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Abstract—This paper proposes a reserved quantization indices v v
method for saturated measurements in compressed sensingh& Quantization Quantization
existing approaches tailored for saturation effect do not povide ¢ bits/meas. ¢ bits/meas.
a way to identify saturated measurements, which is mandatagrin ‘
practical implementations. We introduce a method using resrved Unsaturated i Saturated Unsaturated Saturated
guantization indices to mark saturated measurements, whie is meas. ! meas. meas. meas.
applicable to current quantizer models. Two extended appraches !
based on the proposed method have been investigated compdre 2 i 2-n reserrlved
to the existing approaches. The investigation shows that saated indices ! indices . di
measurements can be identified by reserved quantization irides v i [ndices

without adding extra hardware resources while maintaining a . . . .
: . L Signal reconstruction Signal reconstruction
comparable reconstruction quality to the existing approates.

Index Terms—Compressed sensing, Quantization index, Satu-
rated measurement, Signal reconstruction (@) (®)

. INTRODUCTION Fig. 1. (a) The existing approaches and (b) the extendedappes using
' . i ) o .reserved guantization indices.
Ompressed sensing (CS) is a recent signal acquisition

and reconstruction technique enabling sampling and
compression simultaneously [1], [2]. The compressive sam-In this paper, we propose a method reserving one or two
pling paradigm may enable perfect reconstruction with & subf the set of possible quantization indices to mark satdrate
Nyquist sampling frequency [2]-[5], provided that originameasurements, see Fig. 1b. It requires no extra hardware for
signals are known to be sparse (or compressible) in some. bagie quantizers, and hence can be applied directly in théimgxis
The compressed sensing technique may relax the requiremeufantization models. We compare the reconstruction gualit
of high-speed analog-to-digital converter (ADC) for signaof the extended approaches based on the proposed method
with high frequencies. In practical systems, quantizaémor to the existing approaches. The simulation results show the
(or quantization noise) introduced by ADCs influences ttfeasibility of the proposed extended approaches.
quality of the signal reconstruction, which cannot be neigle

in compressed sensing [6]. Therefore, several studies have Il. METHODOLOGY
been done to investigate the effects of quantization in com-in this paper, a general CS-based structure is modeled with
pressed sensing systems [6]-[14]. quantized compressed measurements. All input signals are

Some researchers propose modified signal reconstructifésented as time-discrete vectors according to general CS
algorithms based on the information of quantization, whicheory [3].

could improve the quality of signal reconstruction [6]-]11
Others optimized the design of quantizers according taifeat A. Signal acquisition

of th(_air reconstructioq algorithms, which coul_d also _belnefi To implement an existing CS technique in signal processing
the signal reconstruction [12], [13]. Further, since safion systems, it is necessary to find sparsity in the original sig-

is hard to completely avoid in quantization, unbounded guagy) [2], which means that the original signal should be spars
tization error of saturated samples could significantly atp o compressible:

the reconstruction performance in compressed sensing. Two 7 = Ux, 1)
existing approaches,the rejection approach and the tensis

approach, tailored for saturated measurements in congatessherez € RV*! is the original signal vectorg € CV*¥N
sensing were proposed in [14]. The saturated measuremésitthe dictionary and € CV*! is the sparse vector repre-
are rejected or be enforced consistency in the two existisgntation ofz in ¥. In this model,x is a vector containing
approaches, respectively. However, no method was providady a few non-zero elements.is sparse if all other elements
to identify the positions of the saturated measurementighwhare zeros, thug < ||z||o < N, where||z||o is the number
is mandatory in practical implementations, see Fig. la. of non-zero elements i, or x is compressible if all other



elements are small enough to be accurately approximatedawerage quantization errog of non-saturated values will
Zeros. become smaller when using the same number of quantization

According to general CS theory [2], a measurement matridices W (due to smaller step-size) at the expense of more
® is used to sample the original signal, which is describeshturated values. The quality of the reconstructed sigrsgl m
by: be better due to smaller quantization errors [14].

y = ®z = dUx, (2)
I1l. ALGORITHM

wherey € CM*! is the compressed measurement vect
® c CM*N js the measurement matrix and/ is the
measurement matri® and the dictionary matrix obey the €Xisting rejection and consistent approach need to idetité
Restricted Isometry Property (RIP) [2], the original sigcan  indices of saturated measurements for further processuig [
be recovered frond/ measurements, whefer||, < M < N. However, the two existing approaches _do not proylde a method
In this paper,® is a random Gaussian matrix, which meant identify saturated measurements. It is not feasibletferre-
all elements in® are randomly chosen from a collection withconstruction algorithms to know this information withoutya

Gaussian distribution, to obey the requirement of RIP [2]. change in the quantizers. Therefore, the reserved quéiatiza
indices method is proposed to extend the existing appreache

B. Quantization and Saturation see Fig. 1. It is achieved by reserving some of the available
According to existing CS theory [4], [5], an original signaduantization indices to represent saturated measureratrgsy

can be reconstructed from a compressed measurement ve@tst then allocating the remaining quantization indices to

y. However, in practise, measurements need to be converfegresent unsaturated measurement values. The number of

from analog to digital before further processing in a DSpeserved quantization indices is € {1,2} depending on

Since quantization is a necessary part of current ADCs [18e specific reconstruction algorithm. Based on the pragpose

quantization error is an important factor influencing thaligy method, we modify the two existing approaches in [14]. The

of signal reconstruction. For a general view, uniform gizant €xtended approaches provide the feasible ways to taildhéor
ers are used in this paper: saturated measurements in CS in practical systems.

%%. Reserved guantization indices method

yQ =Yy +e, (3) B. Rejection approach

wherey is the input measurement vectgrg is the quan- 1) Existing formulation: The ex_isting reject_ion _approach
tized measurement vector, aedis an additive quantization WaS Proposed by Laska et al. in [14], which is used to
error/noise vector. If we choose a one-dimensional scafffcommodate the saturation effect in CS. We dethas
uniform quantizer with a resolution of bits/meas., the the set of indices of the _unsaturated measurements. The
entire quantization range is divided int equal quantization VEctor of unsaturated quantized measuremgnpjsof length
partitions, wherd¥ = 27 [15]. In this work we consider scalar M (M < M) and the measurement matrii consisting of

quantization of each of the elements of the vegtor the rows corresponding to the unsaturated measurements are
Usually, the quantization range of a quantizer is chosé¢fined as: _
based on the type or class of input signals appliedy If Yq :yg, ¢ = &°. (5)
is the expectation of input data and a quantization range i - L . .
bounded by — G, i+ G] (G > 0), G is called the saturation SThe existing rejection approach is then defined as [14]:
level and any input data exceeding this range is saturated. | min. X[
this paper, input datq i_s quqntizgd to the miq-point \(alu‘es 0 st ||<f*\IISE ~Fala <e (6)
the quantization partitions in uniform quantizers. Sinbe t
measurement matrices are random Gaussian matrices in this [~ e
e=\VM+2V2M - o, (7

paper, the elements of the measurement vegtare assumed
to have a Gaussian distribution too. Therefore, saturdéioel \yhere the threshold is calculated according to [17] that

and saturation rate are correlated [16] as: requires estimation of the standard deviatignof the quan-
G=0ov2-erf~}(1-17), (4) tization noisee in (3). In the existing rejection apprqach, the _
saturated CS measurements and the corresponding rows in
where erf ' denotes the inverse error function, is the the measurement matrix are discarded. Then, the unsaturate
standard deviation of andr (0 < r < 1) is the saturation measurements and the corresponding rows in the measurement
rate, i.e., the ratio of the number of saturated measuremematrix are used exactly as in the conventional CS recon-
to the number of total measurements. struction approach [18]. If the resolution of the quantizer
According to (4), quantizers with a small saturation level bits/meas., the number of quantization indices for unsatu-
G lead to increased saturation rateand vice versa. Then, rated measurementi® = 29 in this case that how to indicate
if saturated measurements are allowed to occur in the modelsich values are saturated is not considered in the existing
of the existing rejection and consistent approaches [h#&, trejection approach.



2) Extended formulationThe existing rejection algorithm the existing rejection approach [14]. However, it should be
needs to know the locations of saturated measurements in ioéed that the total computational complexity also incesas
measurement vectors to genergtg and ®, and this infor- in the existing consistent approach [14].
mation is necessary for the signal reconstruction. Thetiegis  2) Extended formulation:The information of indices of
rejection algorithm in [14] does not take into account how tpositive saturated measurements and negative saturai@d me
index saturated measurements in practice. Therefore,dn #urements is necessary in the above signal reconstruction
proposed extended rejection approach, one reserved gaantmethod. However, the acquisition and recording of this in-
tion index (» = 1) is used to mark all saturated measurement@rmation is not included in the existing consistent apploa
If the resolution of the quantizer ig bits/meas., andy g is  Therefore, in the proposed extended consistent approaoh, t
the vector of the quantized unsaturated measurementg theserved quantization indicea (= 2) are used to represent
areWW —1 (W = 29) quantization indices for quantizing eactpositive and negative saturated measurements, respggctive
element inyqy in this case. The entire quantization rangthe quantizer resolution ig bits/meas. for the entire system,
is divided intoW — 1 (W = 29) quantization partitions to andy . is the quantized unsaturated measurements vector,
quantize the unsaturated measurements. The extended rejee number of quantization indices fgi, is then'W — 2

tion approach is defined as: (W = 29). The extended consistent approach is defined as:
S;QR = y‘éR, (8) ch = Y8C7 (12)
min. [y © min. [

st |2¥x —yqrll2 <e s.t. ||A«I>\Il§ —Yaclz <e (13)

The extended rejection approach is a simple method tailored and ¢¥x >G-1.
for identification of saturated measurements which mereReserving two quantization indices to mark positive and
requires a change to the quantizer and not the reconstnucti@gative saturated measurements in the proposed approach,
method itself. respectively, the saturated measurements can be identified
for use in the reconstruction algorithm. When the quantizer
has a high resolution, lacking two quantization indices for

1) Existing formulation:Since the information in saturatedynsaturated values may represents only a minor decrease in
measurements is wasted in the rejection approach, an agtvanfie available number of quantization levels and should €aus

approach, called the consistent approach, was propos&d]in [only minor increase of quantization error.
The existing consistent approach makes use of saturated

measurements while they are treated differently by enfigrci IV. SIMULATION AND EMPIRICAL RESULTS

consistency, which means the saturated measurementsishouin this section, numerical results are presented to evaluat
be consistent when sampling the original signal and therrecawo proposed extended approaches. We compare the extended
structed signal. Provided th&"™ and S~ represent the setsapproaches in (11I-B2, 11I-C2) to the existing approaches i

of indices of the positive saturated measurements andimegaflll-B1, 111-C1) by the reconstruction quality defined inrtes
saturated measurements, respectively, the measuremeit maf Normalized Mean Square Error (NMSE)

® is divided into two sub-matrices: an unsaturated matrix

C. Consistent approach

& c CM*V; and a saturated matri® € CM—)xN such p= Iz — 25 _ ||¥x — ¥x]|f3 (14)
that: - 1213 o3
b — e (10) wherez is the original signalx is its sparse representation,

_pS~

z is the reconstructed signal amdis the reconstructed sparse
representation. Ip; andps are two values oONMSE based on

Then, the existing consistent approach is defined as [14]: the same specification in the existing and extended appesach

min. |[X[[x (rejection or consistent), respectively, the differenteecon-
st [ 2¥x —yql2 <, (11) struction quality for the two approaches is evaluated by:
and 2¥x > G- 1, _
N P2 P11 100%. (15)
where1 € CM-M)x1 s a vector of ones. The existing P1

consistent approach still uses the unsaturated measutemenr a general view, we test above four approaches in the
like conventionall; norm algorithms [18]. Like the exist- scenarios of different saturation ratesquantizer resolutions
ing rejection approach, if the resolution of the quantizer iy and numbers of measurements

g bits/meas., the number of quantization indices for unsat- In all simulations, multi-tone signals are used as original
urated measurement I8 = 2¢ in this case that how to signals, which are sparse in the frequency domain. We stress
indicate which values are saturated is not considered in e fact that the multi-tone signal is just an example of all
existing consistent approach. The existing consistentagmn possible kinds of original signals for the approaches in our
generally provides a better signal reconstruction qualign simulations, which helps us to focus the analysis on thetsfe



of the proposed methods. The tones are randomly located i 10’ ' ]
range of[0, 500] Hz in the frequency domain. The minimum :
guard space i$0Hz between each tone. According to (1) an
(2), we apply the four approaches to multi-tone signals ra
domly generated according to the following specificaticize
of sparse vectoN = 1000; number of toned< = 10; number

of compressed measuremeffse {80, 160}. The expectation g w0l 5P =2 bits/m, extended}
of compressed measurementsis zero in all simulations. The = ' q=2 bits/m, existing |]
dictionary ¥ is an inverse discrete Fourier transform (DFT —6—q=4 bits/m, extended ]
matrix in our simulations according to (1). The measureme 0~ q=4 bits/m, existing |
matrix ® has i.i.d. zero-mean Gaussian entries\V'(0,1/M). ::—_q;g E?‘S/m’ extended |
. . . . q=6 bits/m, existing
We test uniform quantizers with resolution € {2,4,6, 8} ~©— =8 bits/m, extended | |
bits/meas. In each simulation, we us&000 randomly gen- " -~ q=8 bits/m, existing
erated multi-tone signals as training signals to estimage t 1 ¢ 2 1 6 8 0 12 14 16
saturation levelG for the uniform quantizer according to Saturation rate r [%]
different saturation rate € {0.5%, 1%, 2%, 4%, 8%, 16%}, () M =80

see (4). In this paper, each simulation repeats 1000 times .

with randomly generated original signal and measureme 10 '

matrix in each iteration and all numerical results shown i

following figures use the average values. The open soul 10!

optimizersSPGL1 [19], [20] and CVX [21], [22] are used B

in our simulations. S N
Fig. 2 shows the reconstruction quality, in termsS\aISE, 107} VTS

versus saturation rate using the existing and extendectije

approaches. Four different quantizer resolutions aredefstr

both approaches. The simulation results show that the é&ten

q=2 bits/m, extended ||
q=2 bits/m, existing ||
—6—q=4 bits/m, extended |

NMSE

-3

10 ¢

rejection approach has a comparable reconstruction perf ~~ q=4 bits/m, existing |
mance to the existing rejection approach for high quantiz 10 :::ng E?‘S;m’ extended|)
resolutions. In Fig. 2a, the maximum difference of recarcstr o _&3:8 bi:zfz :ﬁiﬂi&
tion quality between the two approaches is only approxitpate . --©- q=8 bits/m, existing ||
6% for the case off = 4, 6 or 8 bits/meas. Relatively big dif- 10, 2 4 6 s 10 12 14 16
ference of reconstruction quality between the two appresact Saturation rate r [%]

is observed for the case g@f= 2 bits/meas. This is due to that (b) M = 160

the quantization error in low quantizer resolutions bec®meig. 2. SimulatedVMSE versus saturation ratebased on both the existing
relatively larger when there is one quantization partitiess and extended rejection approachgss quantizer resolution)/ is number of
in the extended rejection approach. In Fig. 2b, the curves fgeasurements.
the two approaches hold a consistent similarity. The marimu
difference is approximately2% wheng = 4 or 6 bits/meas.
When ¢ - § bits/meas., the extqnded re_]ectlon approgcl’lls below 11% when ¢ = 6 or 8 bits/meas. In Fig. 3b, the
even provides a better reconstruction quality than thetiegis . : . ;
rejection approach. This is an added benefit for the extendag<mum difference is belod?% wheng = 6 or 8 bits/meas.
approach. It should be noticed that quantization error iy on It is noticed that both proposed extended approaches ovid
one of the factors which influence the signal reconstructionore accurate signal reconstruction with larger numbers of
quality [3], [6]. Due to the non-linearity of reconstruatio compressed measurememts or higher quantizer resolutions
algorithms in compressed sensing [2], it is possible that th. Choosing the optimum saturation rate may significantly
proposed extended approaches exceed the existing appsoachprove the signal reconstruction quality for both exteshde
in some cases. approaches. The extended consistent approach is more robus
Fig. 3 shows the reconstruction quality, in terma\dfISE, to larger saturation rates than the extended rejectioroagpr
versus saturation rate using the existing and extended cdive main decline of reconstruction quality in the proposed e
sistent approaches. The number of quantization indices fended approaches occurs when using low resolution quantiz
unsaturated measurements is two fewer in the extended cers. However, since the two existing approaches cannoideov
sistent approach. However, like results in Fig. 2, the edeein accurate signal reconstruction with low resolution quaars,
consistent approach with high quantization resolutions pre.g.,q = 2 bits/meas., it is not a significant drawback for
vides a comparable reconstruction performance to theiegistthe extended approaches. In practical implementationg, lo
consistent approach. In Fig. 3a, the maximum difference msolution quantizers are not recommended to be applied to
reconstruction quality between the two consistent apgresc the extended rejection or consistent approach.
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