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DOWNSAMPLING OF DFT PRECODED SIGNALS FOR THE AWGN CHANNEL
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Aalborg University, Faculty of Engineering and Science

Department of Electronic Systems

DK-9220 Aalborg, Denmark

ABSTRACT

In this paper we propose and analyze a method for down-

sampling discrete Fourier transform (DFT) precoded signals.

Since the symbols (in frequency) are in the constellation set,

which is a subset of the entire complex plane, it is possible to

detect N symbols from the DFT precoded signal when trans-

mittingM < N symbols, whereM is not too small. We build

our analysis on so-called simple vectors, and show that it is

possible to detect in the noise-less case with high probability

down to approximately M ≥ N/4 for BPSK and M ≥ N/2
for QPSK. We develop extensions from the noise-less to the

noisy case, and propose two different detectors for the AWGN

channel. Simulations show that using the two proposed detec-

tors in the AWGN channel, we observe empirically a phase

transition at M ≈ N/2 for QPSK. Further, it is shown how

downsampled QPSK signals can achieve the same BER and

data rate as 8PSK at a lower signal-to-noise-ratio per infor-

mation bit.

Index Terms— Communication, detection, signal pro-

cessing, compressed sensing, convex relaxation, semidefinite

relaxation

1. INTRODUCTION

Digital communication [1] is a valuable technology and is

used extensively. An important technique in digital commu-

nication is precoding. We could e.g. precode a digital signal

with N symbols using the inverse discrete Fourier transform

(DFT). This corresponds to applying a constellation symbol

to each sub-carrier, perform the inverse DFT, and then trans-

mit N time symbols. The receiver would then estimate the

constellation symbol by performing an N point DFT of the

input followed by detection. But is it necessary to transmitN
time symbols to detect N constellation symbols?

In general, we need N linear measurements to be able to

perfectly reconstruct a general length N signal. The advent

of compressed sensing [2, 3] however showed that if a signal

obeys certain structure, such as a sparse description, it is not
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necessary to take N , but M < N linear measurements and

still be able to reconstruct with high probability. Recently, it

has been proposed to exploit other structure than sparsity. If,

e.g., we only need to categorize a received signal to a small

number of different transmitted signals, it was shown how to

do such using M < N linear measurements in [4]. Such a

technique may be used in IEEE 802.15.4, where it was shown

how to detect a transmitted signal using M = N/2 samples

[5]. Being able to take fewer than N measurements intro-

duces flexibility to the system and possibly enables increasing

data rate and/or decreasing transmission energy and/or reduc-

ing ADC and DAC sampling rate at the receiver/transmitter.

In this paper we show an approach for downsampling

DFT precoded signals. In [4] it is required to investigate

all possible signals that could be transmitted, but this is not

tractable for a DFT precoded system with even a moderate

size of sub-carriers N , since the total number of possible

signals grows exponentially in N . Instead, it is in [6, 7] sug-

gested to solve a convex feasibility problem withN variables

in the noise-less case. We generalize the noise-less detector to

the noisy case and propose two different detectors: one based

on convex relaxation (CR) and one on semidefinite relaxation

(SDR).

The outline of the paper is as follows: first we present the

considered system model and notation in Sec. 2. In Sec. 3

we show how the downsampled DFT precoded system can be

described as a special case of [6, 7] and develop two detectors

for the case of noise. In Sec. 4 we show simulations of the

system and in Sec. 7 we discuss the results.

2. SYSTEM MODEL

Fig. 1 shows the considered downsampled DFT precoded sys-

tem. First an i.i.d. bit stream d[k] ∈ {0, 1} with P (d[k] =
1) = P (d[k] = 0) = 1

2 is passed trough a mapping from

information bits to constellations symbols x̃[n] ∈ SN ⊂ C
N

in the complex plane where |S| = L is the number of pos-

sible constellation points for each symbol. The constellation

symbols have E[|x̃[n]|2] = 1 where E[·] is the expectation

operator. Each block of N symbols is inverse DFT’ed us-

ing the normalized inverse DFT matrix D ∈ C
N×N with

‖Dz‖2 = ‖z‖2, ∀z ∈ C
N . The information of each sym-
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Fig. 1. Transmitter, channel and receiver structure for the considered downsampled DFT precoded system.

bol is then spread over the whole time domain since D is a

dense matrix. The time symbols are then “randomly punc-

tured” by block processing of N to M time symbols with Φ.
This gives the downsampling factor

κ =
M

N
. (1)

TheΦ block can also be seen as a matrix-vector multiplication

with a random Φ ∈ {0, 1}M×N , M ≤ N , a matrix where

each row of Φ contains exactly one element with a one. One

possible realization is

Φ =











1 0 0 · · · 0 0
0 0 1 · · · 0 0
...

. . .
...

...

0 · · · 1 0











. (2)

The selection matrixΦ can be generated by a random uniform

selection of M unique rows of the N × N identity matrix I .
Note that Φ = I corresponds exactly to standard DFT pre-

coded transmission and sinceΦD = D is an orthogonal trans-

form, precoding has no effect compared to non-precoding.

Due to Φ and the normalized D we have E[ |x[m]|2 ] = 1.
We use an AWGN channel with w[n] ∈ C a circular complex

zero-mean white Gaussian noise variable w[n] ∼ CN (0, σ2).
The received signal y[m] is processed by the detector to ob-

tain an estimate ˆ̃x[n] ≈ x̃[n]. These estimates are further pro-

cessed using demapping to obtain an estimation of the trans-

mitted bit stream. Note the different time indexes k,m, n
which might run at different frequencies, e.g., with QPSK

modulation, k runs “two times faster than” n.
The signal-to-noise-ratio (SNR) is given by

Es

N0
=

E[ |x[m]|2 ]

E[ |w[m]|2 ]
=

1

σ2
. (3)

The SNR per information bit is given by

Eb

N0
=

Es

N0

1

R
=

κ

σ2 log2(L)
, R =

log2(L)

κ
. (4)

Note that the rate R both depends on the constellation size

L as well as the downsampling factor, such that the energy

per bit is reduced by κ. With Φ = I , we have the maximum
likelihood (ML) detector [1]

ˆ̃xML = argmin
x̃∈SN

‖Dx̃− y‖2 = argmin
x̃∈SN

‖x̃− ỹ‖2 = h(ỹ) (5)

where ỹ = DHy, x̃ = [x̃[n′], · · · x̃[n′ + N − 1]]T , and the

other symbols are formed in a similar way due to the block

processing. The solution in (5) is simply the closest point in

the constellation to ỹ measured in Euclidean distance.

3. DOWNSAMPLING AND DETECTION

The maximum likelihood detector for the downsampled sig-

nal is

ˆ̃xML = argmin
x̃∈SN

‖ΦDx̃− y‖2 (6)

which is not easily calculated for the case M < N . A way

is to investigate all LN combinations and select the one with

the smallest objective. This however requires LN evaluations.

In general, (6) is NP-hard [8]. We now relate the downsam-

pling problem (6) to known results in the noise-less case and

present two different ways of approximately solving (6) in the

noisy case.

3.1. Downsampling in the noise-less case

In [6, 7], so-called s-simple1 vectors are described which are

vectors z ∈ [0, 1]J with J−s elements equal to exactly 0 or

1. Notice that this vector is structured but does not necessar-

ily have a sparse representation. For such structured descrip-

tions, it is not necessary to take J linear measurements of z
to exactly reconstruct z. In-fact, it is possible to downsample

using

b = Az (7)

1[6, 7] uses the term k-simple, but we use s-simple due to notations



where A ∈ R
H×J , H ≤ J are new variables which will be

related to M,N later. It is then possible to reconstruct using

the convex feasibility problem2

ẑ = argmin
Az=b,0≤zi≤1,i=1,··· ,J

0 . (8)

Then ẑ = z with high probability for certain settings of the

triplet (s,H, J) and A [6, 7]. The so-called phase-transition

for this problem occurs at s
H

= max(0, 2 − J
H
) [6]. The

phase-transition divides the plot of s
J
and H

J
in two distinct

regions. A region where it is expected that ẑ = z and a re-

gion where it is expected that ẑ 6= z. Fig. 2 shows this for

a 0-simple vector, where we plot the probability of correct

recovery [6, 7]

P (z = ẑ) = 2−J+1
H−1
∑

l=0

(

J − 1
l

)

(9)

for two different values of J . We see that as we approach
H
J

= 1
2 , the reconstruction will start to fail. We also observe

that for larger J , the transition region becomes more narrow.
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Fig. 2. Probability of correct recovery for J = 128 and J =
512. Full line marks H

J
= 1

2 .

This use of so-called s-simple vectors is related to com-

pressed sensing in the sense that we exploit the structure of

the problem at hand to reduce the number of linear measure-

ments. In the setting here we do however not exploit sparse

representations.

3.2. Relation to downsampled DFT precoded signals

We show how the DFT precoded system in Fig. 1 can be

described in terms of downsampling of 0-simple vectors for

2A convex feasibility problem is just a convex optimization problem with

objective f(x) = 0.

the noise-less case w[m] = 0 (σ2 = 0).
We observe

y = ΦDx̃, y ∈ C
M (10)

which can be written as

y̆ =

[

ℜ(y)
ℑ(y)

]

=

[

ℜ(ΦD) −ℑ(ΦD)
ℑ(ΦD) ℜ(ΦD)

] [

ℜ(x̃)
ℑ(x̃)

]

= T̆ ˘̃x

(11)

where ℜ and ℑ are the real and imaginary part and with an

implicit definition of T̆ and ˘̃x. For BPSK, we have ℜ(x̃) ∈
{+1,−1}, ℑ(x̃) = 0, and the above system reduces to

y̆ =

[

ℜ(y)
ℑ(y)

]

=

[

ℜ(ΦD)
ℑ(ΦD)

]

[

ℜ(x̃)
]

. (12)

Using the transformation ℜ(x̃) = 2z − 1, z ∈ {0, 1}N , 1 =
[1, · · · , 1]T we have

y̆ +

[

ℜ(ΦD)
ℑ(ΦD)

]

1 = 2

[

ℜ(ΦD)
ℑ(ΦD)

]

z (13)

which corresponds to the linear system b = Az with b ∈ R
2M

and A ∈ R
2M×N . Since s = 0, we have phase transition for

this problem at 0 = max(0, 2− J
H
) ⇒ H

J
= 1

2 ,

H

J
=

2M

N
=

1

2
⇔ κ =

M

N
=

1

4
. (14)

That is, in the noise-less case, the downsampling procedure

works down to approximately κ = 1
4 , approximately one

quarter of the time symbols are actually needed to reconstruct.

However, the transition region has a certain width, see Fig. 2,

so at κ = 1
4 we would expect that errors still occur, even in

the noise-less case. Similarly, it can be shown that for QPSK

the phase transition occurs at κ = 1
2 .

3.3. A convex relaxation for the noisy case

The material in [6, 7] does not consider the noisy case. Since

the noisy case is the most important case in communication

systems, we quantify the impact of noise by simulation in Sec.

4. We also need to develop another detector, since (8) requires

consistency (equality) between the transmitted and received

signal. Consider the following ML reconstruction of linear

measurements b = Az + e with e i.i.d. Gaussian noise

ẑML = argmin
zi∈{0,1},i=1,··· ,N

‖Az − b‖2 . (15)

Then the closest CR of the above ML detection problem is

ẑML−CR = argmin
0≤zi≤1,i=1,··· ,N

‖Az − b‖2 . (16)

This formulation could also be naturally extracted from for-

mulation (8). In terms of the original variable x̃, the above

problem is equivalent to solving



ˆ̃xML−CR = argmin
|ℜ(x̃i)|≤1,ℑ(x̃i)=0, i=1,··· ,N

‖ΦDx̃− y‖2 (17)

for BPSK and

ˆ̃xML−CR = argmin
|ℜ(x̃i)|+|ℑ(x̃i)|≤1,i=1,··· ,N

‖ΦDx̃− y‖2 (18)

for QPSK, where the constellation and the CR are shown in

Fig. 3.
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j
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1−1

|ℜ(x̃i)|+ |ℑ(x̃i)| ≤ 1

Fig. 3. Example of the feasible set in dimension i in the case

of QPSK.

3.4. A semidefinite relaxation for the noisy case

Using (15), we formed the closest CR (16), but it is also pos-

sible to form a SDR of this problem. We can represent the

QPSK constellation x̃ ∈ SN = {+1,−1,+j,−j}N as [9]

ℜ(x̃i)
2 + ℑ(x̃i)

2 = 1,ℜ(x̃i)ℑ(x̃i) = 0, ∀ i = 1, · · · , N .
(19)

We can then formalize the problem (6) in real variables using

(11), as

minimize ‖T̆ ˘̃x− y̆‖22
subject to ˘̃x2

i + ˘̃x2
i+N = 1, ∀ i = 1, · · ·N

˘̃xi
˘̃xi+N = 0, ∀ i = 1, · · ·N

(20)

or equivalently in a homogeneous form

minimize [˘̃xT t]

[

T̆T T̆ −T̆T y̆

−y̆T T̆ y̆T y̆

] [

˘̃x
t

]

subject to ˘̃x2
i + ˘̃x2

i+N = 1, ∀ i = 1, · · ·N
˘̃xi
˘̃xi+N = 0, ∀ i = 1, · · ·N

t2 = 1 .

(21)

Since the feasible set only contains t2 = 1, the term t2y̆T y̆ is

a constant, and we have

minimize
[

˘̃xT t
]

C

[

˘̃x
t

]

subject to ˘̃x2
i + ˘̃x2

i+N = 1, ∀ i = 1, · · ·N
˘̃xi
˘̃xi+N = 0, ∀ i = 1, · · ·N

t2 = 1

(22)

with

C =

[

T̆T T̆ −T̆T y̆

−y̆T T̆ 0

]

. (23)

We can then form a SDR of the above quadratically con-

strained quadratic program (QCQP) as [10]

minimize tr (CX)
subject to Xi,i +Xi+N,i+N = 1, ∀ i = 1, · · · , N

Xi,i+N = 0, ∀ i = 1, · · · , N
X2N+1,2N+1 = 1
X � 0

(24)

with solution X⋆ and tr the trace function. A popular ap-

proach to improve SDR is to use randomization see, e.g., [10]

for an overview. With randomization we approximate the so-

lution of the QCQP (22) by generating T = 500 realizations

with ζ(r) ∼ N (0, X⋆) and obtain feasible points (constella-

tion points) as

¯̃x(r) = h
(

ℜ
(

[ζ
(r)
1 , · · · , ζ

(r)
N ]T

)

+jℑ
(

[ζ
(r)
N+1, · · · , ζ

(r)
2N ]T

))

(25)

where h is given in (5), and then select

r⋆ = argmin
r=1,··· ,T

‖ΦD ¯̃x(r) − y‖2 (26)

and ¯̃x(r⋆) = ˆ̃xML−SDR as our estimate.

4. SIMULATIONS

We divide the simulations into two cases. The first case is

downsampling at transmitter. The second case is undersam-

pling at receiver. For the simulations we use solver [11] with

the interface [12] to formulate the convex optimization prob-

lems. The AWGN channel is formed with a given SNR (3)

and we obtain the SNR per information bit via (4).

5. DOWNSAMPLING AT TRANSMITTER

For each block transmission, we generate a new random Φ by

random selection of M rows from the identity matrix. Since

it is required that the receiver also knows Φ, practical imple-

mentation of this system requires that transmitter and receiver



seed a random generator with the same number, similar to

code division multiple access (CDMA).

Fig. 4 shows the (uncoded) BER versus Eb

N0

of the QPSK

based CR detector (18). We observe that it is indeed possible

to detect the symbols for downsampled DFT precoded signals

in the AWGN channel. We also observe that as we decrease κ
(more downsampling), the BER performance decreases, and

at κ = 0.55, it is almost impossible to detect correctly in the

considered SNR range.
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Fig. 4. The (uncoded) BER for: i) QPSK, 8PSK using Φ = I
and optimal detection (5), ii) QPSK based CR detectors with

(18) and downsampling factor κ. N = 128 sub-carriers.
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Fig. 5. The (uncoded) BER for: i) QPSK, 8PSK using Φ = I
and optimal detection (5), ii)QPSK based SDR detectors with

(24)-(26) and downsampling factor κ. N = 128 sub-carriers.

In Fig. 5 we show the (uncoded) BER versus Eb

N0

of the

QPSK based SDR detector (24). We generally observe the

same behaviour as for Fig. 4, that noise as well as down-

sampling introduce errors in the detector. To compare with

a standard modulation scheme, we also show Gray encoded

8PSK with 3 bits per symbol calculated via [13]. The mod-

ulation scheme 8PSK has the same number of bits per sym-

bol as QPSK modulation with downsampling κ = 2
3 , i.e.,

log
2
(L)

κ
= 3 bits per. symbol. In Fig. 4 we observe that QPSK

at κ = 2
3 and 8PSK has approximately the same BER at the

same SNR, with 8PSK slightly better. In Fig. 5 we observe

that QPSK at κ = 2
3 has a lower BER than 8PSK at the same

SNR. At BER = 10−3 there is an improvement of ≈ 1.8 dB.

6. UNDERSAMPLING AT RECEIVER

We note an important simple extension of the proposed signal

model Fig. 1. Consider the case of undersampling where the

transmitter still sends a full signal and the receiver just takes

fewer samples than normally required. The undersampling

system can be obtained by moving the DΦ to the other side

of the AWGN channel in Fig. 1. Specifically, let

y = ΦD(x+ w) = ΦDx+ w̃, w̃ = ΦDw . (27)

Then E[w̃w̃H] = E[ΦDwwHDHΦH] = σ2I , i.e., the noise

is still i.i.d. Gaussian. For this system the SNR is the same

Es

N0
=

E[ |x[m]|2 ]

E[ |w[m]|2 ]
=

1

σ2
(28)

but the SNR per information bit is instead

Eb

N0
=

Es

N0

1

R̃
=

1

σ2 log2(L)
(29)

since we still transmit all time symbols (and only undersam-

ple at the receiver).

For each block transmission, we generate a new random

Φ by random selection of M rows from the identity matrix.

With undersampling at the receiver it is not required that the

transmitter also knows Φ. Due to the system design, under-

sampling at the receiver then comes with a SNR penalty but

it becomes possible to reduce the ADC sampling rate at the

receiver by a factor of κ.
We see the result of undersampling at the receiver in Figs.

6 and 7. We observe that as we increase undersampling, the

SNR penalty for detection with same BER increases when

compared to standard QPSK with Φ = I . Again we observe

that the SDR detector is performing better than the CR detec-

tor, i.e., the curves in Fig. 7 lie closer to the QPSK curve than

in Fig. 6. Using the SDR receiver atBER ≈ 10−3 we can un-

dersample with a factor of κ = 0.8 and κ = 0.67with an SNR
penalty of approximately 1.5 dB and 3.5 dB, respectively.
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Fig. 6. The (uncoded) BER for: i) QPSK using Φ = I and

optimal detection (5), ii) QPSK based CR detectors with (18)

and undersampling factor κ. N = 128 sub-carriers.
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Fig. 7. The (uncoded) BER for: i)QPSK usingΦ = I and op-
timal detection (5), ii) QPSK based SDR detectors with (24)-

(26) and undersampling factor κ. N = 128 sub-carriers.

7. CONCLUSION AND DISCUSSION

We have presented an approach for downsampling of DFT

precoded signals and shown that it is possible to obtain the

same BER and data rate for a downsampled QPSK mapped

signal at ≈ 1.8 dB lower SNR compared to a fully sampled

8PSK mapped signal. The penalty of this downsampling

scheme is that the detector is more computationally demand-

ing, i.e., it is required to solve a semidefinite problem and

generate many realizations of a certain distribution. How

computational demanding depend on the problem structure

and algorithm but it can be shown that certain semidefinite

problems can be solved fast, see overview in [10] or [14, 15].

We also show a setup where it is possible to undersample

at the receiver. Undersampling at the receiver gives a SNR

penalty but makes it possible to run the receiver ADC at a

lower rate.
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