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Abstract— This paper investigates the performance of different
reconstruction algorithms in discrete blind multi-coset sampling.
Multi-coset scheme is a promising compressed sensing architecture
that can replace traditional Nyquist-rate sampling in the applica-
tions with multi-band frequency sparse signals. The performance
of the existing compressed sensing reconstruction algorithms have
not been investigated yet for the discrete multi-coset sampling. We
compare the following algorithms – orthogonal matching pursuit,
multiple signal classification, subspace-augmented multiple signal
classification, focal under-determined system solver and basis pursuit
denoising. The comparison is performed via numerical simulations
for different sampling conditions. According to the simulations, focal
under-determined system solver outperforms all other algorithms for
signals with low signal-to-noise ratio. In other cases, the multiple
signal classification algorithm is more beneficial.

Keywords— compressed sensing, multi-band signals, multi-coset
sampling, multiple-measurement vectors.

I. INTRODUCTION

Bandpass and multi-band signals can be successfully sam-
pled at frequencies below the Nyquist-Shannon limit, so called
sub-Nyquist sampling [1]. For this type of signals the min-
imum sampling rate depends on the accumulated bandwidth
rather than the highest frequency component as in the classical
Nyquist-Shannon-Kotelnikov theorem. Nonuniform periodic
sampling is one of the method for sub-Nyquist sampling. This
strategy can be implemented with parallel sampling channels
each of them containing an analog-to-digital converter (ADC).
The ADCs perform measurements at different moments of
time. Such a scheme is called a multi-coset sampling scheme
(see Fig. 1) [2]. The problem of sub-Nyquist sampling of non-
baseband signals has been discussed in a number of papers [2],
[3], [4], [5], [6].

Consider multi-band signals. When the positions of bands
in a signal are known in advance (non-blind sampling) the
reconstruction can be performed with specially designed filters
[3], [4]. In [2] Feng and Bresler introduced blind sampling
where the positions of bands are unknown prior to sampling.
Blind sampling can be seen as a compressed sensing problem
for multiple-measurement vectors (MMV) [6].

The method proposed by Feng and Bresler allows to directly
reconstruct a continuous input signal without discretization.
This approach avoids the negative discretization issues such
as the need for block processing, windowing and spectrum
leakage. The same idea was used in [5], [7]. However, the
purpose of some applications, e.g. spectrum analyzers, is to

ADC 1

x(t)

x((m·L+c1)·T) = y1[m]

ADC 2

ADC P

x((m·L+c2)·T) = y2[m]

x((m·L+cP)·T) = yP[m]

Fig. 1. Multi-coset sampling scheme [2].

evaluate the frequency spectrum rather than to reconstruct the
continuous input signal in time domain. For these applications
the discrete Fourier transform (DFT) of a sequence of the
samples of an input signal is computed. Thereby, discretization
is introduced. From this perspective it is interesting to inves-
tigate the quality of the DFT evaluation when the traditional
Nyquist-rate sampling is replaced by compressed sensing with
the multi-coset scheme. i.e. the discrete multi-coset sampling.
To date, such a discrete approach has not been considered.
Throughout the paper, by signal reconstruction we mean the
evaluation of the DFT of a sequence of samples. We wish to
determine in which cases the multi-coset sampling can replace
traditional Nyquist-rate sampling and extend the functionality
of the existing sampling applications. For that purpose the
performance of different reconstruction algorithms should be
evaluated.

In multi-coset sampling the bandwidth of a single ADC
should be higher than the bandwidth of the input signal.
In [7] the modified multi-coset sampling scheme, named
modulated-wideband converter, was presented. Modulated-
wideband converter has a premixing stage before analog-to-
digital conversions which allows using ADCs with a relatively
low input bandwidth. The price for that is a more complicated
front-end. However, an 80 channels time-interleaved ADC
implemented as a single integrated circuit already exists [8].
The multi-coset scheme can be made from the time-interleaved
scheme by simply removing some of the parallel channels. So,
there are no technological obstacles in implementing multi-
coset sampling.

In order to make one more step toward implementation
of compressed sensing acquisition systems for real-life appli-
cations, we numerically investigate the quality of the DFT
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evaluation when the Nyquist-rate sampling is replaced by
the sub-Nyquist multi-coset sampling. The objective is to
investigate the relations between the number of sampling
channels (an average sampling rate), the number of bands in
signals, widths of bands, power of noise in signals on one side
and reconstruction distortion on another. The reconstruction
quality is evaluated by comparing the two DFT sequences. One
is obtained with the Nyquist-rate sampling and is used as a ref-
erence. The second is obtained with the multi-coset sampling.
We consider the following reconstruction algorithms: orthogo-
nal matching pursuit for MMV (M-OMP) [9], multiple signal
classification (MUSIC) [6], subspace-augmented MUSIC (SA-
MUSIC) [10], basis pursuit denoising for MMV (M-BPDN)
[11], [12] and focal underdetermined system solver for MMV
(M-FOCUSS) [9]. To date these algorithms have not been
compared in the application of discrete multi-coset sampling.
M-OMP and M-FOCUSS were described and compared in [9]
but BPDN, MUSIC and SA-MUSIC were not considered. In
[13] the authors proposed a new way of finding the solution
to the MMV equation by solving a set of randomly formed
singular-measurement vector problems. However, the success
of this method depends on whether the number of random sub-
problems is large enough. All the cases considered in [13] were
noiseless and MUSIC-like algorithms were not considered.

The main contribution of this paper is that we formulate the
discrete multi-coset approach and compare the performance
of different reconstruction algorithms for the evaluation of
the DFT. Our discrete multi-coset approach links together the
unknown DFT of the sequence of samples of an input signal
and the known DFTs of samples from sensing channels.

The outline is as follows. In Section II we review a
multi-coset sampling scheme, describe discrete multi-coset
sampling, test signals and performance measures. Algorithms
that are used for the reconstruction are specified in Section III.
In Section IV we present the complete simulation setup and
the simulation results. Conclusions are stated in Section V.

II. MULTI-COSET SCHEME, TEST SIGNALS AND
PERFORMANCE MEASURES

A. Multi-coset scheme

The main idea of the multi-coset scheme is to use multiple
ADCs with a low sampling frequency rather than one that
operates at a high frequency. As can be seen on Fig. 1, a
multi-coset scheme consists of P parallel sampling channels.
The ADCs in these channels perform sampling of an input
signal x(t) at different moments of time specified by the set
of time shifts C = {c1, . . . , cP }, cp ∈ {0, 1, . . . , L − 1}, for
channel p = {1, . . . , P}. The positive integer L is called the
multi-coset sampling period, 1 ≤ P < L. The combination of
L and C denoted by (L,C) is called a multi-coset sampling
pattern [6]. The time period T = 1/(2 · fmax) is the Nyquist
sampling period and all the frequency components in an input
signal are less than fmax. In this paper we do not consider
quantization effects.

f, Hz
fmax

0

|X( f )|

-fmax

(a) Absolute values of the discrete-time Fourier transform of the three-band
signal x(t).

0

L spectrum slices

Xℓ Xℓ+1

|X( f ̂ )|

f ̂, Hz

(b) Absolute values of the DFT coefficients of the three-band signal x(t)
sampled at the rate 1/T , f̂ denotes the discrete frequency.

Fig. 2. Illustration of the Fourier transform and the discrete Fourier transform
of the sequence of samples of the three-band signal x(t).

Assume that X (f), f ∈ (−fmax, fmax), is the unknown
discrete-time Fourier transform of an input signal x(t) (see
Fig. 2(a)). In the multi-coset scheme the relation between the
input and the outputs is as follows [5], [6]:

y(f) = A · x(f) (1)

y(f) = [y1(f), . . . , yP (f)]T, x(f) = [x1(f), . . . , xL(f)]T

where f ∈ F0 = [0, 1
L·T ), yi(f) ∈ C is the known discrete

time Fourier transform of yi[m], m ∈ Z+, x`(f) = X (f +
`
LT ) ∈ C is the `th slice upon slicing X (f) into L equal-sized
parts. The measurement matrix A ∈ CP×L is given by:

Ai,` =
1

L · T
exp

[
j

2π

L
· ci · `

]
. (2)

In (1) f is a continuous variable. Therefore this equation de-
scribes an infinite dimensional problem [6], [13]. In [2] the au-
thors proposed a method that reduces the infinite dimensional
problem to the finite dimensional MMV by computing the
correlation matrix of the interpolated ADCs’ output sequences.
This allows to reconstruct the continuous input signal without
discretization. However, there are practical applications where
the DFT of the sequence of samples of an input signal is
computed rather than the time-domain reconstruction, e.g.
spectrum analyzers. From this perspective it is interesting
to evaluate how the DFT of a multi-band frequency sparse
signal can be estimated with the multi-coset sampling scheme.
Denote by X(f̂) ∈ CK the DFT of the sequence of length
K obtained by uniform sampling x(t) with the sampling rate
1/T . The discrete multi-coset problem can be formulated as
follows:

Ŷ = AX (3)
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Ŷ =

Y1...
YP

 ◦
α1,1 . . . α1,M

...
. . .

...
αP,1 . . . αP,M


αp,m = exp

[
−2πj·cp·m

K

]
, p∈{1, . . . , P}, m∈{1, . . . ,M}

X =

X1

...
XL

 =

 X(1) . . . X(M)
...

. . .
...

X((L− 1)·M + 1) . . . X(L·M)


where Ŷ ∈ CP×M and X ∈ CL×M , ◦ denotes Hadamard
product (element-wise multiplication). YP ∈ CM is the known
DFT of the output sequence of the pth channel, i.e Yp =
FDFT(yp[1, 2, . . . ,M ]), FDFT denotes DFT. X(j) is the jth
element of X(f̂). Then the matrix X ∈ CL×M is formed by
slicing and rearranging the unknown DFT transform X(f̂),
X` ∈ CL is the `th slice of X(f̂) (see Fig. 2(b)). We
assume that the total number of the observed samples of x(t)
equals to K = L ·M . The coefficients αi,m are introduced
to compensate the time shift of the mth DFT bin in the
pth sampling channel. The multi-coset sampling for discrete
signals can be done in three steps:

1) Take M samples from each ADC;
2) Take DFTs of the obtained sequences;
3) Multiply each DFT bin by the corresponding time shift

multiplier;

Equation (3) establishes the relation between the DFT trans-
forms of the sequences of samples of an individual channel
and the DFT transform of the input signal. This interpretation
of the multi-coset sampling differs from the original idea that
is to reconstruct a continuous input signal [2], [6], [5]. If
X can be uniquely defined from (3) given Ŷ, the traditional
Nyquist-rate sampling can be replaced by the sub-Nyquist
multi-coset sampling in applications where DFT is needed. To
our best knowledge, this discrete approach has not been used
in the existing publications. Discretization introduces some
undesirable features such as spectrum leakage, the need for
block processing, windowing effects etc. At the same time, all
these negative effects appears in the Nyquist-rate sampling as
well.

Each column of the unknown matrix X, a source vector,
has the corresponding column of the known matrix Ŷ, the
measurement vector. This is why (3) is named the multiple-
measurement vectors problem [9]. The task of a reconstruction
algorithm is to find the unknown X based on the known Ŷ
and A. Recall that P < L. Therefore, in the general case
of arbitrary X the system of linear equations (3) is under-
determined, so it does not have a unique solution. For the
signal measurement application this means that the sampled
signal can not be uniquely reconstructed. However, the rows
X` ∈ CL of X are slices of the X(f̂) (see Fig. 2(b) ). If
X(f̂) only has few non-zero bands, the matrix X only has

Fig. 3. Illustration of the test signals. Black line – the signal with N=3,
Ω = 0.1, SNR = 20 dB, grey line – the signal with N=2, Ω = 0.12,
SNR=10 dB, fmax =5 MHz. Test signals consist of K = L ·M samples.
Dashed lines show the positions of the frequency slices.

few non-zero (whole or partly) rows. Under this assumption,
blind multi-coset sampling for discrete multi-band signals
becomes the compressed sensing problem. It was proven that a
unique solution to (3) exists under certain conditions. Various
theoretical aspects of compressed sensing, such as require-
ments for the measurement matrix, the necessary number of
measurements, robustness to noise etc. are discussed in [14]
and its references.

Denote by S a set of indices of non-zero rows of X. This set
is called the support of X and indicates the non-zero frequency
slices. The matrix XS is formed by selecting the rows of X
with indices S and AS is formed by selecting the columns of
A with the same indices S. Then (3) is reduced to [5]:

Ŷ = ASXS (4)

The properties of the matrix AS affect the performance
of the sampling system. The reconstruction fails if AS does
not have full column rank. In the presence of noise a high
condition number of AS will also lead to the reconstruction
failure. It is of particular interest to select the sampling pattern
(L,C) that yields a well-conditioned AS for all possible
variations of the support S. For our simulation we select the
sampling pattern for each number of the sampling channels
by searching over the all possible combinations and analysis
of the condition numbers [6].

B. Test signals and performance measures

The level of frequency sparsity of a signal can be quantified
by the spectral occupancy ratio Ω:

Ω =
λ(supp〈(X(f̂)〉)
λ([0, fmax])

, Ω ∈ [0, 1] (5)

supp〈·〉 is the support of X(f̂), which is the set of frequency
points where X(f̂) is nonzero, λ(·) denotes the Lebesgue
measure. In our case the Lebesgue measure is equal to the
joint length of frequency bands. We assume that X(f̂) does
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not contain noise when we calculate the value of Ω, so that
broadband noise does not affect it. Denote by N the number
of bands in a signal. Then Ω and N describe the structure of
the signal (see Fig. 3).

To evaluate the performance of the reconstruction algo-
rithms we use multi-band test signals with different parame-
ters. We vary occupancy ratio, number and positions of bands
and power of noise in signals. Frequency bands are formed via
sinc(·) functions in the time domain and always centered at
the middle of the frequency slices. Signals are real-valued. We
use the support reconstruction ratio as one of the performance
measure:

R =
Number of correctly found support sets

Number of test signals
. (6)

Support reconstruction ratio shows how well a reconstruction
algorithm identifies the positions of bands in a signal.

As for the second performance measure we use relative root
mean square (RRMS) value:

RRMS =

√√√√∑K
i=1(X̂(i)−X(i))2∑K

i=1X
2(i)

≥ 0 (7)

where X(i) and X̂(i) are original and estimated DFT coef-
ficients of the test signal, K = L ·M is the total number of
DFT coefficients. In case of Nyquist-rate sampling RRMS is
always equal to 0.

To simulate noisy environment we add white Gaussian noise
to the test signals. The power of noise corresponds to the
specified Signal-to-Noise Ratio (SNR) as illustrated in Fig. 3.

SNR = 10 · log10

(
Psignal

Pnoise

)
(8)

where Psignal is power of a clean signal, Pnoise is power of
noise. Thus, we introduce noise folding:

ŶN = A (X + N) (9)

where ŶN ∈ CP×M is the matrix of measurements of a
noisy signal and N ∈ CL×M is the matrix that corresponds
to broadband noise. Elements of N ∈ CL×M are independent
and identically distributed from the Gaussian distribution.

III. RECONSTRUCTION ALGORITHMS

We consider the following algorithms that are used in com-
pressed sensing applications: 1) Orthogonal Matching Pursuit
for MMV – M-OMP [9], 2) MUltiple Signal Classification –
MUSIC [6], 3) Subspace Augmented-MUSIC [10], 4) FOCal
Underdetermined System Solver for MMV – M-FOCUSS
[9], 5) Basis Pursuit Denoising for MMV – M-BPDN [11],
[12]. The MUSIC algorithm was used by Feng and Bresler
in [2] when they proposed multi-coset blind sampling. SA-
MUSIC is further development of MUSIC. The other three
algorithms are used to solve general MMV problems. The
detailed description of the reconstruction algorithms can be
found in the corresponding references.

Algorithms 1–3 show the best performance when the num-
ber of non-zero rows of X is known prior to the reconstruction.
Otherwise we have to estimate the number of non-zeros. How-
ever, the precision of this estimation is based on many factors:
level of noise in a signal, width of bands in a signal, dynamic
range of the input signal etc. In our simulation we assume that
the number of non-zeros is known prior to the reconstruction,
otherwise the performance of the reconstruction algorithm will
be limited by the algorithm estimating this number.

In additional to the general regularized M-FOCUSS we
implement a modification M-FOCUSS∗ that takes the number
of non-zero rows of X as an input parameter and returns the
indices of non-zero frequency slices. That allows to compare
M-FOCUSS∗ to algorithms 1–3 in terms of the support
reconstruction ratio.

We use our own implementations of the reconstruction al-
gorithms except M-BPDN [11], [12]. Signal subspace estima-
tion in SA-MUSIC is performed by thresholding eigenvalues.
M-FOCUSS was implemented with Tikhonov regularization
[9], the regularization parameter was picked empirically. The
internal parameter of M-FOCUSS was set to 0.8 as it gives
good tradeoffs between the sparsity of the solution and the
convergence speed [9].

Signal reconstruction with M-OMP, MUSIC, SA-MUSIC
and M-FOCUSS∗ is done in two steps. The first step is to
find the frequency support S. Different algorithms do it in
different ways. The second step is to solve the determined
system (4). This step is the same for all these algorithms.
So, the performance of M-OMP, MUSIC, SA-MUSIC and M-
FOCUSS∗ can be compared in terms of the support reconstruc-
tion ratio R. M-FOCUSS and M-BPDN algorithms reconstruct
a signal directly. Theirs performance is compared in terms of
the RRMS values.

M-FOCUSS∗ and M-FOCUSS are initialized with the least
square solution. For the algorithms 1, 2 the correlation matrix
Q = ŶN Ŷ

H

N is computed. Algorithms 3–5 are applied directly
to (9).

IV. SIMULATION

A. Simulation setup

For our simulations we use the multi-coset scheme with
L = 19. Sampling patterns with a prime L yields to full
column rank matrices AS [5]. We vary the number of sampling
channels from 1 to 19. Three types of sampling patterns are
used: 1) optimal sampling patterns – patterns that are selected
by exhaustive search for the lowest condition numbers, 2)
random generated patterns, 3) bunched sampling patterns –
C = {1, 2, . . . , P}.

We created signals with different parameters. For one
set of parameters we create 1000 random signal instances.
Variation of parameters: N = {1, 2, 3, 4}, Ω =
{0.05, 0.10, 0.15, 0.2}, SNR = {30, 16, 13, 10, 6} dB.
Positions of bands are picked randomly but always in the
middle of frequency slices.
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(a) N = 3, Ω = 0.15, SNR=30 dB.
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(b) N = 3, Ω = 0.15, SNR=10 dB.
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(c) N = 2, Ω = 0.10, SNR=13 dB.

Fig. 4. Empirical reconstruction rate with M-OMP, MUSIC, SA-MUSIC and
M-FOCUSS∗ vs the no. of sampling channels. Optimal sampling patterns are
used.

This gives control over the support of X. Amplitudes of bands
are picked within the 20 dB dynamic range. All bands have the
same width. Bands do not overlap. Test signals are stored in
files. This allows to run simulations for different reconstruction
algorithms independently. M-OMP, MUSIC, SA-MUSIC and
M-FOCUSS∗ take the number of non-zero frequency slices
as an input parameter. M-BPDN and M-FOCUSS run without
any prior information about the signals. The algorithms are
validated by sampling and reconstructing test signals without
noise. The source code used for the simulation is available at
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(a) M-OMP, N = 2, Ω = 0.10, SNR=16 dB.
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(b) MUSIC, N = 3, Ω = 0.15, SNR=13 dB.

Fig. 5. Empirical reconstruction rate with the selected algorithms for different
types of the sampling patterns vs the no. of sampling channels.

http://www.sparsesampling.com/discretemulticoset.

B. Simulation results

Some of the simulation results are presented in Fig. 4–6. We
do not include all the simulation results because of the limited
paper space. However, the presented plots allow to make the
correct conclusions as they preserve the tendency of behaviors
of the reconstruction algorithms. Convergence analysis has
shown the stability of the obtained data. For signals with
a high SNR, MUSIC has the highest reconstruction rate
(see Fig. 4(a)) – reconstruction rate 1 is obtained with the
7 channels while other algorithms require more sampling
channels. However, M-FOCUSS∗ outperforms the MUSIC
algorithm in case of a low SNR. As can be seen in Fig. 4(b)
the reconstruction rate 1 for M-FOCUSS∗ is achieved with 10
sampling channel and for MUSIC with 12 channels.

SA-MUSIC is a further development of MUSIC that over-
comes some restrictions of the original algorithm. But on
Fig. 4 we see that the performance of SA-MUSIC is lower
than the performance of MUSIC. The reason for this is the
thresholding approach for the estimation of the signal subspace
in SA-MUSIC [10]. If the signal subspace is not correctly
estimated then the whole reconstruction fails. The thresholding
parameter should be picked for each set of signal’s parameters.
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Fig. 6. RRMS error with M-BPDN and M-FOCUSS vs the no. of sampling
channels, N = 4, Ω = 0.16, SNR=20 dB. Optimal sampling patterns are
used.

The M-OMP algorithm has the lowest reconstruction rate.
However, the reconstruction performance of OMP is less
sensitive to SNR. Reconstruction rate 1 for signals with N =
3, Ω = 0.15 and different SNR (30 dB and 10 dB) is achieved
with the same number of the sampling channels (see Fig. 4(a)
and 4(b)). In case of 1- and 2-band signals the reconstruction
performance of other algorithms decrease to the M-OMP
level when the signals have a low SNR (SNR≤ 13 dB) (see
Fig. 4(c)). In this case, in order to have the reconstruction
rate equal to 1 with M-OMP, MUSIC and M-FOCUSS∗ the
multi-coset scheme should have 9 channels.

We compare the reconstruction rates for the sampling
patterns of different types. Plots on Fig. 5 shows that the
reconstruction rate for the random and bunched sampling
patterns is lower than for the sampling patterns obtained by the
analysis of the condition numbers. Moreover, as can be seen
on Fig. 5(a) the random sampling pattern for 12 sampling
channels results in lower than expected reconstruction rate.
This shows that relying on random selection of sampling
patterns may lead to undesirable results.

Comparison of M-FOCUSS and M-BPDN is presented on
Fig. 6. Reconstruction with M-BPDN results in lower RRMS
error when P < 6, but in this case RRMS ≥ 0.8. This is a high
reconstruction error that makes useless the reconstructed signal
because it significantly differs from the input signal. Although
the exact value of the acceptable RRMS error is defined by the
specific application, we may assume that we are aiming to get
RRMS not higher that 0.5. From this perspective M-FOCUSS
has better reconstruction performance for all the test signals
considered in this research.

V. CONCLUSIONS

This paper investigates the performance of commonly used
reconstruction algorithms in discrete blind multi-coset sam-
pling. Discrete multi-coset sampling can replace Nyquist-rate
sampling in applications with frequency sparse signals.

Simulation results show that use of optimal sampling pat-
terns results in the best reconstruction performance. Bunched

and random sampling patterns may lead to the undesirable
decrease of the reconstruction performance.

When the number of non-zero slices is known prior to
reconstruction, the modification of M-FOCUSS outperforms
all other algorithms except for the low noise signals. In
that case MUSIC is more beneficial. In order to use SA-
MUSIC with the thresholding for the subspace estimation, the
thresholding parameter should be picked for each type of a
signal (number of bands, dynamic range, level of noise etc).
M-OMP is a simple algorithm that can be successfully applied
in case of signals with the small number of bands even with
relatively high level of noise. M-FOCUSS and M-BPDN can
be used when the number of non-zero slices of the DFT of the
sequence of the samples of an input signal is not known prior
to the reconstruction. In this case the M-FOCUSS algorithm
also shows better performance.
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