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Advantages and Challenges of a Type-3 PLL
Saeed Golestan, Member, IEEE, Mohammad Monfared, Member, IEEE, Francisco D. Freijedo, and

Josep M. Guerrero, Senior Member, IEEE

Abstract—A phase-clocked loop (PLL) is a closed-loop feed-
back control system which synchronizes its output signal in
frequency as well as in phase with an input signal. The phase
detector, the loop filter, and the voltage controlled oscillator
are the key parts of almost all PLLs. Within the areas of
power electronics and power systems, which are focused on in
this paper, the PLLs typically employ a proportional-integral
controller as the loop filter, resulting in a type-2 control system
(a control system of type-N has N poles at the origin in its
open-loop transfer function). Recently, some attempts have been
made to design type-3 PLLs, either by employing a specific
second-order controller as the loop filter, or by implementing
two parallel tracking paths for the PLL. For this type of PLLs,
however, the advantages and limitations are not clear at all, as
the results reported in different literature are contradictory, and
there is no detailed knowledge about their stability and dynamic
characteristics. In this paper, different approaches to realize a
type-3 PLL are examined first. Then, a detailed study of dynamics
and analysis of stability, followed by comprehensive parameters
design guidelines for a typical type-3 PLL are presented. Finally,
to get insight into the advantages/limitations of this type of PLLs,
the performance of a well-tuned type-3 PLL is compared with
a conventional synchronous reference frame PLL (which is a
type-2 PLL) through extensive experimental results and some
theoretical discussions.

Index Terms—Phase-locked loop (PLL), synchronization, type-
3 systems, synchronous reference frame PLL (SRF-PLL).

I. INTRODUCTION

PHASE-LOCKED loops (PLLs) are widely used in dif-

ferent applications within the areas of power electron-

ics and power systems, particularly for synchronization and

control purposes in distributed generation systems, custom

power equipment, flexible AC transmission systems (FACTS),

uninterruptible power supplies (UPS), HVDC transmission

systems, etc. [1]-[3]. The PLLs have also found widespread ap-

plications in synchronized phasor measurement units (PMUs),

power quality instruments, sensorless control of AC machines,

and estimation of harmonics, inter-harmonics, sequence com-

ponents, and peak values [4]-[6].
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Fig. 1. Basic scheme of a typical PLL.

Generally speaking, a PLL is a closed-loop feedback control

system which synchronizes its output signal in frequency as

well as in phase with an input signal. Three building blocks

are common to most PLL designs: 1) a phase detector (PD),

a loop filter (LF), and a voltage controlled oscillator (VCO).

Fig. 1 shows the block diagram of a typical PLL.

Within the areas of power electronics and power systems,

which are focused on in this paper, the PLLs typically employ

a proportional-integral (PI) controller as the LF, resulting in

a type-2 control system [7]. A control system of type-N has

N poles at the origin in its open-loop transfer function. There

are a large number of publications that cover the study of

dynamics and properties of these PLLs, among which [8]-[10]

are the most recent ones.

Recently, some attempts have been made to design the type-

3 PLLs for different areas of application, like synchrophasor

measurement units, grid connected power converters, speed

motor control systems, etc. [4], [11], [13]-[17]. As reviewed

in section II, these approaches can be broadly classified into

two categories as single-loop methods, in which the PLL has a

single tracking loop and uses a second-order transfer function,

with a double pole at the origin and a pair of zeros, as LF,

and the dual-loop methods, in which the PLL uses two parallel

tracking paths. For this type of PLLs, however, the advantages

and limitations are not clear at all, as the reported results are

contradictory, and there is no detailed information about their

stability and dynamic characteristics.

In this paper, different approaches to realize a type-3 PLL

are examined first. Then, based on its small-signal model, a

detailed study of dynamics and stability of a typical type-

3 PLL is performed, and comprehensive design guidelines

are proposed. Finally, through extensive experimental results

and some theoretical discussions, the performance of the

well-tuned type-3 PLL is compared with a conventional syn-

chronous reference frame PLL (SRF-PLL), which is a typical

type-2 PLL.

II. DIFFERENT APPROACHES TO REALIZE A TYPE-3 PLL

In this section, different approaches to realize a type-3

PLL are investigated. In each case, the general structure
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(a)

(b)

Fig. 2. (a) Basic scheme of a conventional SRF-PLL, and (b) its small-signal
model.

is presented, and its advantages and limitations are briefly

discussed.

Fig. 2(a) illustrates the basic scheme of a conventional

SRF-PLL, in which LF (s) is the LF transfer function. Sup-

posing that, the three-phase input voltages are balanced and

undistorted, the small-signal model of the SRF-PLL can be

obtained as shown in Fig. 2(b), where θ and θ̂ are the input

and estimated phases, respectively, θe is the phase error, and

V is the input voltage amplitude [7]. It is shown in [7] and

[9] that, considering the LF as a proportional-integral (PI)

controller (i.e., LF (s) = kp + ki/s, where kp and ki are

the proportional and integral gains, respectively) results in a

type-2 PLL. The question is: what form of LF (s) is required

to realize a type-3 PLL? It is known that, the type-3 PLLs are

able to track a frequency ramp input with zero steady-state

phase-error [18]. So, to realized a type-3 PLL, LF (s) should

be designed such that, for θ(s) = Δω̇/s3, where Δω̇ is the

frequency ramp rate in rad/s2, we obtain lim
t→∞ θe(t) = 0.

From Fig. 2(b), the phase-error Laplace transform in re-

sponse to a frequency ramp input is

θe(s) =
s

s+ LF (s)V
θ(s) =

1

s2
Δω̇

s+ LF (s)V
. (1)

Applying the final value theorem to (1), yields the steady-state

phase error, θe,ss, as

θe,ss = lim θe(t)
t→+∞

= lim
s→0

sθe(s) = lim
s→0

1

s

Δω̇

s+ LF (s)V
. (2)

For θe,ss to be zero, it is required that, LF have a transfer

function as LF (s) = n(s)/s2, n(0) �= 0, where n(s) is a

polynomial of order smaller than or equal to 2. Based on this,

the open-loop transfer function can be obtained, from Fig.

2(b), as

Gol(s) =
θ̂(s)

θe(s)
= V × LF (s)

1

s
=

n(s)V

s3
. (3)

From (3), it is obvious that, the asymptotic plot of Gol(s) has a

phase of −270◦ at zero-frequency and a slope of -60 dB/dec

at low frequency. Therefore, to stabilize the system, the LF

must have a pair of zeros before the gain-crossover frequency,

ωc. Notice that, presence of two zeros before ωc, break the

asymptotic slope to -20 dB/dec and push the phase up 180◦

Fig. 3. Basic scheme of the RPLL.

of negative phase and, consequently, stabilize the system. So,

to realize a type-3 PLL, the LF transfer function should be of

the form

LF (s) =
n(s)

s2
=

cn2s
2 + cn1s+ cn0

s2
(4)

where cn0, cn1, and cn2 are non-zero positive constants.

Based on Fig. 2(b), and considering the LF transfer function

as that given in (4), the characteristic polynomial of the type-3

SRF-PLL can be obtained as

s3 + V cn2s
2 + V cn1s+ V cn0 = 0. (5)

Applying the Routh-Hurwitz stability criterion to (5), yields

V >
cn0

cn1cn2
(6)

which means, to ensure the stability, the input voltage ampli-

tude should be greater than cn0/(cn1cn2). So, the possibility

of instability under severe voltage sags or faults is a serious

drawback associated with the type-3 SRF-PLL.

To the best of the authors’ knowledge, Shinnaka [11], for the

first time, proposed a type-3 PLL for power grid applications.

This PLL, referred to as the robust-PLL (here, called RPLL),

is shown in Fig. 3, in which the LF transfer function is the

same as that given in (4). To further improve the filtering

capability of this PLL, two first-order low pass filters (LPFs)

are also included within the control loop. As discussed briefly

before, and will be covered with more details in the following

sections, a LF of form of (4) in and of itself may cause stability

problems. Therefore, including additional LPF(s) in the control

loop of a type-3 PLL (which causes extra phase roll-off) may

not be a good idea, unless its (their) cut-off frequency is

(are) far above the gain-crossover frequency of the PLL. The

experimental results presented in [11] show that, the RPLL

transient response is highly oscillatory, which implies it suffers

from very limited stability margins.

In [4], Karimi-Ghartemani has suggested a type-3 version

of his well-known PLL, i.e., the enhanced PLL (EPLL), for

the computation of synchrophasors. The basic scheme of this

PLL, here called the type-3 EPLL, is shown in Fig. 4. It can

be observed that, the type-3 EPLL as well, uses the same LF

as that given in (4). The results presented in [4] show that,

this PLL can be useful in the computation of synchrophasors.

A different approach to realize a type-3 PLL is that proposed

by Kamata et al. [12]. A simple block diagram description

of this approach, referred to as the dual-loop type-3 PLL,

designed for the wireless communications, is shown in Fig. 5

(see [12, Fig. 1] for the original form). As shown, the PLL has

two tracking loops, each of which has its own LF and VCO.

The LF in the second loop is a simple gain, and its output is
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Fig. 4. Basic scheme of the type-3 EPLL.

Fig. 5. Block diagram description of the dual-loop type-3 PLL.

directly added to the output of the LF (here PI controller) of

the first loop. The open loop transfer function of this PLL is

as given in (7).

Gol(s) =
θout

θin − θout
=

(k + kp)s
2 + (ki + kpk)s+ kik

s3
.

(7)

An adaptation of the dual-loop type-3 PLL for grid con-

nected applications has been proposed by Indu Rani et al.
[13]. Fig. 6(a) illustrates the basic scheme of this PLL,

which is referred to as the FPLL. The FPLL, similar to its

counterpart, includes two loops: a conventional SRF-PLL,

which constitutes the main loop, and a frequency feedforward

loop. Fig. 6(b) illustrates the small-signal model of the FPLL

(see Appendix A for how to obtain the model).

The question that may arise here is: what is the advantage

of a dual-loop type-3 PLL (e.g., the FPLL) over a single-

loop one (e.g., the type-3 SRF-PLL)? To answer this question,

let us first determine the open-loop transfer function of the

FPLL. Considering that, the LF is a PI controller, and the

LPF block in the feedforward path is a first-order LPF with

transfer function LPF (s) = ωp/(s + ωp), where, ωp is the

cutoff frequency, then the FPLL open-loop transfer function

can be obtained as

Gol(s) =
θ̂(s)

θe(s)
=

(V kp + ωp)s
2 + V (ki + kpωp)s+ V kiωp

s3
(8)

From (8) it can be observed that, any decrease in the input

voltage amplitude, V , changes both open-loop gain and zeros.

Fortunately, these changes act against each other from the

stability point of view. As a consequence, a dual-loop type-

3 PLL, contrary to a single-loop one, can remain stable at

(a)

(b)

Fig. 6. (a) Basic scheme of the FPLL, and (b) its small-signal model.

low loop gains. This conclusion can also be verified by apply-

ing the Routh-Hurwitz stability criterion to the characteristic

polynomial of the FPLL,

s3 + (V kp + ωp)s
2 + V (ki + kpωp)s+ V kiωp = 0 (9)

which yields the stability conditions as⎧⎪⎪⎨
⎪⎪⎩

V > 0
ki > 0
kp > 0
ωp > 0.

Regarding the FPLL performance, there are two further

issues that need to be addressed: 1) The FPLL employs a

differentiator in the feedforward loop, which may degrade its

performance under noisy grid conditions. 2) For cn0 = kiωp,

cn1 = ki + kpωp, and cn2 = kp +ωp/V , the type-3 SRF-PLL

and the FPLL have the same closed-loop transfer functions,

and as a result, the same dynamics.

Another type-3 PLL for grid applications is that proposed

by Liccardo et al. [14]. Fig. 7 illustrates the basic scheme of

this PLL, which is referred to as the FFqPLL. The FFqPLL,

similar to other dual-loop type-3 PLLs, includes two loops:

a qPLL which constitutes the main loop, and a feedforward

loop. So, stability at low loop gains (which is a characteristic

of the dual-loop type-3 PLLs) is the characteristic of this PLL.

The FFqPLL also has a more noise immunity than the FPLL,

as it does not use the differentiator in the feedforward loop.

Application of dual-loop type-3 PLLs for the motor speed

control purposes has been suggested in [15]-[17]. The experi-

mental results presented in those articles show that, with some

modifications, the dual-loop type-3 PLL shown in Fig. 5 can

be desirable in the speed control of electric motors, particularly

when the motor speed reference changes linearly with time.

III. DYNAMICS ASSESSMENT, STABILITY ANALYSIS, AND

DESIGN GUIDELINES

The aim of this section is threefold: study of dynamics,

stability analysis, and parameters design guidelines for a

typical type-3 PLL. A type-3 SRF-PLL, shown in Fig. 8,
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Fig. 7. Basic scheme of the FFqPLL.

Fig. 8. The type-3 SRF-PLL.

is considered for this study. Before starting the study, the

PLL small-signal model under unbalanced and harmonically

distorted grid conditions is derived.

A. Small-Signal Modeling

The three-phase input voltages of the PLL are assumed to

be unbalanced and harmonically distorted, expressed in (10),

where V +
h (V −

h ) and θ+h (θ−h ) are the amplitude, and angle

of the hth harmonic component of the positive- (negative-)

sequence of the input voltages, respectively.

va(t) =
+∞∑
h=1

[
V +
h cos

(
θ+h
)
+ V −

h cos
(
θ−h
)]

vb(t) =
+∞∑
h=1

[
V +
h cos

(
θ+h − 2π

3

)
+ V −

h cos

(
θ−h +

2π

3

)]

vc(t) =

+∞∑
h=1

[
V +
h cos

(
θ+h +

2π

3

)
+ V −

h cos

(
θ−h − 2π

3

)]
.(10)

By applying the Clarke (abc-to-αβ) transformation, and

subsequently, the Park (αβ-to-dq) transformation to the three-

phase input voltages, the LF input signal (i.e., vq) can be

obtained as

vq(t) =
+∞∑
h=1

[
V +
h sin

(
θ+h − θ̂+1

)
− V −

h sin
(
θ−h + θ̂+1

)]
(11)

Under a quasi-locked state, i.e. when θ̂+1 ≈ θ+1 and ω̂ = ω,

(11) can be rewritten as

Fig. 9. Small-signal model of the type-3 SRF-PLL.

vq(t) = V +
1 (θ+1 − θ̂+1 )︸ ︷︷ ︸

dc term

+
+∞∑
h=2

[
V +
h sin

(
θ+h − θ̂+1

)]
−

+∞∑
h=1

[
V −
h sin

(
θ−h + θ̂+1

)]
︸ ︷︷ ︸

disturbance terms

(12)

Based on (12), the small-signal model of the type-3 SRF-PLL

can be obtained, as shown in Fig. 9, where D(s) is the Laplace

transform of the disturbance terms in (12).

B. Stability Margin

From Fig. 9, the open loop transfer function can be obtained

as

Gol(s) =
θ̂+1
θe

∣∣∣∣∣
D(s)=0

= V +
1

cn2s
2 + cn1s+ cn0

s3
. (13)

For the sake of simplicity in the analysis, let us rewrite the

transfer function (13) as

Gol(s) = k
(s+ ωz1)(s+ ωz2)

s3
(14)

where, k = V +
1 cn2, and ωz1,2 = cn1

2cn2
± 1

2

√(
cn1

cn2

)2
− 4 cn0

cn2
.

From (14), the PLL phase margin can be determined as

PM = −90◦ + tan−1

(
ωc

ωz1

)
︸ ︷︷ ︸

φz1

+tan−1

(
ωc

ωz2

)
︸ ︷︷ ︸

φz2

(15)

where, ωc is the crossover frequency, and is determined by

ωc =
k

sin(φz1) sin(φz2)
. (16)

It is shown in Appendix B that, the coincident zeros (i.e.,

ωz1 = ωz2) are better than the spread zeros in terms of the

stability margin. The coincident zeros also has been suggested

as a optimal choice in [19]. Therefore, considering ωz1 =
ωz2 = ωz , (14), (15), and (16) are rewritten as

Gol(s) = k
(s+ ωz)

2

s3
(17)

PM = −90◦ + 2 tan−1

(
ωc

ωz

)
︸ ︷︷ ︸

φz

(18)
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Fig. 10. GM as a function of PM.

ωc =
k

sin2(φz)
. (19)

Based on (18) and (19), and after some simple mathematical

manipulations, we can obtain

ωz =
ωc

tan(PM) + sec(PM)
(20)

k = ωc
sin(PM) + 1

2
. (21)

Notice that, (20) and (21) determine the LF parameters (i.e.,

k, and ωz) based on ωc and PM . Therefore, by selecting

appropriate values for ωc and PM , all PLL parameters will

be determined.

Based on (20) and (21), and the open loop transfer function

of (17), the PLL gain margin can be obtained as

GM = 20 log

(
cos(PM)

[1 + sin(PM)]
2

)
. (22)

An interesting observation from (22) is that, the GM only

depends on the PM. Fig. 10 illustrates GM as a function of

PM. As shown, the GM is negative, which means, the PLL

may become unstable, if the loop gain decreases too much.

Such systems are said to be conditionally stable. This behavior

is in contrast to the performance of the type-2 PLLs, which

are unconditionally stable [18].

According to Fig. 9, the amplitude of the fundamental

frequency positive sequence component, V̂ +
1 , appears as a gain

in the forward path of the PLL small-signal model. So, the

possibility of instability under severe voltage sags or faults is

a serious drawback associated with a type-3 SRF-PLL. The

possible solutions to this problem will be discussed in detail

in section III-E.

C. Transient Response

Substituting (20) and (21) into (17), and performing some

mathematical manipulations, the open-loop transfer function

(17) can be rewritten as

Gol(s) =
P (s)

s3
(23)

where P (s) = 0.5 [1 + sin(PM)]ωcs
2 + cos(PM)ω2

cs +
0.5 [1− sin(PM)]ω3

c . Based on Fig. 9 and using (23), the

error transfer function can be obtained as

Ge(s) =
θe(s)

θ+1 (s)

∣∣∣∣
D(s)=0

=
1

1 +Gol(s)
=

s3

s3 + P (s)
. (24)

Based on (24), the phase error Laplace transform, when a

phase step (Δφ/s), a frequency step (Δω/s2), and a frequency

ramp (Δω̇/s3) input is applied, can be obtained as

θΔφ
e (s) =

Δφs2

s3 + P (s)
(25a)

θΔω
e (s) =

Δωs

s3 + P (s)
(25b)

θΔω̇
e (s) =

Δω̇

s3 + P (s)
(25c)

respectively. Applying the final value theorem to (25), yields

lim
t→∞ θΔφ

e (t) = lim
s→0

sθΔφ
e (s) = lim

s→0

Δφs3

s3 + P (s)
= 0 (26a)

lim
t→∞ θΔω

e (t) = lim
s→0

sθΔω
e (s) = lim

s→0

Δωs2

s3 + P (s)
= 0 (26b)

lim
t→∞ θΔω̇

e (t) = lim
s→0

sθΔω̇
e (s) = lim

s→0

Δω̇s

s3 + P (s)
= 0 (26c)

which confirms the zero steady-state phase error, after a phase

step, a frequency step, as well as a frequency ramp. Table I

provides a comparison between the type-2 and type-3 SRF-

PLLs in terms of the steady-state phase-error for different

types of inputs.

TABLE I
STEADY-STATE PHASE-ERROR FOR DIFFERENT INPUTS.

input Type-3 SRF-PLL Type-2 SRF-PLL

Phase step 0 0

Frequency step 0 0

Frequency ramp 0 Δω̇/ki

For a given value of PM, a higher ωc results in a faster

dynamic response after line disturbances such as a phase jump,

a frequency step, a frequency ramp, etc. Thus, in the sequel,

just the effect of PM on the dynamic performance of the PLL

is studied. A PM within the range of 30◦−60◦ is considered in

this study, since it is the recommended range for the stability

[18].

Figs. 11(a), (b), and (c) illustrate the PLL transient-response

to a phase step, a frequency step, and a frequency ramp input,

respectively, for different values of PM. As can be seen, a low

value for PM makes the PLL transient response oscillatory,

while a high value makes it too damped. To further support

this conclusion, the closed-loop Bode magnitude plots of the

PLL for different values of PM are illustrated in Fig. 12. As

expected, the lower the PM value, the larger the magnitude
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(a)

(b)

(c)

Fig. 11. Phase-error transient response for different values of PM: (a) phase
step input, (b) frequency step input, and (c) frequency ramp input.

of the resonant peak and, therefore, the more oscillatory the

PLL transient-response is. On the other hand, as shown in

Fig. 11, both high and low values for PM are inappropriate

in terms of the settling time. Thus, to achieve a satisfactory

transient response in terms of both settling time and oscillation

damping, a PM within the range of 40◦ to 50◦ is recommended

in this paper.

It is shown in Appendix C that, for a given value of ωc,

a PM of about 47◦ results in the minimum settling time (2%

criterion) in response to a phase jump. Therefore, in this study,

the phase margin is selected equal to 47◦. Substituting PM =
47◦ into (22), yields GM = −12.86 dB, which means that the

PLL remains stable under voltage sags up to 1−10(GM/20) ≈

Fig. 12. Closed-loop Bode magnitude plots for different values of PM.

0.77 pu.

D. Disturbance Rejection

From (12), it is observed that, the fundamental negative

sequence component in the input voltage, appears as a dis-

turbance input to the PLL linearized model, pulsating at

twice the input voltage fundamental frequency. In the same

way, the input voltage harmonics, which dominantly are non-

triplen odd harmonics (i.e. 5th, 7th, 11th, 13th, etc.), are

sensed by the linearized model as even harmonic components

(i.e., 6th, 12th, etc.). Thus, the disturbance input to the PLL

linearized model (i.e., D(s)) can be considered as D(s) =
L [f(2ω, 6ω, 12ω, ...)], where L denotes the Laplace operator.

From Fig. 9, the disturbance transfer function, relating θ̂+1
to D(s), can be obtained as

Gd(s) =
θ̂+1 (s)

D(s)

∣∣∣∣∣
θ+
1 (s)=0

=
1

V +
1

Gol(s)

1 +Gol(s)
. (27)

By substituting (23) into (27), the disturbance transfer function

Gd can be rewritten as

Gd(s) =
1

V +
1

P (s)

s3 + P (s)
. (28)

Fig. 13 illustrates the Bode magnitude plots of the distur-

bance transfer function of (28) (solid lines) and the open loop

transfer function of (23) (dashed lines) for the selected value

of PM (i.e., PM = 47◦) and three different values of ωc.

As it can be observed, for a given value of ωc, the open-

loop and disturbance transfer functions have well-matched

amplitudes at disturbance frequencies. Therefore, instead of

using the disturbance transfer function Gd(s), the open-loop

transfer function Gol(s) can be used to design the crossover

frequency ωc.

Fig. 14 illustrates the logarithmic magnitude plot of the

open-loop transfer function, in which ωd is the lowest-order

disturbance frequency of concern (here, 2ω), and attenωd
=

|Gol(jωd)| ≈ |Gd(jωd)| is the attenuation provided by the

PLL at this frequency. Notice that, providing a sufficient

attenuation at the lowest disturbance frequency guarantees a

high attenuation at higher disturbance frequencies.

From Fig. 14, the crossover frequency, ωc, can be expressed

based on ωd and attenωd
as
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Fig. 13. Bode magnitude plots of Gd(s) (solid lines) and Gol(s) (dashed
lines) for three different values of ωc.

Fig. 14. Logarithmic magnitude plot of the open-loop transfer function.

ωc = ωd × 10(attenωd
/20). (29)

Based on (29), the crossover frequency ωc can be simply

determined by selecting an appropriate value for attenωd
. Fig.

15 illustrates ωc as a function of attenωd
. Obviously, providing

a high attenuation requires a small ωc, which degrades the PLL

dynamic response. So, there is a trade-off between the speed

of response and disturbance rejection capability. To deal with

this problem, we recommend to select ωc according to the

minimum requirements of the disturbance rejection capability,

which itself depends on the degree of grid voltage unbalance

and distortion. In this paper, attenωd
is selected to be -15

dB. This selection yields the crossover frequency equal to

ωc = 2π17.78 rad/s.

Once ωc and PM are determined, the LF parameters can

be simply calculated as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cn0 =
kω2

z

V +
1

=
ω3
c

V +
1

1− sin(PM)

2
= 187277.5

cn1 =
2kωz

V +
1

=
cos(PM)ω2

c

V +
1

= 8511.5

cn2 =
k

V +
1

=
ωc

V +
1

1 + sin(PM)

2
= 96.7.

(30)

Notice that, to calculate the LF parameters, V +
1 was assumed

to be unity.

Fig. 15. ωc as a function of attenωd .

Fig. 16. Root locus of the designed type-3 SRF-PLL with the amplitude
V +
1 as the variable parameter.

E. Low Voltage and Interruption Ride-Through

In recent years, with ever increasing use of power-converter

based distributed generation (DG) systems in the utility grid,

and consequently their increasing influence on the grid sta-

bility, the low voltage ride through (LVRT) capability (i.e.,

the ability to remain connected to the grid in the presence of

severe voltage sags or faults) has become an issue of great

importance. Therefore, it can be concluded that the LVRT

capability is also a requirement of high importance for the

PLLs, since they play an important role in the control of almost

all grid-interfaced DG systems.

It was discussed in section III-C that, the designed parame-

ters for the type-3 SRF-PLL leads to a GM = −12.86 dB. It

means that, the PLL remains stable under voltage sags up to

1− 10GM/20 = 0.77 pu, however, under more severe voltage

sags, the PLL may become unstable. This conclusion can be

verified graphically by the root-locus of the PLL system with

the amplitude V +
1 as the variable parameter (see Fig. 16).

Notice that, the closed-loop poles enter to the right half plan

for V +
1 < 0.23 pu.

In order to overcome this limitation, one can simply select

a higher value for PM, and in this way, obtain a more negative

value for GM (see Fig. 10). For example, selecting a PM equal

to 68◦ yields a GM around -20 dB, which guarantees the PLL

stability under voltage sags up to 0.9 pu. However, as discussed



IEEE TRANSACTIONS ON POWER ELECTRONICS 8

Fig. 17. PLL phase-error response to a voltage sag of 0.9 pu associated with
a phase-angle jump of 60◦.

Fig. 18. Modified structure of the type-3 SRF-PLL to assure the low voltage
and interruption ride-through capability.

before, selecting such a high value for PM slows down the PLL

dynamic response. Another approach is to use an in-loop/pre-

loop amplitude normalization system (ANS) to prevent the

loop gain fall into the unstable region in the presence of severe

voltage sags. For example, Fig. 17 illustrates the PLL phase-

error response to a voltage sag of 0.9 pu associated with a

phase-angle jump of 60◦. As shown, when the ANS is used,

the PLL remains stable. Another possible approach is to use

the dual-loop structures to implement the type-3 PLL, but at

the cost of more complexity.

In the case of line outages, or when the grid faults reduce

the input voltage amplitude to almost zero, the type-3 SRF-

PLL would be unstable. Therefore, to provide the interruption

ride-through capability as well for the type-3 SRF-PLL, the

structure shown in Fig. 18 is recommended [1], [20], in which

the input voltage is monitored by an amplitude monitoring

algorithm (AMA). Once an interruption is detected, the LF is

disconnected from the PD so that the output signal of the PLL

remains on its nominal condition.

IV. EVALUATION RESULTS

In this section, the performance of the designed type-3 PLL

is evaluated through experiments based on a TMS320F28335

DSP from Texas Instruments. Throughout the experiments,

the nominal frequency is set to 2π50 rad/s, and the sampling

frequency is fixed to 10 kHz.

In experimental verifications, the three-phase input signals

are generated internally in DSP. They are then fed to the

external digital-to-analogue (D/A) converter via the serial

peripheral interfaces (SPI) to generate the analog test signals.

These signals are acquired by the DSP to perform the PLL

algorithm [see Fig. 19]. In addition to offering high flexibility

in experiments, this approach provides internal information

(such as the instantaneous fundamental phase angle) which

simplifies the model validation and the performance evaluation

[1], [21].

Fig. 19. Experimental setup.

To provide a means of comparison, a conventional SRF-

PLL (which is a type-2 system) is also implemented. In this

PLL, the LF parameters (i.e., kp and ki) are designed such

that a damping ratio of 0.7, and a same bandwidth as that of

the designed type-3 PLL is achieved. Accordingly the values

of kp and ki are {
kp = 114
ki = 6634.6

(31)

Fig. 20(a) and (b) illustrate the open-loop and closed-

loop Bode plots of the designed type-2 and type-3 SRF-

PLLs, respectively. These plots will be used to justify the

experimental results.

A. Grid Fault (Voltage Sag with Phase Jump)

Fig. 21 illustrates the experimental results, when the grid

voltage undergoes a voltage sag of 0.5 pu with a phase jump

of +40◦ simultaneously. A simple ANS is used for both PLLs

in this test scenario. It can be seen that, the type-2 SRF-PLL

yields a more damped transient response than the type-3 SRF-

PLL. The 2% settling time (i.e., the time after which the phase

error reaches and remains within a 0.8◦ neighborhood of zero)

is about 62 and 95 ms for the type-2 and type-3 SRF-PLLs,

respectively. These results can also be justified theoretically,

through the closed-loop Bode plots of Fig. 20(b). As shown,

the type-3 SRF-PLL has a higher resonant peak than the type-2

one, which justifies its more oscillatory transient response.

B. Frequency Step

Fig. 22 illustrates the experimental results, when the grid

voltage undergoes a frequency step change of +5 Hz. Again,

the type-2 SRF-PLL yields a more damped transient response

with a shorter settling time. The 2% settling time (i.e., the

time after which the estimated frequency reaches and remains

within 0.1 Hz of its final value) is about 60 ms for the type-2

SRF-PLL, while it is about 93 ms for the type-3 SRF-PLL.

This result can be theoretically justified with same the reason

as mentioned in the previous test.

C. Unbalanced and Distorted Grid Condition

Figs. 23 illustrates the experimental results, when the grid

voltage is unbalanced and harmonically distorted (�V +
1 =

1∠0◦, �V −
1 = 0.1∠0◦, �V −

5 = 0.05∠90◦, �V +
7 = 0.05∠0◦).

It is observed that, the type-3 SRF-PLL exhibits a bit better

performance than the type-2 SRF-PLL. These results can also

be verified theoretically, through the closed loop Bode plots

of Fig. 20(b). It can be observed that, the type-3 SRF-PLL

provides a bit higher attenuation at disturbance frequencies.
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(a)

(b)

Fig. 20. (a) Open-loop and (b) closed-loop Bode plots of the type-2 and
type-3 SRF-PLLs.

D. Frequency Ramp

Fig. 24 illustrates the experimental results, when the grid

voltage frequency changes linearly with time at a rate of

Δω̇ = 2π30 rad/s2. It is observed that, during the frequency

ramping interval, the type-3 SRF-PLL yields a zero steady-

state phase error, while the type-2 SRF-PLL has a tracking

error of about 1.6◦. These results are consistent with those

predicted theoretically , i.e., θe,ss = Δω̇/ki = 1.627◦ and

θe,ss = 0 for the type-2 and type-3 SRF-PLLs, respectively.

E. Sinusoidal Frequency Variation

Fig. 25 illustrates the experimental results, when the grid

voltage frequency undergoes sinusoidal variations around its

nominal value as

ω = ωff (1 + 0.1 sin 15t). (32)

The peak-to-peak phase error is about 3.9◦ for the type-3

SRF-PLL, while it is about 8.1◦ for the type-2 SRF-PLL.

Fig. 21. Experimental results when the grid voltage undergoes a voltage
sag of 0.5 pu with a phase jump of +40◦: Ch1 denotes the grid voltage (0.5
pu/div), and Ch2 and Ch3 denote the phase error (20◦/div).

Fig. 22. Experimental results when the grid voltage undergoes a frequency
step change of +5 Hz: Ch1 and Ch2 denote the estimated frequency (2 Hz/div),
and Ch3 and Ch4 denote the phase error (4◦/div).

The obtained results along with some information about the

PLLs stability margins are summarized in Table II.

V. CONCLUSION

The contradictory results, reported in some recent literature,

about properties of type-3 PLLs, and also a lack of deep

knowledge about the stability and dynamic characteristics of

these PLLs, were the main motivations to perform this study.

The study was started with an overview of different approaches

that have been proposed to realize a type-3. It was shown that,

these approaches can be broadly classified into two categories:

the single-loop and the dual loop methods. For each category,

the available structures were shown, and their advantages and

limitations were briefly discussed.

Considering a type-3 SRF-PLL as the case study, a detailed

study of dynamics and stability analysis were performed, and

comprehensive design guidelines were proposed. The well-

tuned type-3 SRF-PLL was then compared with a conventional

SRF-PLL, through extensive experiments. The results indicate

that, in the case of the frequency and phase-angle jumps,
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(a)

(b)

Fig. 23. Experimental results under unbalanced and harmonically distorted
grid condition: (a) grid voltage (0.5 pu/div), and (b) phase error (0.5◦/div).

the type-2 SRF-PLL provides better performance in terms

of the settling time and the overshoot than the type-3 one.

On the contrary, in the case of the frequency ramp or cyclic

frequency variations, the type-3 SRF-PLL provides better

performance. Both PLLs have almost the same disturbance

rejection capability. Based on these results, it can be concluded

that, a type-3 PLL can be attractive just in applications where

the frequency varies continuously over time and the presence

of distortions and noises in the measured signals limits the

PLL bandwidth.

APPENDIX A

SMALL-SIGNAL MODELING OF THE FPLL

In order to determine the small-signal model of the FPLL,

the three-phase input voltages are assume to be balanced and

undistorted, as follows

va(t) = V cos

θ︷ ︸︸ ︷
(ωt+ φ)

vb(t) = V cos(ωt+ φ− 2π/3)
vc(t) = V cos(ωt+ φ+ 2π/3)

(A-1)

Fig. 24. Experimental results when the grid voltage frequency changes
linearly with time at a rate of Δω̇ = 2π30 rad/s2: Ch1 and Ch2 denote
the estimated frequency (4 Hz/div), and Ch3 and Ch4 denote the phase error
(1◦/div).

Fig. 25. Experimental results when the grid voltage frequency undergoes
sinusoidal variations: Ch1 and Ch2 denote the estimated frequency (4 Hz/div),
and Ch3 and Ch4 denote the phase error (4◦/div).

where, V , ω, and φ are the input voltages amplitude, angular

frequency, and phase-angle, respectively.

Based on Fig. 6(a), the feedforward loop output signal, ωf ,

can be expressed in the Laplace domain as

ωf (s) = LPF (s)× L

(
d
{
tan−1 (vβ(t)/vα(t))

}
dt

)
(A-2)

where L is the Laplace operator, and

[
vα(t)
vβ(t)

]
=

2

3

[
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

]⎡⎣ va
vb
vc

⎤
⎦ =

[
V cos(θ)
V sin(θ)

]
.

(A-3)

Substituting (A-3) into (A-2), gives

ωf (s) = LPF (s)× L

(
dθ

dt

)
︸ ︷︷ ︸

ω

= LPF (s)ω(s). (A-4)
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TABLE II
COMPARISON SUMMARY.

Type-3 SRF-PLL Type-2 SRF-PLL

0.5 pu voltage sag
with +40◦ phase-angle jump

Settling time 95 ms (4.75 cycles) 62 ms (3.1 cycles)

Phase overshoot 14.8◦ 8.2◦

+5 Hz frequency jump
Settling time 93 ms (4.65 cycles) 60 ms (3 cycles)

Frequency overshoot 1.9 Hz 1 Hz

Unbalanced and distorted
grid condition

peak-to-peak phase error 1.86◦ 2.2◦

30 Hz/s frequency ramp
steady-state phase error 0◦ 1.6◦

Sinusoidal frequency variation
peak-to-peak phase error 3.9◦ 8.1◦

Phase margin 47◦ 65.1◦

Gain margin −12.86 dB Inf

3 dB bandwidth 2π26.5 rad/s 2π26.5 rad/s

Crossover frequency 2π17.78 rad/s 2π20 rad/s

Resonant peak 4.8 dB 2.1 dB

Based on (A-4) and the small-signal model of the conventional

SRF-PLL shown in Fig. 2(b), the small-signal model of the

FPLL can be obtained as shown in Fig. 6(b).

APPENDIX B

OPTIMUM LOCATING THE LF ZEROS

It is shown in this section that, the coincident zeros are

better than the spread zeros in terms of the stability margin.

In what follows, superscript “c” corresponds to the coincident

zeros case, and the superscript “s” corresponds to the spread

zeros case.

From (15), it is easy to conclude that, for a given value of

ωc, the lower the values of ωz1 and ωz2 are, the higher the

PLL phase margin is. Therefore, to have a fair comparison

between the coincident and spread zeros cases, let us assume

the following condition on the zeros position:

ωc
z =

√
ωs
z1ω

s
z2 (B-1)

where, ωc
z = ωc

z1 = ωc
z2.

From (15), the phase margin for the coincident and spread

zeros cases can be obtained as

PM c = −90◦ + 2tan−1(
ωc

ωc
z

) (B-2a)

PMs = −90◦ + tan−1(
ωc

ωs
z1

) + tan−1(
ωc

ωs
z2

). (B-2b)

In the following it is proved that, for a given value of ωc,

PM c ≥ PMs.

For any values of ωs
z1,2, we can write

(ωs
z1 − ωs

z2)
2 ≥ 0 ⇒ (ωs

z1)
2 + (ωs

z2)
2 − 2ωs

z1ω
s
z2 ≥ 0.

(B-3)

Adding 4ωs
z1ω

s
z2 to both sides of (B-3), yields

(ωs
z1 + ωs

z2)
2 ≥ 4ωs

z1ω
s
z2 ⇒ (ωs

z1 + ωs
z2) ≥ 2

√
ωs
z1ω

s
z2.

(B-4)

Multiplying both sides of (B-4) by ωc/(ω
s
z1ω

s
z2), yields

ωc

ωs
z1

+
ωc

ωs
z2

≥ 2ωc√
ωs
z1ω

s
z2

. (B-5)

Multiplying both sides of (B-5) by 1/
[
1− ω2

c/(ω
s
z1ω

s
z2)
]

(which is a negative term), gives

ωc

ωs
z1

+ ωc

ωs
z2

1− ω2
c

ωs
z1ω

s
z2

≤
2ωc√
ωs

z1ω
s
z2

1− ω2
c

ωs
z1ω

s
z2

. (B-6)

Substituting (B-1) into (B-6), yields

ωc

ωs
z1

+ ωc

ωs
z2

1− ω2
c

ωs
z1ω

s
z2

≤
2ωc

ωc
z

1−
(

ωc

ωc
z

)2 (B-7)

which is equivalent to

tan

[
tan−1(

ωc

ωs
z1

) + tan−1(
ωc

ωs
z2

)

]
≤ tan

[
2tan−1(

ωc

ωc
z

)

]
.

(B-8)

Taking the inverse tangent from both sides of (B-8), and then

adding −90◦ to both sides, yields

−90◦ + tan−1(
ωc

ωs
z1

) + tan−1(
ωc

ωs
z2

)︸ ︷︷ ︸
PMs

≤ −90◦ + 2tan−1(
ωc

ωc
z

)︸ ︷︷ ︸
PMc

(B-9)

APPENDIX C

MINIMIZING THE PHASE-ERROR SETTLING-TIME

Fig. 26 illustrates the phase-error settling time (2% criterion)

of the type-3 SRF-PLL versus the PM (for three different

values of ωc) in response to a phase-angle jump of Δφ = 1◦.

It is observed that, for all values of ωc, the minimum settling

time happens around PM = 47◦. Therefore, from the settling

time point of view, a PM = 47◦ is optimal. Notice that,

using different settling time criteria will give different results.

For example, the minimum settling time happens around

PM = 40◦ for the 5% criterion, while it happens around

PM = 50◦ for the 1% criterion.
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