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A B S T R A C T

Commonly, terahertz spectra (both continuous-wave and pulsed) are deconvoluted by reference spectra to
remove the water vapor absorption lines and other system related responses. However, in real-life applications
obtaining reference spectra can be problematic and adds to the complexity of the system. Thus, a reference-free
method for classification of terahertz spectra could be a welcomed advance for remote sensing applications. In
this paper, we study how simple machine learning algorithms perform as a reference-free method for terahertz
stand-off identification of materials. The algorithms are trained using spectra measured under controlled
humidity conditions and tested by a completely independent data set measured under ambient conditions. We
apply three different classification algorithms; namely a Gaussian Bayes model, the k nearest neighbors, and
a support vector machine. We found that, if the terahertz spectra are processed using a supervised algorithm
(Regularized Linear Discriminant Analysis), very high classification scores (>98.6%) can be retained for the
non-referenced spectra. Moreover, the high accuracy is obtained meanwhile the dimensionality is reduced by a
factor larger than 160, which further reduces the computational requirements. Hence, we have demonstrated
that simple supervised machine learning algorithms can serve as a highly accurate reference-free method for
THz material identification. This could be of great importance for real-world remote sensing applications based
on terahertz spectroscopy.

1. Introduction

Terahertz (THz) spectroscopy has proven to be a promising technol-
ogy for security, defense, safety, and quality control applications [1,2]
since many compound materials exhibit unique spectroscopic char-
acteristics. Including hazardous substances such as explosives, com-
mercial and illicit drugs, and toxic gasses, e.g., ammonia or carbon
monoxide. Recently, researchers have demonstrated THz spectroscopy
to be a powerful tool for identification of black plastics in the scope of
recycling [3], where other optical techniques fall short. Concurrently,
THz radiation allows for non-invasive screening as many non-polar and
non-metallic materials are transparent within the THz frequency band.
In addition, the low photon energy inherent to THz radiation results in
a non-ionizing nature and is thus harmless to biological samples at low
power levels. Hence, THz spectroscopy is not only desired but also safe
for screening of personnel and objects.

For many real-world applications of THz spectroscopy, it is neces-
sary to be able to distinguish different substances in an efficient and
reliable manner. Additionally, many applications require the THz spec-
troscopic measurements to be done in a reflection scheme. The weak
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and broad spectroscopic characteristics of substances inherent to re-
flection spectra, caused by the dependence on the refraction index [4],
complicates things further.

Several rather complex machine learning (ML) techniques including
Bayesian models [5,6], artificial neural networks [7–9], support vector
machine [10–12], and random forests [5,7,11] have previously been
utilized for classification of THz spectra. Generally, ML algorithms are
said to be supervised or unsupervised if class membership informa-
tion of the data is included or not in the training of the algorithm.
Additionally, ML algorithms can be utilized to reduce the number of
features, while preserving relevant information, which can facilitate the
classification task. Since THz spectra are multivariate data consisting
of 100’s or 1000’s discrete frequencies, this is a very pertinent capac-
ity. Thus, such dimensionality reduction (DR) methods are typically
applied to make identification algorithms more efficient. This lowers
the computational requirements, increases the learning speed of the
ML algorithm, and allows for visualization of the data for easier in-
terpretation. Previously, we compared the performance of two such
unsupervised and supervised linear DR methods, respectively, under
different conditions [13]. We showed that even simple ML algorithms
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Fig. 1. Illustration of the experimental setup.

are sufficient for highly accurate classification of THz reflection spectra.
Most recently, Park et al. [14] have reviewed the use of ML algo-
rithms for THz time-domain spectroscopy (TDS) and THz imaging,
underpinning the importance of ML in THz applications.

All the above-mentioned results, ours included, relied on referenced
THz measurements, i.e. THz spectra that have been deconvoluted by
proper reference spectra. However, the need for reference spectra
can be very inconvenient or even impossible to fulfill in applications
outside the lab. Nevertheless, only very few attempts have previ-
ously been made to develop reference-free methods. Zhang et al. [15]
have reported on reference-free phase imaging in transmission for
identification of three explosive materials. Here, they demonstrated
identification of the samples by their absorption signatures extracted
from the first-order derivative of the instantaneous THz phase divided
by the frequency. But the presented methodology is limited to trans-
mission measurements. Later, Zhong et al. [16] extended the technique
to be used in THz reflection TDS. Similarly, the absorption signatures
of the materials are extracted from the second-order derivative of
the THz phase with respect to the frequency. However, this extended
method is only reference-free in the ideal case, where atmospheric
absorption can be ignored, and thus, it is not applicable for stand-off
applications in real-world scenarios. Nonetheless, the need for a reliable
and truly reference-free methodology remains, and its importance for
the advancement of THz remote sensing applications is immediately
evident.

In this paper, we present a robust and highly accurate reference-free
identification methodology based on supervised ML algorithms for THz
reflection measurements, that is readily available for out-of-the-lab THz
remote sensing applications. To demonstrate, we present the classifi-
cation results of non-referenced vs. referenced continuous-wave (CW)
THz reflection spectra processed by a supervised DR method (Regular-
ized Linear Discriminant Analysis, RLDA) for three different classifiers:
Bayesian, k nearest neighbors (k-NN), and support vector machines
(SVM). These classifiers represent a probabilistic, a non-parametric, and
a finely tuned linear algorithm, respectively. We compare the results
with those obtained following an unsupervised DR method (Principal
Component Analysis, PCA). Noteworthy, our results are achieved using
the simple, yet powerful, and well-established RLDA to reduce the
dimensionality of the multivariate data by a factor larger than 160.
Our results clearly shows that, in the scope of THz remote material
identification, supervised algorithms are superior to their unsupervised
counterparts. The method could readily be adapted for pulsed THz
reflection spectra as well.

2. Methods and materials

2.1. Experimental setup, samples, and measurements

The samples were characterized from 0.09 to 1.19 THz in a reflec-
tion geometry by CW THz frequency-domain spectroscopy (THz-FDS)

using a TeraScan 1550 system manufactured by Toptica Photonics. The
angle of incidence was approx. 11◦. The THz path was enclosed by a
custom-built humidity chamber that could be purged with either dry
or water vapor saturated nitrogen to achieve relative humidity (RH)
levels between 5% and 95% within a ±2% points accuracy. A sketch
of the experimental setup is seen in Fig. 1 Five compound materials
with spectral characteristics in the frequency range of the TeraScan
1550 were selected for the study. Including galactitol, L-tartaric acid
(L-TA), 4-aminobenzoic acid (PABA), theophylline, and alpha-lactose
monohydrate. Six pellets from each compound were fabricated in pairs
at weight percentages of 20%, 50%, and 80% of active material mixed
with polyethylene (PE) powder as well as two pellets of pure PE.
The flat response of PE in the spectral band of interest makes it a
convenient binder matrix for the active compounds [17]. The sample
pellets were shaped as a 15◦ wedge to avoid interference between the
front and the rear surface reflections (i.e. reflections from rear surface
never reaches the detector). Moreover, the sample holder was designed
with a clear aperture much larger than the THz spot size. Each sample
was measured over the entire spectral range in 80 MHz increments
integrated for 3 ms at different positions, picked randomly within
the sample surface for each measurement. Thus, each measurement
is performed at a new and uncorrelated spot on the sample surface.
Two different data sets were recorded for the training and testing
of the ML algorithms, respectively. The training data set consisted
of 1920 spectra, that is each sample was measured 20 times under
controlled conditions of 10%, 50%, and 90% RH, respectively. Hence,
each material was represented by 360 spectra (120 spectra in the
case of pure PE) A reference spectrum was recorded for every 40
measurements replacing the sample with an aluminum mirror. For the
testing data set, the same samples were each measured 80 times under
ambient conditions giving a total of 2560 spectra, i.e. 480 spectra of
each material plus 160 of pure PE. Here, a reference spectrum was
recorded for every 20 measurements. Noteworthy, the entire data set
(training and test) included almost 4500 spectra and the ratio between
the training and test sets was 3:4. All the data is available online as a
part of the ‘‘Database of frequency-domain terahertz reflection spectra for
the DETRIS project’’ [18]. A thorough description of the experimental
setup and the measuring procedure can be found in Refs. [13,18].

2.2. Data preprocessing

The CW THz-FDS setup operates in a coherent detection scheme,
which causes phase oscillations in the recorded photocurrent 𝐼ph(𝜈) as
the THz frequency 𝜈 is scanned. In this study, the instantaneous ampli-
tude 𝐴(𝜈) and instantaneous phase 𝜙(𝜈) were calculated by applying the
Hilbert transformation  to the oscillating photocurrent proportional
to the THz electric field [19,20]. Let us note, that using the Hilbert
transform, the spectral resolution is equal to the optical frequency step
size and independent of the THz optical path length. The resulting
complex-valued analytic signal

𝐼a(𝜈) = 𝐼ph(𝜈) + 𝑖
{

𝐼ph(𝜈)
}

= 𝐴(𝜈) exp [𝑖𝜙(𝜈)]

was then Fourier transformed into the time-domain, in which it was
filtered for any reflections in the experimental setup causing Fabry–
Pérot interference, and inversely Fourier transformed back into the
frequency-domain [21]. However, not all reflections could be filtered
as it would degrade the effective spectral resolution. Subsequently, the
data was cropped to an interval from 0.4 to 1.05 THz to include only the
spectral region containing spectroscopic characteristics of samples and
achieving a proper signal to noise ratio. In coherence to our previous
study [13], we used only the spectral amplitude 𝐴(𝜈) of the THz field in
the further processing. Nonetheless, the same unique material informa-
tion is contained in the spectral phase 𝜙(𝜈) as for THz-TDS [19,20]. The
reflection coefficient can be obtained by deconvoluting the spectrum
with an appropriate reference spectrum:

𝑟(𝜈) = 𝐴sample(𝜈)∕𝐴reference(𝜈). (1)
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Fig. 2. Non-referenced (a) and referenced (b) THz reflection spectra of the samples
with 50% of active material and pure PE measured under ambient conditions. The
dark colored center line of each curve is the mean of 160 measurements, while the
light colored fill represents the standard deviation. The curves of each material are
shifted vertically for a better readability.

Prior to the calculation of 𝑟(𝜈), the data was interpolated onto integer
GHz-frequencies to ensure a proper deconvolution of the individual
spectral components. Each spectrum in the data sets spanned 649
discrete frequencies. In the remaining part of this paper, we catego-
rize the spectral data 𝐴(𝜈) and 𝑟(𝜈) as non-referenced and referenced,
respectively.

The non-referenced CW THz reflection spectra of the samples with
50% active material and of pure PE, measured under ambient condi-
tions, are seen in Fig. 2(a). The center line of each curve is the mean
of 160 measurements, while the filled area represents the standard
deviation. The curves are shifted vertically for a better readability.

Each spectrum shows clear absorption lines of atmospheric water vapor
around 0.55, 0.75, and 0.99 THz, while the spectral characteristics
intrinsic to the studied materials are much harder to recognize. The
referenced reflection spectra are seen in Fig. 2(b). Evidently, the mate-
rial specific characteristics are now easily recognized. However, when
the weight percentage of the active material in a sample drops to from
50% to 20%, it becomes difficult to distinguish or identify materials
like theophylline, L-TA and PE [13]. It should be emphasized that
both the non-referenced [Fig. 2(a)] and the referenced data [Fig. 2(b)]
originate from the exact same data, and that the latter have only
been deconvoluted with appropriate reference spectra to obtain the
reflection coefficients of the samples.

2.3. Machine learning

Let us start by defining some technical terms that are pertinent,
when discussing ML algorithms. If the task of the algorithm is to assign
each input to one of several discrete categories, it is said to be a
classification problem. By contrast, the task is a regression problem, if
the output is one or several continuous variables. When dealing with
classification of THz spectra, the term class refers to the categories that
the spectra can be divided into based on their spectroscopic characteris-
tics. Particularly for material identification, each type of material would
constitute a class. The data points in every class can be further specified
using labels. However, if there are no particular differences between the
spectra within each class, the labels within a given class are simply the
class label. In classification tasks, the model will map each input onto
a class label. When dealing with classification of THz spectra, we shall
regard each discrete frequency component constituting the THz spectra
as a random variable. Finally, such individual measurable properties of
an observed phenomenon are referred to as features in machine learning
terminology. However, we will in this paper restrict ourselves to solely
use the term when referring to the variables in the lower-dimensional
feature spaces of the DR methods. That is, the new variables in the
linear discriminant and/or principal component feature space.

In the following, we will let 𝑋 be our data matrix of size 𝑁 × 𝑀
such that each row 𝑛 represents a THz spectrum 𝑆𝑛 (observation), and
each column 𝑚 a discrete frequency component 𝜈𝑚 (variable), i.e.

𝑋 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑆1(𝜈1) 𝑆1(𝜈2) ⋯ 𝑆1(𝜈𝑀 )
𝑆2(𝜈1) 𝑆𝑛(𝜈𝑚) ⋯ 𝑆2(𝜈𝑀 )

⋮ ⋮ ⋱ ⋮
𝑆𝑁 (𝜈1) 𝑆𝑁 (𝜈2) ⋯ 𝑆𝑁 (𝜈𝑀 )

⎤

⎥

⎥

⎥

⎥

⎦

(2)

Linear Discriminant Analysis (LDA) is a common supervised DR
method for transforming data into a lower-dimensional feature space.
During the training phase, the algorithm includes class information
to calculate distances between class means and within-class variances,
aiming to maximize class separation and minimize intra-class spread
in the projection space. However, we shall now give a more rigorous
introduction of LDA. Let 𝑠𝑖 represent the 𝑖th row of the data matrix
𝑋 (the 𝑖th observation/spectrum). The class information is utilized to
label each spectrum 𝑠𝑖 such that the data matrix 𝑋 can be partitioned
into 𝐾 classes 𝐶𝑗 of 𝑛𝑗 spectra:

𝑋 =
⎡

⎢

⎢

⎣

𝐶1
⋮
𝐶𝐾

⎤

⎥

⎥

⎦

with 𝐶1 =
⎡

⎢

⎢

⎣

𝑠1
⋮
𝑠𝑛1

⎤

⎥

⎥

⎦

, 𝐶2 =
⎡

⎢

⎢

⎣

𝑠𝑛1+1
⋮
𝑠𝑛2

⎤

⎥

⎥

⎦

, … (3)

Let us also introduce the linear combination of each spectrum’s discrete
frequency components

𝑦𝑖 =
𝑀
∑

𝑚=1
𝑤𝑚𝑆𝑖(𝜈𝑚) = �⃗�𝖳𝑠𝖳𝑖 , (4)

where �⃗� is a row vector of constants 𝑤1,… , 𝑤𝑀 . 𝖳 denotes transpose.
That is, 𝑦𝑖 is the 1-dimensional projection of the 𝑖th spectrum. Then,
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the separation of the different classes in the projection space can be
quantified by the between-class scatter
𝐾
∑

𝑗=1
𝑛𝑗 (𝑚𝑗 − 𝑚)2, (5)

where

𝑚𝑗 =
1
𝑛𝑗

∑

𝑠𝑖∈𝐶𝑗

𝑦𝑖 = �⃗�𝖳𝜇𝑗 with 𝜇𝑗 =
1
𝑛𝑗

∑

𝑠𝑖∈𝐶𝑗

𝑠𝖳𝑖 (6)

is the 𝑗th class centroid in the projection space and

𝑚 = 1
𝑁

𝐾
∑

𝑗=1
𝑛𝑗𝑚𝑗 = �⃗�𝖳𝜇 with 𝑁 =

𝐾
∑

𝑗=1
𝑛𝑗 (7)

is the weighted mean of the projected centroids. 𝜇𝑗 and 𝜇 are the cor-
responding 𝑗th class and global centroids, respectively, in the original
space. When these expressions are inserted in Eq. (5), the between-class
scatter can be written as
𝐾
∑

𝑗=1
𝑛𝑗 (𝑚𝑗 − 𝑚)2 = �⃗�𝖳𝑆B�⃗�, (8)

where the between-class scatter matrix

𝑆B =
𝐾
∑

𝑗=1
𝑛𝑗 (𝜇𝑗 − 𝜇)(𝜇𝑗 − 𝜇)𝖳 (9)

is calculated in the original space. Similarly, the spread of each pro-
jected class 𝑗 can be quantified by the within-class scatter

𝜎𝑗 =
∑

𝑠𝑖∈𝐶𝑗

(𝑦𝑖 − 𝑚𝑗 )2 (10)

Hence, it is easy to show that the total within-class scatter of the
projected classes is
𝐾
∑

𝑗=1
𝜎𝑗 = �⃗�𝖳𝑆W�⃗� (11)

with the total within-class scatter matrix

𝑆W =
𝐾
∑

𝑗=1

∑

𝑠𝑖∈𝐶𝑗

(𝑠𝖳𝑖 − 𝜇𝑗 )(𝑠𝖳𝑖 − 𝜇𝑗 )𝖳. (12)

Let us recall that LDA seeks to maximize the distance between the
projected class means and minimize the within-class variance. This is
equivalent to maximizing the ratio

argmax
�⃗�

{

�⃗�𝖳𝑆B�⃗�
�⃗�𝖳𝑆W�⃗�

}

. (13)

The arg max denotes that we seek arguments that maximize the func-
tion. This optimization problem is not bound, so we require the weights
�⃗� to be of unit length. Moreover, we introduce the constraint �⃗�𝖳𝑆W�⃗� =
1, since we are only concerned with directions. Thus, we need to
solve

argmax
�⃗�𝖳𝑆W�⃗�=1

{

�⃗�𝖳𝑆B�⃗�
}

. (14)

This is a generalized eigenvalue problem:

𝑆B�⃗� = 𝜆𝑆W�⃗�. (15)

Given 𝑆W is not singular, we can write

𝑆−1
W 𝑆B�⃗� = 𝜆�⃗�, (16)

which is easily solved by eigendecomposition of 𝑆−1
W 𝑆B. The optimal

solution is the eigenvector 𝑣1 associated with the largest eigenvalue
𝜆1, and so forth. However, at most 𝐾 − 1 non-zero eigenvectors exist
because rank(𝑆B) ≤ 𝐾 − 1 (its columns are linearly dependent). Fur-
thermore, 𝑆−1

W 𝑆B is not necessarily symmetric, thus, the eigenvectors
are not generally orthogonal. Consequently, the dimensionality of the

original data matrix 𝑋 is reduced to 𝑘 ≤ 𝐾 − 1 features by projecting
it onto the eigenvectors. The projections 𝑦𝑘 = 𝑋𝑣𝑘 are the linear
discriminants (LDs) comparable to the principal components (PCs) of
PCA. However, the assumption that 𝑆W is non-singular is often not true.
A common solution is to regularize 𝑆W by

𝑆′
W = 𝑆W + 𝛽𝐼 (17)

with regularization parameter 𝛽 and identity matrix 𝐼 . Then by eigen-
decomposition, we have

𝑆′
W = 𝑄𝛬𝑄𝖳 + 𝛽𝐼 = 𝑄(𝛬 + 𝛽𝐼)𝑄𝖳. (18)

Here 𝑄 is the square matrix containing the eigenvectors and 𝛬 the
diagonal matrix of the eigenvalues. This is known as Regularized-LDA
(RLDA). To obtain the optimal regularization value 𝛽, we applied a
10-fold stratified cross-validation on the training set.

Principal Component Analysis projects the data onto a lower-
dimensional space, aiming to maximize the variance of the full data
set disregarding any class information. Hence, it is an unsupervised
method, which relies solely on patterns in the data. First, we assume
that the variables �⃗�𝑚 (columns of the data matrix 𝑋) have been stan-
dardized, i.e. each column has zero mean and unit variance [22], which
is crucial for PCA to operate correctly [23,24]. Then, we construct a
linear combination 𝑦 of the individual variables, i.e.

𝑦 =
𝑀
∑

𝑚=1
𝑤𝑚�⃗�𝑚 = 𝑋�⃗�, (19)

where �⃗� is a vector of constants 𝑤1,… , 𝑤𝑀 . The PCA algorithm
searches for the optimal weights �⃗� that maximizes the variance var

(

𝑦
)

,
i.e.

argmax
‖�⃗�‖=1

{

var
(

𝑦
)}

. (20)

The constraint ‖�⃗�‖ = �⃗�𝖳�⃗� = 1 secures that the weights are normalized.
Otherwise, the variance could attain an arbitrary large value for an
optimal �⃗�. The variance is calculated in the usual way:

var
(

𝑦
)

= 1
𝑁 − 1

𝑁
∑

𝑛=1
(𝑦𝑛 − �̄�)2 =

𝑦𝖳𝑦
𝑁 − 1

. (21)

Here, it is implied that the data matrix 𝑋 and, hence, all linear
combinations 𝑦 are mean-centered (�̄� = 0). The optimization task can
then be restated as

argmax
‖�⃗�‖=1

{

�⃗�𝖳𝛴�⃗�
}

(22)

using the covariance matrix 𝛴 = 𝑋𝖳𝑋∕(𝑁 − 1). This is a standard
problem in linear algebra solved by eigendecomposition [23,24]. The
resulting orthogonal eigenvectors 𝑣𝑚 are ranked in descending order
according to the eigenvalues 𝜆𝑚. The associated linear combinations
𝑦𝑚 = 𝑋𝑣𝑚 are the so-called principal components (PCs) of the data.
The eigenvalues equal the variances of the PCs 𝑦𝑚. The eigenvec-
tor 𝑣1 yields the optimal solution to Eq. (8), resulting in principal
component 𝑦1 with maximal variance 𝜆1. Equivalently, the successive
eigenvectors represent the next orthogonal (uncorrelated) PCs along
which the maximal proportion of the remaining variance in the data is
captured, respectively. The overall variance can, hence, be calculated
by summing all the eigenvalues. The quality of each PC can therefore
be quantified by the amount of total variance it explains, i.e.

𝜆𝑚
∑𝑀

𝑚=1 𝜆𝑚
(23)

Finally, the dimensionality of the data can be reduced while maintain-
ing most of the information by retaining only a relative few of the most
significant PCs.

Before turning to the classification task, a natural question arises:
How many features should be kept? In the case of PCA, one typically
looks at the proportion of explained variance [Eq. (9)] vs. the number
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of features kept to aid this decision [24]. However, for LDA and RLDA
this quantity is not equivalent to the proportion of explained variance,
since the eigenvalues are related to the between-class and within-
class variances, and hence, reflect the robustness and the ability to
discriminate between different classes [25]. Instead as a common frame
of reference, we can calculate the captured variance (i.e. the cumulative
variance along each new feature normalized to the total variance) to aid
the decision of how many features should be kept [24].

For classification, three different algorithms were applied. First, a
probabilistic classification model based on Bayes’ theorem. The Bayes
classifier calculates the posterior probability 𝑝(𝐶𝑗 |𝑠) of an observation
with value 𝑠 to belong to the 𝑗th class 𝐶𝑗 as the product of the prior
probability that the observation belongs to the 𝑗th class 𝑝(𝐶𝑗 ) and the
likelihood 𝑝(𝑠|𝐶𝑗 ) of an observation 𝑠 given class 𝑗 normalized by the
marginal probability of 𝑠. That is [26],

𝑝(𝐶𝑗 |𝑠 ) =
𝑝(𝑠 |𝐶𝑗 )𝑝(𝐶𝑗 )

𝑝(𝑠 )
, 𝑝(𝑠 ) =

𝐾
∑

𝑗
𝑝(𝑠 |𝐶𝑗 )𝑝(𝐶𝑗 )

Accordingly, the Bayes classifier appoints the observation to the class
with the highest posterior probability. Here, we assumed the class like-
lihood function to follow a multivariate normal distribution. Second,
the simple non-parametric 𝑘 Nearest Neighbors algorithm. This classi-
fication algorithm stores all training data, calculates the geometrical
distance to a new observation, and subsequently, classifies the new
observation identically to the majority of the 𝑘 nearest neighboring
data points. In our study we utilized the Euclidean distance metric
and 𝑘 = 746 equal to the average number of observations in each
class. Choosing such a large value of 𝑘 means that the 𝑘-NN algorithm
will be an indicator of how well LDA/RLDA and PCA are at intra-
class grouping. The final approach was the support vector machine.
The algorithm searches for a hyperplane separating observations of two
classes with maximal margin, i.e. the maximum geometrical distance
to both classes. A new observation is classified according to the half-
space it is belonging. Real-world data is often linearly inseparable,
wherefore a soft margin is often applied. It allows data points to violate
the hyperplane at the cost of a penalty. This results in a wider margin
that generalizes better to unseen data. We utilized a linear kernel
and a soft margin approach together with a 10-fold cross-validation
on the training set. The data processing was performed in MATLAB
(MathWorks, R2020b).

3. Results and discussion

The LDA algorithm was separately trained on the non-referenced
and the referenced THz data using the data sets based on 1920 spectra
measured at controlled RHs (10%, 50% and 90% RH). For comparison,
the PCA algorithm was trained in an identical manner. The general-
ization of both algorithms were then investigated in the testing phase
based on 2560 spectra measured under ambient conditions in their
non-referenced and referenced form, respectively.

In Fig. 3(a)–(d), the data is projected onto the two most prominent
features of the new feature spaces of LDA and PCA, respectively.
The training and test sets are respectively plotted with light colored
squares and dark colored dots. For the non-referenced [Fig. 3(a) and
(c)] data, both LDA and PCA show a clear discrepancy between the
training and the test data. For LDA [Fig. 3(c)], the training data is
tightly clustered according to the respective classes, while the test data
are loosely spread around these clusters. A similar trend is seen for
the referenced data [Fig. 3(d)], but to a lesser extent. Thus, the LDA
algorithm seems to overfit the data in the training phase leading to
a somewhat poor generalization to the new unseen data in the test
phase. This conclusion is also backed up when inspecting the LDA
eigenvectors (not shown here), which overall fit to the noise pattern
instead of the spectroscopic characteristics of the samples. Overall, the
PCA algorithm [Fig. 3(a)–(b)] clusters the data according to the sample
material and further by the material concentration as the algorithm

Fig. 3. Projections of the non-referenced (left panels) and referenced (right panels)
spectra to a two-dimensional feature space processed by PCA (a)–(b), LDA (c)–(d), and
RLDA (e)–(f), respectively. The training data is marked by light colored squares, while
the test data is marked by dark colored dots.

aims to maximize the overall variance. Thus, PCA results in poor intra-
class grouping in contrast to LDA, which cluster each type of material
regardless of concentration. For the non-referenced data [Fig. 3(a)], the
PCA algorithm even separated the data in different planes according
to the RH conditions. Hence, as the test data was recorded under
ambient conditions, it is generally located in a plane between the data
recorded at 10% and 50% RH. This is not seen for the referenced
data [Fig. 3(b)], as the water vapor absorption signatures are removed
by reference spectra. These findings are in excellent agreement with
our previous study in Ref. [13], where the data were referenced using
non-ideal reference spectra. To overcome the issue of overfitting with
LDA, we introduced a regularization parameter 𝛽 [Eq. (17)]. The RLDA
algorithm was trained similarly to LDA and PCA with the addition of a
10-fold stratified cross-validation to obtain the optimal regularization
value 𝛽 In Fig. 3(e)–(f), we see a very good clustering of the different
materials using RLDA, which is less tight compared to LDA, for both the
non-referenced and the referenced data. More importantly, RLDA shows
a excellent agreement between the test and the training data with a
slightly larger spread for the non-referenced data. Let us note, that
even though materials like LTA, Galactitol and Lactose seem to overlap
in the two-dimensional feature space, all materials are well-separated
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Fig. 4. Cumulative captured variance of the non-referenced (a) and referenced (b)
training data vs. the number of included features in the reduced feature space of LDA,
PCA, and RLDA. The normalized eigenvalues of LDA (pentagon) and RLDA (horizontal
bar) are plotted for comparison.

Fig. 5. Bayes classification scores of the non-referenced (a) and referenced (b) training
data vs. the number of included features in the reduced feature space of LDA, PCA,
and RLDA.

when projected onto a higher-dimensional feature space. By contrast to
LDA, the RLDA eigenvectors (not shown here) fit to the spectroscopic
characteristics of the materials and not the noise. Therefore, we can
conclude that RLDA generalizes exceptionally to the unseen test data,
which notably were recorded under ambient conditions, even in the
non-referenced case.

In Fig. 4, we plot the (cumulative) captured variance computed for
the LDA/RLDA and PCA of the train sets vs. the number of features. Let
us recall, that while PCA can retain the dimensionality of the original
data (i.e. 649 features), LDA/RLDA can at most project the data onto
𝐾 − 1 = 5 features. Hence, Fig. 4 includes a maximum of five features.
LDA algorithms perform almost equally well, whether the input data
is referenced or not, while there is a significant difference in perfor-
mance of the PCA algorithm up to three features. Interestingly, while
LDA/RLDA only captures a small part of the overall variance below
three features, both algorithms capture a larger part of the overall
variance than PCA above three included features. In particular, 100%
of the variance is captured by the five most prominent LDA/RLDA
features, where PCA roughly captures 96% of the variance. For the
sake of comparison, we have plotted as well the normalized eigenval-
ues of LDA (pentagon) and RLDA (horizontal bar). Noteworthy, each
LDA/RLDA feature achieves equal discriminating power or robustness
of approx. 20%. This is in stark contrast to PCA, where the first feature
is exclusively appointed a quality (proportion of explained variance) of
75%–85%, and clearly demonstrates the excellence of the supervised
algorithms for material identification tasks.

Table 1
Classification accuracy scores of the LDA-, PCA, and RLDA-processed data projected
onto a four-dimesional feature space.

LDA PCA RLDA

Train Test Train Test Train Test

Bayes Non-referenced 0.9995 0.8941 0.8281 0.7998 0.9995 0.9863
Referenced 0.9995 0.9746 0.9307 0.9246 0.9995 0.9906

746-NN Non-referenced 0.9375 0.8960 0.5182 0.5985 0.9370 0.9339
Referenced 0.9375 0.9289 0.5885 0.6016 0.9375 0.9328

SVM Non-referenced 0.9984 0.8737 0.8089 0.7819 1.0000 0.9746
Referenced 0.9990 0.8753 0.9328 0.9398 0.9995 0.9578

However, the most captured variance is not necessarily equal to
the best performance in terms of classification. Therefore, we also
investigated the classification accuracy of the Bayes classifier vs. the
number of features in the training phase. The results are shown in
Fig. 5. Again, the supervised algorithms (LDA/RLDA) display a much
better performance compared to PCA for both the non-referenced and
referenced data. However, we should keep in mind that the perfect
classification scores of LDA (but not RLDA) is due to overfitting, which
is evident from the equivalent classification scores of the test data (not
shown here). What is even more impressive is the fact that the RLDA
algorithm in general achieves better classification scores using the non-
referenced data. A closer look on the RLDA curves (non-referenced
and referenced) reveals classification accuracies >99.94% and 100%
for four and five retained features, respectively. Therefore, we chose
to retain just four features onward for the classification task. Here we
would like to point out the impressive reduction of dimensionality by a
factor larger than 160. In this case, the optimal regularization value 𝛽
of RLDA was respectively 0.002 and 0.050 for the non-referenced and
referenced data.

The Bayes, 𝑘-NN, and the SVM classification algorithms are applied
to quantify the performance of the DR methods on the non-referenced
and referenced spectra, respectively. The classification scores is given in
Table 1. At first glance, we see that the classification scores of the non-
referenced and referenced data are rather similar and generally ≳90%
for all three classifiers. This clearly demonstrates that THz reflection
spectra can be accurately classified without deconvolution by an precise
reference measurement. Moreover, the good agreement of the train and
the test scores of RLDA indicates that the algorithm generalizes very
well, in contrast to the overfitting LDA. Among the three classifiers,
the performance of the 746-NN classifier is inferior. Particularly, for
the PCA-processed data with classification scores between 50%–60%.
This is related to our choice of 𝑘 equal to the total number of obser-
vations within each class, that was intended to verify the inter-class
grouping. As expected, LDA/RLDA exhibit superior performance due
to the clustering of the data by contrast to the spreading in case of
PCA evident from Fig. 3. Finally, it is worth noting the excellent per-
formance of the Bayes classifier that outperforms the computationally
complex SVM classifier, which requires fine-tuning of the slack variable
through cross-validation. Thus, the performance of the Bayes classifier
is remarkable taking its simplicity into account.

4. Conclusion

In conclusion, we demonstrated a robust and highly accurate
(>98.6%) reference-free method for CW THz stand-off identification of
materials based on a supervised ML algorithm and the Bayes classifier.
Additionally, the method allowed us to reduce the dimensionality
of the data by a factor larger than 160, i.e. from 649 discrete fre-
quency components to just four features, which further reduced the
computational requirements. Our results clearly shows that supervised
algorithms are preferable over their unsupervised counterparts for THz
material identification tasks Moreover, this methodology could readily
be adapted for pulsed THz reflection spectra as well. In closing, the
presented methodology could be of great importance for real-world
remote sensing applications based on THz spectroscopy.



Infrared Physics and Technology 140 (2024) 105420

7

M.H. Kristensen et al.

Funding

This work was supported by the Innovation Fund Denmark Grand
Solutions program (grant no. IFD-7076-00017B).

CRediT authorship contribution statement

Mathias Hedegaard Kristensen: Writing – review & editing, Writ-
ing – original draft, Visualization, Validation, Software, Methodology,
Investigation, Formal analysis. Paweł Piotr Cielecki: Writing – re-
view & editing, Methodology, Investigation. Esben Skovsen: Writ-
ing – review & editing, Supervision, Resources, Funding acquisition,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data underlying the results presented in this paper are publicly
available at DOI: 10.5281/zenodo.5079558.

References

[1] P. Jepsen, D. Cooke, M. Koch, Terahertz spectroscopy and imaging – Modern
techniques and applications, Laser Photonics Rev. 5 (1) (2011) 124–166, http:
//dx.doi.org/10.1002/lpor.201000011.

[2] M. Naftaly, N. Vieweg, A. Deninger, Industrial applications of terahertz sensing:
State of play, Sensors 19 (19) (2019) http://dx.doi.org/10.3390/s19194203.

[3] P. Cielecki, M. Hardenberg, G. Amariei, M.L. Henriksen, M. Hinge, P. Klarskov,
Identification of black plastics with terahertz time-domain spectroscopy and
machine learning, Sci. Rep. 13 (1) (2023) 22399, URL https://doi.org/10.1038/
s41598-023-49765-z.

[4] N. Palka, THz reflection spectroscopy of explosives measured by time domain
spectroscopy, Acta Phys. Pol. A 120 (4) (2011) 713–715, http://dx.doi.org/10.
12693/APhysPolA.120.713.

[5] C. Cao, Z. Zhang, X. Zhao, T. Zhang, Terahertz spectroscopy and machine
learning algorithm for non-destructive evaluation of protein conformation, Opt.
Quantum Electron. 52 (4) (2020) 225, http://dx.doi.org/10.1007/s11082-020-
02345-1.

[6] M.R. Nowak, R. Zdunek, E. Pliński, P. Świątek, M. Strzelecka, W. Malinka,
S. Plińska, Recognition of pharmacological bi-heterocyclic compounds by using
terahertz time domain spectroscopy and chemometrics, Sensors 19 (15) (2019)
http://dx.doi.org/10.3390/s19153349.

[7] W. Liu, C. Liu, J. Yu, Y. Zhang, J. Li, Y. Chen, L. Zheng, Discrimination
of geographical origin of extra virgin olive oils using terahertz spectroscopy
combined with chemometrics, Food Chem. 251 (2018) 86–92, http://dx.doi.org/
10.1016/j.foodchem.2018.01.081.

[8] H. Zhong, A. Redo-Sanchez, X.-C. Zhang, Identification and classification of
chemicals using terahertz reflective spectroscopic focal-plane imaging system,
Opt. Express 14 (20) (2006) 9130–9141, http://dx.doi.org/10.1364/OE.14.
009130.

[9] J. Zhang, Y. Yang, X. Feng, H. Xu, J. Chen, Y. He, Identification of bacterial
blight resistant rice seeds using terahertz imaging and hyperspectral imaging
combined with convolutional neural network, Front. Plant Sci. 11 (2020) http:
//dx.doi.org/10.3389/fpls.2020.00821.

[10] K. Wang, D.-W. Sun, H. Pu, Emerging non-destructive terahertz spectroscopic
imaging technique: Principle and applications in the agri-food industry, Trends
Food Sci. Technol. 67 (2017) 93–105, http://dx.doi.org/10.1016/j.tifs.2017.06.
001.

[11] W. Liu, C. Liu, F. Chen, J. Yang, L. Zheng, Discrimination of transgenic soybean
seeds by terahertz spectroscopy, Sci. Rep. 6 (1) (2016) 35799.

[12] A.I. Knyazkova, A.V. Borisov, L.V. Spirina, Y.V. Kistenev, Paraffin-embedded
prostate cancer tissue grading using terahertz spectroscopy and machine learning,
J. Infrared Millim. Terahertz Waves 41 (9) (2020) 1089–1104.

[13] P.P. Cielecki, M.H. Kristensen, E. Skovsen, Analysis and classification of
frequency-domain terahertz reflection spectra using supervised and unsupervised
dimensionality reduction methods, J. Infrared Millim. Terahertz Waves 42 (9–10)
(2021) 1005–1026, http://dx.doi.org/10.1007/s10762-021-00810-w.

[14] H. Park, J.H. Son, Machine learning techniques for thz imaging and time-domain
spectroscopy, Sensors (Switzerland) 21 (4) (2021) 1–25, http://dx.doi.org/10.
3390/s21041186.

[15] L. Zhang, H. Zhong, C. Deng, C. Zhang, Y. Zhao, Terahertz wave reference-free
phase imaging for identification of explosives, Appl. Phys. Lett. 92 (9) (2008)
091117, URL https://doi.org/10.1063/1.2891082.

[16] H. Zhong, C. Zhang, L. Zhang, Y. Zhao, X.-C. Zhang, A phase feature extraction
technique for terahertz reflection spectroscopy, Appl. Phys. Lett. 92 (22) (2008)
221106, URL https://doi.org/10.1063/1.2938055.

[17] Y. Hua, H. Zhang, Qualitative and quantitative detection of pesticides with
terahertz time-domain spectroscopy, IEEE Trans. Microw. Theory Tech. 58 (7)
(2010) 2064–2070, http://dx.doi.org/10.1109/TMTT.2010.2050184.

[18] P.P. Cielecki, M.H. Kristensen, E. Skovsen, Database of frequency-domain tera-
hertz reflection spectra for the DETRIS project, 2021, http://dx.doi.org/10.5281/
zenodo.5079558.

[19] D.W. Vogt, R. Leonhardt, High resolution terahertz spectroscopy of a whispering
gallery mode bubble resonator using Hilbert analysis, Opt. Express 25 (14)
(2017) 16860–16866, http://dx.doi.org/10.1364/OE.25.016860.

[20] D.W. Vogt, M. Erkintalo, R. Leonhardt, Coherent continuous wave terahertz
spectroscopy using Hilbert transform, J. Infrared Millim. Terahertz Waves 40
(5) (2019) 524–534.

[21] D.-Y. Kong, X.-J. Wu, B. Wang, Y. Gao, J. Dai, L. Wang, C.-J. Ruan, J.-G.
Miao, High resolution continuous wave terahertz spectroscopy on solid-state
samples with coherent detection, Opt. Express 26 (14) (2018) 17964, http:
//dx.doi.org/10.1364/oe.26.017964.

[22] R. Bro, A.K. Smilde, Centering and scaling in component analysis, J. Chemometr.
17 (2003) 16–33, http://dx.doi.org/10.1002/cem.773.

[23] R. Bro, A.K. Smilde, Principal component analysis, Anal. Methods 6 (2014)
2812–2831, http://dx.doi.org/10.1039/C3AY41907J.

[24] I.T. Jolliffe, J. Cadima, Principal component analysis: a review and recent
developments, Phil. Trans. R. Soc. A 374 (2016).

[25] A. Tharwat, T. Gaber, A. Ibrahim, A.E. Hassanien, Linear discriminant analysis:
A detailed tutorial, AI Commun. 30 (2) (2017) 169, http://dx.doi.org/10.3233/
AIC-170729.

[26] E. Alpaydin, Introduction to Machine Learning, third ed., Adaptive Computation
and Machine Learning, MIT Press, 2014.

https://doi.org/10.5281/zenodo.5079558
http://dx.doi.org/10.1002/lpor.201000011
http://dx.doi.org/10.1002/lpor.201000011
http://dx.doi.org/10.1002/lpor.201000011
http://dx.doi.org/10.3390/s19194203
https://doi.org/10.1038/s41598-023-49765-z
https://doi.org/10.1038/s41598-023-49765-z
https://doi.org/10.1038/s41598-023-49765-z
http://dx.doi.org/10.12693/APhysPolA.120.713
http://dx.doi.org/10.12693/APhysPolA.120.713
http://dx.doi.org/10.12693/APhysPolA.120.713
http://dx.doi.org/10.1007/s11082-020-02345-1
http://dx.doi.org/10.1007/s11082-020-02345-1
http://dx.doi.org/10.1007/s11082-020-02345-1
http://dx.doi.org/10.3390/s19153349
http://dx.doi.org/10.1016/j.foodchem.2018.01.081
http://dx.doi.org/10.1016/j.foodchem.2018.01.081
http://dx.doi.org/10.1016/j.foodchem.2018.01.081
http://dx.doi.org/10.1364/OE.14.009130
http://dx.doi.org/10.1364/OE.14.009130
http://dx.doi.org/10.1364/OE.14.009130
http://dx.doi.org/10.3389/fpls.2020.00821
http://dx.doi.org/10.3389/fpls.2020.00821
http://dx.doi.org/10.3389/fpls.2020.00821
http://dx.doi.org/10.1016/j.tifs.2017.06.001
http://dx.doi.org/10.1016/j.tifs.2017.06.001
http://dx.doi.org/10.1016/j.tifs.2017.06.001
http://refhub.elsevier.com/S1350-4495(24)00304-9/sb11
http://refhub.elsevier.com/S1350-4495(24)00304-9/sb11
http://refhub.elsevier.com/S1350-4495(24)00304-9/sb11
http://refhub.elsevier.com/S1350-4495(24)00304-9/sb12
http://refhub.elsevier.com/S1350-4495(24)00304-9/sb12
http://refhub.elsevier.com/S1350-4495(24)00304-9/sb12
http://refhub.elsevier.com/S1350-4495(24)00304-9/sb12
http://refhub.elsevier.com/S1350-4495(24)00304-9/sb12
http://dx.doi.org/10.1007/s10762-021-00810-w
http://dx.doi.org/10.3390/s21041186
http://dx.doi.org/10.3390/s21041186
http://dx.doi.org/10.3390/s21041186
https://doi.org/10.1063/1.2891082
https://doi.org/10.1063/1.2938055
http://dx.doi.org/10.1109/TMTT.2010.2050184
http://dx.doi.org/10.5281/zenodo.5079558
http://dx.doi.org/10.5281/zenodo.5079558
http://dx.doi.org/10.5281/zenodo.5079558
http://dx.doi.org/10.1364/OE.25.016860
http://refhub.elsevier.com/S1350-4495(24)00304-9/sb20
http://refhub.elsevier.com/S1350-4495(24)00304-9/sb20
http://refhub.elsevier.com/S1350-4495(24)00304-9/sb20
http://refhub.elsevier.com/S1350-4495(24)00304-9/sb20
http://refhub.elsevier.com/S1350-4495(24)00304-9/sb20
http://dx.doi.org/10.1364/oe.26.017964
http://dx.doi.org/10.1364/oe.26.017964
http://dx.doi.org/10.1364/oe.26.017964
http://dx.doi.org/10.1002/cem.773
http://dx.doi.org/10.1039/C3AY41907J
http://refhub.elsevier.com/S1350-4495(24)00304-9/sb24
http://refhub.elsevier.com/S1350-4495(24)00304-9/sb24
http://refhub.elsevier.com/S1350-4495(24)00304-9/sb24
http://dx.doi.org/10.3233/AIC-170729
http://dx.doi.org/10.3233/AIC-170729
http://dx.doi.org/10.3233/AIC-170729
http://refhub.elsevier.com/S1350-4495(24)00304-9/sb26
http://refhub.elsevier.com/S1350-4495(24)00304-9/sb26
http://refhub.elsevier.com/S1350-4495(24)00304-9/sb26

