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ITERATED SMOOTHING FOR ACCELERATED GRADIENT
CONVEXMINIMIZATION IN SIGNAL PROCESSING

Tobias Lindstrøm Jensen, Jan Østergaard, Søren Holdt Jensen

Aalborg University
Department of Electronic Systems

Niels Jernesvej 12, 9220 Aalborg Ø, Denmark

ABSTRACT

In this paper, we consider the problem of minimizing a non-smooth
convex problem using first-order methods. The number of iterations
required to guarantee a certain accuracy for such problems is often
excessive and several methods, e.g., restart methods, have been pro-
posed to speed-up the convergence. In the restart method a smooth-
ness parameter is adjusted such that smoother approximations of
the original non-smooth problem are solved in a sequence before
the original, and the previous estimate is used as the starting point
each time. Instead of adjusting the smoothness parameter after each
restart, we propose a method where we modify the smoothness pa-
rameter in each iteration. We prove convergence and provide simula-
tion examples for two typical signal processing applications, namely
total variation denoising and !1-norm minimization. The simula-
tions demonstrate that the proposed method require fewer iterations
and show lower complexity compared to the restart method.

Index Terms— convex optimization, first-order optimization
methods, smoothing techniques, restart, continuation.

1. INTRODUCTION

Recently there has been a renewed interest in optimal first-order
methods even though these methods have been known for some time
[1, 2], see also [3] for a unified framework. The inspiration for the
current interest in first-order methods appears to come from a recent
method that guarantee linear complexity for non-smooth problems
with certain structures [4].

The motivation for using first-order methods is usually in the
case of large scale problems, where second-order methods might
scale poorly or problems where moderate accuracy of the solution
is sufficient. Such problems occurs in image processing [5, 6], but
also compressed sensing recovery applies first-order methods [7–9].
These methods have also been used for robust numerical software
packages [9, 10].

One method to minimize a non-smooth function is by minimiz-
ing a smooth approximation of the original non-smooth function.
The effectiveness of such an approach is dependent upon the choice
of a smoothness parameter, which also determines the accuracy of
the smooth approximation. A large smoothness parameter yields a
very smooth problem and in the early iterations of the algorithm,
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the function value will quickly decrease. However, the algorithm
might not converge because the smooth approximation is not accu-
rate enough. On the other hand, a sufficiently small smoothness pa-
rameter, gives a less smooth but more accurate approximation. In
this case the function value will slowly decrease but convergence
within the required accuracy is guaranteed. To decrease the num-
ber of iterations, and thereby speed up the algorithm, one may use
a restart methods. The idea is to combine the fast decreasing func-
tion value in the early iterations for a very smooth problem with
a sufficiently well approximated smooth function to ensure conver-
gence in the final iterations. The algorithm starts by solving a much
smoother problem than the original problem and then subsequently
solve lesser smooth problems, using the previous estimate as the
starting point at each restart, see [9,11] and references therein. Such
an approach is considered a heuristic except for the case of strongly
convex functions where there are interesting theoretical results [11],
or [12, §5.1.2] for composite objective functions.

In this paper, we will consider convex (but not strongly convex)
non-smooth functions. For this case the results indicate that continu-
ation or restart are practical efficient methods to decrease the number
of iterations and yet reach the required accuracy [9]. We first review
the restart method [9, 11] and relate this approach to the continua-
tion method, see [7,13] and references therein. We also demonstrate
via simulations that restart methods reduce the complexity compared
to an approach with a fixed smoothness parameter. Then, inspired
by [7, 9, 11, 13] we propose a new method where we decrease the
smoothness parameter in each iteration and prove that it converges.
Our bound is, however, loose and the actual complexity is in practice
much better than what the bound suggests. Simulation examples for
two typical signal processing applications, namely total variation de-
noising and !1-norm minimization, show that the proposed method
yield lower complexity compared to both the fixed smoothing ap-
proach and the restart approach.

2. A SMOOTHING METHOD

Let us consider the following optimization problem

minimize f(x)
subject to x ∈ Qp

(1)

with the dual problem

maximize g(u)
subject to u ∈ Qd

(2)

where f is a non-smooth, non-strongly, convex function and Qp,
Qd are convex sets. Let x∗ and u∗ be solutions to the problems (1)



and (2), respectively. The complexity estimate for problem (1) is
O(1/ε2), where ε is the accuracy of the objective value

f(x) − f(x∗) ≤ f(x) − g(u) ≤ ε, x ∈ Qp, u ∈ Qd .

In [4] it was, however, shown that for problems with certain struc-
tures it is possible to obtain the complexity O(1/ε), which is one
order faster than the sub-gradient method. The idea is to exploit
the structure of the non-smooth problem. This is done by making a
smooth approximation of the non-smooth function and then subse-
quently minimize the smooth approximation using an optimal first-
order method for the class of smooth problems.

In the following we review the steps required for approximating
a non-smooth function by a smooth function. A more general ap-
proach is given in [4], but this reduced form will be sufficient for our
simulations in Sec. 5. Let the function f have the form

f(x) = max
u∈Qd

uT Ax , (3)

where we now assume Qd is a closed and bounded convex set. We
then approximate f by fµ where

fµ(x) = max
u∈Qd

uT Ax − µdd(u) ,

withµ>0 called the smoothness parameter and dd(u) ≥ 1
2‖u−û‖2

2.
The function fµ satisfy

fµ(x) ≤ f(x) ≤ fµ(x) + µ∆d , ∆d = max
u∈Qd

dd(u) . (4)

The approximation function is also smooth, i.e., it has Lipschitz con-
tinuous gradient

‖∇fµ(x) −∇fµ(x̃)‖2 ≤ Lµ‖x − x̃‖2, x, x̃ ∈ Qp

with

Lµ =
‖A‖2

2

µ
. (5)

It was shown in [4] that the optimal selection of a fixed µ for achiev-
ing an ε-accuracy is

µ =
ε

2∆d
, (6)

which results in an ε/2 approximation of f , i.e.,

fµ(x) ≤ f(x) ≤ fµ(x) +
ε
2

. (7)

We now apply the smooth approximation to an optimal first-order
method with complexity estimateO(

p

L/ε) [14] where L is the Lip-
schitz constant of the gradient of the objective function. Using (5)
and (6) we obtain the complexity O(1/ε) for non-smooth problems.

3. RESTART

As indicated in (6), a fixed µ is selected so small that the approxi-
mation accuracy in (7) would be smaller than the required accuracy.
Another approach is to select µ large in the early iterations because
the smooth approximation converges like O(

p

Lµ/ε) and then in
the final iterations select µ small enough to ensure the smooth ap-
proximation comes within the required accuracy. This idea is used
in [9, 11], where the main algorithm is restarted several times with
first a large µ, and then subsequently a smaller and smaller µ. Note
that in [7, 13], they solve composite problems of the form

min
x
ψ(x) +

1
µ

h(x) ,

where h(x) is smooth and ψ(x) is non-smooth. The smoothness,
or the Lipschitz constant of 1

µ
∇h(x), is L = 1

µ
L(∇h(x)) where

L(f) is the Lipschitz constant of the function f . For small µ we will
then have a large Lipschitz constant of the gradient function. The
continuation idea in [7,13] is then similar to the restart approaches in
[9, 11] because the sequence of problems solved in the continuation
strategy becomes less and less smooth, as in the restart approach.

For strongly convex functions, it is possible to guarantee that the
previous estimate is useful as a starting point, i.e., warm start, and
then show the advantage of applying a restart method. Let φ be a
strongly convex max-type function with strong convexity parameter
σ, but φ does not have a Lipschitz continuous gradient. We then
have [14, Corollary 2.3.1]

σ
2
‖y − y∗‖2

2 ≤ φ(y) − φ(y∗), y ∈ Q

where y∗ is the solution that minimize φ(y) for y ∈ Q. It was shown
in [11] that the restart algorithm has the complexity O(1/log(ε)) for
strongly convex non-smooth functions. Warm start approaches for
first-order methods are also studied in [15] and in [12, §5.1.2]. The
restart algorithm from [11] is given below.

Algorithm: Restart [11]

Given a x̄(0),ū(0), γ > 0, k = 0 and ε

Repeat for j = 0, 1, 2, . . .

ε̄j = max
“

f(x̄(j))−g(ū(j))
γ

, ε
”

x̄(j+1), ū(j+1), k̄(j+1) = NESTEROV(x̄(j), ε̄j)

k = k + k̄(j+1)

if f(x̄(j+1)) − g(ū(j+1)) ≤ ε then break

The function NESTEROV is not shown, but is the algorithm pre-
sented in [4, §3.11], which outputs a primal and dual ε̄j -optimal so-

lution after k̄(j+1) iterations with the starting point x̄(j) and using

the smoothness parameter µ =
ε̄j

2∆d
.

4. ITERATED SMOOTHING

In the previous section we reviewed a restart algorithm where the
smoothness parameter was decreased before a restart. The idea pro-
posed in this section is to decrease the smoothness parameter in each
iteration instead of only after each restart, using an optimal first-
order method as base.

We will study the convergence properties of such an algorithm.
Let {(x(j), y(j), z(j), θj)} be generated by Algorithm 1 or Algo-
rithm 2 from [3], and use the smooth approximation fµj (x) (with a
variable smoothness parameter µj ). We then have

fµj (x(j+1)) ≤ (1 − θj)fµj (x(j)) + θjfµj (x∗)

+θ2j Lµj ( 1
2‖x

∗ − z(j)‖2
2 − 1

2‖x
∗ − z(j+1)‖2

2)

for the iterations j = 0, 1, ... Using the approximation in (4), we
obtain

f(x(j+1)) − µj∆d ≤ (1 − θj)f(x(j)) + θjf(x∗)

+θ2j Lµj ( 1
2‖x

∗ − z(j)‖2
2 − 1

2‖x
∗ − z(j+1)‖2

2).



With θk = 2
k+2 , we select µj = αθ2j as a quadratically decreasing

function. This will ensure that the approximation error converges to
a constant. We then obtain

f(x(j+1)) − f(x∗) − (1 − θj)(f(x(j)) − f(x∗))

≤
‖A‖2

2

α

“

1
2‖x

∗ − z(j)‖2
2 − 1

2‖x
∗ − z(j+1)‖2

2

”

+ θ2jα∆d .

Adding the inequalities from j = 0, 1, . . . , k − 1, gives

f(x(k)) − f(x∗) +
k−1
X

j=1

θj(f(x(j)) − f(x∗))

≤
‖A‖2

2

α
( 1
2‖x

∗ − z(0)‖2
2 − 1

2‖x
∗ − z(k)‖2

2) +
k−1
X

j=0

θ2jα∆d .

We then obtain the lower bound

f(x(k)) − f(x∗) +
k−1
X

j=1

θj(f(x(j)) − f(x∗))

≥ min
i=1,...,k

n

f(x(i)) − f(x∗)
o“

1 +
k−1
X

j=1

θj

”

.

For θk = 2
k+2 , we have

k−1
X

j=1

θj ≥ 2 loge(k + 1) − 3,
k−1
X

j=0

θ2j ≤
∞

X

j=0

θ2j =
2
3
π2 − 4 .

It is important that the sum of the approximation errors is bounded by
a constant. This is achieved for quadratically decreasing functions,
which motivated our selection µj = αθ2j . For k ≥ 2,

min
i=1,...,k

n

f(x(i)) − f(x∗)
o

≤
1

2 loge(k+1)−2

„

‖A‖2
2

2α
‖x∗ − x(0)‖2

2 + α∆d

„

2
3
π2 − 4

««

.

The algorithm converges, although the upper bound decreases
slowly. The parameter α works as a tradeoff between the two
terms in the brackets. Since ‖x∗ − x(0)‖2

2 is unknown in practice
and the bound above is loose, we are instead inspired by (6) and set

α =
f(x(0)) − g(u(0))

2∆dc
,

where c is a scaling reflecting that g(u(0)) might severely under-
estimate f(x∗). The algorithm Smooth implements the iteratively
decreasing smoothness parameter studied in this section and is ap-
plied to Algorithm 1 in [3], with the smoothing technique presented
in [4]. The function PQ(x) is the projection of x onto Q,

PQ(x) = argmin
y∈Q

‖x − y‖2
2.

5. SIMULATIONS

In this section, we compare the three algorithms, Fixed (as in [4,
§3.11] with a fixed µ selection), Restart and Smooth for solving
two different problems on the form (1) and (3). For algorithms Fixed
and Smooth we record the number of iterations k required to reach
the duality gap

f(x(k)) − g(u(k)) ≤ ε, x(k) ∈ Qp, u(k) ∈ Qd

Algorithm: Smooth

Given a x(0), u(0) and ε, set α= f(x(0))−g(u(0))
2∆dc

, z(0) =x(0)

Repeat for k = 0, 1, 2, . . .

y(k) = (1 − θk)x(k) + θkz(k), θk = 2
k+2

µk = αθ2k

ũ(y(k)) = argmax
u∈Qd

n

uT Ay(k) − µkdd(u)
o

u(k) = (1 − θk)u(k) + θkũ(y(k))

if f(x(k)) − g(u(k)) ≤ ε then break

∇fµk (y(k)) = AT ũ(y(k))

z(k+1) = PQp

“

zk − 1
θkLµk

∇fµk (y(k))
”

x(k+1) = (1 − θk)x(k) + θkz(k+1)

where x(k) ∈ R
N×1. For the algorithm Restart, we record the total

number of inner iterations k. As primal and dual prox-function we
use dp(x) = 1

2‖x − x(0)‖2
2 and dd(u) = 1

2‖u‖
2
2 as in [9] (û = 0).

By choosing the center of the primal prox-function as the starting
point for the new iterations, we obtain a good initial/warm starting
point in each restart [9]. For a fixed accuracy, it was suggested in [9]
to use a fixed number of restarts. However, since we sweep over a
large range of accuracies it is more appropriate to allow a variable
number of restarts. We therefore select γ as suggested in [11].

5.1. Total Variation Denoising

Our first example is the total variation denoising problem [10, 16],

minimize
m

X

i=1

n
X

j=1

‖Dijx‖2

subject to ‖x − b‖2 ≤ δ

where Dijx is an approximation of the gradient at pixel i, j, and
m, n is the image dimensions with the number of variables N =
mn. We observe b = x0 + e with x0 the original image and e being
i.i.d. Gaussian noise. As initialization we use x(0) = x̄(0) = b and

u(0) = ū(0) = argmax
u∈Qd

uT Ax(0) −
ε

2∆d
dd(u) (8)

with A = [D11, D12, · · · , Dmn]. For the total variation denoising
problem we obtain the simulation results shown in Fig. 1. We ob-
serve that the algorithm Fixed with fixed µ converges approximately
linear O(1/ε). If we, however, apply Restart then the algorithm
is faster and the complexity is lower (the slope is closer to that of
O(1/√ε) compared toO(1/ε)). The proposed approach Smoothwith
decreasing µ for each iteration converges faster and shows slightly
better complexity, approximately O(1/√ε).

5.2. !1-norm Minimization

For the second example, we will consider the problem of finding a
sparse representation of an image b in an overcomplete dictionary B:

minimize ‖z‖1

subject to ‖Bz − b‖2 ≤ δ
(9)
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Fig. 1. Simulation results for a total variation denoising example of
a noisy image of Lenna (512 × 512). We report the number of iter-
ations k required to reach the relative accuracy ε

N
. As a reference,

we also show the complexity functions O( 1
ε
) and O( 1√

ε
).

where B = [B1; B2] and B1 is the 2-dimensional discrete cosine
transform and B2 is a Symlet16 wavelet transform with 3 levels.
As shown in [17], the problem (9) can be posed as an equivalent
problem with simpler projection constraints

minimize ‖Wx‖1

subject to ‖x1 − b‖2 ≤ δ

where W =

»

B1 −B1B
−1
2

0 I

–

, x =

»

x1

x2

–

.

We initialize the algorithms with x(0) = x̄(0) = [b; 0] and u(0) =
ū(0) as in (8) with A = W . For this problem we obtain the simu-
lation results shown in Fig. 2, where we again observe that the ap-
proach Fixed with fixed µ converges approximately linear O(1/ε).
For the Restart approach, the convergence rate is closer to O(1/√ε)
for high accuracy (small ε) but approximately O(1/ε) for low accu-
racy. The proposed algorithm Smooth with decreasing µ for each
iteration converges faster and shows lower complexity than the other
two methods. We also generated 100 problems with the vector b ∈

R
1282×1 being i.i.d. Gaussian. For these simulations we observe

similar results as reported in Fig. 2 for the relative convergence
speed and complexity.

6. CONCLUSIONS

We presented a new method to speed up the convergence for non-
smooth problems using accelerated gradient methods for convex
minimization. We provided a proof of convergence, which resulted
in a loose bound on the complexity. In fact, practical simulations
revealed that the complexity is lower than what the bound suggests.
For comparison, we studied and simulated existing methods. The
simulations showed that the proposed method has both faster con-
vergence and lower complexity compared to the existing methods.
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