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Enhancement of Single-Channel Periodic Signals in
the Time-Domain

Jesper Rindom Jensen∗, Student Member, IEEE, Jacob Benesty, Mads Græsbøll Christensen, Senior
Member, IEEE, and Søren Holdt Jensen, Senior Member, IEEE,

Abstract—Most state-of-the-art filtering methods for speech
enhancement require an estimate of the noise statistics, but the
noise statistics are difficult to estimate in practice when speech
is present. Thus, non-stationary noise will have a detrimental
impact on the performance of most speech enhancement filters.
The impact of such noise can be reduced by using the signal
statistics rather than the noise statistics in the filter design.
For example, this is possible by assuming a harmonic model
for the desired signal; while this model fits well for voiced
speech, it will not be appropriate for unvoiced speech. That
is, signal-dependent methods based on the signal statistics will
introduce undesired distortion for some parts of speech compared
to signal-independent methods based on the noise statistics. Since
both the signal-independent and signal-dependent approaches to
speech enhancement have advantages, it is relevant to combine
them to reduce the impact of their individual disadvantages.
In this paper, we give theoretical insights into the relationship
between these different approaches, and these reveal a close
relationship between the two approaches. This justifies joint use
of such filtering methods which can be beneficial from a practical
point of view. Our experimental results confirm that both signal-
independent and signal-dependent approaches have advantages
and that they are closely-related. Moreover, as a part of our
experiments, we illustrate the practical usefulness of combining
signal-independent and signal-dependent enhancement methods
by applying such methods jointly on real-life speech.

Index Terms—Single-channel speech enhancement, time-
domain filtering, MVDR filter, LCMV filter, non-stationary
noise, orthogonal decomposition, harmonic decomposition, pitch,
performance measures.

I. INTRODUCTION

HUMAN speech is frequently encountered in several sig-
nal processing applications such as telecommunications,

teleconferencing, hearing-aids, and human-machine interfaces.
Before the speech can be utilized in such applications, it must
be picked up by one or more microphones. Unfortunately, the
desired signal (in this case speech) will always, to a certain
degree, be corrupted by noise which is present when sampling
the signal. The noise will most likely have a detrimental
impact on speech applications since it may degrade the speech
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quality and intelligibility. In hearing-aids, for example, a
decreased speech quality (i.e., a high noise level) can cause
listener fatigue. Therefore, it is of great importance to develop
methods for reducing the noise of speech recordings before the
speech is utilized in any relevant application. Such methods
are typically termed noise reduction methods or enhancement
methods. In the past few decades, developing such methods
have been a major challenge. For an overview of existing
enhancement methods, we refer to, e.g., [1], [2]. In general,
we can divide speech enhancement methods into three groups,
i.e., spectral-subtractive algorithms [3], statistical-model-based
algorithms [4], [5], and subspace algorithms [6]–[8]. The
references, [3]–[8], refer to some of the pioneering work
within each of the groups.

A common approach used in speech enhancement is linear
filtering. In this approach, the speech enhancement problem
is formulated as a filter design problem. That is, a filter
should be designed such that it reduces the noise level of the
observed signal as much as possible while not introducing
any noticeable distortion of the speech. The design of such a
filter can be performed either directly in the time domain or
in some transform domain. This could for example be in the
frequency [3], [7], [9] or in the Karhunen-Loève expansion
(KLE) domains [10]. The advantage of filtering in transform
domains can, for example, be a reduced computational com-
plexity. Filters derived in transform domains, however, can also
be derived equivalently in other domains and vice versa. In
this paper, we consider time-domain filters for single-channel
recordings which can also be extended to other domains
according to the previous discussion. Typically, time-domain
filters are designed by minimizing some error function like in
the classical Wiener filter design [11]. The first step in the
design is therefore to define the error function.

In the vast majority of filtering methods for speech enhance-
ment, the filter is designed from the statistics of the observed
signal and the noise. We term this the signal-independent
filter design approach. In practice, however, the noise signal
is not directly available, and the noise statistics could, for
example, be estimated during silence periods where only the
noise is present. The main advantage of this approach is that
it is completely independent of the statistics of the desired
speech signal since it only uses the observed signal and the
noise statistics, and it is well-known that the speech structure
changes drastically over time. However, the signal-independent
filter approach will not be influenced by this, since it does
not rely on the statistics of the desired signal. Non-stationary
noise, on the other hand, will have a detrimental impact on
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this filter design approach since the noise statistics are difficult
to estimate when speech is present.

Recently, a signal-dependent filter design approach has been
proposed [12]. By signal-dependent, we mean that the filter
is calculated using the statistics of the desired signal and
without using the statistics of the noise. The desired signal
is assumed to be periodic in this approach and is therefore
well-modeled by a sum of harmonically related sinusoids.
This type of harmonic modeling has been used extensively
within speech processing. Due to the periodicity assumption,
the filter in [12] ends up being driven only by the pitch, the
harmonic model order, and the statistics of the observed signal.
In this paper, the pitch and the number of harmonics will
be treated as known parameters, and we refer the interested
reader to [13]–[22] and the references therein for an overview
of methods for estimation of these parameters when they
are unknown. Since the signal-dependent approach does not
depend directly on the noise statistics, it will be robust against
non-stationary noise as opposed to the signal-independent
filter design approach. However, the harmonic model will
only be appropriate for voiced speech segments. For unvoiced
speech segments, the signal-dependent approach will therefore
introduce some distortion of the speech signal due to model
mismatch.

As highlighted in the previous discussion that the signal-
independent and signal-dependent filter design approaches
have complementary advantages and disadvantages. Therefore,
it is highly relevant to investigate if these approaches can be
combined to obtain the advantages of both while reducing
the impact of their disadvantages. As a first step in this
direction, we here provide further insight into the relationship
between the signal-independent and signal-dependent filter
design approaches in this paper. More specifically, we con-
sider the relationship between two recently proposed filter
designs, namely the orthogonal decomposition based minimum
variance distortionless response (ODMVDR) filter [23], and
the harmonic decomposition linearly constrained minimum
variance (HDLCMV) filter [12], [21]. The ODMVDR filter
is signal-independent whereas the HDLCMV filter is signal-
dependent. Moreover, we present some closed-form perfor-
mance measures for filters designed using both the signal-
independent and signal-dependent design approaches when
the desired signal is periodic. A new performance measure
for the harmonic distortion is also proposed. The closed-
form expressions for the performance measures enable easy
comparison of the filters. Finally, in the experimental part of
the paper, we propose a filtering scheme where the ODMVDR
and HDLCMV filters are used jointly. By doing this, we can, to
some extend, have the individual advantages of both a signal-
independent and a signal-dependent filtering approach.

The remainder of the paper is organized as follows. In
Section II, we define the signal model which forms the
basis of the paper. Then, in Section III, we introduce the
notion of using filtering for enhancement purposes for different
signal decompositions. Based on this, we briefly introduce two
recently proposed optimal filter designs for enhancement in
Section IV. In Section V, we perform a theoretical study of the
two filters, and we show that there is a clear link between them.

When the desired signal is periodic, we can obtain closed-
form expression for the filter performance measures which we
describe in Section VI. In the experimental part of the paper, in
Section VII, we compare the ODMVDR and HDLCMV filters
through simulations, and we propose and evaluate a scheme
where the ODMVDR and HDLCMV filters are used jointly
for speech enhancement. Finally, we conclude on the paper in
Section VIII.

II. SIGNAL MODEL

In this paper, we consider the performance and the rela-
tionship of recent optimal filter designs for enhancement of
a zero-mean desired signal, x(n) ∈ R1×1, buried in additive
noise, v(n) ∈ R1×1, where n denotes the discrete-time index.
That is, the objective is to recover x(n) from a mixture signal
given by

y(n) = x(n) + v(n) . (1)

The mixture signal, y(n) ∈ R1×1, could be a microphone
recording and the desired signal could be a speech signal. We
assume that the noise, v(n), is a zero-mean random process
uncorrelated with the desired signal, x(n). Specifically, we
consider the special scenario where x(n) is quasi-periodic
which is a reasonable assumption for voiced speech segments.
Considering this special scenario enables us to provide closed-
form solutions for the enhancement performance measures,
and it enables us to investigate the relationship between dif-
ferent optimal filter designs. These observations will become
clear from the later sections.

By assuming quasi-periodicity, we can rewrite the signal
model in (1) as

y(n) =

L∑
l=1

Al cos(lω0n+ φl) + v(n) , (2)

where ω0 is the pitch, L is the number of harmonics, Al is
the amplitude of the lth harmonic, and φl is the phase of the
lth harmonic. For many signals, the harmonic model does not
fit exactly due to inharmonicity, but we can cope with this by
modifying the signal model in several ways (see, e.g., [21] and
the references therein). However, inharmonicity is out of the
scope of this paper, and it will not be discussed any further.
Without loss of generality, we can also write the signal model
in (2) as

y(n) =

L∑
l=1

(
ale

jlω0n + a∗l e
−jlω0n

)
+ v(n) , (3)

with al = Al

2 e
jφl being the complex amplitude of the lth har-

monic, and (·)∗ denotes the element-wise complex conjugate
of a matrix/vector.

The observed data can be stacked into a vector, y(n) ∈
RM×1, which enables us to do block processing. The vector
signal model is given by

y(n) = x(n) + v(n) , (4)

where

y(n) =
[
y(n) y(n− 1) · · · y(n−M + 1)

]T
, (5)
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with (·)T denoting the matrix/vector transpose, and the def-
initions of x(n) ∈ RM×1 and v(n) ∈ RM×1 resemble the
definition of y(n). Since we have assumed that x(n) and
v(n) are uncorrelated, we can obtain the following simple
expression for the covariance matrix, Ry ∈ RM×M , of the
observed signal

Ry = E[y(n)yT (n)] = Rx + Rv , (6)

where E[·] is the expectation operator, Rx ∈ RM×M is the
covariance matrix of x(n) and Rv ∈ RM×M is the covariance
matrix of v(n). Under the assumption of x(n) being quasi-
periodic, we know that Rx can be modeled by [24]

Rx ≈ Z(ω0)PZH(ω0) , (7)

where (·)H denotes the complex conjugate transpose operator,
and

P = diag
{[
|a1|2 |a∗1|2 · · · |aL|2 |a∗L|2

]}
, (8)

Z(ω0) =
[
z(ω0) z∗(ω0) · · · z(Lω0) z∗(Lω0)

]
, (9)

z(lω0) =
[
1 e−jlω0 · · · e−jlω0(M−1)

]T
, (10)

with diag{·} denoting the construction of a diagonal matrix
from a vector. In the remainder of the paper, we denote Z(ω0)
as Z to get a simpler notation.

A common goal in different enhancement algorithms is
then to find a “good” estimate of x(n) or x(n). Often, in
enhancement problems, “good” means that the noise reduction
should be significant while the desired signal remains nearly
undistorted. In this paper, we focus on two recently proposed
filtering methods which estimate x(n) from an observation
vector, y(n), of length M .

III. ENHANCEMENT BY LINEAR FILTERING

Linear filters have been widely used for enhancement pur-
poses. For example, enhancement performed by applying a
finite impulse response (FIR) filter to the observed signal
vector, y(n). The filtering operation can be written as

x̂(n) =

M−1∑
m=0

hmy(n−m) = hTy(n) , (11)

where

h =
[
h0 h1 · · · hM−1

]T
(12)

and x̂(n) should be an estimate of x(n). The output of the
filter is often decomposed into a filtered desired signal part
and a filtered noise part to facilitate the filter design. We here
describe three different decompositions of the filter output: the
classical, the orthogonal, and the harmonic decompositions.

A. Classical Decomposition

In most classical filtering methods for signal enhancement,
the filter output is decomposed as

x̂(n) = hTx(n) + hTv(n) = xf(n) + vrn(n), (13)

where xf(n) , hTx(n) is the signal after filtering and
vrn(n) , hTv(n) is the residual noise. The goal in the filter

design is then two-fold. First, the noise should be attenuated
significantly by filtering. Second, the distortion of the desired
signal introduced by the filter should be low. Numerous filter
designs have been proposed according to these design criteria.
A common approach is to minimize the mean-square error
(MSE) between the desired signal and the enhanced signal,
where the error is defined as

e(n) = x(n)− x̂(n) . (14)

In [23], however, it was claimed and shown that this approach
can be inappropriate since only some of the information
embedded in x(n) is useful for the estimation of x(n).

B. Orthogonal Decomposition

Recently, it has been proposed to design an enhancement
filter based on an orthogonal decomposition of the desired
signal since some components of x(n) interfere with the esti-
mation of the desired signal x(n) [23]. Using the orthogonal
decomposition, the clean signal can be rewritten as

x(n) = x(n)ρxx + xi(n) = xd(n) + xi(n) , (15)

where

ρxx =
E[x(n)x(n)]

E[x2(n)]
(16)

=
[
1 ρx(1) · · · ρx(M − 1)

]T
,

ρx(m) =
E[x(n−m)x(n)]

E[x2(n)]
. (17)

Note that xd(n) is the part of x(n) being proportional to
the desired signal x(n) and xi(n) is the “interference” being
orthogonal to xd(n). Inserting (15) into (13) yields

x̂(n) = hTxd(n) + hTxi(n) + hTv(n) . (18)

It can be shown that the variance of x̂(n) is given by [23]

σ2
x̂ = σ2

xfd
+ σ2

xri
+ σ2

vrn
, (19)

where

σ2
xfd

= hTRxdh = σ2
x(hTρxx)2 , (20)

σ2
xri

= hTRxih , (21)

σ2
vrn

= hTRvh , (22)

Rxd = σ2
xρxxρ

T
xx is the covariance matrix of xd(n), σ2

x =
E[x2(n)] is the variance of the desired signal, and Rxi =
E[xi(n)xTi (n)] is the covariance matrix of the interference,
xi(n).

The main difference between the classical approach and this
approach is that we have two noise terms to minimize in this
approach, namely σ2

xri
and σ2

vrn
. Moreover, the filtered desired

signal is different in this approach since it does not include
the interfering part of x(n) which is here considered as noise.
Like in the previous approach, the filter should be designed
such that the error in (14) is small (e.g., in the MSE sense)
while there is no or only a little distortion of the desired signal.
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C. Harmonic Decomposition

The harmonic model in (2) has been used in many pitch
estimation methods [21]. In general, the model can be used
for describing periodic signals as

x(n) = Za(n) = x′d(n) , (23)

where

a(n) =
[
a1e

jω0n a∗1e
−jω0n · · · (24)

aLe
jLω0n a∗Le

−jLω0n
]T

.

Note that in this approach there is no interference as opposed
to in the orthogonal decomposition approach since all samples
in x(n) can be fully used for describing the desired signal
x(n). This is due to the underlying harmonic signal model.
Therefore, the vector, x′d(n), describing the desired signal,
x(n), is simply equal to the signal vector, x(n), in this
approach. The desired signal, x(n), is equal to the first entry
of the vector Za(n), i.e.,

x(n) = 1Ta(n) , (25)

where 1 =
[
1 · · · 1

]T
. Like in the orthogonal decomposi-

tion approach, we can insert (23) into (13) which yields the
following estimate of x(n)

x̂′(n) = hTx′d(n) + hTv(n) . (26)

If we exploit the orthogonality between x′d(n) and v(n) in
(26), we can write the variance of x̂′(n) as

σ2
x̂′ = σ2

x′
fd

+ σ2
vrn
, (27)

where

σ2
x′

fd
= hTRx′

d
h = hTZPZHh , (28)

and σ2
vrn

is defined as in (22). Moreover, Rx′
d

=

E
[
x′d(n)x′Td (n)

]
= ZPZH is the covariance matrix of x′d(n).

Compared to the orthogonal decomposition approach, this
approach only has one noise term, σ2

vrn
. When this approach

is used, the filter, h, should therefore be designed such that it
minimizes σ2

vrn
without distorting the x(n) too much.

IV. OPTIMAL FILTERS FOR ENHANCEMENT

We consider two recently proposed filter designs for en-
hancement of single-channel signals: 1) the orthogonal decom-
position MVDR filter [23] and 2) the harmonic decomposition
LCMV filter [20]. Following, we will revisit the two filter
designs.

A. Orthogonal Decomposition MVDR

Traditionally, the minimum variance distortionless response
(MVDR) filter proposed by Capon [25], [26] has been derived
and applied in the context of multichannel signals. Recently,
however, the MVDR filter has also been applied for single-
channel speech enhancement [23]. Here, we term the MVDR
filter proposed in [23] as the orthogonal decomposition MVDR
(ODMVDR) filter. The ODMVDR filter design is based on an
orthogonal decomposition of the desired signal as described

in Section III-B. The filter is designed to minimize the sum of
the residual interference variance, σ2

xri
, and the residual noise

variance, σ2
vrn

, while it should not distort the desired signal.
That is,

min
h

hTRinh s.t. hTρxx = 1, (29)

where Rin = Rxi + Rv is the interference-plus-noise covari-
ance matrix. The constraint comes from the measure of desired
signal reduction (aka. speech reduction) for the orthogonal
decomposition introduced in [23]

ξdsr(h) =
σ2
x

σ2
xfd

=
1

(hTρxx)2
. (30)

When ξdsr(h) = 1 there is no desired signal reduction (or
distortion if you will) while it is expected to be greater
than 1 when there is a reduction. That is, to make the filter
distortionless according to this measure, we must require that
hTρxx = 1 which exactly corresponds to the constraint in
(29).

The well-known solution to the quadratic optimization prob-
lem in (29) is given by

hODMVDR =
R−1in ρxx

ρTxxR
−1
in ρxx

=
R−1y ρxx

ρTxxR
−1
y ρxx

. (31)

In practice, the correlation vector, ρxx, in (31) is replaced by

ρxx =
E[y(n)y(n)]− E[v(n)v(n)]

σ2
y − σ2

v

=
σ2
yρyy − σ2

vρvv

σ2
y − σ2

v

, (32)

where σ2
y is the variance of y(n), σ2

v is the variance of v(n),
and ρyy and ρvv are defined similarly to ρxx in (16). The
evaluation of the performance of the ODMVDR filter follows
from later sections.

B. Harmonic Decomposition LCMV

Like the MVDR filter, the linearly constrained minimum
variance (LCMV) filter proposed by Frost [27] has mainly
been used in multichannel settings. Recently, however, an
LCMV filtering method for enhancement of periodic signals
was proposed which is applicable on single-channel signals
[12], [20]. Following, we recast the LCMV design procedure
from [20] such that it is more general and compliant with
the harmonic decomposition in Section III-C. This design
procedure is somewhat similar to that of the ODMVDR filter.

In the harmonic decomposition LCMV (HDLCMV) filter, it
is assumed that the desired signal is periodic. When the desired
signal is periodic and modeled by (3), all information in x(n)
can be used in the estimation of x(n) which, in general, is
not the case in the orthogonal decomposition approach where
there will be some interference, xi(n). Therefore, we only
need to care about minimizing the residual noise power, σ2

vrn
,

in the harmonic decomposition approach without introducing
too much desired signal distortion. The HDLCMV filter, in
particular, is designed such that the residual noise variance,
σ2
vrn

, is minimized while the desired signal, x(n), is passed
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undistorted. This can also be casted as the following opti-
mization problem

min
h

hTRvh s.t. ZHh = 1 . (33)

To verify that the constraint in (33) makes the filter distortion-
less, we consider the desired signal reduction measure for the
harmonic decomposition approach which is given by

ξ′dsr(h) =
σ2
x

σ2
x′

fd

=
σ2
x

hTZPZHh
. (34)

It can be seen that when the signal is periodic, the desired
signal variance is given by σ2

x = 1TP1. That is, the filter will
indeed be distortionless with respect to the distortion measure
in (34) if it is designed such that Zh = 1. It can also be
shown that the constraint in (33) ensures that the individual
harmonics are not distorted [24].

If we solve the quadratic optimization problem with multi-
ple constraints in (33), we get

hHDLCMV = R−1v Z
(
ZHR−1v Z

)−1
1 . (35)

In the Appendix, we have shown that replacing Rv by Ry

does not change the filter response. If we utilize this, we can
also write the HDLCMV filter as

hHDLCMV = R−1y Z
(
ZHR−1y Z

)−1
1 . (36)

We can see from this expression that if x(n) is periodic,
the pitch, ω0, is known, and the number of harmonics, L, is
known, we only need the statistics, Ry, of the observed signal
to design the HDLCMV filter. This is a key difference from
the design of the ODMVDR filter for which we also need to
know either the statistics of the desired signal, ρxx, or of the
noise, ρvv .

V. RELATION BETWEEN THE ODMVDR AND HDLCMV
FILTERS

Although the ODMVDR and HDLCMV filters were derived
under different constraints, we show in this section that there
is a clear link between the filters. For this analysis, we assume
that the noise is a sum of interfering sinusoids and white
Gaussian noise such that

Rv = ZsnPsnZ
H
sn + σ2

wnI , (37)

where Zsn and Psn are the steering and power matrices of the
sinusoidal noise source, and σ2

wn is the variance of the white
Gaussian noise. The matrices are defined similarly to (8) and
(9).

It is clear from (16) that ρxx corresponds to the first column
of Rx normalized with respect to the signal variance, σ2

x. That
is, without loss of generality, we can also write ρxx as

ρxx =
Rxi

iTRxi
, (38)

where i =
[
1 0 · · · 0

]T ∈ RM×1. Under the periodicity
assumption, we can rewrite this expression by inserting (7)
into (38)

ρxx =
ZPZH i

iTZPZH i
=

ZP1

1TP1
=

ZP1

σ2
x

. (39)

If we substitute this expression for ρxx back into the expres-
sion for the ODMVDR filter in (31), we get that

hODMVDR = R−1y ZP1
(
1TPZHR−1y ZP1

)−1
σ2
x

= σ2
xBP

(
1TPCP1

)−1
1 , (40)

where B = R−1y Z and C = ZHB. Note that using the same
notation, the HDLCMV filter can be written as

hHDLCMV = BC−11 . (41)

At a first glance, the filters in (40) and (41) do not look similar.
However, by using the matrix inversion lemma on C, we see
that it can be rewritten as

C = ZH
(
ZPZH + Rv

)−1
Z

= ZH
[
R−1v −R−1v Z

(
P−1 + ZHR−1v Z

)−1
ZHR−1v

]
Z

= D−D
(
P−1 + D

)−1
D , (42)

where D = ZHR−1v Z. If we also use the matrix inversion
lemma on D, we get that

D =
1

σ2
wn

ZHZ− 1

σ2
wn

ZHZsn

(
P−1sn +

1

σ2
wn

ZHsnZsn

)−1
ZHsnZ .

(43)

Moreover, if we then assume that the frequencies of the
sinusoidal noise sources are different from the harmonic
frequencies, and if we let M →∞, we can write [21]

lim
M→∞

1

M
ZHZ = I , (44)

lim
M→∞

1

M
ZHZsn = 0 . (45)

Thus, for large M , we can approximate C as

C ≈ σ−2v
[
MI−M2

(
σ2
vP
−1 +MI

)−1]
. (46)

Furthermore, it turns out that we can approximate the (p, q)th
element of C as

[C]pq ≈


M

σ2
v + PqM

, for p = q

0 , for p 6= q
. (47)

When M is large and PqM � σ2
v , the expression for the qth

diagonal element of C can be further simplified as [C]qq ≈
P−1q . In this case, we can write

C ≈ P−1 . (48)

If we insert this approximation for C in (40), we readily obtain
that

lim
M→∞

hODMVDR = BP1

= hHDLCMV . (49)

Thus, when the desired signal is periodic, the noise is a
summation of interfering sinusoids and white Gaussian noise,
and the filter order M is large, then the ODMVDR and
HDLCMV filters are approximately identical. This observation
is important since it justifies the joint use of the two filters
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for enhancement of quasi-periodic signals. The two different
filters are based on different knowledge, i.e., the noise and
signal statistics, respectively. Depending on which statistics
are available, the appropriate filter can be applied. In the
experimental part of the paper, we also investigate the relation
between the filters for small Ms.

VI. PERFORMANCE MEASURES

In [23], a number of performance measures for enhancement
methods were introduced. In this section, we exploit the peri-
odicity of the desired signal to derive closed-form expressions
for the performance measures for each of the filters described
in Section IV.

A. Noise Reduction

The most fundamental measure of the performance of
enhancement algorithms is the signal-to-noise ratio (SNR). In
general, we can consider two SNRs, namely the input SNR
(iSNR) and the output SNR (oSNR). The iSNR is defined as
the SNR of the observed signal before filtering, i.e.,

iSNR =
σ2
x

σ2
v

. (50)

The oSNR, on the other hand, is the SNR after noise reduc-
tion. That is, when using the orthogonal decomposition, it is
obtained as

oSNROD(h) =
σ2
xfd

σ2
xri

+ σ2
vrn

=
σ2
x

(
hTρxx

)2
hTRinh

. (51)

where (·)OD denotes that the measure is applicable when using
the orthogonal decomposition. We can then obtain a closed-
form expression for the oSNR of the ODMVDR filter when
the desired signal is periodic by inserting (39) and (40) into
(51). This yields

oSNROD(hODMVDR) =
1TPZHR−1in ZP1

σ2
x

. (52)

When the harmonic decomposition is utilized, the oSNR is
given as

oSNRHD(h) =
σ2
x′

fd

σ2
vrn

=
hTZPZHh

hTRvh
, (53)

where (·)HD denotes that the measure is applicable when using
the harmonic decomposition. A closed-form expression for the
oSNR of the HDLCMV filter is then found by inserting (41)
into (53), which yields

oSNRHD(hHDLCMV) =
σ2
x

1T
(
ZHR−1v Z

)−1
1
. (54)

Yet another performance measure related to the noise reduc-
tion, is the so-called noise reduction factor, ξnr(h). This factor
is defined as the ratio between the noise in the observed signal
and the noise remaining in the signal after filter. That is, when

the orthogonal decomposition is used, the noise reduction
factor is given by

ξOD
nr (h) =

σ2
v

σ2
xri

+ σ2
vrn

=
σ2
v

hTRinh
. (55)

The noise reduction factor is expected to be larger than or
equal to 1, since ξnr(h) < 1 would imply that the noise is
amplified through the filtering. If we insert the expression for
the ODMVDR filter into (40), we get that

ξOD
nr (hODMVDR) =

σ2
v1

TPZHR−1in ZP1

σ4
x

. (56)

If the harmonic decomposition is used instead, the noise
reduction factor is obtained as

ξHD
nr (h) =

σ2
v

σ2
vrn

=
σ2
v

hTRvh
. (57)

This gives the following noise reduction factor for the HDL-
CMV filter

ξHD
nr (hHDLCMV) =

σ2
v

1T
(
ZHR−1v Z

)−1
1
. (58)

Note that if we know the pitch, ω0, the number of harmonics,
L, the powers of the harmonics, Pl, and the noise statistics,
Rv, we can calculate the output SNRs and the noise reduction
factors for the two filters.

B. Signal Distortion

A common and unwanted side-effect of most enhancement
procedures is that they also attenuate the desired signal in the
process of attenuating the noise. The desired signal attenuation
can also be considered as distortion. The amount of distortion
can be quantified by the speech reduction factor measure [23].
Here, the measure will be termed the desired signal reduction
factor since we do not consider speech only. The reduction
factor is defined as the ratio between the variance of the
desired signal and the variance of the desired signal after
filtering. That is, when the orthogonal decomposition is used,
the factor is given by

ξOD
dsr (h) =

σ2
x

σ2
xfd

=
1

(hTρxx)
2 . (59)

If distortion occurs, the noise reduction factor will be greater
or less than one (expectedly greater than one) and it will equal
1 otherwise. Therefore, if a filter should be distortionless, we
must require that

hTρxx = 1 . (60)

The ODMVDR filter was derived exactly under this constraint,
i.e.,

ξOD
dsr (hODMVDR) = 1 , (61)
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which can also be easily verified. Similarly, for the harmonic
decomposition approach, the desired signal distortion is de-
fined as

ξHD
dsr (h) =

σ2
x

σ2
x′

fd

=
σ2
x

hTZPZHh
. (62)

The HDLCMV filter is designed to be distortionless when the
desired signal is periodic, i.e.,

ξHD
dsr (hHDLCMV) = 1 . (63)

This result can easily be verified. On a side note, it can be
seen that the HDLCMV filter is also distortionless with respect
to the desired signal reduction measure for the orthogonal
decomposition approach since

hTHDLCMVρxx =
1T
(
ZHR−1y Z

)−1
ZHR−1y ZP1

σ2
x

=
1TP1

σ2
x

= 1 . (64)

This emphasizes the strong link between the two filters.
We also propose a new distortion measure, namely the

harmonic distortion. The harmonic distortion is the sum of
the differences between the powers of the harmonics before
and after filtering which can also be written as

ξhd(h) = 2

L∑
l=1

|Pl − Pf,l|

= 2

L∑
l=1

Pl|1− hT z(lω0)zH(lω0)h| , (65)

where Pl = |al|2 and Pf,l is the power of the lth harmonic
after filtering. This performance measure is defined in exactly
the same way for both the orthogonal decomposition approach
and the harmonic decomposition approach. The harmonic
distortion will be equal to 0 when there is no distortion of the
harmonics while it will be greater than 0 otherwise. A closed-
form expression for the harmonic distortion of the ODMVDR
filter can be obtained by inserting (40) into (65) which yields

ξhd(hODMVDR) = 2

L∑
l=1

Pl

∣∣∣∣∣∣∣1−
σ4
x

∣∣∣1TPZHR−1y z(lω0)
∣∣∣2(

1TPZHR−1y ZP1
)2

∣∣∣∣∣∣∣ .
(66)

It is clear from the above expression that the harmonic
distortion of the ODMVDR filter will be close to 0 when M
is large. The HDLCMV filter is derived under the constraints
that the harmonics should not be distorted, i.e.,

ξhd(hHDLCMV) = 0 , (67)

which is readily verified by inserting (41) into (65).

VII. EXPERIMENTAL RESULTS

In the previous sections, we presented two single-channel
filtering methods which can be used for extraction of periodic
sources. These are the ODMVDR and HDLCMV filters. We
showed that there is a clear link between the filters and that

they are even equivalent in some special scenarios. To illustrate
the link, we compare the responses of the filters in this section.
The link between the filters suggests that they can be used
jointly which can be useful in practice as we illustrate and
account for in the application example later in this section.
Furthermore, we defined some performance measures for both
of the methods given that the underlying desired signal is
periodic and modeled by (3). In this section, we will also
study these measures through theoretical simulations.

A. Qualitative Comparison of Filter Responses

In this theoretical experiment, we compared the ODMVDR
and HDLCMV filters in terms of their filter responses in differ-
ent scenarios. The signal and noise statistics were assumed to
be known in this experiment, i.e., we assumed that the desired
signal was constituted by a sum of L = 6 harmonic sinusoids
with a pitch of ω0 = 0.245. Each of the sinusoids was assumed
to have a unit amplitude (Al = 1).

In the first part of the experiment, we compared the
ODMVDR and HDLCMV filters in (31) and (36), respectively,
when white Gaussian noise, vwn(n), was added to the desired
signal, x(n), at an iSNR of 10 dB. When the filter length was
set to M = 20, we obtained the filter responses depicted in
Fig. 1. We observe from the plot that the filters have poor
noise reduction capabilities due to the relatively short filter
length. Furthermore, we can see that the filters have different
magnitude responses. By careful inspection, we note that the
HDLCMV filter has unit gains at the harmonic frequencies as a
result of its constraints which is not the case for the ODMVDR
filter. When we increase the filter length to M = 40, we get
the responses in Fig. 2. In accordance with the theoretical
discussion in Section V, we observe that the filters become
equivalent when the filter order becomes large.

In the second part of the experiment, the noise was a
summation of white Gaussian noise, vwn(n), and sinusoidal
noise, vsn(n), containing 6 harmonics with unit amplitudes.
The pitch of the sinusoidal noise source was 0.247. The ratio
between the desired signal and the white Gaussian noise was
10 dB resulting in an iSNR of −0.41 dB. First, we designed
ODMVDR and HDLCMV filters of length M = 50, and the
resulting responses are shown in Fig. 3. The filter responses are
close, and they both seem to extract the desired signal while
attenuating both the sinusoidal noise, vsn(n), and the white
noise, vwn(n). When we increase the filter order, the filters
become almost equivalent, as can be seen from Fig. 4. This
was also expected in the sinusoidal noise scenario according
to Section V.

B. Evaluation of the Filter Performances

The second experiment was about evaluation of the per-
formance of the ODMVDR and HDLCMV filters in differ-
ent scenarios. The performance measures considered in this
section were the output SNR and the harmonic distortion.
As in the first experiment, this experiment was conducted
with exact statistics, i.e., without synthetic data samples.
In all simulations, the desired signal, x(n), was a periodic
signal containing L = 6 harmonic sinusoids. We conducted
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Fig. 1. Magnitude responses of the ODMVDR and HDLCMV filters of order
M = 20 designed for a periodic signal corrupted by white Gaussian noise.
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Fig. 2. Magnitude responses of the ODMVDR and HDLCMV filters of order
M = 40 designed for a periodic signal corrupted by white Gaussian noise.

simulations with both unit amplitude harmonics (Al = 1) and
harmonics with decreasing amplitudes[

A1 · · · A6

]T
=
[
1 0.8 0.5 0.35 0.2 0.1

]T
.

(68)

By using decreasing amplitudes, we believe that we get a
slightly better insight into the performance of the filters when
the desired signal is speech which often has decreasing har-
monic amplitudes. In all of the simulations in this experiment,
the pitch of the desired signal was ω0 = 0.245.

First, we measured the performance of the two filters as
a function of the iSNR. In this simulation, the filter length
was M = 30, and the desired signal, x(n), was corrupted by
white Gaussian noise. For the scenario with unit amplitude
harmonics, we obtained the results depicted in Fig. 5. Both
filters improved the SNR by approximately 6 dB for all
iSNRs. However, the ODMVDR filter had a little distortion
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Fig. 3. Magnitude responses of the ODMVDR and HDLCMV filters of
order M = 50 designed for a periodic signal corrupted by sinusoidal noise
and white Gaussian noise.
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Fig. 4. Magnitude responses of the ODMVDR and HDLCMV filters of order
M = 100 designed for a periodic signal corrupted by sinusoidal noise and
white Gaussian noise.

of the harmonics at low iSNRs. For decreasing harmonic
amplitudes, we got the results in Fig. 6. Note that in this
scenario, the ODMVDR filter has a slightly higher oSNR than
the HDLCMV filter at low iSNRs. However, the higher oSNR
comes at the cost of distortion of the harmonics.

Next, we compared the performance of the filters as a
function of the filter length. In these simulations, the desired
signal, x(n), was corrupted by white Gaussian noise at an
iSNR of 10 dB. First, the performance comparison was con-
ducted for unit harmonic amplitudes resulting in the plot in
Fig. 7. While the oSNRs of the filters are close, the ODMVDR
filter has a little harmonic distortion. We also conducted the
comparison for decreasing harmonic amplitudes as seen in
Fig. 8. Here we see a larger difference in performance. For
all filter lengths, the oSNR of the ODMVDR filter is greater
than that of the HDLCMV filter. However, there is also some
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Fig. 5. Performance of the filters for M = 30 as a function of the iSNR
when the harmonics has unit amplitudes and the noise is white Gaussian.
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Fig. 6. Performance of the filters for M = 30 as a function of the iSNR when
the harmonics has decreasing amplitudes and the noise is white Gaussian.

harmonic distortion introduced by the ODMVDR filter. Note
that the step-wise increase in the oSNR in Fig. 7 and Fig. 8
is caused by the orthogonality (or the lack thereof) between
the harmonics which is evident from (54) when the noise is
white Gaussian.

Furthermore, we conducted simulations where the noise was
a sum of white Gaussian noise, vwn(n), and sinusoidal noise,
vsn(n). The variance, σ2

vsn
, of the sinusoidal noise source was

normalized with respect to the variance, σ2
x, of the desired

signal such that they had the same power. White Gaussian
noise was also added to the desired signal resulting in the
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Fig. 7. Performance of the filters as a function of M when the harmonics
has unit amplitudes and the noise is white Gaussian.

30 40 50 60 70 80 90 100

10

12

14

16

18

20

M

o
S

N
R

 [
d
B

]

 

 

ODMVDR

HDLCMV

iSNR

30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

M

ε
h

d

 

 

ODMVDR

HDLCMV

Fig. 8. Performance of the filters as a function of M when the harmonics
has decreasing amplitudes and the noise is white Gaussian.

following iSNR

iSNR =
σ2
x

σ2
vsn

+ σ2
vwn

. (69)

Note that since the sinusoidal noise source has the same
variance as the desired signal, the iSNR will always be smaller
than or equal to zero (in dB) in these simulations according to
the above equation. First, for the sinusoidal noise scenario, we
compared the filter performances as a function of the iSNR
when the filter order was M = 50. The result for unit harmonic
amplitudes are given in Fig. 9. The oSNRs of the filters are
relatively close, but with the largest difference when the white
noise variance, σ2

vwn
, is largest. For all iSNRs, the ODMVDR

filter has more harmonic distortion compared to the scenario
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Fig. 9. Performance of the filters for M = 50 as a function of the iSNR
when the harmonics has unit amplitudes and the noise is a sum of sinusoidal
noise and white Gaussian noise.
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Fig. 10. Performance of the filters for M = 50 as a function of the iSNR
when the harmonics has decreasing amplitudes and the noise is a sum of
sinusoidal noise and white Gaussian noise.

with white Gaussian noise only. When decreasing harmonic
amplitudes were considered (see Fig. 10), the difference in
oSNRs between the filters was more pronounced with the
ODMVDR having the highest oSNR for all iSNRs. The
ODMVDR filter, however, also had more harmonic distortion
in this case.

In the sinusoidal noise scenario, we also compared the per-
formances as a function of the filter length, and the results are
depicted in Fig. 11 and Fig. 12, respectively. As in the previous
simulations, we observe that the oSNR of the ODMVDR filter
is in general higher than the oSNR of the HDLCMV filter.
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Fig. 11. Performance of the filters as a function of M when the harmonics
has unit amplitudes and the noise is a sum of sinusoidal noise and white
Gaussian noise.
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Fig. 12. Performance of the filters as a function of M when the harmonics
has decreasing amplitudes and the noise is a sum of sinusoidal noise and
white Gaussian noise.

However, the difference between the filters decreases when
M increases. The harmonic distortion of the ODMVDR filter
is more significant in this simulation compared to the white
Gaussian noise only scenario, but it decreases as we increase
M .

Finally, we compared the filter performances as a function
of the pitch spacing ∆ω0 between the desired signal and the
sinusoidal noise source. In this simulation, the filter order was
M = 100. The results are given in Fig. 13 and Fig. 14,
respectively. For both unit and decreasing amplitudes, the
oSNRs of the two filters are not much different for all source
spacings, but with the ODMVDR having a slightly better
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Fig. 13. Performance of the filters for M = 100 as a function of the source
spacing ∆ω0 when the harmonics has unit amplitudes and the noise is a sum
of sinusoidal noise and white Gaussian noise.
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Fig. 14. Performance of the filters for M = 100 as a function of the source
spacing ∆ω0 when the harmonics has decreasing amplitudes and the noise is
a sum of sinusoidal noise and white Gaussian noise.

oSNR. Moreover, for both filters the oSNR increases as we
increase the spacing of the harmonic sinusoidal sources. We
also observe that for both types of amplitudes, the ODMVDR
has much harmonic distortion in this case compared to the
other simulations.

C. Application Example: Using the ODMVDR and HDLCMV
Filters Jointly for Speech Enhancement

In this experimental example, we show how the ODMVDR
and HDLCMV can be applied jointly for enhancement of
speech signals. For the experiment, we used a 2.2 second long
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Fig. 15. A plot of a female speech signal (top) and the pitch estimates
associated with it (bottom).
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Fig. 16. Spectrograms of (a) the clean speech signal in Fig. 15 and (b) the
speech signal in Fig. 15 corrupted by babble noise at an iSNR of 5 dB.

speech segment sampled at 8 kHz. The segment contains a
female speaker reading aloud the sentence “Why where you
away a year Roy?” and it is plotted in Fig. 15. Since the
pitch is needed in the HDLCMV filter design, we estimated
the pitch of the speech signal at all time instances using an
orthogonality based subspace method [19], [21]. The pitch
estimator is available from an online toolbox1. The pitch track
resulting from the pitch estimation is also depicted in Fig. 15,

1http://www.morganclaypool.com/page/multi-pitch
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Fig. 17. Spectrograms of enhanced versions of the noisy signal in Fig. 16b.
The enhanced signals are obtained using (a) the ODMVDR filter only, (b) the
HDLCMV filter only, and (c) the joint HDLCMV and ODMVDR filtering
setup, respectively.

and it is used for later filter designs. Note that since we focus
on speech enhancement rather than pitch estimation in this
paper, we estimated the pitch directly from the clean speech
signal, x(n). The spectrogram of the speech signal, x(n), is
shown in Fig. 16a.

First, we consider a scenario in which the speech signal
is corrupted by babble noise at an average iSNR of 5 dB.
The babble noise was taken from the AURORA database
[28]. The spectrogram of the noisy signal is depicted in Fig.
16b. We then enhanced the noisy signal using three different
filtering setups, i.e., using the ODMVDR filter only, using the
HDLCMV filter only, and using the ODMVDR and HDLCMV
filters jointly. The joint filtering method is proposed since
using only either the ODMVDR or the HDLCMV filter has
drawbacks. For example, the ODMVDR method is sensitive

0 0.5 1 1.5 2
−25

−20

−15

−10

−5

0

5

10

15

20

Time [s]

o
S

N
R

 [
d
B

]

 

 

iSNR

oSNR − ODMVDR

oSNR − HDLCMV

oSNR − joint

Fig. 18. The estimated iSNR and oSNRs over time for the enhanced signals
in Fig. 17.

to non-stationary noise, since it requires that knowledge about
the noise statistics which we do not always have access to
in practice. This is not an issue for the HDLCMV filter,
but, on the other hand, it will introduce some distortion of
speech signals because the harmonic model does not hold
exactly. Furthermore, the HDLCMV filter has, in general, more
constraints than the ODMVDR filter, and it will therefore
most likely have a lower oSNR compared to the ODMVDR
filter. The joint use of the filters can be justified by their
close relationship described in Section V. In the joint filtering
scheme, we first use the HDLCMV filter to obtain a rough
estimate of the speech signal. The rough speech estimate is
then subtracted from the observed signal to obtain an estimate
of the noise signal. We estimate the noise statistics from
the estimated noise signal, and the noise statistics are used
for designing the ODMVDR filter. Finally, the ODMVDR
filter is applied for enhancement of the observed signal. By
using the ODMVDR filter for the enhancement rather than the
HDLCMV filter, we expect to remove some of the distortion
introduced by the HDLCMV filter in practice. Moreover, we
expect to obtain more noise reduction, since the ODMVDR
filter is less constrained compared to the HDLCMV filter.

In all the filtering setups, the filters were updated for each
time instance. The update was conducted by recalculating
the filters from the signal and noise statistics (R̂y and R̂v)
estimated from the previous 400 samples (≈ 50 ms). Both R̂y

and R̂v were used to calculate the ODMVDR filter. That is, we
assumed that the noise signal was available in this simulation,
albeit it is not the case in practice. The HDLCMV filter was
updated using R̂y, the pitch estimates in Fig. 15, and a model
order of L = 13. The model order was chosen by inspecting
the spectrogram in Fig. 16a since we do not consider model
order estimation in this paper. Furthermore, in the calculations
of the HDLCMV filter and the filters in the joint filtering setup,
we regularized the covariance matrix using [29]

R̂y,reg = (1− γ)R̂y + γ
Tr
{
R̂y

}
M

I , (70)

where Tr{·} denotes the trace operator. The regularization
is used to compensate for, e.g., numerical stability, model
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Fig. 19. Average PESQ scores (a) for the joint filtering scheme as a function
of M for an iSNR of 5 dB, and (b) for several enhancement methods as a
function of the iSNR for M = 110 with 95% confidence intervals. In (c),
the average differences in PESQ scores between the joint filtering scheme and
the spectral subtraction and MMSE-based methods, respectively, are plotted
with 95% confidence intervals.

mismatch, and noisy statistics. Choosing γ = 0.7 was found to
give the best results in terms of oSNR and perceptual scores.
All filters were chosen to be of order M = 100.

The observed signal containing the speech signal and babble
noise was then enhanced using the three filtering setups, and
the spectrograms of the resulting enhanced signals are shown
in Fig. 17. The spectrograms indicate that the joint filtering
method has better noise reduction abilities than when using
either the ODMVDR or the HDLCMV filter only. Regarding
distortion, the ODMVDR filter seems to outperform the joint
filtering method. However, it is important to remember that
the ODMVDR filter was designed using the noise signal, and
it will therefore most likely have a worse performance in
practice. To confirm the observations on the performances of

the filters, we also measured the oSNRs associated with the
enhanced signals in Fig. 17 using

oSNR(h) =
σ2
xf

σvrn

=
hTRxh

hTRvh
. (71)

Note that we here use the traditional oSNR measure, since, in
practice, the interference term of the ODMVDR approach is
relatively large which complicates the comparison of the oSNR
measures in (51) and (53), respectively. The measured oSNRs
are shown in Fig. 18. These measurements show that both
the ODMVDR and the joint filtering methods outperform the
HDLCMV filtering method in terms of noise reduction. The
ODMVDR and joint filtering methods have comparable noise
reduction performance even though the joint filtering method
is implemented without access to the noise signal directly. This
justifies the use of the joint filtering method in practice as it
is more tractable than the ODMVDR filtering method when
the noise signal is not available.

The oSNR measure, however, does not quantify how much
the filtering methods distort the desired signal. Therefore, we
also evaluated the filtering methods in terms of “Perceptual
Evaluation of Speech Quality” (PESQ) scores [30]. The PESQ
score is an objective measure which reflects the perceptual
quality of a speech signal. That is, the PESQ scores give
a more complete picture of the performance of the filtering
methods since the perceptual quality is affected both by
noise reduction and distortion. We compared the PESQ scores
of noisy speech signal enhanced using the joint filtering
method, the ODMVDR filtering method, the HDLCMV fil-
tering method, a spectral subtraction based method [31], and
a method using MMSE estimates of the spectral amplitudes
[32]. Note that, in these simulations, we design the ODMVDR
filter from the true noise signal, and it therefore only serves
as a bound to the proposed joint filtering scheme.

Followingly, we describe how the different enhancement
methods were set up for the PESQ score evaluations. In all
of the filtering methods, i.e., the joint method, the ODMVDR
method, and the HDLCMV method, the observed signal and
noise statistics were calculated as in the previous experiment.
The noise statistics were calculated directly from the noise sig-
nal, and they were only used for designing the ODMVDR fil-
ter. In the joint and HDLCMV filtering methods, the observed
signal statistics were regularized as in the previous experiment.
The model order was set to L = min([15, bπ/ω0c − 1]) at
each time instance when designing the HDLCMV filters. The
speech signals used in these evaluations contained both voiced
and unvoiced speech segments. However, the HDLCMV filter
used in both the joint and HDLCMV filtering methods are
designed for voiced speech segments only. Therefore, we
updated the HDLCMV filter in these evaluations as follows;
for voiced speech segments, the HDLCMV filter was designed
as in (36), and for unvoiced speech segments, the filter was
updated as

h(n) = (1− γ)0 + γh(n− 1) , (72)

when ‖h(n − 1)‖2 > 0.1 with γ = 0.95 and 0 is a vector
of zeros. The norm conditional update was introduced to
avoid abrupt changes when transitioning between unvoiced/no
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speech and voiced speech. Both the spectral subtraction and
the MMSE-based methods are available in the VOICEBOX
toolbox2 for MATLAB, in which they are implemented us-
ing noise power spectral density estimates based on optimal
smoothing and minimum statistics [33]. We used the default
settings given by the VOICEBOX toolbox for the spectral
subtractions and MMSE methods.

For the PESQ score evaluations of the aforementioned en-
hancement methods, we used two female and two male speech
excerpts each of length 4-6 seconds taken from the Keele
database [34]. Since pitch estimation is not the main topic
of this paper, we used the pitch estimates of the voiced parts
of the speech excerpts from the Keele database for the design
of the HDLCMV filters. Moreover, the pitch estimates in the
Keele database are 0 when the speech is unvoiced or no voice
is present. We exploited this to distinguish between voiced and
unvoiced speech since the unvoiced/voiced speech detection
problem is not considered here. The chosen speech excerpts
were then buried in white Gaussian noise, car noise, babble
noise, exhibition hall noise, and street noise. All noise sources
except the white noise were taken from the AURORA database
[28]. First, we applied the proposed joint filtering method on
all four speech excerpts in all five noise scenarios for different
filtering lengths when the iSNR was 5 dB. The PESQ scores
averaged across the different noisy speech excerpts are shown
in Fig. 19a. We can see that the perceptual performance of
the proposed joint filtering method peaks around M = 110.
We then applied all of the enhancement methods of the
comparison on all the speech excerpts in all of the different
noise scenarios for different iSNRs. For these simulations, the
filter length of the filtering-based enhancements methods was
set to 110, and the PESQ results averaged over the different
speech excerpts and noise scenarios are shown in Fig. 19b with
95% confidence intervals. From these results, it seems that the
joint filtering method outperforms the spectral subtraction and
MMSE-based methods on average for relative low iSNRs (≤ 5
dB) and vice versa for a higher iSNR (10 dB). However, from
these results, we cannot say this with 95% confidence due
to overlapping confidence intervals, but it does not preclude
that the observations are statistically significant since we can
also consider the difference in PESQ scores. To investigate
this further, we measured the average of the difference in
PESQ scores between the proposed joint filtering scheme and
the spectral subtraction and MMSE-based methods, respec-
tively; the results from this investigation is plotted in 19c
with 95% confidence intervals. From these results, we can
conclude with 95% confidence that the proposed joint filtering
method outperforms the spectral subtraction and MMSE-based
methods on average for iSNRs of 0 dB and 5 dB in terms
of PESQ scores since the confidence intervals do not include
0. In practice, it is expected that the proposed joint filtering
method only outperforms the other methods for relatively low
iSNRs since the harmonic model assumption embedded in the
proposed joint filtering design introduces a small amount of
distortion due to model mismatch.

2http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

VIII. CONCLUSION

In this paper, we considered two recent filter designs for
speech enhancement, namely the ODMVDR and HDLCMV
filters. The ODMVDR filter is not explicitly dependent of
the desired signal since it is calculated from the observed
signal and noise statistics. This makes it a general filtering
method which is appropriate for enhancement of all types
of speech (e.g., both voiced and unvoiced). However, the
ODMVDR filter is vulnerable to non-stationary noise since
the noise statistics are typically estimated during periods of
silence. On the other hand, the HDLCMV filter is signal-
dependent since it is designed using the observed signal and
the desired signal statistics. In this filter, a harmonic model is
assumed which enables the estimation of the signal statistics
if the pitch and the number of harmonics are known. While
this filter is robust against non-stationary noise, it will only
be appropriate for voiced speech due to the harmonic model
assumption. Since both filters have complementary advantages
and disadvantages, we investigated the relationship between
them in this paper. Our theoretical studies confirmed that
the filters are indeed closely related. We also proposed some
performance measures for both filters which are available in
closed-form when the desired signal is periodic. We compared
the performance measures in theoretical simulations. From
these simulations, it was again clear that the methods are
closely related, but each filter had its own advantages. For
example, the ODMVDR filter has, in general, a slightly
higher oSNR than the HDLCMV while the HDLCMV filter
does not distort the harmonics as opposed to the ODMVDR
filter. The close relationship between the filters inspired us
to propose a filtering scheme where the ODMVDR and
HDLCMV filters are used jointly. This scheme was applied
on real speech signals in different noise scenarios. The results
of these experiments showed that, for relatively low iSNRs
(i.e., < 10 dB) , the joint filtering scheme outperforms some
existing enhancement techniques in terms of average PESQ
scores with 95% confidence.

APPENDIX
ON REWRITING THE HDLCMV FILTER IN TERMS OF THE

OBSERVED SIGNAL COVARIANCE MATRIX

In this appendix, we show that it makes no difference
whether we use the noise covariance matrix, Rv, or use the
observed signal covariance matrix, Ry, in (35). First, recall
that the HDLCMV filter is given by

hHDLCMV = R−1v Z
(
ZHR−1v Z

)−1
1 . (73)

Note that in the following derivations we denote the HDLCMV
filter as h. If we use the covariance matrix model on Ry, the
noise covariance matrix can also be written as [24]

Rv = Ry − ZPZH . (74)

If we substitute (74) back into (73), we get that

h =
(
Ry − ZPZH

)−1
Z

[
ZH

(
Ry − ZPZH

)−1
Z

]−1
1

= AZB1 , (75)
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where

A =
(
Ry − ZPZH

)−1
, (76)

B =

[
ZH

(
Ry − ZPZH

)−1
Z

]−1
(77)

=
(
ZHAZ

)−1
.

Applying the matrix inversion lemma on A yields

A = R−1y + R−1y Z
(
P−1 − ZHR−1y Z

)−1
ZHR−1y . (78)

If we insert this expression for A back into (77), we get

B =
(
ZHR−1y Z

)−1 −P . (79)

We can then rewrite the HDLCMV filter expression by insert-
ing (78) and (79) into (75) which yields

h = R−1y Z
(
ZHR−1y Z

)−1
1−R−1y ZP1

+R−1y

(
P−1 − ZHR−1y Z

)−1
1

−R−1y Z
(
P−1 − ZHR−1y Z

)−1
ZHR−1y ZP1 . (80)

After some algebra, it turns out that the somewhat complex
expression for the filter in (80) can be reduced to

h = R−1y Z
(
ZHR−1y Z

)−1
1 . (81)

That is, there is no difference between using the noise covari-
ance matrix, Rv, and the observed signal covariance matrix,
Ry, in (73).
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