 3.3, that the diagonal, representing the
similarity, is being maximized and the rest minimized. This, as the similarities are achieved by
calculating the cosine-similarity for the given embeddings, and maximizing the cosine value of
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the caption and image that should fit together, the diagonal, while minimizing the others, as the
most similar cosine-similarity score is 1.

Figure 3.3. Example of the contrastive image-language training, resulting in shared embeddings as a
result of the optimization of good cosine similarity pairs of image embeddings (I) and text embeddings
(T) [24].

During pre-training, CLIP is exposed to a vast dataset of 400 million image-text pairs gathered
from the internet. It learns by predicting the correct pairing of text and images among a batch
of candidates, generating the closest image-text embeddings.

Zero-Shot Capabilities

One of the most interesting capabilities of CLIP is its performance in zero-shot scenarios. After
pre-training, CLIP can directly apply learned visual concepts to new tasks without further
training. For instance, without any specific tuning, CLIP performs similarly for the classification
accuracies of ResNet-50 on ImageNet, all in a zero-shot manner. This is done by leveraging the
embeddings from the pre-trained model to classify new images based on text descriptions alone,
demonstrating a broad understanding of visual content that is significantly generalizable across
different domains. Following the previous training example in Figure 3.3, the trained model can
be utilized as in Figure 3.4, removing the requirements for fine-tuning a classifier.
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Figure 3.4. The CLIP zero-shot approach, utilizing the cosine similarity between the image embeddings
(I) and text embeddings (T) [24].

3.2 Experiment

We want to investigate whether the CLIP visual embeddings can be utilized for a multi-view
classification task. The dataset employed in this study features three distinct views, necessitating
a classification approach that diverges from the one described in the previous section. This
adjustment is crucial since no single view can accurately classify all classes of the given dataset;
some classes are identifiable in one view but not in others, and some are visible across all views.
For instance, the scenario of holding a phone in the left hand, class 3 Phone Call (left), depicted
in Figure 3.5, exemplifies a case where accurate classification is possible only by leveraging data
from two of the three cameras. Some cases such as class 8, adjust control panel, is often only
classifiable from the side-view camera (3), as the subject is often still focusing on the road and
the upper arm and shoulder area may not indicate any change.

Figure 3.5. Illustration of multi-perspective in-cabin camera views for monitoring driver behavior
under the class ’0: Normal Forward Driving’. (1) Dashboard view. (2) Rear-view. (3) Side view. The
phone is visible from angle 0 and 1 while being difficult to detect from angle 2.

To make up for the multiple views, the experiment employs a three-view approach, leveraging
vision embeddings predicted from the pre-trained CLIP Vision Transformer model1. These

1The generated image embeddings are made available at https://kaggle.com/mathiasviborg/multiview-CLIP-
generated-embeddings
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embeddings are processed by three distinct neural networks, which are fused into a single network
for the final prediction, as depicted in Figure 3.6. This integrated system is designed to identify
key features within the embeddings that are crucial for classifying specific categories and take
advantage of the different camera views, potentially learning to put importance to the embeddings
from camera 1 and 2 when classifying class 3.

Figure 3.6. Experimentally chosen architecture, Semantic Representation Late Fusion Neural Network
(SRLF), of 2.7 million trainable parameters utilizing embeddings from the CLIP Image Encoder. Utilized
clip embeddings are of length 768. The order of the input images are randomized in order to combat
overfitting and make generalization better.

The dataset is divided into 80 % for training and 20 % for validation, with a substantial batch size
of 640 to balance computational efficiency, memory utilization and generalization. The model
underwent 100 epochs of training, employing the cross-entropy loss function suited for multi-class
classification tasks. The Adam optimizer is utilized with an initial learning rate of 0.0001. To
mitigate overfitting, dropout rates of 0.5 and 0.6 were applied alongside batch normalization at
each linear layer to stabilize learning as well as early stopping with a patience of three epochs.

Utilizing this approach alone results in an average accuracy of 71.64 %, utilizing a k-fold
validation strategy as in Table 3.2.
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K-fold Accuracy
1 68.09 %
2 74.40 %
3 73.60 %
4 71.37 %
5 70.15 %
6 75.34 %
7 68.53 %

Average: 71.64
Std.: 2.88

Table 3.2. Table of k-fold cross-validation accuracies, average accuracy and standard deviation.

However, given the sequential characteristics of the dataset, it is possible to enhance these
results by integrating filtering methods. Specifically, the dataset annotations designate numerous
continuous seconds to a single class, indicating that all frames within this interval should belong
to the same class. As the current methodology validates each frame independently, incorporating
filtering techniques into the system could improve accuracies by removing outlier predictions.

To effectively address the outliers within the predictions, a Mode Filter is implemented. This
filter operates by sliding a specified-sized window across the predictions. Within each window,
the Mode Filter identifies the most frequently occurring value (mode) and assigns it to the
central data point. This method helps to adjust isolated predictions that do not conform to their
surrounding data points, thereby enhancing consistency and reducing noise [28].

Before: 1 1 0 1 0 1 1
After: 1 1 1 1 1 1 1

Table 3.3. Illustration of the Mode Filter effect on given example data with a window size W=5.

The window size is a critical parameter and must be an odd integer to maintain symmetry
around the central data point. Smaller window sizes retain more granularity but may be less
effective at filtering out noise, whereas larger windows provide greater smoothing at the risk of
oversimplifying the data. For this case, a window size of 141 has been experimentally chosen as
in Figure 3.7, corresponding to 4.7 seconds at an fps value of 30.

Figure 3.7. Example of experimentally choosing filter size for the best performing Fold 6.
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Correspondingly, the average duration of a task (excluding class 0) is 11.77 seconds with a min
of 5.09 seconds (class 5) and a max of 18.00 seconds (class 6). Implementing this method on the
best-performing Fold 6 yielded an enhanced accuracy of 77.10 %, and yields updated accuracies
as in Table 3.4.

K-fold Accuracy
1 70.02 %
2 75.32 %
3 74.98 %
4 73.12 %
5 72.64 %
6 77.10 %
7 70.83 %

Average: 73.43
Std: 2.35

Table 3.4. Table of k-fold cross-validation accuracies including filtering and average accuracy.

Upon examining the distribution of predictions, as illustrated in Figure 3.8, it is evident that the
predictions are biased among the classes. This skewness is attributed to the uneven distribution
of data, as detailed in Table 3.1.

Figure 3.8. Confusion matrix for best performing k-fold 6 including a mode filter, resulting in a
performance of 77.10 %. The same pattern is observed over the other k-folds.

Attempts to address this skewness have included various methods such as class weights, weight
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decay, adjustments to dropout rates and numerous network architectures. Nevertheless, while
retaining all classes, the most effective solution has been to load every 20th sample from class 0.
This approach led to a testing accuracy of 55.19 % after filtering (51.63 % before filtering), still
testing on all test data with no reduction. Since class 0 represents only 6.57 % of the data, this
strategy marks a significant improvement in model generalization, as illustrated in Figure 3.9.

Figure 3.9. Confusion matrix for best performing k-fold 6 including a mode filter, resulting in a
performance of 55.19 % after reducing the overall train sample count of class 0 to every 20th sample.

As the model is still struggling to generalize all
classes, simply removing class 0 is investigated
with results in Figure 3.11. Class 0 is removed
as the straightforward driving class is the class
counting the most false-negatives, leading to
confusion and is struggling even in a binary use
case as shown in Figure 3.10.

The generalization of the model in Figure 3.11
is considerably enhanced, still achieving an
accuracy of 70.06 % which still is lower than the
first achieved 77.10 % where class 0 was heavily
over sampled. It is important to note that the
distribution across the classes is more balanced,
leading us to believe that generalizable system
is useful.

Figure 3.10. Binary Confusion matrix for
best performing k-fold 6 only including class 0
for straight forward driving and a combination
of all other activity classes, performing 77.22 %
accuracy.
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Figure 3.11. Confusion matrix for best performing k-fold 6 without class 0 for straight forward driving
and including a mode filter, performing 70.06% accuracy.

However, CLIP encounters difficulties with classes 9, 10, 11, and 12, which involve specific actions
in particular locations. For instance, classes 9 and 10 involve picking up from the floor on the
driver and passenger sides, respectively, while classes 11 and 12 involve talking to a passenger on
the right and in the backseat, respectively. A general encounter for this experiment is that these
classes always seem to perform in the low end, or mostly predict one over the other, indicating
a struggle for the general model as it now has to describe two things at once.

3.3 Concluding remarks

The results of this experiment display the effectiveness of Vision-Language models, as the
produced CLIP pre-trained visual embeddings are enough to train a low-cost network of 2.7
million parameters, skipping the process of potentially fine-tuning Vision Transformer (≈ 90
million) for the classification task. A well-generalizing accuracy of 70.06 % is reached without
class 0, showcasing the promising, but still developing field of generalized Vision-Language
classification. The overall model however struggles to differentiate between class 0 and other
actions. Had the dataset been captured in a real setting, it’s anticipated that the model would
yield better performance, as the model would be allowed more visual cues. This, as classes such
as talking to a passenger on the backseat currently contain an act of speaking to a fictive person
on the backseat, eating involves an act of movement with no real food present, and driving
straight forward involves just looking in the forward direction in the car, with no further actions
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such as turning the wheel.

Future avenues for this research would be to investigate these principles within more video related
areas such as Video-Language models as well as investigating other vision based approaches [29].
The Vision-Language model LLaVA 13b has been investigated, offerign a different language
approach in contrast of CLIP, and it does not indicate any better results nor is it more efficient
in handling the data. A general observation is that it struggles greatly with predicting left and
right as well as predicting if an action is happening in the passenger area, back seat, and similar,
which is similar to the conducted CLIP experiment. This indicates that the generalizable models
may still have general struggles in the areas of a deeper understanding of simple classifications.
This even as the general idea of utilizing multi-view is to utilize the knowledge of an action not
being visible from one angle, potentially indicating left or right. LLaVA 70b might yield better
results, and fine-tuning may be necessary.

During model testing architectures such as LSTMs and Transformers for processing the CLIP
image embeddings have been investigated, not yielding better results. It was hypothesized that
the temporal nature would potentially learn the filtering, which proved to not be the case. Given
a larger amount of data, these methods are believed to still hold promise.

Given its ability to detect yawning (class 13), it would also be intriguing to conduct a similar
experiment to classify drowsiness using the dataset presented in Chapter 4 and investigate
whether a generalizable model will be able to identify drowsiness features.
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Drowsiness Detection
Utilizing Video Transformers 4

This section aims to examine the use of Video Transformers for drowsiness detection, specifically
focusing on the necessary temporal detail in videos for precise classification and the optimal
video duration.

The research presented here has been conducted in a worksheet format, and no formal paper has
been written as a result of this content.

The processed dataset in this section can be found at https://www.kaggle.com/mathiasviborg/uta-
rldd-videos-cropped-by-faces.

4.1 Is drowsiness a problem?

Drowsy driving is a significant yet often underappreciated problem that poses serious risks
to road safety. Statistics indicate that fatigue contributes to 10-25 % of all road accidents,
emphasizing the widespread nature of this issue [30]. According to the National Highway Traffic
Safety Administration, in 2017 alone, drowsy driving was responsible for approximately 91,000
crashes in the United States (US), resulting in around 50,000 injuries and nearly 800 deaths
[31]. Despite these concerning statistics, the real impact of drowsy driving is believed to be even
greater, as reported by experts from fields such as traffic safety, sleep science, and public health.
Furthermore, a study by the National Sleep Foundation revealed that 54 % of drivers admitted
to feeling drowsy while driving, and 28 % confessed to having fallen asleep at the wheel at least
once [32].

Given the severe consequences of drowsy driving, developing reliable detection systems is not
just a technological challenge but a critical societal need. Many countries, including those in the
European Union (EU) and the US, have taken steps and implemented regulations that mandate
rest periods for commercial drivers to mitigate this risk as well as regulating driving hours [33, 34].
Some states within the US, such as New Jersey, actively mention drowsy driving as reckless [35].
The EU is expanding on the laws for the area demanding that most vehicles utilized for passenger
and goods transport sold after 7th of July 2024 must have a Driver Drowsiness and Attention
Warning (DDAW) system [36], indicating the recognition of the problem as a part of a goal to
cut road fatalities and injuries in half by 2030 [37].

Research has shown that the effects of drowsy driving can be compared to driving under the
influence of alcohol. For instance, a study illustrated in the following Table 4.1 shows the blood
alcohol content (BAC) equivalent for various durations of wakefulness:
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Hours Awake BAC [g/liter]
24 0.1
20 0.08
18 0.05

Table 4.1. Corresponding Blood Alcohol Content (BAC) levels to hours awake when driving without
adequate sleep [38].

Considering the breadth and importance of alcohol-driving-related legislation across the EU,
the US and globally, it’s essential to address not only alcohol impairment, but also the strong
correlation for driver fatigue. In the US, the widespread Blood Alcohol Concentration (BAC)
limit is set at 0.08 to prevent alcohol-impaired driving [39]. Similarly, other countries have taken
measures to ensure road safety. For instance, many European nations, such as Denmark, enforce
a lower BAC threshold of 0.05, and the Czech Republic even has adopted a BAC threshold of
0.0 [40]. Alcohol-impaired driving has been studied for decades, with a 1996 study highlighting
the risks associated with even minor increases in BAC:

"Each 0.02 percent increase in BAC nearly doubles a driver’s risk of being
in a fatal crash." [41]

This knowledge underscores the necessity of stringent policies to mitigate all forms of driver
impairment, directly translating to measurements for drowsiness driving, ensuring safer roads
for everyone. One challenge, however, is that while alcohol levels can be measured using
breathalyzers and similar devices, detecting drowsiness requires different approaches. Unlike
alcohol, which has a quantifiable presence in the bloodstream that can be tested objectively,
drowsiness does not have a direct physical marker that can be similarly measured. It however
can be measured using biological-based methods such as brain signal-based methods and eye
signal-based methods [42]. This necessitates the use of alternative methods to assess fatigue and
ensure safety. Advancements in sensor technologies and machine learning algorithms are proving
effective in identifying signs of fatigue in drivers in real-time and is used in many of today’s cars
[32, 43]. To enhance the understanding of drowsiness detection, the objective of this study is to
investigate the use of temporal Transformers in the realm of identifying signs of driver fatigue
and uncover potential new insight into the area.

4.1.1 Indicators of drowsiness

Drowsiness is the result of a biological need to sleep and happens for numerous reasons. Common
causes include being awake for long periods, poor sleep quality, medication and similar factors
[42]. Some visible clues often include the following [42, 44, 45, 46]:

• Struggle to keep eyes open: Often exhibiting frequent blinking or droopy eyelids. These
signs are evident as the person battles the urge to sleep.

• Difficulty in maintaining head posture: A drowsy person’s head may nod forward or
sway involuntarily, signaling a loss of muscle control as the body succumbs to sleep.

• Frequent yawning: Clear sign that the body is craving rest.
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• Microsleeps: These brief, involuntary episodes of sleep last from a mere fraction of a
second up to 30 seconds. During microsleeps, a sudden lapse in attention occurs, often
unbeknownst to the individual, which poses substantial risks during tasks like driving.

• Rubbing Eyes: Tired individuals often rub their eyes to stimulate them and temporarily
reduce the effects of fatigue.

• Breathing Patterns: As drowsiness intensifies, the frequency and depth of breathing
may change; breaths tend to slow down but become deeper when falling asleep.

• Physical Appearance: Increased under-eye bags, a generally tired look, and diminished
frequency in smiling or engaging in conversation can also indicate fatigue.

Other indicators can be such as unjustifiable variations in speed, slowly drifting out of a lane while
driving, difficulty concentrating and slower decision/reaction making. The signs will become
more and more visible the more drowsy a person becomes, with levels specified as in Table 4.2,
following the Karolinska Sleepyness Scale (KSS).

1 Extremely alert
2 Very alert
3 Alert
4 Fairly alert
5 Neither alert nor sleepy
6 Some signs of sleepiness
7 Sleepy, but no effort to keep alert
8 Sleepy, some effort to keep alert
9 Very sleepy, great effort to keep alert, fighting sleep

Table 4.2. The Karolinska Sleepyness Scale (KSS) version B categories. Often used as 1-3 (blue) as
alertness, 6-7 (orange) as low vigilance, and 8-9 (red) as drowsy [47][48]. Further use in this work will
utilize the blue and red areas as a binary classification task.

4.2 Related works

Drowsiness detection is a well-studied area within the field of automated safety systems,
particularly utilizing visual cues from drivers or operators to signal fatigue early.

Monitoring technologies have already been implemented in several car models. Volvo pioneered
this initiative in 2007 with the introduction of their attention system [42]. Following Volvo’s
lead, other major automotive brands such as Mercedes [49], Volkswagen [50], BMW [51], and
Ford [52] have developed and integrated similar systems into their vehicles followed by many
others. Commonly an eye tracking system is utilized, while also taking account for other data
modalities such as the way a given driver is rotating the steering wheel of the car, as the Bosch
system in Figure 4.1.

CE AVS 1045a May 31, 2024 Page 41 of 83



4.3. Dataset AAU

Figure 4.1. Illustration of Bosch’s detection system designed for integration into automobiles [43].

Recent public advancements have leveraged deep learning techniques to enhance detection
accuracy and adaptability across different scenarios commonly using publicly available datasets
such at the University of Texas Arlington Real-Life Drowsiness Dataset (UTA-RLDD), which
will be utilized in this report, at approximately 30 hours of data [53] and the Yaw Drowsiness
Dataset (YawDD) at approximately 2.5 hours1 [54], while often validating on own acquired test
data [55].

The authors behind the UTA-RLDD dataset capitalize on the sequential arrangement of frames,
analyzing blinking patterns as a means to detect drowsiness. They extract blink sequences which
are then input into a temporal LSTM model specifically designed to identify signs of drowsiness
by examining the timing and frequency of eye blinks. This network is designed to leverage
the temporal pattern in blinking, acknowledging that the relationship between blinks and their
succession can influence drowsiness detection, achieving an accuracy of 65.2 %, improving their
compared 57.8 % human judgement score.

More recent advancements in model architectures include utilizing CNNs [56] and Vision
Transformer [57] looking at single frames and utilizing only facial cropping as preprocessing.
These have resulted in binary accuracies of 91 % on both training and validating on UTA-RLDD,
significantly outperforming the original 65.2 %.

Even as the current research indicates that a single frame can classify drowsiness well, it is
intriguing to explore how similar techniques such as Video Transformers might perform when
incorporating temporal information on the same dataset as the intuition is to achieve an even
higher accuracy.

4.3 Dataset

For the purpose of detecting drowsiness, a suitable dataset is needed. In this study, the University
of Texas at Arlington Real-Life Drowsiness Dataset (UTA-RLDD) will be utilized [47]. The UTA-
RLDD is unique in its focus on multi-stage drowsiness detection, capturing not only extreme
and easily visible cases of drowsiness but also subtle cases where micro-expressions are the
discriminative factors.

1Number achieved by analyzing dataset utilizing OpenCV.
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The UTA-RLDD comprises approximately 30 hours of video content, showcasing a range of
drowsiness levels from subtle signs to more obvious ones. It includes RGB videos of 60 healthy
participants, with each participant contributing one video for each of three different classes:
alertness, low vigilance, and drowsiness, resulting in a total of 180 videos. The participants
record the data and are told to do so when they feel very awake, signs of sleepyness appear, and
on the verge of falling asleep corresponding to blue, orange and red on the KSS. The dataset
follows the Karolinska Sleepiness Scale (KSS) version B [48], which can be identified in Table
4.2.

The participants are a diverse group, all over 18 years old. The group included 51 men and
9 women of various ethnicities and ages. Some of the videos feature subjects with glasses (21
out of 180 videos) and considerable facial hair (72 out of 180 videos), adding to the diversity
and real-world applicability of the dataset with examples showcased in Figure 4.2. Each video
is self-recorded by the participant using their cell phone or web camera, representative of the
frame rate expected of typical cameras used by the general population.

Figure 4.2. Displayed are frames extracted from the UTA-RLDD dataset, representing different states:
alertness (top row), low vigilance (middle row), and drowsiness (bottom row) [53].

The UTA-RLDD is at the time of release, and to the knowledge of the author, the largest realistic
drowsiness dataset freely available.
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4.3.1 Preprocessing

As each video is self-recorded, and different cameras have different standard settings and build,
a large number of the videos are of different resolution (Figure B.1 in Appendix B), frame rate
(Figure 4.3a), length (Figure 4.3b), file format, frequently contain shaking web- and phone-
cameras and general instability in the recordings. To fulfill the objectives of this study, which
focus on analyzing facial expressions and movements, it is wanted to isolate and crop out these
specific features from the videos.

(a) (b)

Figure 4.3. Histograms illustrating the distribution of frames per second (fps) (a) and the length of
the videos (b) in the dataset.

A facial-cropped per frame version of this dataset already exists, with one example being the
Driver Drowsiness Dataset (DDD) [58]. This however does not contain all subjects, nor all frames
from the subjects it contains. Experimentally making videos from the given frames results in a
frame rate per second of 5, whereas the minimum of UTA-RLDD is 12 fps (4.3a). More so, to
use the frames in a sequence purpose, the cropping must be somewhat identical in every frame
to obtain stabilization, otherwise the movement potentially can be misunderstood by a temporal
classifier. When observing the data, all crops are of an unstable size and therefore unfit for a
smooth video. A dataset therefore is extracted manually.

Cropping

Cropping plays a pivotal role in isolating and extracting facial expressions and movements from
videos, which is essential for the objectives of this study. However, selecting an appropriate
facial detection method is crucial, considering the variability in video resolution, frame rate, and
camera stability across the dataset.

Despite the availability of multiple tools, the primary considerations for this project are the
accuracy of prediction and processing speed due to the large amount of facial detection needed,
as at 10 fps the dataset would yield approximately 720 thousand frames.

Initially, Haar Cascades (Viola-Jones algorithm) [59, 60] was considered for its simplicity and
speed as a more traditional light weight machine learning-based classifier commonly used for
object detection, including faces. It operates by scanning an image with a sliding window
technique, applying pre-defined Haar-like features to each window and using them to classify
whether the region contains the object of interest, such as a face. It employs a cascaded classifier
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architecture comprising multiple stages of classification. Each stage applies a classifier to a region
of the image, and if the region passes the classification at a particular stage, it progresses to the
next stage for further refinement. This cascaded structure enables the algorithm to efficiently
discard non-object regions early in the process, reducing the computational burden on subsequent
stages. However, when experimenting, the performance has proven to be inconsistent, often
detecting faces inaccurately or missing them entirely, particularly in instances of non-standard
facial positions. This inconsistency was clear when observing predictions as in Figure 4.4a, and
some cases were even predictions not containing a face as in Figure 4.4b. The speed, however, is
unmatched, averaging 0.06 seconds over 12 instances in the example below.

(a) (b)

Figure 4.4. Evaluation of the OpenCV [61] implementation of Haar Cascades for facial detection,
revealing its proficiency in predicting certain facial features while demonstrating limitations in recognizing
others.

A more recept option using deep neural networks for facial detection is a single-stage model such
as RetinaFace [62][63] which is known for yielding better performance in faces across diverse
poses, lighting conditions and scales. It utilizes optimized anchor boxes, instead of a sliding
window, within a pyramid structure to efficiently capture faces at different scales and aspect
ratios across the image. These anchor boxes are strategically placed at various levels of the
pyramid, ensuring comprehensive coverage of the image space and enabling precise localization
of faces. However, its computational complexity may lead to slower processing speeds, especially
when handling extensive video datasets. Figure 4.5 displays an example of a well performing
RetinaFace, with a slightly slower processing time.

CE AVS 1045a May 31, 2024 Page 45 of 83



4.3. Dataset AAU

Figure 4.5. Prediction evaluation of RetinaFace, revealing its proficiency consistent predictions. The
average speed over 10 runs is 0.14 seconds.

A speed assessment on 100 individual frames is conducted to accurately measure the time for
individual frame prediction only containing one face. The results of this process for each of the
three detectors are outlined in Table 4.3.

Detector Time (s) Std.
Haar Cascades 0.100 0.019

RetinaFace 0.151 0.009

Table 4.3. Average time of 100 predictions in seconds. RetinaFace utilize GPU whereas the Haar
Cascades implementation utilize CPU.

The overall test results indicate RetinaFace as the most beneficial option, as it’s speed on the
given setup is comparable to the one of the Viola-Jones algorithm while outperforming the facial
predictions.

Smoothing

In the process of creating a video from these cropped segments, it’s crucial to consider the
inherent instability of both the original video content and the cropping process itself. The ideal
scenario would be to have the same crop coordinates throughout the video. However, while
some subjects may exhibit minimal movement throughout the recording, even subtle movements
become highly noticeable in a video context. As depicted in Figure 4.6, an initial movement is
observed as the subject’s head is making movement, followed by a period of relative stillness. In
this scenario, both the horizontal (x) and vertical (y) coordinates of the bounding box’s upper
left corner are adjusted, revealing visible fluctuations when predicting facial locations for each
frame.

CE AVS 1045a May 31, 2024 Page 46 of 83



4.3. Dataset AAU

Figure 4.6. Unsmoothened top left corner (x,y) coordinate for crops in a videofeed. A significant
subject movement occurs between frames 80 and 170, while the remainder of the frames remain mostly
static. The first 60 seconds of subject 9 is used, at 10 fps.

When both observing the data in Figure 4.6 and the video it’s clear that smoothing is needed.
For the case of this data, the Exponentially Moving Average (EMA) [64] method is investigated
(Equation 4.1) as a method of moving the bounding box on the image, to achieve a smoothed
cropped video as the result.

yn = (1 – α) · yn–1 + α · xn (4.1)

yn Smoothed coordinate.
α Smoothing constant.
yn–1 Previous smoothed coordinate.
xn Position of current coordinate.

The goal is to eliminate spikes in the signal, particularly when a new frame presents a predicted
bounding box that may either be erroneous or result from minor, rapid movements of the subject
that do not require adjustment. It is also common for the bounding box predictions to be
unstable, even when the subject remains largely motionless. EMA implemented is seen in Figure
4.7.
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Figure 4.7. EMA, with α = 0.05, smoothened top left corner (x,y) coordinate for crops in a videofeed.
A significant subject movement occurs between frames 80 and 170, while the remainder of the frames
remain mostly static. The first 60 seconds of subject 9 is used, at 10 fps.

To streamline processing times for the entire dataset, a strategy has been adopted to predict
motion only for every 5th frame within a 10 fps configuration. This approach acknowledges
that incremental movement between frames is typically insignificant. Furthermore, to capture
a broader range of facial movement, an increase of 15 % in the bounding box size has been
implemented, based on the larger dimension of either width or height, resulting in a difference
as in Figure 4.8.

No margin. 15 % margin.

Figure 4.8. Example of of predicted bounding box before and after added margin. The added margin
allows to detect more facial movement.

Moreover, a movement lock has been integrated to mitigate redundant frame adjustments,
particularly when the newly predicted center lies within a distance less than 3 % of the frame’s
diagonal length. The inclusion of an extra margin facilitates this, affording the subject greater
freedom of movement within the frame with the frame not needing to move as the subject is still
captured fully. This results in a smooth almost non moving crop, as displayed in figure 4.9.
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Figure 4.9. EMA, with α = 0.05, smoothened top left corner (x,y) coordinate for crops in a videofeed.
3 % movement lock and predicting face from every 5th frame. A significant subject movement occurs
between frames 80 and 170, while the remainder of the frames remain mostly static. The first 60 seconds
of subject 9 is used, at 10 fps.

This approach is far more stable and avoids potential confusion for a neural network analyzing
the movement of the crop while being more pleasant to watch. The initial and final 20 seconds of
every video is disregarded because of significant visible motion, particularly focusing on adjusting
cameras and similar.

The drowsy class of subject 42 has been dismissed as the videos contain large amounts of
movement and camera shaking which the implemented tracking technique can not follow properly.

4.4 Temporal analysis strategy

In recent years, the field of natural language processing (NLP) has experienced a transformative
shift with the advent of self-attention-based methods [65]. These methods, particularly
the Transformer model, have demonstrated unparalleled success in capturing long-range
dependencies between words, alongside offering scalable training solutions. As a result, they
have established themselves as the standard across various NLP tasks such as question answering
[66, 67].

Parallel to NLP, the domain of video understanding exhibits similair characteristics, primarily
due to the sequential nature of both videos and textual content. In essence, just as the
comprehension of a word relies on its context within a sentence, understanding momentary
actions within videos often requires considering their broader context across the sequence. This
similarity suggests that NLP’s long-range self-attention models could be equally beneficial for
video analysis, as Transformers has also proven valueble for single image classification, with
architectures such as Vision Transformer [26].

Previously, the primary methodologies for video analysis have been dominated by 2D or 3D
convolutions, focusing on spatiotemporal feature learning using architectures such as 3D CNNs
[68] and hybrid approaches combining CNN and RNN architectures [69]. Newer models consist
of Transformer architectures as TimeSformer [70].
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4.4.1 Model overview

As the TimeSformer model allows for utilization of long duration clips, it has been selected as
the Video Transformer architecture for this section. It introduces a novel approach to video
analysis by leveraging the Transformer architecture, and adapting it to process video data. It
does so by decomposing input video clips into a series of non-overlapping patches, treating each
patch as a token similar to words in a sentence, and then applying self-attention mechanisms to
capture both spatial and temporal relationships within the video. This methodology allows the
TimeSformer to efficiently process and analyze video data, enabling competitive performance in
action recognition and other video understanding tasks. [70]

Conceptually, it utilizes the same idea used for images as in Vision Transformer [26], and adapts
it to video understanding, by upgrading the attention mechanism from image space attention, as
in Figure 4.11, to space-time attention. Figure 4.10 displays the ViT model architecture adapted
and expanded by TimeSformer.

Figure 4.10. The Figure depicts the Vision Transformer (ViT) model architecture for image
classification [26]. Images are segmented into patches and each patch is linearly projected. Alongside,
a learnable class embedding is appended to the sequence of embedded patches. Positional embeddings
are added to this sequence to maintain the positional information of each patch. The sequence is then
fed to a standard Transformer encoder with self-attention mechanisms. Finally, the encoded features are
passed to a Multilayer Perceptron (MLP) head, which outputs the classification results into predetermined
categories such as bird, car, etc.

TimeSformer use the same patch model as ViT in Equation 4.2, decomposing the individual
frames to no overlap patches.

N = H ·W/P2 (4.2)

N Number of non overlapping patches.
H ·W Height · Width.
P2 Size of patch, each patch the size of P · P.
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The input of TimeSformer is wanted as visual RGB data in the dimension RH×W×3×F with an
introduced frame parameter (F). The patches are then flattened into vectors of the dimension
x(p,t) ∈ R3P2

, p = 1, ...N being the spatial location within the frame and t = 1, ...F being the
time position of the frame. These embeddings are then linearly mapped to an embedding vector
as Equation 4.3, utilizing a learnable matrix E ∈ DD×3P2

, and including learnable elements with
time position as an element of consideration, differing from ViT.

z
(0)
(p,t)

= E · x(p,t) + e
pos
(p,t)

(4.3)

z
(0)
(p,t)

∈ RD Embedded patch.
E Learnable matrix used to embed the patches.
x(p,t) Flattened patch vectors including spatial and temporal imformation.
e
pos
(p,t)

∈ RD Learnable positional embedding encodes each patch’s spatiotemporal location.

In summary, an image is split into fixed-size patches, each of them linearly embeded, position
embeddings added, and the resulting sequence of vectors is fed to a Transformer encoder, similar
to ViT.

However, a significant difference hides in the attention mechanism. As multiple frames are used,
focusing the attention on different frames is the goal, which is not fulfilled in the Space Attention
used by ViT, see Figure 4.11. The TimeSformer paper investigates four different approaches,
with the main being Divided Space-Time Attention (T+S), comparing a patch with the given
frame while only comparing with the same patch location in other frames.

Figure 4.11. There are multiple ways to define a pixel’s "neighborhood" when it comes to video
data. A pixel’s neighbor can be its spatial neighbors (blue) or spatial neighbors and temporal neighbors
of only the location of interest (red). The Divided Space-Time Attention mechanism is utilized in the
TimeSformer architecture [70]. Frame t represents the present frame, frame t - δ represents the previous
frame, and frame t + δ represents the future frame.
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TimeSformer ultimately uses Divided Space-Time Attentnion (T+S) as it has proven to create a
better generalization and yield better performance accuracies on the Google Kinetics 400 dataset
(K400) [71].

4.5 Sequential analysis

As a model and dataset now has been selected, an analysis can be performed. All analyses in this
section will utilize the processed dataset described in Section 4.3, which comprises data from 60
subjects. A subset of these subjects will be reserved for testing to ensure the model is assessed
on previously unseen data. The dataset consists of 5 folds, each consisting of 12 subjects.

A TimeSformer model pretrained on the Google Kinetics 400 (K400) dataset will be used and
fine-tuned on the given dataset [70]. The K400 dataset is a human action video dataset, consisting
of human behavior such as shaking hands, salsa dancing, etc. This dataset was chosen because
it is the most closely related dataset for which a publicly available model exists. As transformers
are known for requiring a large amount of data [72], training from scratch is not considered as
that would require a much larger dataset, than the approximately 30 hours in the UTA dataset,
as displayed in Table B.1 in Apprendix B. Figure 4.12 displays the significance of training data,
as the accuracy improves by utilizing a larger amount of samples utilized from the K400 dataset.

Figure 4.12. Accuracy on K400 when training on different subsets of the dataset [70]. It is observed
that the performance is better the larger amount of training videos utilized from the dataset.

This study focuses solely on the non-drowsy and drowsy classes, corresponding to blue and red
on the KSS, which provide approximately 20 hours of data. In comparison, the K400 dataset
is approximately 850 hours, consisting of 400 classes each with a minimum 400 videos each of
approximately 10 seconds [71].

4.5.1 Tuning TimeSformer for drowsiness detection

To enhance the effectiveness of the TimeSformer model in detecting drowsiness from video data,
and discover which detail combination works best, it is crucial to determine optimal values for
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various hyperparameters. The tool Weights & Biases is utilized for this purpose, as it provides
capabilities for logging and analyzing data during the training of neural network models [73].
Besides storing historical runs, Weights & Biases offers hyperparameter sweeping tools to identify
the best combinations of hyperparameters for the model.

Hyperparameter sweeping involves specifying a range of acceptable values for each hyperparam-
eter and training multiple models with various combinations of these values. The most effective
model is then selected based on performance. The hyperparameters adjusted in the sweep in-
clude video length and the number of frames from the video uniformly sampled by the model to
investigate the sequential detail level needed for a good performance. Additionally, a skip factor
for loading every nth data sample of the dataset, batch size and weight decay are included to
prevent overfitting and improve generalizability. These adjustments are detailed in Table 4.4.

Hyperparameter Value [.]
Video Length 5,10,20,30,60 [s]

Number of Frames 5,10,20,30,40,50,60,70,80,90,100
Skip-Selector 1,2,3,4,5,6,7,8,9,10
Batch Size 1,2,4,8,16,32

Weight Decay min: 0, max: 4

Table 4.4. Overview of experimentally chosen range in hyperparameters and baseline values. Video
length represent the length in seconds of a given video, number of frames represent the amount of frames
uniformly sampled by the model from a given video and skip-selector represents sampling every nth
sample of the dataset. A high value for weight decay has been chosen as early experimentation displays
tendencies for overfitting and increased performance with a high weight-decay.

These parameters have been selected to explore whether drowsiness can be classified in a short or
long duration of time as well and the amount of detail needed to be utilized by the TimeSformer
model. Early testing has confirmed a pattern of overfitting, as displayed in Figure 4.13, resulting
in the added variation of sweeping parameters to prevent overfitting and support a better
generalization.

Figure 4.13. Selected run from initial testing without weight decay. This example has a batch-size of
2, utilizing 10 frames, video length of 20 and utilizes all data while fine-tuning all layers. 1 epoch = 1270
steps.

To further prevent overfitting, the example of Jaejun Lee et al. [74] is followed, ultimately
freezing most layers and only fine-tuning a few, also improving training times for the sweep. For
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this project, it’s been chosen to only keep the last layer trainable, as it’s experimentally proven
to be the best performing. A model layer structure is shown in Table C.1 in Appendix C. The
model architecture supports dropout, which has not been utilized in this experimentation as
early experimentation showed limited improvements. This decision also enhances the precision
of the sweeping process, as reducing the number of parameters decreases the amount of possible
sweep combinations.

When sweeping the combinations chosen be be either of a random choice or simply trying
everything in a grid-search. However, for a faster optimization a Bayesian Optimization technique
has been applied. A Grid Search tests every possible combination within the specified values,
whereas Random Search randomly selects combinations from these ranges.

When exploring different combinations of parameters, combinations can be selected either
randomly by random-search or by systematically trying all possible combinations through a
grid-search. For faster optimization, a Bayesian Optimization technique has been applied
[75]. Bayesian Optimization leverages data from previous training sessions to predict more
effective hyperparameter combinations utilizing Bayes Theorem. This project employs Bayesian
optimization as the primary method for hyperparameter tuning, aiming to maximize the
probability P(metric|params).

The hyperparameter sweep will be conducted using Fold 1 as the test dataset, while Folds 2, 3,
4, and 5 will serve as the training data.

4.5.2 Evaluation

A parameter sweep has been conducted, resulting in a variety of combinations displayed on
Figure 4.14 with a best accuracy of 77.73 %. The duration of the sweep with corresponding
timestamps and accuracies is depicted in Figure C.1, which can be found in Appendix C.

Figure 4.14. The figure displays the a hyperparameter sweep, showcasing 446 unique combinations of
variables. Highlighted run displays best test accuracy.
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It’s observed that there is a pattern for the best performers, indicating which parameters are
important. Generally, utilizing more frames seems to indicate better performance. Figure 4.15
portrays the Weights & Biases calculated Importance and Correlation metrics for all 448 runs,
indicating which parameters are most important for the sweep. The importance is calculated
by training a random forest on the hyperparameter combinations with the testing results as the
target output [76]. A high correlation indicates that an increase in a specific hyperparameter
value is directly associated with improved test accuracy. Conversely, a low correlation suggests
that a decrease in this hyperparameter value is related to improved test accuracy.

Figure 4.15. Weights & Biases importance and correlation metrics for all 448 combinations. A green
correlation represents 0 - 1 whereas a red correlation represents -1 - 0.

The Skip Selector has the greatest importance due to the unequal distribution of samples across
different video length datasets; for instance, all the 5-second clips are derived from the 60-second
clips, among other variations. The correlation is not very high, indicating that it can be beneficial
in some cases to skip a large amount of samples - also improving training times. Nonetheless,
one could contend that the skip selector might be less significant if its range was to be made
narrower. Using only every 10th sample, for instance, could be considered overly aggressive. In
contrast, the correlation for the number of frames used is high, indicating that the test accuracy
is dependent on a high number of frames sampled by the model.

Yet, as the video size can vary, utilizing 100 frames for a 5 second video may not necessarily be
the best case either. Table 4.5 portrays the 12 best performing combinations above 70 % test
accuracy, highlighting that the combination with a video length of 60 seconds and sampling 70
frames from the given videos performs best, corresponding to sampling the video with a detail
level of 1.167 fps. This is an indicator that the model is performing well sampling less than
the 10 fps full detail levels of the videos and sampling ≈ 1 fps is considered enough detail to
detect drowsiness, indicating that the fine details such as fast blinks are not as important for
this particular model.
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Batch Size Frames Skip Selector Video Length Weight Decay Test Accuracy fps
4 70 4 60 3.44 0.773 1.167
2 50 3 60 0.8 0.736 0.83
8 70 2 10 0.06 0.736 7
4 60 8 20 4 0.725 3
4 50 2 5 2.79 0.724 10
32 40 8 20 2.103 0.721 2
16 10 4 20 3.614 0.721 0.5
16 90 4 60 3.613 0.718 1.5
4 90 1 60 0.205 0.718 1.5
4 20 4 20 1.714 0.718 1
16 60 1 30 1.439 0.712 2
8 50 1 30 0.226 0.708 1.67

Table 4.5. Summary of Model Parameters and Performance for the 12 best performing and model fps
for comparison.

When observing the 12 worst performing in Table 4.6, it’s evident that a low fps can have
consequences for the performance of the model. However, an important note is that the Batch
Size, Skip Selector and Weight Decay all can play an important role, as there are also not well-
performing runs with fps ≥ 1. Many of these runs have a high Skip Selector and a Video Length
of 60 seconds, indicating a minimal data usage for the given run.

Batch Size Frames Skip Selector Video Length Weight Decay Test Accuracy fps
8 40 7 20 2.306 0.485 2
8 5 6 20 0.4713 0.482 0.25
8 5 9 60 2.202 0.477 0.083
2 40 2 60 1.097 0.477 0.667
32 5 5 60 2.665 0.473 0.083
1 30 7 60 0.2587 0.45 0.5
4 20 6 60 3.278 0.436 0.333
16 30 2 60 3.707 0.432 0.5
32 10 8 60 0.7164 0.441 0.167
4 30 8 30 2.631 0.391 1
32 30 9 20 3.863 0.389 1.5
32 10 9 60 1.205 0.373 0.167

Table 4.6. Summary of Model Parameters and Performance for the 12 worst performing and model
fps for comparison. Bold marks similar combinations with better performance displayed in Table 4.7.

Furthermore, similar combinations to these runs have shown better performance. An example
is the combination in Table 4.7, displaying identical Frame and Video Length combinations, but
differs in Batch Size, Skip Selector and Weight Decay.

Batch Size Frames Skip Selector Video Length Weight Decay Test Accuracy fps
16 10 4 60 0.074 0.6727 0.167
2 30 5 60 1.368 0.672 0.5

Table 4.7. Model Parameters and Performance for the similar performing model fps for comparison.

Performing k-fold validation on the best performing combination results in an average accuracy
of 75.49 %, as displayed in Table 4.8.
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Fold Test Accuracy
1 77.73 %
2 74.29 %
3 76.01 %
4 76.90
5 72.52

Average 75.49

Table 4.8. K-fold accuracies and average. Best performing fold is fold 1.

4.6 Concluding remarks

The exploration in this chapter has shown that there is a difference in the amount of detail needed
for the TimeSformer model, as more frames and detail put to the model tends to yield better
performance. Nevertheless, similar, yet still lower, performance can be attained by supplying the
model with a lower overall fps, still underscoring the critical role of temporal relationships in the
accurate classification of drowsiness. An average k-fold accuracy of 75.49 % is achieved utilizing
two classes, which compared to the original dataset proposal at a testing accuracy of 65.2 % [53]
utilizing three classes is not much of an improvement, and lower than the single frame use at 91
% as described in Section 4.2.

Since the TimeSformer model is pretrained on the Google Kinetics 400 dataset — a collection
specifically focused on human actions such as shaking hands, dancing salsa, etc. — it is
anticipated that pre-training on a broader dataset, particularly one enriched with subtle human
movements and facial expressions, or simply training from scratch on a greater drowsiness
dataset could significantly enhance its performance. A larger parameter sweep involving more
hyperparameters such as amount of trainable parameters could also have been conducted,
potentially improving accuracies. Investigating whether a similar pattern would occur on a
different dataset type of activity, such as the multi-activity dataset described in Chapter 3,
would be interesting as well.

While the TimeSformer model itself may not be practical for direct deployment due to its large
size of 121 million parameters, computational demands typical to Transformers and limited
computing power in cars, the principles and findings derived from this research can pave the
way for more practical implementations through model compression techniques such as model
pruning and quantization. Such techniques allow for the model to shrink in size, ultimately
reducing the amount of needed computations for it to make a prediction while retaining the
capabilities. However, the TimeSformer architecture itself may not be practical as a real world
application as it needs a full video for processing, and not just frames fed sequentially in time.
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Conclusion 5
This thesis concludes the work done for the last semester of Computer Engineering: AI, Vision
and Sound at Aalborg University, with a large part of the work done abroad at LISA and CVRR
at UC San Diego. In contrast to a normal semester report approach at Aalborg University, this
report is research based, hence the divided independent chapter structure.

The stay at LISA and CVRR in San Diego stay has been rewarding, allowing me to gain insights
in a laboratory environment as well as to live abroad. This has been an enriching experience both
academically and personally that I find recommendable to try in contrast to the normal pace
and style of a semester project at Aalborg University. The stay has resulted in two published
papers.

All three chapters contains investigations within the vehicle cabin, and has resulted in three
diverse research topics with key findings below:

5.1 Key findings:

Thermal Frame Generation: The study successfully demonstrated that using conditional
Generative Adversarial Networks (cGANs), particularly the pix2pix architecture, can generate
realistic thermal images from RGB frames. The stacked generation approach proved most
effective, highlighting the importance of spatial relationships in the data. Despite these
advancements, generalizing the model across different subjects remains a challenge, indicating
the need for further research into model customization and fine-tuning for individual drivers.

Driver Activity Classification: The application of Vision-Language models for classifying
driver activities showed promising results. By leveraging generalizable representations, the model
could classify various in-car activities without extensive tuning. This approach underscores the
potential of Vision-Language models for robust driver monitoring systems, capable of adapting
to a broad range of tasks and improving safety in autonomous driving environments.

Drowsiness Detection: Utilizing Video Transformers for drowsiness detection demonstrated
the feasibility of capturing subtle human movements and facial expressions crucial for this task.
Although the TimeSformer model showed potential, it did not perform as well as previous single
frame implementations, and its large size and computational demands pose practical challenges
for real-world applications.
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Thermal From RGB
Genration Results Extra

Material A

Step: 0, L1 Loss: 0.886.

Step: 20, L1 Loss: 0.487.

Step: 40, L1 Loss: 0.239.

Step: 10, L1 Loss: 0.683.

Step: 30, L1 Loss: 0.346.

Step: 50, L1 Loss: 0.210.

Step: 20000, L1 Loss: 0.103.

Figure A.1. From top to bottom, the generator output at different iterations of training are shown.
Originally, the generator produces a random image, and refines its output to match the intended thermal
image over time. These images are separated by only 10 iterations each (from 0 to 50), except for the
final image which represents a jump to 20,000 iterations.
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UTA-RLDD Analysis Extra
Material B

Figure B.1. Histogram illustrating the distribution frame resolution in the dataset.

Class Duration (h)
Alert 10.40

Low Vigilance 10.49
Drowsy 10.28

Total duration 31.17

Table B.1. Total duration of each class in hours (h) for UTA-RLDD.
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Drowsiness Extra Material C
Component Subcomponent Specifications

Embeddings - Patch Embeddings Conv2d(3, 768, kernel_size=(16, 16), stride=(16, 16))
- Positional Dropout Dropout(p=0.0)
- Temporal Dropout Dropout(p=0.0)

Encoder Layer (0-11) - Self-Attention
- Query/Key/Value Linear(768, 2304)
- Attention Dropout Dropout(p=0.0)
- Projection Linear(768, 768)

- Intermediate
- Dense Layer Linear(768, 3072)
- Activation GELU
- Dropout Dropout(p=0.0)

- Output
- Dense Layer Linear(3072, 768)
- Dropout Dropout(p=0.0)

- Layer Normalization
- Before Attention LayerNorm(768)
- After Attention LayerNorm(768)
- Temporal LayerNorm LayerNorm(768)

- Temporal Attention
- Self-Attention

- Query/Key/Value Linear(768, 2304)
- Attention Dropout Dropout(p=0.0)
- Projection Linear(768, 768)

- Dense Layer Linear(768, 768)
- Dropout Dropout(p=0.0)

Final Layer Normalization LayerNorm(768)

Classifier - Linear Layer Linear(768, 2)

Table C.1. The utilized TimeSformer model employs a series of components designed to process video
data through spatial and temporal features extraction. The Embeddings section projects video frames
into a high-dimensional space and applies dropout to reduce overfitting. Each Encoder Layer repeats
12 times, where self-attention mechanisms compute interactions within frames, and temporal attention
aggregates these across time. GELU activations introduce non-linearity between dense layers that expand
and contract feature representations [77]. Layer normalization is applied throughout to stabilize learning.
The Classifier at the end predicts classes based on the extracted features.
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Figure C.1. Test accuracy v. created. 446 runs.
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The following pages contain the scientific articles that were submitted related to this project and
a co-author permission letter from Ross Greer. The papers have been accepted, although they
may be subject to further revisions following the submission of this project.

Present items in this Appendix:

• Learning to Find Missing Video Frames with Synthetic Data Augmentation: A General
Framework and Application in Generating Thermal Images Using RGB Cameras. Accepted
at the 35th IEEE Intelligent Vehicles Symposium (IV).

• Driver Activity Classification Using Generalizable Representations from Vision-Language
Models. Accepted at the Computer Vision and Pattern Recognizion (CVPR) Vision and
Language for Autonomous Driving and Robotics Workshop.

• Co-Author Permission Letter from Ross Greer.
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Abstract—Advanced Driver Assistance Systems (ADAS) in
intelligent vehicles rely on accurate driver perception within
the vehicle cabin, often leveraging a combination of sensing
modalities. However, these modalities operate at varying rates,
posing challenges for real-time, comprehensive driver state
monitoring. This paper addresses the issue of missing data
due to sensor frame rate mismatches, introducing a generative
model approach to create synthetic yet realistic thermal imagery.
We propose using conditional generative adversarial networks
(cGANs), specifically comparing the pix2pix and CycleGAN
architectures. Experimental results demonstrate that pix2pix
outperforms CycleGAN, and utilizing multi-view input styles,
especially stacked views, enhances the accuracy of thermal image
generation. Moreover, the study evaluates the model’s general-
izability across different subjects, revealing the importance of
individualized training for optimal performance. The findings
suggest the potential of generative models in addressing missing
frames, advancing driver state monitoring for intelligent vehicles,
and underscoring the need for continued research in model
generalization and customization.

Index Terms—image synthesis, generative artificial intelligence,
thermal imagery, pseudo-labeled dataset, data augmentation

I. INTRODUCTION

Many advanced driver assistance systems (ADAS) rely on
accurate perception of the human driver by looking inside the
intelligent vehicle cabin [1], [2]. No single-view or sensing
modality perfectly suits every task or design specification, so
often a combination of views can be leveraged for enhanced
driver state understanding [3]. However, different sensing

M. V. Andersen, R. Greer, and M. Trivedi are with the Laboratory for
Intelligent and Safe Automobiles at University of California San Diego.
A. Møgelmose is with the Visual Analysis and Perception Lab at Aalborg
University.

modalities operate at different rates and often perform sim-
ilarly to RGB using neural networks [4], [5]. For example,
thermal cameras often operate at a fraction of the rate of
cameras on the visible light spectrum, but are useful toward
a variety of tasks in driver state monitoring by providing
useful information for understanding occlusion, circulation,
respiration, and other heat-related observations [6]–[11].

In many cases, it is useful for models to make observations
based on a sequence of observations, rather than a single
instance in time; doing so allows the modeling of dynamic
events and driver actions [12]–[14], as well as inference
reinforcement by repeated agreement between information
observed at nearby times [15]. Considering again the multi-
modal nature of driver observation systems, misaligned sensor
rates are not a problem when data from each modality is
considered individually, but requires careful synchronization
and creative approaches to modeling in cases when data from
one sensor may not be provided at the ideal rate for best
utilizing the remaining sensors. We illustrate this problem, and
associated problems and trade-offs, in Figure 1; essentially,
one can either use a high-frequency model with intermittent
missing data from low-frequency sensors, or a low-frequency
model which may sacrifice temporal precision of inference.
The risk of using low-frequency sensors is the mismatch that
occurs when the driver takes an action which changes state in a
way that can be observed by one sensor but missed by another;
this can create conflicting information and multimodal model
confusion if not handled properly, illustrated in Figure 2.

In this research, we propose a solution using a generative
model to create pseudo-complete data samples, pairing both
real (low frequency) thermal imagery and generated samples



Fig. 1: Many perspectives and modalities of data may contribute to robust driver state monitoring. Differing frame rates
of sensors lead to an unavailability of “complete” sets of data from all modalities for a given instance. Because many
driver states are best inferred from temporal patterns, an ideal data stream would have constant availability of all sources
at each instance. Without such a stream, models may be limited to instance inference (blue), complete-but-temporally-distant
sequences (red), or incomplete-but-temporally-local sequences (yellow). By generating missing data, we can provide synthetic
but useful representations to fill in these gray gaps, enabling accurate downstream state estimation models using pseudo-
complete, temporally-local sequences.

Fig. 2: When sensors operate at different rates, it is possible
that the temporally-nearest measurement to a given instance
may have taken place before a significant action for one sensor,
and after the action for another. In the above example, the
driver has abruptly moved his hands closer to the wheel;
however, the thermal camera has not yet processed another
signal to capture this motion. So, if both “most recent” signals
are sent to a multimodal model meant to estimate a driver’s
takeover readiness (e.g. proximity of hands to the steering
wheel), the model would have a large amount of uncertainty
from modal disagreement.

with high-frequency visible light images captured from mul-
tiple perspectives.

II. RELATED RESEARCH

A. Synthetic Thermal Images for Data Augmentation

Various modes of image data, from RAW [4], [5] to RGB to
IR, and even to non-light-based imagery such as temperature,
provide utility in a variety of applications; further, cross-
modality image synthesis is useful as a data augmentation
strategy in a variety of tasks, such as terrain classification
(visible to IR) [16], tissue segmentation (MRI to CT) [17], and
heart observation (various CMR medical imaging techniques)
[18]. Specific to human interaction, Hermosilla et al. [19]

generate thermal facial images from noise using StyleGAN2,
in order to build a robust dataset with tunable features that
can be used to train deep learning models to detect faces
within thermal images, a task which is generally more difficult
than detection from visible light images but may be useful in
certain sensing environments. Our research similarly utilizes
GAN as the underlying generative learning paradigm, with
the common goal of augmenting datasets towards problems in
human subject feature extraction and understanding.

B. Translating between Thermal and Visible Light

Deep learning has revolutionized image processing and
opened up new possibilities for image generation. Deep
learning models, particularly generative adversarial networks
(GANs), have demonstrated remarkable capabilities in trans-
lating images between different domains. Relevant to our
domains of interest (visible light and thermal signature),
Abdrakhmanova et al. [20] create the SpeakingFaces dataset
and explore models to generate visible images from thermal
images, since facial features for landmark recognition and
detection are too obscure in thermal imagery, reducing possible
use cases in human-computer-interaction (HCI), biometric au-
thentication, and other systems. They use CycleGAN and CUT
models to map thermal face images to the visual spectrum,
evaluating both the generated Fréchet inception distance as
well as the ability of the generated models to produce the
correct output on downstream facial landmark detection tasks.

Li et al. [21] introduced the dual-attention generative adver-
sarial network (DAGAN) for the generation of thermal images
from visible light, but outside the realm of human subjects and
in the domain of fire safety, useful in estimating locations and
temperatures of flames in room fires. Though the temperature
range, contrast, and locality on human subjects is significantly
different from that of an open flame, their research provides



a strong indication that GAN architectures are suited to the
task.

C. Predicting Missing Frames

For real-world data, the expected translational motion of
objects between frames has allowed for missing individual
frames to be estimated using a Kalman filtering approach [22],
and for larger segments of up to 14 frames to be created
from a fully convolutional model [23]. However, such methods
which effectively “in-paint” or “in-between” video sequences
are ineffective toward replacing larger missing sequences (in
this case, approximately 1 frame available in every 5-frame
period). Further exacerbating this issue, the frame rate is slow
enough that basic human motion changes state at a scale
faster than the sensor records– meaning that even knowing the
surrounding frames may be insufficient to fill in the activity of
the frames in between. Fortunately, in this problem setting, we
have at our disposal additional information from the “missing”
times, rather than just its surrounding pieces.

III. METHODS

A. Synthetic Data Augmentation

In the case presented in this paper, we consider a down-
stream goal task of driver state estimation, and we have a
set of thermal and visible light images which are used to
supervise the training of this task. However, we also have a
set of visible light images with no matching thermal imagery;
by training an intermediate model which generates associated
thermal images, and then using these generated images in the
training of a driver state estimation model, we can augment
the dataset to enable the use of models which operate over
complete sets of sensor data at a high frequency.

B. Algorithm

We train and evaluate two conditional generative adversarial
network (cGAN) architectures [24]; the pix2pix architecture
[25] and the CycleGAN architecture [26]. These models
consist of two competing neural networks: a generator that
produces thermal images from RGB inputs and a discriminator
that distinguishes between real thermal images and generated
ones. Through adversarial training, the generator learns to
synthesize realistic thermal images that are indistinguishable
from real ones. The cGAN architecture of pix2pix is seen in
Figure 3, and a demonstration of its iterative learning is shown
in Figure 6.

Our output for all methods is a thermal image, like the
example shown in Figure 5a. We evaluate three types of input
for experimental comparison:

1) Front-View RGB (Figure 5b)
2) Single-Subject Four-View RGB, tesselated (Figure 5c)
3) Single-Subject Four-View RGB, stacked (Figure 5d)

Though these input styles may appear unusual, their com-
pactness allows for training on a single GPU system, and on
an efficient model architecture, as opposed to creating three
additional convolutional “heads” to extract features from the

Fig. 3: The flow of pix2pix applied in this work.

individual images. Though there are some false edges intro-
duced due to the stacking structures, our results show that these
collage images are still able to significantly outperform single-
view learning. Additionally, we create one further experiment
to evaluate for the effects of single-subject training versus
multi-subject training for the Front View.

C. Dataset

The dataset utilized in this study is notably comprehensive,
incorporating various perspectives beneficial for developing
and evaluating innovative approaches to generating thermal
images from RGB inputs as well as driver state monitoring in
general. It consists of distinct viewpoints, including thermal,
front, overhead, profile, and tablet orientations, as displayed
in Figure 4.

Fig. 4: Example images showcasing perspectives captured
from used cameras within our simulator setup.

The dataset consists of captures of 17 subjects seated at a
simulated driver’s seat. Notably, the RGB images are captured
at a rate of approximately 30 frames per second (fps), while
the thermal imaging data is sourced from a thermal camera
operating at less than 9 fps, and represent a range of -20°C
to 300°C, scaled to [0, 255]. Thorough synchronization and
preparation procedures have been applied to ensure the optimal
integration of the multi-view data.



(a) Thermal ground truth. (b) Front-View.

(c) Four-View, Tessellated. (d) Four-View, Stacked.

Fig. 5: In our experiments, different inputs are evaluated on
their potential for generating an image similar to the thermal
ground truth.

TABLE I: Comparison of Model Architectures when training
front-view.

Method Average Test L1 Error Standard Deviation
CycleGAN 0.1644 0.0585

pix2pix 0.0676 0.0106

From each subject we create a collection of 500 thermal
+ RGB image synchronous groups. In each experiment, an
allocation of 80 % for training, 10 % for validation, and 10
% for testing has been used. In the case of training on the
aggregate pool of all subjects, we randomly select 5,000 of the
8,500 samples to account for our available training hardware.

IV. EXPERIMENTAL EVALUATION

A. Generative Architecture

We first compare the performance of the pix2pix archi-
tecture versus the CycleGAN architecture, which has proven
useful in past data augmentation for driver state monitoring
[27]. As shown in Table I, the performance of the CycleGAN is
significantly subpar to pix2pix. We expect that this is due to the
attempt by CycleGAN to reconstruct the original input from its
generated output during training; because the thermal image
is significantly lossy compared to the amount of information
in the visible light images, this relationship is more difficult to
model beyond approximation. For interpretation, we note that
all experimental error values are on normalized pixel values in
the range [0, 1], meaning that most errors range around 5-6%
of the pixel range.

Fig. 6: From top to bottom, we show the generator output
at different iterations of training. Originally, the generator
produces a random image, and refines its output to match the
intended thermal image over time. These images are separated
by only 10 iterations each, except for the final image which
represents a jump to 20,000 iterations.



TABLE II: Comparison of Input Style; Average Performance
Across 17 Subjects.

Dataset Average Test L1 Error Standard Deviation
Front-View 0.0676 0.0106

Four-View, Tessellated 0.0587 0.0109
Four-View, Stacked 0.0559 0.0093

TABLE III: Comparison of Single vs. Multi-Subject Training
on Front View.

Dataset Average Test L1 Error Std. Deviation
Single-Subject Training 0.0676 0.0106
Multi-Subject Training 0.1116 0.0186

B. Input Style

The results of our experiments comparing the three different
styles of input are presented in Table II. We find that a
combination of views outperforms generation from a single-
view, Figure 9, (perhaps assisting in understanding hand and
posture positioning and respective heat signatures), and that
the stacked-view and tesselated-view, Figures 7&10, of the
images provides an efficient and effective input, evidenced
by the lowest average L1 error (0.0559) and a comparatively
low standard deviation (0.0093). This suggests that considering
spatial relationships by multi-view information enhances the
model’s accuracy in thermal image generation, as seen in
Figure 7.

C. Subject Generalizability

The results of our experiments on model generalizability to
multi-subject training data is presented in Table III. We find
that though the training dataset size grows significantly (17×)
and still includes the original training data, the additional
subjects seem to contribute more to model confusion than
generalized pattern creation, showing a higher average L1
error of 0.1116 and supporting the idea that these models
are best trained on an individual basis. The relatively weak
performance when trained on the more diverse set of data can
be observed in Figure 8.

V. CONCLUDING REMARKS

Our study on generating thermal images from RGB counter-
parts highlights promising results with effective prediction ap-
proximation. However, the persisting challenge of the missing
frames issue underscores the complexity of the task, demand-
ing further research, as predictions must be near perfect. The
stacked generation approach proved most successful, empha-
sizing the importance of spatial relationships. Despite these
advancements, the model’s generalization between subjects
remains the worst performer, warranting continued efforts for
improved adaptability across diverse scenarios so that singular
models may be trained and deployed, and motivating research
into the potential of small-data fine-tuning for model cus-
tomization to individual drivers. Another venue of continued
research is to analyze this approach in different tasks such
as utilizing Lidar data, different environments from inside a
vehicle cabin and verify utilizing more datasets. This, aswell

as taking account for potential missing frames within the four
utilized RGB views [28], [29]. The value of observing time-
varying patterns is beneficial to many autonomous driving
applications [30]–[32], providing a means to infer useful,
high-frequency cues from temporal dynamics of the observed
subject.

In summary, our generative approach shows potential to
address the missing frames problem (caused by sensor frame
rate mismatches and intermittent failures), providing a means
for higher frequency driver state monitoring for enhanced
intelligent vehicle awareness and rapid, safe decision-making.

Fig. 7: Single-Subject Four-View, Stacked Prediction Example.

Fig. 8: Multi-Subject Front-View Prediction Example.

Fig. 9: Single-Subject Front-View Prediction Example.

Fig. 10: Four-View, Tessellated Prediction Example.
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Abstract

Driver activity classification is crucial for ensuring
road safety, with applications ranging from driver assis-
tance systems to autonomous vehicle control transitions.
In this paper, we present a novel approach leveraging
generalizable representations from vision-language models
for driver activity classification. Our method employs
a Semantic Representation Late Fusion Neural Network
(SRLF-Net) to process synchronized video frames from
multiple perspectives. Each frame is encoded using a
pretrained vision-language encoder, and the resulting
embeddings are fused to generate class probability predic-
tions. By leveraging contrastively-learned vision-language
representations, our approach achieves robust perfor-
mance across diverse driver activities. We evaluate our
method on the Naturalistic Driving Action Recognition
Dataset, demonstrating strong accuracy across many
classes. Our results suggest that vision-language repre-
sentations offer a promising avenue for driver monitoring
systems, providing both accuracy and interpretability
through natural language descriptors. We make our code
available at https://github.com/viborgen/
Driver - Activity - Classification - Using -
Generalizable - Representations - from -
Vision-Language-Models

1. Introduction
Distracted driving is a common factor in many vehicle

accidents [1]. Systems which monitor the driver can offer
advisories to the driver which encourage maintained focus
on the road [2–7]. These advisories can be effective at re-
ducing the occurrence or severity of related accidents [8].

Another solution to individual transportation lies in au-
tonomous vehicles, with a distant goal that distracted driv-
ing is no longer a problem if the person in the driver’s seat is

*Authors contributed equally. R. Greer, M. V. Andersen, and M. Trivedi
are with the Laboratory for Intelligent & Safe Automobiles at the Univer-
sity of California San Diego. A. Møgelmose is with the Visual Analysis
and Perception Lab at Aalborg University.

not expected to be controlling the vehicle. However, current
systems encounter failure cases and novel scenarios [9, 10].
Systems cannot safely transfer control without awareness
of the driver, as the driver may be sleeping or pre-occupied
with a distracting activity. For this reason, in-cabin driver
monitoring and understanding of the driver state is critical
for control transitions in autonomous systems too [11–13].

2. Related Research
Models which treat driver monitoring as a closed-set task

[14,15] have found success on benchmark datasets [16,17].
However, the real environment is open-set [18, 19].

While our provided method is not open-set in its training
data, by using a foundation model backbone, the encod-
ing network has already learned representations of nearly
any activity class. This makes the method highly adapt-
able to any visual activity class, though learning to classify
those encoded representations may still require closed-set
supervised learning (or, an unsupervised or active method
to identify novel classes [20–22]) to provide desired predic-
tions suitable to the open-set world.

Further, the real environment contains drivers which are
out-of-distribution for a fixed set of training subjects. This
is a problem when using data-driven methods which are
tuned based on visual features. Some solutions lie in ab-
stractions which remove the driver identity from the im-
age [23, 24]. Related to this problem is the challenge of
generalizing to drivers without training data; for most sit-
uations, it is infeasible that the vehicle monitoring system
capture input of the driver, annotate this input, and use it
to finetune a system, especially in the case of non-standard
views or sensor rates [25]. This motivates the need for zero-
shot learning, where the system is expected to perform with
zero prior training instances of the test subject [26, 27].

In this research, we introduce a method which represents
the driver in a language-based visual descriptor. Though
this representation utilizes image-based features, the fea-
tures are learned in relationship to verbal descriptors, which
pushes the representation from one based purely on pixel
values to a representation which is based on the meaning of
patterns found in those pixels, to the extent that they can be
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described by natural language.

3. Methodology
3.1. Algorithm

Our algorithm for driver activity classification is pre-
sented in Algorithm 1, including encoding, network approx-
imation, and post-processing.

Algorithm 1: SRLF Activity Classification Algo-
rithm

Input: Synchronized video frames
Output: Filtered probabilities per instance
foreach triplet of frames do

foreach frame do
Create an embedding for the image using the

CLIP pretrained vision encoder;
Pass the three embeddings as input to the SRLF

neural network;
Take argmax over output to receive single class

probability per frame;
Apply a mode filter with window size w over the

resulting probabilities;

We use w = 141 for our inference data sampled at 30
Hz, but this parameter should be tuned to match the typical
duration of the driver activities, relative to the rate at which
the network generates predictions or processes input.

3.2. Semantic Representation Late Fusion Neural
Network

Our network, Semantic Representation Late Fusion Neu-
ral Network (SRLF-Net) is presented in Figure 1. The net-
work consists of N = 3 parallel CLIP ViT image encoders,
followed each by an FCN encoder, after which the outputs
of the N tracks are fused before entering a deep FCN net-
work to generate class probability output.

3.3. Leveraging Generalizable Representations
from Language-Vision Foundation Models

With this representation, rather than the descriptor of
each driver being a specific array of pixels which may repre-
sent that driver’s facial structure, hairstyle, skin color, size,
and other non-relevant traits, the information bottleneck and
pretraining mechanism instead reduce the amount of infor-
mation and preserve (at least, to the ability of the optimizer)
only features which are useful in organizing the images in
a latent space that is separable by language. Of course,
it is possible that with language we can describe concepts
like facial structure, hairstyle, skin color, etc., but what is
important is that the verbal description of these properties
is a much lower amount of information than having the

complete set of pixels which define that facial structure or
hairstyle or skin color. With this representation, it is our
hypothesis that the model becomes significantly more gen-
eralizable when trained, as it loses its ability to overfit to the
very-individual properties of specific drivers.

Taken to an extreme, we can view the act of classify-
ing an image as a reduction to the minimal number of bits
to represent the information we care about from an image.
With this in mind, we can view the image itself as the rep-
resentation with the most information (which may be more
than is required to solve the problem, containing both noise
and irrelevant detail), and the class itself as the most com-
pact. It is possible to use a large language model to directly
output a prediction of a class, but this relies on the tun-
ing of many components, in particular, the text encoder of
the classification-request prompt and the associated prompt
phrasing, and the ability of the model which learns to de-
code the image to a class according to this prompt. In our
results, we show that current large language models strug-
gle to learn this task satisfactorily. Because the image en-
coding representation is a less-reduced representation, we
suggest that this can be used as an intermediate (not too
large, not too small) representation of the relevant informa-
tion, from which we can learn appropriate patterns with-
out requiring the tuning of a text encoder or the finetuning
of the model parameters which connect a prompt encoding
and vision encoding, significantly reducing computational
and data requirements while still maintaining the necessary
level of information to solve the classification problem.

3.4. Separating Visual and Semantic Information
using Order-based Augmentation

While we would ideally extract a semantic-level repre-
sentation of the images and remove the ability to overfit
to pixel configurations, the CLIP representation still car-
ries some image features forward. However, we introduce
a method which mitigates the overfitting possibility by a
specialized data augmentation. If we treat the order in
which the three views are passed to the network as ran-
dom, we may be able to push the model to learn features
within the 768-vector which represent semantic information
as opposed to image-feature information, since the image-
feature information would vary for each view while the se-
mantic feature information should remain consistent. This
method can also be extended to any number of views. While
an overparameterized model may simply learn additional
representations (for each permutation of image order), an
appropriately-parameterized model may show better gener-
alizability performance through this semantic-pass-filter in-
formation bottleneck.
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Figure 1. The Semantic Representation Late Fusion Network (SRLF-Net) takes images from multiple perspectives as input. Each image
is sent to a CLIP encoder. Our experiments use the Vision Transformer backbone, base size, with size 32 patches. These representations
are then further encoded using independent (non-shared-weight) fully-connected layers, each followed by batch normalization, ReLU
activation, and dropout (rates 0.5 and 0.6 respectively). We use input size 768, and use two layers, compressing once to 512 and then to
256. These representations are then concatenated and used as input to another series of fully-connected layers (fusion step), again using
batch normalization and ReLU activation between each. The size of these layers are 768, 768, 512, 256, 128, then n (number of classes),
which is 16 for our experiments. A residual connection is added between the concatenation and the second layer sized 768.

4. Experimental Evaluation

4.1. Dataset

We utilize the Naturalistic Driving Action Recognition
Dataset from the AI City Challenge [28], which consists of
approximately 62 hours of footage, acquired from 69 par-
ticipants. Each participant performed 16 different tasks, in-
cluding but not limited to telephonic conversations, eating,
and reaching backward, in a randomized order, as specified
in Table 1.

The data includes three camera positions installed within
a vehicle, as in Figure 2, positioned to capture from varied
angles and synchronized to record simultaneously. The data
collection was executed in two phases for each participant:
the first without any visual obstructions and the second in-
corporating visual obstructions to appearance (e.g., sun-
glasses, hats). Thus, six videos were collected per partic-
ipant—three from the non-obstructed phase and three from
the obstructed phase.

Class Activity Label Dist. %
0 Normal Forward Driving 59.01
1 Drinking 1.49
2 Phone Call(right) 2.78
3 Phone Call(left) 2.97
4 Eating 3.29
5 Text (Right) 3.44
6 Text (Left) 3.56
7 Reaching behind 1.40
8 Adjust control panel 2.42
9 Pick up from floor (Driver) 1.31

10 Pick up from floor (Passenger) 2.15
11 Talk to passenger at the right 3.52
12 Talk to passenger at backseat 3.46
13 Yawning 1.87
14 Hand on head 3.45
15 Singing or dancing with music 3.85

Table 1. Table of Driver Activity Classifications.
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Figure 2. Illustration of multi-perspective in-cabin camera views
for monitoring driver behavior under the class ’0: Normal Forward
Driving’. (1) Dashboard view. (2) Rear-view. (3) Side view.

4.2. Training Details

We detail our evaluation data splits in the following sec-
tions, with care to have images of individuals binned only
to one set out of training and test. We divide our training
set into two groups; 80% to train and 20% to validation,
with possible overlap in individuals (though no same frames
are shared). With our training set, we train SRLF-Net for
up to 100 epochs, employing early stopping on a valida-
tion loss criteria. We use the adam optimizer (learning rate
of 0.0001), 1cycle learning rate schedule policy [29], and
cross-entropy loss.

For testing, we utilize the 7-fold data split provided in
the dataset, dividing into 7 near-even groups of participants.
This allows us to approximate generalizability with a 7-fold
average.

4.3. Evaluation Over All Classes

The results for 7-fold test are seen in Table 2. We achieve
an average accuracy of 71.64 %, showcasing the promising
use of the method, notable in comparison to 6.25% expected
accuracy of random selection for sixteen classes.

K-fold Accuracy
1 68.09 %
2 74.40 %
3 73.60 %
4 71.37 %
5 70.15 %
6 75.34 %
7 68.53 %

Average: 71.64
Standard Deviation: 2.88

Table 2. Table of k-fold cross-validation accuracies and average
accuracy.

As illustrated in Figure 3, the model observes a large fa-
vorability for class 0 (Normal Forward Driving) likely due

Figure 3. Confusion matrix for best performing k-fold 6 including
a mode filter, resulting in a performance of 77.10 %.

to the skewed distributions of the data, as portrayed in Ta-
ble 1, with phone call and hand-on-head the next most-
correctly-classified classes. Adjusting the control panel
shows the most confusion with the default driving class.
Straight forward driving accounts for 59.01 % of the data,
resonating binary test to differentiate between straight for-
ward driving and all other classes in Figure 4. For more
accurate classification, it would be beneficial to mitigate
the effects of the confounding majority class (“normal driv-
ing”); we explore experiments in class-weighting, but find
these effects to not be strong enough to counter the adverse
learning effect. As another solution, we consider the use of
an early-stage binary classifier to separate normal driving
from distracted driving. The binary classifier is imperfect
(as shown in Figure 4, and in the next section, we carry out
an additional distraction-classification experiment exclud-
ing the ”normal driving” class, on the assumption that some
strong binary classifier may be achieved with further archi-
tectural exploration.

4.4. Distracting Activities Only: Evaluating With-
out Normal Driving Class

Our architecture, in combination with a dataset heavily
skewed towards normal driving, tends to overpredict the
normal driving class. To understand how well the model
separates between the distracting activity classes, we run an
experiment by which we assume there is some “perfect” bi-
nary classifier which can distinguish between normal driv-
ing and distracted driving, and then use our model to clas-
sify only between these distraction classes. The results of
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Figure 4. Binary Confusion matrix for best performing k-fold 6
only including class 0 for straight forward driving and a combina-
tion of all other activity classes, performing 77.22 % accuracy.

this experiment are illustrated in Figure 5. The model, in
general, predicts the correct class with the greatest likeli-
hood for any given activity class, though for some individ-
ual classes, this likelihood may be less than >50%. Phone
call and hand-on-head again show the best performance.

We also highlight the importance of the mode-filter post-
processing step; without the mode filter, the accuracy is
63.66%, and with the mode filter, this accuracy rises to
70.06%. This filter leverages the knowledge that there is
a certain rate at which a driver can reasonably change be-
tween tasks (i.e. it would be unexpected for a driver to os-
cillate between different distracting activities at 30 Hz, even
if the camera captures and model infers at that rate).

5. Concluding Remarks and Future Research
To begin, we highlight some recommended opportunities

for future research:

1. Comparison to text-encoding methods, such as vector
products between text and image encodings, or even
the evaluation of prompted vision-language systems to
determine classes of images. We note that we have
began a series of experiments using LLaVA, but the
computation time on such methods significantly ex-
ceeds the method shown in this paper, without offer-
ing stronger preliminary results. In relation to these
methods, our presented algorithm does carry the bene-
fit of immediate applicability to multiple simultaneous
views.

2. The integration of temporal information (either as
post-processing, or addition of LSTM or Transformer
models early in the architecture) may be very useful,
since driver activities occur over time, with valuable
information in these action dynamics.

3. Evaluation on combinations of non-consistent views.
It would be interesting to merge multiple datasets

Figure 5. Confusion matrix for best performing k-fold 6 without
class 0 for straight forward driving and including a mode filter,
performing 70.06% accuracy. By removing the forward driving
class, the accuracy metric decreases slightly (simply because the
over-predicted forward driving class accounted for a majority of
the dataset), but the average performance over classes actually in-
creases from 50.44% to 70.13%. The alignment of average per-
class accuracy and overall accuracy is a strong indicator of the
model’s effective learning.

which share some classes in common, so that we can
evaluate generalizability to further views and subjects.

4. Integration into open-set novelty detection methods,
such that the system can expand its number of classes,
retraining if necessary, when new activities are intro-
duced.

In this research, we present a new perspective of the
vision-language contrastively-learned encoding as a funda-
mental new representation of an image, which contains both
visual information as well as semantic information. We
show that from this information, it is possible to classify
driver activity into a variety of distraction classes with fairly
strong accuracy, and further, that our algorithm can adapt to
any number of simultaneous views. Vision-language mod-
els may lead to driver monitoring systems which are more
accurate, robust, and generalizable; suitable for an open-set
of possible distractions; and directly explainable [30] via
language.
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