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Abstract – This paper deals with the precise modeling of droop 
controlled parallel inverters. This is very attractive since that is 
a common structure that can be found in a stand-alone droop-
controlled MicroGrid. The conventional small-signal dynamic is 
not able to predict instabilities of the system, so that in this 
paper, the combination of both small signal model and dynamic 
phasor model (DPM) of parallel-connected inverters is presented. 
Simulation results show that the dynamic phasor model is able 
to predict accurately the stability margins of the system when 
the droop control gains exceed certain values. In addition, the 
virtual ω-E frame power control method, which deals with the 
power coupling caused by the line impedance X/R characteristic, 
has been chosen as an application example of this modeling 
technique. 

I. INTRODUCTION 

Recently, distributed generation (DG) is drawing more and 
more attention. One step more is the MicroGrid concept, 
which encompasses distributed and storage generation units 
and loads in a local area. In an autonomous MicroGrid, all the 
DG units are responsible for maintaining the system voltage 
and frequency, while sharing the active and reactive power 
according to their own capacity. The proper control of an 
inverter is very important for this kind of applications. So that, 
a common approach for the parallel operation of inverters is 
the well known droop control. 

The conventional droop control, which was derived from 
classical power system theory, is widely used in parallel 
inverters because it only needs to measure local signals, and 
no communication lines are needed. In the conventional 
droop control, the line impedance is considered to be mainly 
inductive. However, in low voltage grids the lines are mostly 
resistive, which may affect the way of controlling active and 
reactive power. Furthermore, the conventional droop control 
presents other drawbacks, so that many improved droop 
control methods are proposed in order to improve it. 

The dynamic stability of inverter-based MicroGrid systems 
has been studied for many years. For that kind of applications, 
small-signal model is widely used since it is easy to predict 
the system response when changing parameters. Thus it is 
helpful to select control and system parameters. Furthermore, 
the MicroGrid configuration, operation modes, load position, 
and the inverters connection, affect the small signal-modeling 
and stability. 

The modeling approach presented in [1] focuses on 
stability issues for an individual inverter connected to a stiff 
ac bus. Reference [2] creates the system level model, which 
includes all the variables in the entire MicroGrid, being the 

complexity very high. In [3], was assumed that the dynamics 
of the inner controllers can be neglected, thus making the 
model much more simple. This assumption is acceptable 
since the inner voltage and current controls bandwidth are 
much higher than the outer power loop used by the droop 
control, due to the low pass filter used by this loop. In [2] and 
[3], the results show that the droop gains play a significant 
role in the stability of the system. Another work [4] presents a 
small signal analysis for parallel connected inverters in stand-
alone ac supply system with the conventional droop control, 
which makes stability and performance studies easier. 

Summarizing, the model studied in [1]-[4], [8]-[9] neglects 
the dynamic of the power network circuit elements. This is 
acceptable for slow systems, such as multi-machine systems, 
but it can lead to questionable results for fast systems, such us 
inverters-based MicroGrid. 

This paper presents a dynamic phasor model (DPM) for 
parallel connected inverters system. This model takes into 
account the dynamic of the power network circuit elements. 
The comparison between the small signal model by using the 
conventional modeling method and the DPM is performed by 
means of simulation results, showing the higher precision of 
the DPM. 

Moreover, in order to deal with the active and reactive 
power coupling emphasized by the line impedance 
characteristic, the previously proposed virtual ω –E frame 
power control method is also studied here. For this case and 
the conventional one, the DPM is created, and the root locus 
analysis shows that this method can greatly improve the 
system stability. This paper is organized as follows. The 
system configuration and control scheme is shown in Section 
II. The small signal model is created in Section III. The DPM 
is proposed in Section IV. The sensitivity analysis and model 
is verified in Section V. Section VI presents the DPM of the 
virtual ω–E frame power control. 

II. SYSTEM CONFIGURATION AND CONTROL SCHEME 

The topology chosen for study is a MicroGrid operating in 
stand-alone mode. Fig.1 shows two inverters connected in 
parallel supplying all the power needed by the load while 
maintaining the voltage and frequency within the allowed 
range. In Fig. 1, nE  (n=1,2) and V are the amplitudes of the 
inverter output voltage and the ac bus voltage respectively, 

nδ  is the power angle difference, nZ  and nθ are the 
magnitude and the phase of the line impedance respectively. 



 

 

The overall control scheme contains inner voltage and 
current loops for regulating the inverter voltage, and external 
power loop for controlling the inverter output active and 
reactive power. The power loop uses the conventional droop 
control method. 
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Fig. 1.  A MicroGrid based on two inverters working in stand-alone mode 

III. SMALL SIGNAL MODELING 

In this section, a general procedure similar to that presented 
in [5] will be done in order to obtain the small signal model 
of the system described in Fig. 1. By using the conventional 
droop control, the inverter output frequency ω and the 
inverter output voltage E are controlled by means of the 
droop characteristics defined by: 
 * *( )pk P Pω ω= − −  (1) 

 * *( )qE E k Q Q= − −  (2) 
being kp and kq the frequency and voltage droop coefficients, 
P and Q active and reactive power, and P* and Q* their 
respective references.  

The inverter output active and reactive powers are given by 
[4], [5]: 
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being R and X the resistive and inductive output impedance 
components, and δ the power angle. 

For small disturbances around the equilibrium 
point ( , , )e e eE Vδ , the following linearized equations can be 
obtained: 
 * *

p pk P k Pω ωΔ = Δ − Δ + Δ  (5) 

 * *
q qE E k Q k QΔ = Δ − Δ + Δ  (6) 

 pe pdP k E k δΔ = Δ + Δ  (7) 
 qe qdQ k E k δΔ = Δ + Δ  (8) 
where 
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To measure the inverter output active and reactive power, a 
low pass filter is often used. Thus, the active and reactive 

powers obtained by averaging over a line frequency using a 
low pass filter can be represented by (13) and (14): 
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Fig. 2.  Small signal close-loop model 

From (1)-(8) it is possible to sketch the small signal closed-
loop model as shown in Fig. 2. The references ω*, E*, P*, and 
Q* are considered to be constant here, so their deviation term 
in (5) and (6) can be neglected.  

Due to the low pass filter, the inner voltage and current 
control bandwidth are much higher than the outer power loop. 
So that, it can be assumed that the dynamic of the inner loops 
can be neglected. Thus, the inverter output voltage is 
considered to be directly governed by the references 
generated by the droop control strategy. 

Considering above the assumption, by combining (5)-(14), 
we can get the following equations. 
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The phase angle is the integration of the frequency, as 
shown in (17). 
 sω δΔ = Δ  (17) 

By combining of (15)-(17), the characteristic equation of 
the close loop system with the conventional droop is obtained 
as in (18). 
 3 2 0s as bs c+ + + =  (18) 
where 
 (2 )q qe fa k k ω= +  (19) 
 ( )p pd q qe f f fb k k k k ω ω ω= + +  (20) 



 

 

 2( )pd q pd qe q pe qd p fc k k k k k k k k ω= + −  (21) 
    The coefficient in (18) determines the roots and therefore 
the closed loop stability.  

IV. DYNAMIC PHASOR MODELING 

The small signal model described in Section Ⅲ neglects 
the dynamic of the power network circuit elements. This 
model is acceptable for high inertial systems, but it can lead 
to questionable results for power electronics inverter based 
system. To deal with this problem, this Section proposes the 
dynamic phasors based model. 

The concept of dynamic phasors has been developed for a 
balanced, three-phase power system, enabling the inclusion of 
the network dynamics as in [6]. In this section, this technique 
is used to create the small signal model of the system shown 
in Fig.1. This modeling will be called hereinafter DPM. 

The dynamic or time-varying phasor (Xk) can be expressed 
in its integral form defined inside the interval ],( tTt −∈τ  
by means of [10]: 

 1( ) ( ) ( )s
t jk

k t T k
X t x e d x t

T
ω ττ τ−

−
= =∫  (22) 

Then derivative with respect to time of the kth dynamic 
phasor Xk can be expressed as following: 
 ( ) / / ( ) ( )k s kk

dX t dt dx dt t jk X tω= −  (23) 
Then the relationship between inductor voltage Lv and the 

current through the inductor Li can be expressed by: 
 ( / )L L Lv L di dt j Liω= +  (24) 

In the conventional circuit theory, the second term on the 
right hand of (24) does not existent.  

Based on (24), the inverter output active and reactive 
power can be expressed by: 
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(26) 
For small disturbances around the equilibrium 

point ( , , )e e eE Vδ , the linearized equations in (27) and (28) 
can be obtained. 
 ' '
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Through (5), (6), (13), (14), (17), (27), and (28), the DPM 
characteristic equation can be obtained as in (33). 
 ' 5 ' 4 ' 3 ' 2 ' ' 0a s b s c s d s e s f+ + + + + =  (33) 
where 
 ' 2a L=  (34) 
 ' 22 2 fb RL Lω= +  (35) 

 ' 2 2 2 2 24 f fc R L RL Lω ω ω= + + +  (36) 

 ' 2 2 2 22 2 2 3f f f q fd R L RL LEkω ω ω ω ω ω= + + +  (37) 

 ' 2 2 2 2 2 2 23 3f f q f p fe R L LEk LE kω ω ω ω ω ω ω= + + +  (38) 

 ' 2 2 3 23 9p f p q ff LE k E k kω ω ω= +  (39) 
The coefficient in (33) determines the roots and therefore 

the closed loop stability. 

V. SENSITIVITY ANALYSIS AND MODEL VERIFICATION 

Section III presents the small signal model using the 
conventional way, while Section IV proposes the DPM using 
dynamic phasors technique. In this Section, a sensitivity 
analysis is conducted by using both models. The small signal 
model is a three-order system, while the DPM is a five-order 
system. Simulation will be conducted by using the system 
shown in Fig. 1, in order to show which model is more 
accurate. 

The system parameters used in this analysis are shown in 
Table I. For the analysis, it has been considered that the 
capacity of inverter #1 is two times bigger than the capacity 
of inverter #2. The active power droop gain of inverter #1, kp, 
has been changed from 0.0001 to 0.5, and the reactive power 
droop gain of inverter #1 kq is also changed from 0.0001 to 
0.5. The droop gains of inverter #2 are two times more than 
that of inverter #1, accordingly. 

Fig. 3 shows the root locus comparison of the two models 
as kp increasing. The small signal model shows that all the 
poles are in the left half plane, while the DPM shows that 
some of the poles move to right half plane, which will cause 
the system unstable. Simulation results by using the 
parameters of the green circle (kp=0.01) and the red circle 
(kp=0.05) in Fig. 3, are shown in Fig. 4. It can be seen that the 
system is stable when kp is 0.01, while unstable when kp is 
0.05. The simulation results are consistent with the DPM. 

Fig. 5 shows the root locus comparison of the two models 
when increasing kq. The small signal model shows that all the 
poles are in the left half plane, while the DPM shows that 
some of the poles move toward the right half plane and may 
cause the system unstable. Simulation results using the 
parameters of the green circle (kq=0.1) and the red circle 
(kq=0.5) in Fig. 5, are shown in Fig. 6. It can be seen that the 
system is stable when kq is 0.1, while unstable when kq is 0.5. 
Here also the simulation results are consistent with the DPM. 

Through the simulation results, we can draw the conclusion 
that the dynamic model is more precise than the small signal 
model, which is not able to predict that stability limit. 

 
 



 

 

-40 -35 -30 -25 -20 -15 -10 -5 0
-500

-400

-300

-200

-100

0

100

200

300

400

500
Pole-Zero Map

Real Axis

Im
ag

in
ar

y 
Ax

is 1λ 2λ

3λ

 
(a) small signal model 
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Fig. 3.  Root locus comparison for kp variations. 
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(a) kp = 0.01 
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(b) kp = 0.05 

Fig, 4.  The inverters output active power for kp variations. 
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Fig. 5.  Root locus comparison for kq variations. 
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(b) kq = 0.5 

Fig. 6.  The inverters output active power for kq variations. 
 

TABLE I. SYSTEM PARAMETERS 
Parameter Value 

DC link voltage 250V 
filter inductance 3mH 

filter conductance 9.9μF 
line impedance 1+j 1Ù 
output voltage 100V 

output frequency 50Hz 
low pass filter frequency 30rad/s 

 

VI. DYNAMIC PHASOR MODEL OF POWER DECOUPLING 
DROOP METHOD 

In this Section, an illustrative example of application of the 
DPM approach is presented. From Fig. 2 it can be seen that 
by using the conventional droop control, when adjusting the 
voltage amplitude or frequency will affect both active and 
reactive power, thus no decoupling can be achieved. The 
conventional droop control assumed that the line impedance 
is mainly inductive, but when the line resistive can no longer 
be neglected, so that the conventional droop control will 
emphasize more the power coupling. 

Many improved droop control methods have been 
proposed in order to deal with the power coupling problem in 
the recent years. A method called virtual ω–E frame power 
control, proposed in [7], is very effective. In this Section, 
DPM is used to study the stability of this droop control 
method. 

By using the virtual ω–E frame power control, the inverter 
output frequency ω and the inverter output voltage E are 
controlled by the following droop characteristics: 
 ' '* *( )pk P Pω ω= − −  (40) 

 ' '* *( )qE E k Q Q= − −  (41) 
where 
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 Fig. 7. Root locus family of the DPM with virtual ω-E frame power control 
for kp variations. 
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Fig, 8. The inverters output active power with the virtual ω–E frame power 

control when kp is 0.05 
For small disturbances around the equilibrium 

point ( , , )e e eE Vδ , the linearized equations following can be 
obtained: 
 cos sin pE k Pω ϕ ϕΔ + Δ = − Δ  (42) 
 cos sin qE k Qϕ ω ϕΔ − Δ = − Δ  (43) 

Through (13), (14), (17), (27), (28), (42), and (43), the 
DPM characteristic equation can be obtained as: 
 '' 5 '' 4 '' 3 '' 2 '' '' 0a s b s c s d s e s f+ + + + + =  (44) 
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 '' 2a L=  (45) 
 '' 22 2 fb RL Lω= +  (46) 

 '' 2 2 2 2 24 3 sinf f p fc R L RL L k LEω ω ω ω ϕ= + + + +  (47) 

 
'' 2 2 2 2 2

2

2 2 2 3 sin

3 cos 3 sin 3 sin
f f f q f

q f p f p f

d R L RL k E L

k LE k LE k RE

ω ω ω ω ω ϕ

ω ω ϕ ω ϕ ω ϕ

= + + + +

+ +
 (48) 

 
'' 2 2 2 2 2 2 2 2

2 2 2

3 sin 3 sin

3 cos 3 sin 3 cos
f f q f q f

q f p f p f

e R L k E L k E R

k LE k RE k LE

ω ω ω ω ϕ ω ϕ

ω ω ϕ ω ϕ ω ω ϕ

= + + + +

+ +
 (49) 

 '' 2 2 2 2 2 33 sin 3 cos 9q f p f p q ff k E R k LE k k Eω ϕ ω ω ϕ ω= + +  (50) 
    It is our worth to note that when the line impedance angle 
is 90 degrees, then ϕ  is 0 degrees, and in this situation the 
characteristic equation in (44) is exactly the same as the one 
shown in (33). 

Fig. 7 shows the root locus of the DPM of the closed loop 
system when using the virtual ω–E frame power control for kp 
variations. By comparing Fig. 7 with Fig. 3(b), it can be seen 
that the dynamic response is much faster than the 
conventional droop control. Notice that for this control 
approach all the poles are at the left half plane, so that the 
system is stable. Simulation result when using the virtual ω–E 
frame power control is shown in Fig. 8, kp is 0.05 here. It can 
be observed that by using the power decoupling droop 
method, the system stability is greatly improved. 

VII. CONCLUSION 

In this paper, the stability of the stand-alone droop-
controlled MicroGrid is discussed. Based on a two parallel 
inverter system, the small signal model and the DPM are 
obtained and compared. The small signal model shows that 
the system keeps stable even when using large droop gains, 
however, the large signal simulation results show that this is 
not true. Thus, small signal model is not precise enough to 
study the dynamics and stability of the closed loop system. 

To deal with the model precise problem, a dynamic phasors 
based approach is used. This method takes the dynamic of the 
power network circuit elements into account. Simulation 
results show that this model can be used to accurately predict 
the system stability limits. Hence, we can obtain the droop 
gains that make the system stable, while the small signal 
model failed to do so. As a result, we can conclude that DPM 
is more precise and can be used to design the parameters of 
the real system. 

Finally, the proposed modeling approach can be used for 
other control techniques. As an example, in order to deal with 
the power coupling caused by the line impedance, virtual ω–
E frame power control method is analyzed. Thus, DPM was 
obtained, and the root locus shown that this method can 
greatly improve the system stability. 
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