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Abstract—In this paper, a hierarchical control scheme is pro-
posed for enhancement of Sensitive Load Bus (SLB) voltage 
quality in microgrids. The control structure consists of primary 
and secondary levels. The primary control level comprises Dis-
tributed Generators (DGs) local controllers. Each of these con-
trollers includes a selective virtual impedance loop which is con-
sidered to improve sharing of fundamental and harmonic 
components of load current among the DG units. The sharing 
improvement is provided at the expense of increasing voltage 
unbalance and harmonic distortion. Thus, the secondary control 
level is applied to manage the compensation of SLB voltage un-
balance and harmonics by sending proper control signals to the 
primary level. DGs compensation efforts are controlled locally at 
the primary level. The system design procedure for selecting 
proper control parameters is discussed. Simulation results are 
provided in order to demonstrate the effectiveness of the pro-
posed control scheme. 
  

Index Terms—Distributed Generator (DG), microgrid, voltage 
harmonics, voltage unbalance. 

I.  INTRODUCTION 
ISTRIBUTED Generators (DGs) are often connected to 
the utility grid or microgrid through a power-electronic 

interface converter. Microgrid is a local grid consisting of 
DGs, energy storage systems and dispersed loads which may 
operate in grid-connected or islanded mode [1].                                                                                                                   

Recently, some control approaches are proposed to control 
the DG interface converter aiming to compensate power qual-
ity problems. A single-phase DG which injects harmonic cur-
rent to compensate voltage harmonics is presented in [2]. 
However, in the case of sever harmonic distortion, a large 
amount of the interface converter capacity is used for compen-
sation and it may interfere with the power supply by the DG.  

Harmonic compensation approaches of [3]-[5] are based on 
making the DG units of a power distribution system emulate a 
resistance at harmonic frequencies. Moreover, a method for 
compensation of voltage harmonics in an islanded microgrid 
has been presented in [6]. This method is also based on the 
resistance emulation and applies a harmonic power droop cha-
racteristic in order to share the compensation effort among 
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DGs.  
The approach presented in [7] is based on controlling each 

DG unit of a microgrid as a negative sequence conductance to 
compensate voltage unbalance. The conductance reference is 
determined by applying a droop characteristic which uses neg-
ative sequence reactive power to provide the compensation 
effort sharing. The control system of [7] is implemented in dq 
(synchronous) reference frame while [8] addresses the voltage 
unbalance compensation using αβ (stationary) frame control.  

The control method presented in [9] is based on using a 
two-inverter interface converter (one connected in shunt and 
the other in series with the grid) in order to control power flow 
and also to compensate the voltage unbalance. This two-in-
verter structure can be unattractive considering the cost and 
volume of the DG interface converter.  

In addition, it should be noted that the methods presented in 
[3]-[8] are designed to enhance voltage quality at the DG ter-
minal while the power quality at the “Sensitive Load Bus 
(SLB)” is an important concern in microgrids. 

Furthermore, if the voltage distortion is compensated lo-
cally, it may be amplified in the other buses of the electrical 
system including the SLB. This phenomenon is called 
“whack-a-mole” in the case of harmonic distortion [10].   

As the first step to address these concerns, the authors pro-
posed a hierarchical control scheme for direct compensation of 
fundamental voltage unbalance at SLB of a microgrid where 
the unbalance was originated from linear unbalanced loads 
[11]. In the present paper, this scheme is extended considering 
unbalanced harmonic distortion caused by nonlinear unbal-
anced loads. In this case, the negative sequence of fundamen-
tal component (which creates SLB fundamental voltage unbal-
ance) as well as positive and negative sequences of SLB volt-
age main harmonics should be compensated.  

 In the applied hierarchical structure, the central secondary 
control level manages the compensation by sending proper 
control signals to the primary level. The sharing of compensa-
tion effort among the DGs is controlled locally at the primary 
level. By sharing the compensation effort, the load current will 
not necessarily be shared properly, especially, in the microgr-
ids which are noticeably asymmetrical in terms of the line 
impedances and/or loads distribution. Thus, a selective virtual 
impedance loop is proposed for each DG unit to improve the 
load sharing.  
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Fig. 1.  Hierarchical control scheme for a general microgrid.  

II.  MICROGRID HIERARCHICAL CONTROL SCHEME 
Fig. 1 shows application of the proposed hierarchical con-

trol scheme to a general microgrid which includes a number of 
electronically-interfaced DGs connected to the Source Buses 
(SB). Each DG unit may consist of power generators and/or 
energy storage systems. Furthermore, some dispersed loads 
including balanced/unbalanced linear and nonlinear loads are 
connected to the Load Buses including SLB and Non-
Sensitive Load Buses (NLB). The hierarchical scheme 
consists of two control levels. The primary level comprises 
DG local controllers and the secondary level is a central 
controller which sends proper reference signals to each of the 
DGs in order to reduce the voltage unbalance and harmonic 
distortion at the microgrid SLB to the required level.  

The secondary controller can be far from DGs and SLB. 
Thus, as shown in Fig. 1, SLB voltage information is sent to 
this controller by means of low bandwidth communication 
(LBC). Low bandwidth is applied to avoid dependence on the 
availability of a high bandwidth which may endanger the sys-
tem reliability. In order to ensure LBC adequacy, positive and 
negative sequences of SLB voltage fundamental and main 
harmonic components are extracted in dq frame and the resul-
tant dc values are transmitted to the secondary controller. In 
Fig. 1, superscripts “+”, “–”, “1” and “h” represent positive 
sequence, negative sequence, fundamental component and hth 

harmonic component, respectively. For instance, h
dqv +  is the 

positive sequence of hth harmonic voltage in dq frame.  The 
details of voltage components extraction are depicted in 
“Measurement Block” of Fig. 2. As seen, in order to extract 

1
dqv + , 1

dqv − , h
dqv +  and h

dqv − , at first, the measured three-phase 

voltage of SLB (vabc) is transformed to dq reference frames 
rotating at ω, –ω, hω and –hω, respectively. ω is the system 
angular frequency estimated by a phase-locked loop (PLL) 
[12]. Afterwards, three second-order 5Hz low pass filters 
(LPF) are applied. The second-order filters are used since the 
first-order ones were not able to provide acceptable perfor-

mance. 
On the other hand, as shown in Figs 1 and 2, compensation 

references for fundamental component unbalance and hth har-

monic positive and negative sequences ( 1 , h
dq dqC C− + , and h

dqC − , 

respectively) which are also in dq frame are generated by the 
secondary controller and sent to the DGs local controllers 
using LBC. As shown in Fig. 2, these references are fed to 
“Compensation Effort Controller” block of each DG local 

controller and the outputs ( 1
,dq jC − , ,

h
dq jC +  and ,

h
dq jC −  as the 

compensation references for DGj) are transformed to αβ 
frame, added together and injected as a reference for the DG 
voltage controller. The rotation angles of transformations are 

set to *φ− , *hφ  and *hφ−  for the compensation references of 
voltage unbalance and positive and negative sequences of hth 

voltage harmonic, respectively. *φ is the DG voltage reference 
phase angle generated by the active power controller [11].  

It should be noted that the harmonic and also unbalance 
variations in the practical grids are usually slow [13]. Thus, it 
is not necessary to provide a very fast control action. This fact 
confirms the sufficiency of LBC for the proposed compensa-
tion approach. On the other hand, low communication band-
width can be provided at a relatively low cost.  

The total time needed to transmit the measured and control 
signals between control levels and to perform the required 
control actions depends on the data size, bandwidth and delay 
of communication and also the processing time of the meas-
urement and control devices [14].  

Fig.1 is depicted assuming one SLB in the microgrid. 
However, in the case of multiple SLBs, the microgrid can be 
divided to some control regions that each has a dedicated sec-
ondary controller and includes one SLB. Each secondary con-
troller manages the voltage quality enhancement at the corres-
ponding SLB by sending control signal to the DG units of the 
region. 
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Fig. 2.  Detailed block diagram of the control system. 

It is also noteworthy that the proposed control approach is 
applicable for voltage quality enhancement in both grid-
connected and islanded modes of microgrid operation. It is 
only necessary to make the necessary changes to the power 
controllers of DG units depending on the operation mode.  

III.  DG LOCAL CONTROL SYSTEM 
The structure of each DG power stage and local controller 

is shown in Fig. 2. As it can be seen, a feedforward loop may 
be included to consider small variations of dc link voltage 
( dcV ).  
The local control of DGs is performed in αβ reference frame. 
As shown in “DGj local controller” block, the reference of the 
DG output voltage in αβ frame ( *vαβ ) is provided by power 

controllers, virtual impedance loop and compensation effort 
controller. Then, according to *vαβ  

and the instantaneous 

measured output voltage ( ov αβ ), the reference current ( *iαβ ) is 

generated. On the other hand, LC filter inductor current is 
measured, transformed to αβ frame ( Li αβ ) and controlled by 

the current controller to provide voltage reference for pulse 
width modulator (PWM).  

A.  Fundamental Positive Sequence Powers Controllers  
Control of the active and reactive powers is performed 

assuming a mainly inductive microgrid. The power controllers 
determine the reference values of DGs output voltage phase 
angle and amplitude (φ* and E*, respectively) considering the 

operation mode of microgrid, i.e. islanded or grid connected. 
Design of the power controllers is sufficiently studied in the 
literature (e.g., [15],[16]) and will not be discussed.  

B.  Voltage and Current Controllers 
The following proportional-resonant (PR) voltage and 

current controllers are applied in this paper.  
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where pVk ( pIk ) and rVkk  ( rIkk ) are the proportional and kth 

harmonic (including fundamental component as the first 
harmonic) resonant coefficients of the voltage (current) 
controller, respectively. cVω  and cIω  represent voltage and 
current controllers cut-off frequencies, respectively. 

In order to design these controllers, the closed-loop transfer 
function of local control system is extracted [8]. Bode diagram 
of this transfer function using the power stage and local 
controller parameters (Tables I and II) is depicted in Fig. 3. As 
seen, the gain and phase angle at the resonant frequencies are 
fixed at unity and zero, respectively. Thus, proper tracking of 
the voltage reference is ensured.  

The output impedance of the interface inverter can be 
expressed as ( ) ( ) ( )o v roZ s Z s Z s′= +  where ( )vrZ s  represents 

the virtual impedance and ( )Z so′  is the inverter output 



 

impedance without addition of the virtual impedance [8]. Fig. 
4 shows ( )Z so′  

magnitude plot of DG units. It can be observed 

that the magnitude is approximately zero at fundamental and 
3rd, 5th and 7th harmonic frequencies.  

C.  Virtual Impedance Loop  
The block diagram of the virtual impedance is depicted in 

Fig. 5 where 1
vrR + , 1

vrR −  and h
vrR  represent the virtual resis-

tance for fundamental positive sequence, fundamental nega-
tive sequence and hth harmonic (both positive and negative 
sequences) components of DG output current, respectively. 

vrL  and ω0 are respectively the virtual inductance against 
fundamental positive sequence current and the rated fre-
quency. In order to provide proper control of fundamental 
positive sequence powers, the microgrid is made more induc-
tive by including vrL . However, a small 1

vrR +  is added to damp 
the system oscillations [15],[17].  

The basic structure of the fundamental frequency virtual 
impedance has been proposed in [18]. Moreover, it is demon-
strated in [17], [19] and [20] that the virtual impedance can 
improve the sharing of nonlinear (harmonic) load among pa-
rallel converters. Hence, the basic structure is extended by 
including virtual resistances for the fundamental negative se-
quence ( 1

vrR − ) and the main harmonic components ( h
vrR , h=3, 

5 and 7) of the DG output current in order to improve the 
sharing of these current components. Output current compo-
nents are extracted according to [21] and [22]. 

The sharing improvement is achieved at the expense of 
distorting DGs output voltage as a result of voltage drop on 
the virtual resistances. Thus, for selection of virtual resistance 
values, a trade-off should be considered between the amount 
of output voltage distortion and sharing accuracy. Further-
more, considering double rating of DG1 in the studied micro-
grid, its virtual impedances at fundamental and harmonic fre-
quencies are set at half value to improve the current sharing 
(see Table II).  

 

 
 
 
 
 

 
 

Fig. 3.  Bode diagram of closed loop transfer function. 
 

 
Fig. 4.  Magnitude of ( )Z so

′ .  
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Fig. 5.  Block diagram of selective virtual impedance. 

 

D.  Compensation Effort Controller 
The compensation effort controller manages the sharing of 

compensation workload among the microgrid DGs. The block 
diagram of DGj effort controller is shown in Fig. 6. As seen, 
DG unit output current in αβ frame ( oi αβ ) is fed to this 

controller and positive and negative sequences of its α-axis 
fundamental component ( 1

oi α
+

 and 1
oi α
− ) and hth harmonic 

component ( h
oi α

+ and h
oi α

− ) are extracted. Then, 1
oi α
+ , 1

oi α
− , h

oi α
+  

and h
oi α

−  are applied to calculate current unbalance factor 

( IUF ) and harmonic distortion indices of hth harmonic 

positive and negative sequences ( h
IHD +

 and h
IHD − , 

respectively). IUF , h
IHD +  and h

IHD −
 are calculated as the 

ratio of 1
oi α
− , h

oi α
+  and h

oi α
−

 
rms values ( 1

oI
α
− , h

oI
α
+  and h

oI
α
− , 

respectively) to rms value of 1
oi α
+  ( 1

oI
α
+ ), respectively. Note 

that using β-components for calculation of unbalance and 
harmonic distortion indices leads to the same results because 
the magnitude of α- and β-components is equal for both 
positive and negative sequences of fundamental and harmonic 
components.   
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Fig. 6.  Block diagram of compensation effort controller of DGj. 

 
Finally, the references for compensation of fundamental 

unbalance and hth harmonic positive and negative sequences 

by DGj ( 1
,dq jC − , ,

h
dq jC +  and ,

h
dq jC − , respectively) are calculated 

as shown in Fig. 6 where 0, jS  is the rated capacity of DGj and 

subscript “max” represent the maximum value. By multiplying 
the ratio of DGj rated capacity ( 0, jS ) to the total capacity of 

the microgrid DGs ( 0,
1

n
l

l
S

=
∑ ), compensation effort of each DG 

will be proportional to its rated capacity. 

IUF , h
IHD +  and h

IHD −  can be considered as the indices 
of compensation effort because as shown in the simulation 
results, compensation of SLB voltage unbalance and hth 
harmonic positive and negative sequences is achieved through 
injecting corresponding current components by the DGs. 
Thus, the terms ( ),maxI IUF UF− , ( ),max

h h
I IHD HD+ +−

 
and 

( ),max
h h
I IHD HD− −−  in Fig. 6 contribute towards sharing of 

compensation effort. In fact, increase of each component 
compensation effort leads to the increase of corresponding 
index. Consequently, ( ),maxI IUF UF− , ( ),max

h h
I IHD HD+ +−  

or ( ),max
h h
I IHD HD− −−

 
decrease and it leads to compensation 

effort decrease. So, inherent negative feedbacks exist in the 
effort controller. It is assumed that the maximum values of 
unbalance factor and harmonic distortion indices are unity. 
This assumption is valid for most of the practical cases; 
however, larger constants can be used as the maximum values. 

IV.  SECONDARY CONTROLLER 
The block diagram of the secondary controller is also 

shown in Fig. 2. As seen, dq components of SLB voltage fun-

damental positive and negative sequences ( 1
dqv +  and 1

dqv − ) and 

hth harmonic positive and negative sequences ( h
dqv +

 
and )h

dqv −  

are used to calculate voltage unbalance factor (UF ) and hth 
harmonic positive and negative sequence distortion indices 
( hHD +  and hHD − , respectively). Calculation block is similar 

to “HD&UF Calculation” block of Fig. 6. Then,UF , 
hHD + and hHD −

 are compared with the reference values 
( refUF , h

refHD +  and h
refHD − , respectively) and the errors are 

fed to proportional-integral (PI) controllers. Afterwards, the 

outputs of these controllers are multiplied by 1
dqv − , h

dqv +  and 

h
dqv −  to generate 1

dqC − , h
dqC +  and h

dqC − , respectively. If the 

unbalance factor or any of the harmonic distortion indices are 
less than the reference value, the respective deadband block 
prevents the increase of the distortion by the PI controller.  

It is well known that with the increase of proportional coef-
ficient of PI controllers, the response time is reduced, but, the 
control system becomes more prone to instability. On the 
other hand, in order to minimize the effect of PI controllers 
phase lag on the compensation performance, the corner angu-
lar frequency of these controllers which can be calculated as 
the ratio of integral to proportional coefficients, should be set 
at one decade or more below the frequency of under-
compensation component [13]. Harmonic and unbalance 
variations are usually slow; thus, it is not necessary to apply 
high bandwidth PI controllers.  

Here, secondary level comprises PI controllers for compen-
sation of SLB voltage fundamental negative sequence and 3rd, 
5th and 7th harmonic components. The parameters of PI con-
trollers are listed in Table III.  

V.  SIMULATION RESULTS 
Fig. 7 shows the simulation test system which is a two-DG 

islanded microgrid comprising two source buses, one sensitive 
load bus and one non-sensitive load bus. A diode rectifier and 
a star-connected linear load are connected to SLB. It is as-
sumed that one phase of nonlinear load is disconnected to 
create unbalanced voltage distortion. Furthermore, a balanced 
nonlinear load is connected to NLB. Switching frequency of 
the DGs inverters is 10 kHz. The test system parameters are 
listed in Table I. Note that in this Table, the impedances of 
linear load and lines are presented in terms of resistance (Ω) 
and inductance (mH). Simulations are performed using 
MATLAB/Simulink. Three simulation steps are considered: 

• Step 1 ( 0 2t s≤ < ) 
DGs operate only with fundamental positive sequence 
virtual impedance and secondary control is not acting.   

• Step 2 ( 2 4t s≤ < ) 
Virtual resistances for fundamental negative sequence 
and harmonic components are added.  

• Step 3 ( 4 7t s≤ < ) 
Secondary control is activated. The reference values of 
unbalance factor and harmonic distortion indices are 
0.2%. 

As seen in Table IV, before activating the virtual resis-
tances for fundamental negative sequence and harmonic com-



 

ponents, DGs output voltages are approximately free of dis-
tortion. This fact can also be observed in Fig. 8 as the low val-
ues of UF  and 3HD −

 
before t=2s. It demonstrates the effec-

tiveness of local controllers in tracking the voltage reference. 
But, as shown in Table IV and Fig. 8, SLB voltage is distorted 
noticeably due to voltage drops on distribution lines. It should 
be noted that in order to avoid excessive length, simulation re-
sults of other distortion indices are not included. 

Table V shows negative sequence single-phase waveforms 
at fundamental and 3rd harmonic frequencies as well as three-
phase waveforms of DGs output current in different simula-
tion steps. Considering double rating of DG1, it can be noticed 
from Table V that the load current is not properly shared in the 
first simulation step. In fact, all components of the load cur-
rent except fundamental positive sequence one are shared 
according to the test system topology and before adding 1

vrR − , 
3
vrR , 5

vrR  and 7
vrR , DG2 will supply larger portions of the fun-

damental negative sequence and the harmonic currents. As 
mentioned before, fundamental positive sequence component 
of the load is shared by using droop controllers. Fig. 9 demon-
strates the proper sharing of P+ and Q+ between DGs through-
out the under-study interval. It demonstrates the effectiveness 
of the droop controllers.  

In simulation Step 2, virtual resistances for fundamental 
negative sequence and harmonic components are added. As 
seen in Table V, the current sharing is improved noticeably; 
however, still is not in proportion to the DGs rated powers. 
The sharing improvement is achieved at the expense of vol-
tage distortion increase at DGs terminals and consequently at 
SLB, as can be observed in Table IV and Fig. 8. On the other 
hand, it can be seen in Fig. 9 that the addition of these virtual 
resistances leads to the change of fundamental positive se-
quence powers. In fact, due to nonlinear nature of the diode 
rectifiers, fundamental positive sequence component cannot 
be considered completely decoupled from the other compo-
nents. 
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Fig. 7.  Test system for simulation studies. 

In the last simulation step, selective compensation of SLB 
voltage main harmonics and fundamental negative sequence 
component is activated at t =4s. As seen in Fig. 8, UF  and 

3HD −
 

track the reference values properly. The other har-
monic components which are not shown in this paper show the 
same behavior. Consequently, SLB voltage quality is signifi-
cantly improved as seen in Table IV. 
 

TABLE I 
POWER STAGE PARAMETERS 

dc link voltage LC Filter  
Inductance 

LC Filter 
Capacitance 

Nonlinear Loads 
Tie Lines 

 Vdc (V)  L (mH) C (µF) Z (Ω,mH)
650 1.8 25 0.1, 1.8 

Distribution Lines Nonlinear Loads Linear Load 

Z1,Z2,Z3 (Ω,mH) 
CNL/RNL1,RNL2/LNL 
(µF)/(Ω)/(mH) 

ZL (Ω,mH) 
0.1,1.8 235/50,200/0.084 50,20 

 

 

TABLE II 
DGS LOCAL CONTROLLER PARAMETERS 

Power Controllers (DG1/DG2) [11] 
mD (rad/W) mP (rad/W.s) nP (V/VAr) 

0.6×10-5/1.2×10-5 0.6×10-4/1.2×10-4 1.4×10-1/2.8×10-1

Virtual Impedance (DG1/DG2) 
1
vrR + (Ω) vrL (mH) 1

vrR − (Ω) 3
vrR (Ω) 5

vrR (Ω) 7
vrR (Ω) 

0.3/0.6 2.5/5 1.5/3 2/4 4/8 4/8 
Voltage/Current Controller 

kpV/kpI krV1/krI1  krV3/krI3 krV5/krI5 krV7/krI7 ωcV/ωcI (rad/s) 
1/5 100/1000 200/400 50/100 100/100 2/2 

 

 

TABLE III 
SECONDARY PI CONTROLLERS PARAMETERS 

Fundamental Negative Sequence 3rd Harmonic Positive and Negative 
Sequences 

proportional integral proportional integral
3 90 1.25 110 

5th Harmonic Positive and Negative 
Sequences 

7th Harmonic Positive and Negative 
Sequences 

proportional integral proportional integral
1 150 0.95 200 

 
  (a) 

 
  (b) 

 

Fig. 8.  (a) DGs and SLB voltage unbalance factor, (b) DGs and SLB voltage 
distortion index for 3rd harmonic negative sequence.   
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     (a) 

 
  (b) 

 

Fig. 9.  DGs positive sequence output powers: (a) P+, (b) Q+.  
 
Moreover, as observed in Table V, fundamental negative 

sequence and 3rd harmonic negative sequence of DGs output 
current increase to provide compensation. The same behavior 
has been achieved for other harmonic components. The in-
crease of these current components leads to the increase of 
DGs output current as shown in Table V. However, due to 
double capacity, the increase of DG1 current is significantly 
higher. In addition, it can be observed that the current sharing 
is noticeably improved after compensation activation. This 
fact reveals the effectiveness of the proposed compensation 
effort controller and virtual impedance loop.  

Furthermore, it can be observed in Table IV that the com-
pensation is achieved by the increase of DG1 output voltage 
distortion. Note that the impedance of the distribution line 
between SB1 and SLB is relatively high; also, the fundamental 
negative sequence and harmonic components of the load 
which are supplied by this DG are approximately twice of the 
amounts of DG2. Thus, in order to compensate the voltage 
drops on the lines and the virtual resistances and provide ap-
proximately sinusoidal voltage at SLB, DG1 output voltage 
becomes noticeably distorted. On the other hand, due to low 
value of the line impedance between SB2 and SLB and also 
lower load portion of DG2, the distortions of SLB and DG2 
voltages change with a similar behavior.  

Moreover, it can be seen in Fig. 9 that active and reactive 
powers change as a result of compensation. As mentioned 
before, it is originated from coupling between fundamental 
positive sequence and other components. 

VI.  CONCLUSIONS 
A hierarchical control structure consisting of primary and 

secondary levels is proposed for microgrids. The secondary 
level controls selective compensation of SLB voltage 
fundamental negative sequence and positive and negative 

sequences of main harmonics by sending proper control 
signals to the primary level. A new method for sharing of 
harmonic compensation effort is presented. Moreover, a 
selective virtual impedance scheme is proposed to improve 
load sharing among the microgrid DGs. The control system 
design is discussed in detail. Simulation results show that the 
SLB voltage quality is enhanced significantly by using the 
proposed compensation method while the load current is 
shared properly.  
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TABLE IV 

VOLTAGE WAVEFORMS AT DIFFERENT SIMULATION STEPS 
 Step1 Step 2 Step 3

SB1 

 

SB2 

 

SLB 

 
  

 
TABLE V 

DGS OUTPUT CURRENT WAVEFORMS AT DIFFERENT SIMULATION STEPS 
 Step1 Step 2 Step 3

fundamental 
negative 
sequence 

(DG1: solid 
DG2: dashed) 

3rd harmonic 
negative 
sequence 

(DG1: solid 
DG2: dashed) 

total output 
current 

(DG1: solid  
DG2: dashed) 

 


