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Passivity-Based Optimal State-Feedback Control for 

LCL-Filtered Grid-Following Converter 
 

Chao Gao, Shan He, Member, IEEE, Peiji Song, Graduate Student Member, IEEE, Pooya Davari, Senior Member, 

IEEE, Ka Nang Leung, Senior Member, IEEE, Poh Chiang Loh, and Frede Blaabjerg, Fellow, IEEE 
 

Abstract—As the grid incorporates more voltage-source 

converters (VSCs), the stability issues arising from VSC-grid 

interactions escalate. While passivity theory offers a promising 

solution, existing passivity-based controller designs primarily rely 

on heuristic methods which do not advance stability beyond 

achieving passivity. To fully exploit the available degrees of 

freedom, this paper proposes employing an optimal state-feedback 

control that refines control parameters using an optimization 

algorithm. The optimization objective aims at maximizing the 

external stability by minimizing the product of 2-norms of the 

phase curve and magnitude curve of the VSC’s output admittance. 

Compared with the conventional passivity-based design, the 

proposed control method improves the external stability with non-

dissipative grid impedance and can mostly achieve dissipativity. 

The optimization algorithm and the process for generating 

starting points for the optimization are detailed. Experimental 

validations confirm the effectiveness of this optimal state-feedback 

control in enhancing VSC-grid interaction stability. 

Index Terms—Dissipation, state-feedback control, optimization, 

grid-following converter, LCL filter, impedance-based stability 

criterion. 

I. INTRODUCTION 

As voltage-source converters (VSCs) are increasingly 

integrated into the power grid, ensuring their stability becomes 
paramount [1]. Controller designs that disregard the existence 

of grid impedance or solely account for inductive grid 
impedance prove inadequate in ensuring stability when faced 

with significant variations in grid impedances [2]. To simplify 

the analysis and assessment of stability under grid impedance, 
a stability criterion based on impedance was formulated [3], [4]. 

This criterion categorizes system stability into internal stability, 

focusing on the converter itself, and external stability, 
addressing the interaction between the VSC’s output 

admittance and the power grid impedance. The introduction of 

passivity theory further strengthens this criterion by requiring 
passivity for both the VSC’s output impedance and the grid 

impedance [5]. The advantage of this theory is that with all parts 

of the grid, i.e., grid-connected VSCs, grid impedance and other 
grid-connected loads, being passive, the equivalent grid 

impedance seen from any node remain passive, allowing the 

safe addition of new passive devices without risking instability 

[6]. However, as shown in [7], achieving passivity (dissipativity 

for all frequencies) is nearly impossible. Therefore, as a 
compromise, dissipativity is enforced below the Nyquist 

frequency in practice [7]. 

Considerable research efforts have been dedicated to 

achieving dissipativity of the converter’s output admittance 
within the Nyquist frequency range. It has been observed that 

the non-dissipative frequency bands of a grid-connected 

converter fall into two main categories. The first category 
includes frequency bands around the resonant frequencies of 

the resonant (R) controller. This issue was first identified and 

resolved in [8] through a specific compensation angle of the R 
controller, along which a derivative-based calculation method 

was also proposed but exhibits complexity. Subsequently, a 

simplified alternative, the limit-based calculation method, was 
proposed as a substitute for the derivative-based approach [9]. 

The second category of non-dissipative region appears 

around the critical frequency, defined as a sixth of the sampling 

frequency when the total delay of computation and pulse-width 
modulation (PWM) is 1.5 times the sampling period. To address 

this issue, various methods have been proposed [10]–[14]. The 

classic approach involves using the capacitor current active 
damping (CCAD) with an optimal coefficient, as proposed in 

[11]. This achieves dissipativity below the Nyquist frequency 

and the real part of the output admittance become zero at the 
critical frequency, which also means the dissipativity at the 

critical frequency is vulnerable to the accuracy of the involved 

LCL parameters. To enhance robustness, several algorithms 
have been suggested. One category of algorithms involves 

inserting a first [12] or second [11] order lead-lag compensator 

in the CCAD path. Another option, proposed in [13], inserts a 
first-order lead or lag compensator in series with the current 

controller. Despite these efforts, the improvements are limited. 

Apart from utilizing CCAD, there are also methods utilizing 

only the voltage of point of common coupling (PCC) to achieve 
dissipativity [15]–[17]. To maximize the utilization of available 

degrees of freedom and enhance overall passivity performance, 

some approach incorporates both voltage feedback and current 
feedback for passivity-based admittance shaping [18]–[20]. In 

[18], the optimal CCAD coefficient is first obtained with 

capacitor voltage feedback (CVF) omitted. However, after CVF 
is added, the designed CCAD coefficient becomes nonoptimal, 

non-dissipative region appearing around switching frequency. 

It then adopts multisampling technique to eliminate it. 
Multisampling technique expand dissipative frequency range 

by elevates the Nyquist frequency. However, it fails to realize 

dissipativity around the Nyquist frequency [18], [21]. Similar 
sequential parameter tuning processes are also adopted in [19], 

[20], where the non-dissipative region is tackled by adding low 
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pass filter in CVF path. In summary, the conventional 

sequential tuning process consistently yields suboptimal 
parameters and poses challenges in achieving dissipativity. 

All the previously mentioned methods rely on classical 

control theory, involving the modification of the system by 

introducing a specific transfer function at a certain point and 
adjusting the parameters within it. Usually, the transfer function 

is determined through practical experience, potentially leading 

to unnecessary complexity. Moreover, parameter tuning is often 
based on experience or observed trends. In cases with multiple 

parameters, they are usually tuned sequentially, preventing the 

attainment of an optimal result for a nonconvex problem [22]. 
Conversely, modern approaches seek to shift the tuning 

complexity into a computational tool, leveraging advanced 

optimization techniques [23]. This allows designers to 
concentrate on problem specification rather than intricate 

manual tuning. There is not much literature utilizing the modern 

approach for passivity-based design. In [24] and [25], a multi-

objective robust 𝐻∞ control is proposed with the restriction of 

output admittance being dissipative. In [26], the pole-placement 
method is employed without involving dissipativity 

requirement initially, subsequently achieving dissipativity by 

introducing a band-pass filter in the grid-side current 
feedforward path. However, these investigations conclude once 

dissipativity is attained, without making efforts to further 

improve it. Consequently, the dissipative property they confer 
is likely to be compromised with slight variations in physical 

parameters, or the system may be destabilized by even minor 

instances of non-dissipative grid impedance. 

Addressing the previously outlined challenges, this paper 
presents a passivity-based optimal state-feedback control 

strategy. In contrast to conventional control systems, this 

method maximizes the stability in systems featuring non-
dissipative grid impedance and can achieve dissipativity below 

the Nyquist frequency in most cases. This paper is structured as 

follows: Section II gives a brief review and analysis of 
conventional passivity-based designs, highlighting their non-

optimal parameter configurations. Section III introduces the 

proposed optimal state-feedback control by defining the 
optimization problem, examining the feasible solution space, 

and employing the Complex method [27], [28] as the 

optimization algorithm. This section concludes with a 
comparative analysis of the robustness of the proposed method 

against traditional approaches. Experimental verifications are 

presented in Section IV followed by Section V, the Conclusion. 

II. ANALYSIS OF CONVENTIONAL PASSIVITY-BASED 

CONTROLLER DESIGN 

A. System Model 

Fig. 1 shows the general schematic diagram of a three-phase 
grid-connected VSC. The grid-side current reference in dq 

frame (𝑖2,𝑑𝑞
∗ ) is given by outer power loop which regulates the 

output active power or reactive power. Converter-side current 

(𝑖1) is sampled for control purposes and over-current protection. 

Grid-side current (𝑖2) is sampled for closed loop control. The 

capacitor voltage is sampled for capacitor voltage feedback 

(CVF) control and current synchronization through a phase-
locked loop (PLL). 

Fig. 2 shows the control block diagram of conventional 

passivity-based control. All signals are in abc frame. CCAD and 

CVF are employed with coefficients of 𝐻𝑖 and 𝐻𝑣 respectively, 

where the capacitor current (𝑖𝑐 ) is obtained by 𝑖1 − 𝑖2 . 𝑖2 is 

compared with 𝑖2
∗, and the error is regulated by a proportional 

resonant (PR) controller, which is expressed as: 

1

2 2 2

1

( )

cos sin
( ) h h

p rh

h

R s

s h
PR s k k

s h

  



−
= +

+
 (1)

 

where 𝜔1 is the fundamental angle frequency, ℎ is the order of 

the harmonics of concern, 𝑘𝑝 is the proportional gain, 𝑘𝑟ℎ and 

𝜑ℎ  are the resonant gain and compensation angle of the R 

controller tuned at the resonant frequency, ℎ𝜔1, respectively. 

All R controllers are collectively denoted by 𝑅(𝑠).  

The one sampling period computational delay is modeled by 

𝑒−𝑠𝑇𝑠 where 𝑇𝑠 is the sampling period. The PWM and sampling 

process are collectively modeled by zero-order-hold (ZOH) 

divided by 𝑇𝑠 [29]: 

𝐺𝑍𝑂𝐻(𝑠) =
1 − 𝑒−𝑠𝑇𝑠

𝑠𝑇𝑠

(2) 

Thus, the total effect is the product of the two parts: 

𝐺𝑑(𝑠) = 𝑒−𝑠𝑇𝑠
1 − 𝑒−𝑠𝑇𝑠

𝑠𝑇𝑠

(3) 

Therefore, 𝑖2 can be expressed by 

𝑖2 = 𝐺𝑐𝑙1(𝑠)𝑖2
∗ − 𝑌𝑜1(𝑠)𝑣𝑝𝑐𝑐 (4) 

where 𝑣𝑝𝑐𝑐 denotes the voltage at the PCC, 𝐺𝑐𝑙1(𝑠) and 𝑌𝑜1(𝑠) 

are closed loop transfer function and output admittance 
respectively. Their expressions are (5) and (6) given at the 

bottom of the next page.  

B. Conventional Passivity-Based Controller Design 

The impedance-based stability criterion states that the 

stability of a grid-connected converter is assured under two 

conditions: firstly, the closed-loop transfer function must be 

stable; secondly, the product of the grid impedance, 𝑍𝑔(𝑠), and 
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Fig. 1. Schematic diagram of a three-phase grid-connected VSC. 
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Fig. 2. Control block diagram of conventional passivity-based control in abc 
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the converter’s output admittance, 𝑌𝑜(𝑠) , must meet the 

Nyquist stability criterion [3], [4]. A significant drawback of 

this criterion is that a complete reassessment of the stability is 

necessary with each alteration of the grid impedance. In 
response, the passivity theory has been introduced as an 

enhancement to the impedance-based stability criterion. This 

approach simplifies the second condition by requiring that both 

𝑍𝑔(𝑠)  and 𝑌𝑜(𝑠)  exhibit dissipativity below the Nyquist 

frequency, characterized by a phase range of [−90°,90°]. With 

both 𝑍𝑔(𝑠) and 𝑌𝑜(𝑠) dissipative, the Nyquist curve of their 

product, 𝑍𝑔(𝑠)𝑌𝑜(𝑠) , will never encircle the point, −1 , 

ensuring the stability. The passivity of 𝑍𝑔(𝑠) is assured as long 

as it consists solely of passive components. Hence, the design 

of 𝑌𝑜(𝑠) is decoupled from 𝑍𝑔(𝑠), and the controller design 

target is to make 𝑌𝑜(𝑠) dissipative below the Nyquist frequency 

while keeping the closed loop transfer function stable. 
CCAD is a classic passivity-based control, and is usually 

conducted before other modifications are made. By setting 𝐻𝑣 

in 𝑌𝑜1(𝑠) to zero, the effect of CVF on 𝑌𝑜1(𝑠) is eliminated. 

Then 𝐻𝑖 can be obtained by solving 

𝑅𝑒{𝑌𝑜1(𝑠)} ≥ 0 (7) 

where 𝑅𝑒{∙}  is the function returning the real part of the 

variable. The result is 

𝐻𝑖 =
36𝑘𝑝

𝐿1𝐶𝜔𝑠
2
− 𝑘𝑝 (8) 

where 𝜔𝑠  is the sampling angular frequency. The solving 

process of (8) can be found in [18], and will not be repeated 

here for brevity. 𝑘𝑝 is related to the bandwidth of the closed-

loop system, and is usually set to 0.1𝜔𝑠𝐿1 [11]. 

CVF is often preferred to improve transient performance and 

suppress the effect of 𝑣𝑝𝑐𝑐 on output current. As suggested in 

[16], [21], the CVF coefficient smaller than one is preferable. 

Thus, 𝐻𝑣  can be set to 0.9. Such kind of proportional CVF 

enhances the dissipativity around the critical frequency but 
spoils the dissipativity around the Nyquist frequency [18]. 

Since the combination of CCAD and CVF is identical to the 

control method described in [18] and serves as the basis for 
many advanced control methods developed in various papers 

[9], [11], [19], [20], [30], it is referred to as conventional control 

in this paper.” 

With the parameters listed in Table I, the Bode plots of 

𝑌𝑜1(𝑠)  using sole CCAD as well as both CCAD and CVF 

combined are illustrated in Fig. 3. As it can be seen, when using 

only CCAD, 𝑌𝑜1(𝑠)  (blue curve) is dissipative below the 

Nyquist frequency, and its phase curve is tangential to the 90° 
line at the critical frequency ( 𝑓𝑐𝑟𝑖𝑡 ) demonstrating zero 

dissipative margin. This situation is alleviated when CVF is 

added, as it can be seen from the red curve, the phase around 

𝑓𝑐𝑟𝑖𝑡  is lifted demonstrating a certain amount of dissipative 

margin. However, the phase decreases below −90° around the 

Nyquist frequency (2500 Hz) as presented by the zoom-in view 

indicating the shortage of dissipativity.  

To summarize, the conventional passivity-based control 
cannot ensure the dissipativity below the Nyquist frequency 

with non-zero margin. This may partly be due to the parameter 

tuning process, the CCAD coefficient is given first without 
considering the existence of CVF, and the CVF coefficient is 

given by experience. Fig. 4 depicts the curves of 

min{𝑅𝑒[𝑌𝑜1(𝑗𝜔)]}, 𝜔 ∈ [0, 𝜔𝑠/2], with respect to the CCAD 

coefficient, 𝐻𝑖, under three different 𝐻𝑣. A red point marks the 

conventional design outcome, which notably does not achieve 

the maximum min{𝑅𝑒[𝑌𝑜1(𝑗𝜔)]}. It is observed that a smaller 
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Fig. 3. Bode plots of VSC’s output admittance with CCAD and combined 

CCAD and CVF. 
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Fig. 4. Relationship between min{𝑅𝑒[𝑌𝑜1(𝑗𝜔)]}, 𝜔 ∈ [0,𝜔𝑠/2], and 𝐻𝑖  and 

𝐻𝑣. 

𝐺𝑐𝑙1(𝑠) =
𝑃𝑅(𝑠)𝐺𝑑(𝑠)

𝑠3𝐿1𝐿2𝐶 − 𝑠2𝐿2𝐶𝐻𝑖𝐺𝑑(𝑠) + 𝑠(𝐿1 + 𝐿2) − 𝑠𝐿2𝐻𝑣𝐺𝑑(𝑠) + 𝑃𝑅(𝑠)𝐺𝑑(𝑠)
(5) 

𝑌𝑜1(𝑠) =
𝑠2𝐿1𝐶 − 𝑠𝐶𝐻𝑖𝐺𝑑(𝑠) − 𝐻𝑣𝐺𝑑(𝑠) + 1

𝑠3𝐿1𝐿2𝐶 − 𝑠2𝐿2𝐶𝐻𝑖𝐺𝑑(𝑠) + 𝑠(𝐿1 + 𝐿2) − 𝑠𝐿2𝐻𝑣𝐺𝑑(𝑠) + 𝑃𝑅(𝑠)𝐺𝑑(𝑠)
(6) 

 

TABLE I 

MAIN PARAMETERS OF THE SYSTEM AND VSC-I 

 

Grid Parameters 

Vg Grid phase voltage (RMS) 220 V 

Lg Grid inductance 4 mH 

Cg Grid capacitance 20 F 

VSC-I 

L1 Converter-side inductance 4 mH 

L2 Grid-side inductance 2 mH 

C Filter capacitance 10 μF 

Sn Rated power 7 kVA 

Vdc DC-link voltage 700 V 

fsw Switching frequency 5 kHz 

fs Sampling frequency 5 kHz 

krh for ℎ ∈ 𝐻 Resonant current controller gain 2000 Ω/s 
 
 



 

 

CVF coefficient (𝐻𝑣=0.8) yields a larger min{𝑅𝑒[𝑌𝑜1(𝑗𝜔)]}. It 

is noteworthy that a positive min{𝑅𝑒[𝑌𝑜1(𝑗𝜔)]}  is expected 

which signifies the achievement of dissipativity below the 
Nyquist frequency. However, once dissipativity is assured, a 

larger min{𝑅𝑒[𝑌𝑜1(𝑗𝜔)]} does not necessarily signify a better 

performance. Generally, there remains degree of design 

freedom even after achieving dissipativity, and the subsequent 

design objective beyond dissipativity has not been thoroughly 
explored. 
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Fig. 5. Control block diagram of state feedback control. 

III. PASSIVITY-BASED OPTIMAL STATE-FEEDBACK CONTROL 

A. Equivalence between Conventional Control and State-

Feedback Control 

Since the capacitor current (𝑖𝑐) is obtained by 𝑖1 − 𝑖2, and fed 

back through 𝐻𝑖 , it can thus be equivalently replaced by the 

feedback of 𝑖1  and 𝑖2  through 𝐻𝑖  and −𝐻𝑖  respectively. 

Considering that the PR controller also provides a proportional 

feedback path for 𝑖2 by the proportional controller, the two 𝑖2 

proportional feedback paths can be combined yielding a 

feedback coefficient of −𝑘𝑝 − 𝐻𝑖.  

The voltage reference (𝑣𝑟0), upon being calculated, is retained 

within the controller until the end of the sampling period. This 

computational delay introduces one more state for the system, 

i.e., the output of the delay (𝑣𝑟). Their relationship is: 

𝑣𝑟(𝑘 + 1) = 𝑣𝑟0(𝑘) (9) 

For conventional control, 𝑣𝑟  is not utilized, and thus its 

feedback coefficient is zero. Consequently, the conventional 

control (see Fig. 2) is equivalent to the state feedback control 

depicted in Fig. 5 with the state feedback coefficient vector, 𝑲, 

selected as follows: 

𝑲 = [𝑘1 𝑘2 𝑘3 𝑘4] (10) 

{

𝑘1 = −𝑘𝑝 − 𝐻𝑖

𝑘2 = 𝐻𝑖

𝑘3 = 𝐻𝑣

𝑘4 = 0

(11) 

where 𝑘1, 𝑘2, 𝑘3, and 𝑘4 are the feedback coefficients for 𝑖2, 𝑖1, 

𝑣𝑐, and 𝑣𝑟 respectively. Therefore, without involving additional 

sensors, full state feedback, which makes use of all four state 

variables, can be implemented. Moreover, better performance 
can be expected with optimization algorithm applied to the 

tuning of 𝑲. 

B. System Model with Full State Feedback Control 

Fig. 5 shows the control block diagram of full state feedback 

control of LCL-filtered VSC. A R controller is added to 

eliminate steady-state error. However, the R controller can be 
omitted when designing the state feedback controller since it 

only affects the frequency characteristics around its resonant 

frequencies.  

For full state feedback with 𝑅(𝑠) omitted, 𝑖2 can be expressed 

by 

𝑖2 = 𝐺𝑐𝑙2(𝑠)𝑖2
∗ − 𝑌𝑜2(𝑠)𝑣𝑝𝑐𝑐 (12) 

where 𝐺𝑐𝑙2(𝑠) and 𝑌𝑜2(𝑠) are closed-loop transfer function and 

output admittance respectively. Their expressions are (13) and 

(14) given at the bottom of this page, where 𝐺𝑑1(𝑠) is expressed 

as 

𝐺𝑑1(𝑠) =
𝑒−𝑠𝑇𝑠

1 − 𝑒−𝑠𝑇𝑠𝑘4

×
1 − 𝑒−𝑠𝑇𝑠

𝑠𝑇𝑠

(15) 

C. Optimization Problem Formulation 

𝑲 is responsible to equip the VSC with expected properties. 

Specifically, the objectives are twofold: firstly, the closed-loop 

transfer function must be stable; secondly, the VSC’s output 
admittance should not only be dissipative but also strive to 

maximize the external stability considering the presence of the 

non-dissipative grid impedance wherever feasible. These 
design goals need to be encapsulated within an optimization 

problem, with 𝑲 serving as the adjustable parameter. 

However, the challenge arises from the limitations of 

passivity theory, which primarily addresses the concept of 

dissipativity as a binary condition, without commenting on how 
to further improve external stability based on dissipativity. 

Despite the scarcity of discussion on this topic in existing 

literature, an insight can be derived from the foundational 
principles of the passivity theory, specifically the impedance-

based stability criterion. This criterion includes a vital 

condition: the product of the grid impedance, 𝑍𝑔(𝑠), and the 

output admittance, 𝑌𝑜2(𝑠) , must meet the Nyquist stability 

criterion. Given that 𝑍𝑔(𝑠) is variable and typically unknown, 

aligning the phase angle of 𝑌𝑜2(𝑠) closer to zero ensures that 

∠𝑍𝑔(𝑠)𝑌𝑜2(𝑠)  remains well away from 180°, effectively 

maximizing the phase margin (PM) of 𝑍𝑔(𝑠)𝑌𝑜2(𝑠) . 

Additionally, reducing the magnitude of 𝑌𝑜2(𝑠) decreases the 

overall magnitude of 𝑍𝑔(𝑠)𝑌𝑜2(𝑠), thereby enhancing stability 

by preventing the Nyquist curve of 𝑍𝑔(𝑠)𝑌𝑜2(𝑠) from passing 

through the unit circle. Another interpretation is that 

minimizing the magnitude of 𝑍𝑔(𝑠)𝑌𝑜2(𝑠) maximizes its gain 

margin. In summary, it is favorable for 𝑌𝑜2(𝑠) to exhibit a phase 

curve that approaches zero and to have a reduced magnitude 
curve, which structures the following optimization problem: 

{
minimize 

𝑲
‖∠𝑌𝑜2(𝑗𝜔)‖2 × ‖𝑌𝑜2(𝑗𝜔)‖2

subject to  𝐺𝑐𝑙2(𝑠) is stable.
(16) 

where ‖∙‖2 denotes the 2-norm operation [31], which is defined 

by 

𝐺𝑐𝑙2(𝑠) =
𝑘0𝐺𝑑1(𝑠)

𝑠3𝐿1𝐿2𝐶 − 𝑠2𝐿2𝐶𝑘2𝐺𝑑1(𝑠) + 𝑠(𝐿1 + 𝐿2) − 𝑠𝐿2𝑘3𝐺𝑑1(𝑠) − (𝑘1 + 𝑘2)𝐺𝑑1(𝑠)
(13) 

𝑌𝑜2(𝑠) =
𝑠2𝐿1𝐶 − 𝑠𝐶𝑘2𝐺𝑑1(𝑠) − 𝑘3𝐺𝑑1(𝑠) + 1

𝑠3𝐿1𝐿2𝐶 − 𝑠2𝐿2𝐶𝑘2𝐺𝑑1(𝑠) + 𝑠(𝐿1 + 𝐿2) − 𝑠𝐿2𝑘3𝐺𝑑1(𝑠) − (𝑘1 + 𝑘2)𝐺𝑑1(𝑠)
(14) 

 



 

 

‖𝑎(𝜔)‖2 = √∫ |𝑎(𝜔)|2𝑑𝜔

𝜔𝑠
2

0

(17) 

where the upper bound of the integral is set to half of the 

sampling frequency because that is the frequency band of 
interest. 

The first term, ‖∠𝑌𝑜2(𝑗𝜔)‖2, in (16) pushes ∠𝑌𝑜2(𝑗𝜔) to zero 

to meet the phase requirement, thereby encouraging 𝑌𝑜2(𝑠) to 

be dissipative. The second term, ‖𝑌𝑜2(𝑗𝜔)‖2 , restricts the 

magnitude of 𝑌𝑜2(𝑗𝜔) to meet the magnitude requirement. The 

2-norm operation is utilized because of the square in it penalizes 

the larger value harder. The two optimization objectives are 

combined through multiplication because achieving either 
objective effectively reduces the importance of achieving the 

other. For example, if ‖∠𝑌𝑜2(𝑗𝜔)‖2 is optimized to zero, then 

the magnitude of 𝑌𝑜2(𝑗𝜔) becomes irrelevant. On the contrary, 

in cases when dissipativity cannot be achieved, the optimization 

will strive to reduce the magnitude of 𝑌𝑜2(𝑗𝜔)  which also 

maximizes its external stability. Therefore, the proposed 

method does not necessarily result in an output admittance that 

is dissipative below the Nyquist frequency. Instead, its primary 
objective is to maximize external stability. The feasible region 

ensures the optimization result to stabilize 𝐺𝑐𝑙2(𝑠). 

However, within the s-domain, assessing the stability of 

𝐺𝑐𝑙2(𝑠)  through the Nyquist criterion relies on graphical 

analysis, which poses challenges for a computer-based 

algorithm. Moreover, the presence of exponential functions, 

such as 𝑒−𝑠𝑇𝑠, further complicates the calculation of the poles 

of 𝐺𝑐𝑙2(𝑠), rendering it to be impractical. Consequently, the 

subsequent section will reinterpret the feasible region within the 

z-domain, offering a more practical approach for analysis. 

D. Analysis of Feasible Region 

In discrete state-space model, the nonlinear terms, 𝑒−𝑠𝑇𝑠 and 

𝐺𝑍𝑂𝐻(𝑠), can naturally be integrated into the model. First of all, 

the state space model of the LCL-filtered VSC in continuous 

domain is 

{
𝑑𝒙(𝑡)

𝑑𝑡
= 𝑨𝒙(𝑡) + 𝑩𝟏𝑣𝑜(𝑡) + 𝑩𝟐𝑣𝑝𝑐𝑐(𝑡)

𝑦(𝑡) = 𝑪𝒙(𝑡)
(18) 

𝒙(𝑡) = [

𝑖2(𝑡)

𝑖1(𝑡)
𝑣𝑐(𝑡)

] , 𝑨 = [

0 0 1/𝐿2

0 0 −1/𝐿1

−1/𝐶 1/𝐶 0
]

𝑩𝟏 = [
0

1/𝐿1

0
] ,𝑩𝟐 = [

−1/𝐿2

0
0

] , 𝑪 = [1 0 0]

(19) 

Through ZOH discretization [32], the continuous-time model 

(18) can be discretized as 

{
𝒙(𝑘 + 1) = 𝜱𝒙(𝑘) + 𝑷𝑣𝑟(𝑘) + 𝑸𝑣𝑝𝑐𝑐0(𝑘)

𝑦(𝑘) = 𝑪𝒙(𝑘)

𝜱 = 𝑒𝑨𝑇𝑠

𝑷 = 𝑨−1(𝑒𝑨𝑇𝑠 − 𝑰)𝑩𝟏

𝑸 = 𝑨−1(𝑒𝑨𝑇𝑠 − 𝑰)𝑩𝟐

(20) 

which incorporates the ZOH immediately after all input 

variables. Thus, the input variables are shifted from 𝑣𝑜 and 𝑣𝑝𝑐𝑐 

to 𝑣𝑟  and 𝑣𝑝𝑐𝑐0 respectively, which feed the ZOHs before 𝑣𝑜 

and 𝑣𝑝𝑐𝑐 respectively (see Fig. 5). Note that the ZOH before 

𝑣𝑝𝑐𝑐 (red dashed line) does not exist in reality, this is one of the 

discrepancies between the discrete-time state space model and 

the reality. Therefore, the output admittance derived from the 

discrete model (20) will be the transfer function 𝑖2/𝑣𝑝𝑐𝑐0 , 

which includes an extra ZOH compared with the expected 

𝑖2/𝑣𝑝𝑐𝑐, as represented by (6) and (14). Consequently, to ensure 

an accurate assessment of external stability, the output 
admittance from the s-domain model as specified in equations 

(6) and (14) will continue to be utilized. 

Considering (9), the computational delay can be readily 
incorporated into the discrete-time state space model:  

 
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(21) 

where 𝒙𝟏(𝑘) = [𝒙(𝑘) 𝑣𝑟(𝑘)]𝑇 . Through state 

transformation: 

𝒙𝒄(𝑘) = 𝑻𝒙𝟏(𝑘) (22) 

the system (21) can be converted into a controllable canonical 
form [33], of which the state equation is given as 

3 1

0

1 2 3 4

0

0 1 0 0

0 0 1 0
( 1) ( ) ( )

0 0 0 1 1
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r

pcc

k k v k

a a a a
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 
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 
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c

c c

P

Φ

x x

TQ
1

0

(23) 

where 𝜱𝒄 = 𝑻𝜱𝟏𝑻
−1, and 𝑷𝒄 = 𝑻𝑷𝟏. 𝑻 should be chosen as 

follows: 

𝑻 =

[
 
 
 

𝒕𝟏

𝒕𝟏𝜱𝟏

𝒕𝟏𝜱𝟏
𝟐

𝒕𝟏𝜱𝟏
𝟑]
 
 
 

(24) 

where the row vector 𝒕𝟏 is computed as: 

𝒕𝟏 = [0 0 0 1] [𝑷𝟏 𝜱𝟏𝑷𝟏 𝜱𝟏
𝟐𝑷𝟏 𝜱𝟏

𝟑𝑷𝟏]⁄ (25) 

The control law of full state feedback is: 

𝑣𝑟0(𝑘) = 𝑲𝒙𝟏(𝑘) + 𝑘𝑝𝑖2
∗(𝑘) (26) 

With the transformation of (22), (26) can be equivalently 

transformed into 

𝑣𝑟0(𝑘) = 𝑲𝒄𝒙𝒄(𝑘) + 𝑘𝑝𝑖2
∗(𝑘) (27) 

where  

𝑲𝒄 = 𝑲𝑻−1 = [𝑘𝑐1 𝑘𝑐2 𝑘𝑐3 𝑘𝑐4] (28) 

Substituting (27) into (23) gives the closed loop state equation: 

1 1 2 2 3 3 4 4

*
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( 1) ( )
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c

x x

P TQ

2

(29) 

where 𝜱𝟐 = 𝜱𝒄 + 𝑷𝒄𝑲𝒄 . The stability of the closed loop 

discrete system, (29), is equivalent to the stability of the original 



 

 

continuous system (12). Therefore, the feasible region of the 

optimization problem (16) can be replaced by 

|𝜆(𝜱𝟐)| ≤ 𝑟 (30) 

where 𝑟 is an adjustable value and should be smaller than one. 

𝜆(𝜱𝟐)  returns all eigenvalues of 𝜱𝟐 , i.e., the roots of the 

characteristic equation, i.e., 

|𝜆𝑰𝟒×𝟒 − 𝜱𝟐| = 𝜆4 − (𝑎4 + 𝑘𝑐4)𝜆
3 − (𝑎3 + 𝑘𝑐3)𝜆

2 
−(𝑎2 + 𝑘𝑐2)𝜆 − (𝑎1 + 𝑘𝑐1) 

= (𝜆2 + 𝑏1𝜆 + 𝑐1)(𝜆
2 + 𝑏2𝜆 + 𝑐2) = 0 (31) 

where 𝑰𝟒×𝟒 is a unit matrix of 4th order, and 𝑏1, 𝑐1, 𝑏2, and 𝑐2 

have the following relationships with 𝑘𝑐1, 𝑘𝑐2, 𝑘𝑐3, and 𝑘𝑐4. 

{

𝑘𝑐1 = −𝑐1𝑐2 − 𝑎1

𝑘𝑐2 = −𝑏1𝑐2 − 𝑏2𝑐1 − 𝑎2

𝑘𝑐3 = −𝑐1 − 𝑐2 − 𝑏1𝑏2 − 𝑎3

𝑘𝑐4 = −𝑏1 − 𝑏2 − 𝑎4

(32) 

Therefore, (30) is equivalent to the following equations 

|
−𝑏1 ± √𝑏1

2 − 4𝑐1
2

| ≤ 𝑟 (33) 

|
−𝑏2 ± √𝑏2

2 − 4𝑐2

2
| ≤ 𝑟 (34) 

When 𝑟 assumes its maximum, 1, solving (33) and (34) yields 

[
−1 −1
1 −1
0 1

] [
𝑏1

𝑐1
] ≤ [

1
1
1
] (35) 

[
−1 −1
1 −1
0 1

][
𝑏2

𝑐2
] ≤ [

1
1
1
] (36) 

The solution of (33) is detailed in Appendix, which is also 

applicable to (34) with 𝑏1 and 𝑐1 replaced by 𝑏2 and 𝑐2 . The 

feasible region represented by (35) and (36) is visualized in Fig. 

6 as the shaded triangle, i.e., I⋂ II. Obviously, when 𝑟 < 1, the 

feasible region is inside the shaded area. 

 1

 2 2

1

c1 

b1 
0 I

II

𝑏1
2 − 4𝑐1 = 0 

1 + 𝑏1 + 𝑐1 = 0 1 − 𝑏1 + 𝑐1 = 0 

 1 1

𝑐1 = 1 

 
Fig. 6. Illustration of feasible region. 

It is natural to use 𝑱 = [𝑏1 𝑐1 𝑏2 𝑐2]  as decision 

variables instead of the original 𝑲  since the boundary and 

feasible region of 𝑱 is clearer and well defined. In this way, the 

optimization problem, (16), can be rewritten as: 

{
minimize

𝑱
 𝐹(𝑱) = ‖∠𝑌𝑜2(𝑗𝜔)‖2 × ‖𝑌𝑜2(𝑗𝜔)‖2

subject to |𝜆(𝜱𝟐)| ≤ 𝑟
(37) 

where the feasible region can be expanded to (33) and (34). 

𝐹(𝑱)  is the objective function, and 𝑌𝑜2(𝑠) is now calculated 

from 𝑱 through (32), (28) and (14). The analytical expression of 

𝑌𝑜2(𝑠) in terms of 𝑱 is complex and unnecessary for computer-

based algorithm. As it will be seen in the next subsection, only 

the evaluation of 𝑌𝑜2(𝑠)  is enough for the optimization 

algorithm. 

E. Optimization Algorithm 

The optimization problem in (37) is obviously nonlinear. 
Considering it is difficult to calculate the derivative of the 

objective function, 𝑑𝐹(𝑱)/𝑑𝑱 , the optimization algorithm 

should not involve derivatives. There are various optimization 

algorithms that can be employed, among which this paper 

adopts the Complex method [27], [28] to illustrate the solving 
process. The Complex method needs only the objective 

function value to search for the global minimizer featuring easy 

implementation [27], [28]. 

At the beginning of the algorithm, 𝑛  starting points are 

generated randomly. 𝑛 is usually set bigger than the dimension 

of the decision variable, which is 4 in the study case. Thus, 𝑛 is 

set to 10 in this paper. Given the feasible region defined by (33) 

and (34), the starting points can be generated through the 
following procedures: 

1) Assign two random values, each between −2 and 2, to 𝑏1 

and 𝑏2, respectively. 

2) Assign two random values, each between −1 and 1, to 𝑐1  

and 𝑐2, respectively. 

3) Verify the feasibility of the generated 𝑱 using conditions  

(33) and (34). If 𝑱 is deemed infeasible, discard it. Repeat these 

three steps until a sufficient number of starting points have been 
generated. 

Then the objective function is evaluated at all points. The 

worst point, 𝑱𝒘𝒐𝒓𝒔𝒕 , featuring the largest objective function 

value is replaced by a new point, 𝑱𝒏𝒆𝒘, obtained by reflecting 

𝑱𝒘𝒐𝒓𝒔𝒕 through the centroid of the remaining points, 𝑱𝒄, in the 

complex. The centroid, 𝑱𝒄 , of the points in the complex 

excluding 𝑱𝒘𝒐𝒓𝒔𝒕, could be calculated according to: 

𝑱𝒄 =
1

𝑘 − 1
[(∑𝑱𝒊

𝑘

𝑖=1

) − 𝑱𝒘𝒐𝒓𝒔𝒕] (38) 

𝑱𝒏𝒆𝒘 is now calculated as the reflection of 𝑱𝒘𝒐𝒓𝒔𝒕 through 𝑱𝒄 

by a factor 𝛼, i.e., 

𝑱𝒏𝒆𝒘 = 𝑱𝒄 + 𝛼(𝑱𝒄 − 𝑱𝒘𝒐𝒓𝒔𝒕) (39) 

The reflection coefficient 𝛼 is set to 1.3 according to [28]. If 

𝑱𝒏𝒆𝒘 is feasible and 𝐹(𝑱𝒏𝒆𝒘) is smaller than 𝐹(𝑱𝒘𝒐𝒓𝒔𝒕), 𝑱𝒘𝒐𝒓𝒔𝒕 

is replaced by 𝑱𝒏𝒆𝒘 and the procedure starts over by reflecting 

the new worst point in the new complex. If 𝑱𝒏𝒆𝒘 is infeasible or 

still the worst it is moved halfway towards 𝑱𝒄, i.e., 

𝑱𝒏𝒆𝒘 = 𝑱𝒄 +
𝛼

2
(𝑱𝒄 − 𝑱𝒘𝒐𝒓𝒔𝒕) (40) 

Such a procedure of moving the worst 𝑱𝒏𝒆𝒘  towards 𝑱𝒄  is 

repeated until 𝑱𝒏𝒆𝒘  is feasible and better than 𝑱𝒘𝒐𝒓𝒔𝒕 . The 

reflecting procedure is continuously carried out until the 

following condition is satisfied: 

‖𝑱𝒃𝒆𝒔𝒕 − 𝑱𝒘𝒐𝒓𝒔𝒕‖∞ < 𝜀 (41) 

where 𝜀 is a prescribed small value and is set to 0.0001 in this 

paper, and 𝑱𝒃𝒆𝒔𝒕 is the best point in current complex featuring 

the smallest objective function value. The infinity-norm, ‖∙‖∞, 

returns the maximum absolute value of all its entries. Then, 

𝑱𝒃𝒆𝒔𝒕 is the best decision variable yielded by the optimization 

algorithm. 

F. Tuning of Other Parameters 

Generally, it is expected that the output has no steady state 

error when the R controller is omitted. Thus, 𝑘0 should satisfy 

the following equation 



 

 

|𝐺𝑐𝑙2(𝑗𝜔1)| = 1 (42) 

That is, the closed loop gain at fundamental frequency is one 

[34]. Solving (42) yields 𝑘0. 

The R controller is also indispensable to ensure no steady state 

error especially when the physical parameters drift. As 

indicated by [9], R controller can introduce non-dissipative 
region around its resonant frequency unless the compensation 

angle is set to: 

𝜑ℎ = −∠[
𝐺𝑑1(𝑠)

𝑠2𝐿1𝐶 − 𝑠𝐶𝑘2𝐺𝑑1(𝑠) − 𝑘3𝐺𝑑1(𝑠) + 1
]
𝑠=𝑗ℎ𝜔1

(43) 

The derivation of (43) can be found in [9] and will not be 

included in this paper for brevity. 

G. Robustness Analysis of the Optimization Result 

For grid-connected converter, the filter capacitor usually 

adopts film capacitor whose capacitance is generally limited to 

±5% of its nominal value throughout its service life [35], 
whereas the inductance can drop by 20% of its nominal value 

because of the core saturation [36]. Therefore, only the 

robustness analysis under drifting inductance will be conducted 
in this subsection. 

With 𝑟 set to 1, and relevant parameters listed in Table I, the 

optimization result, 𝑱, is obtained by the Complex method and 

listed in Table II, alongside the corresponding state feedback 

vector, K. Fig. 7 presents the Bode plots of 𝑌𝑜2(𝑠), and the 

closed-loop pole map using the resultant K, along with the real 

parameters, 𝐿1 and 𝐿2 drifting from 0.9 to 1.1 times its nominal 

value. The pole map is obtained by solving the characteristic 

equation (31). Dissipativity is achieved below the Nyquist 

frequency with enough distance to ±90° boundaries (see Fig. 

7(a)). However, since 𝑟 = 1 , poles are pushed to unit circle 

indicating no stability margin. As it can be seen from Fig. 7(b), 

the poles will move out of the unit circle as the inductances 

decrease. Therefore, to reserve enough stability margin for the 

system, 𝑟 is set to 0.7 to limit the poles within the circle with a 
radius of 0.7. The corresponding optimization results are listed 

in Table II. 

The Bode plot of 𝑌𝑜2(𝑠), and the closed-loop pole map of the 

proposed state feedback control with 𝑟 = 0.7 is shown in Fig. 

8. First of all, the phase curves of 𝑌𝑜2(𝑠) remain within the 

range of [−90°,90°]  below the Nyquist frequency, with the 

exception of the scenario where  𝐿1 and 𝐿2 are reduced to 0.7 

times their original values, at which point it becomes non-

dissipative around the Nyquist frequency. 
Compared to the Bode plot of the output admittance with the 

conventional control (red line in Fig. 3), the phase curve with 

proposed control (see Fig. 8(a)) is flat and closer to zero, and 
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Fig. 7. Sensitivity analysis of optimization results. (a) Bode plots of 𝑌𝑜2(𝑠), 
and (b) its corresponding closed-loop pole maps using the optimization result 

with 𝑟 = 1, along with real parameters, 𝐿1 and 𝐿2, drifting. 
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Fig. 8. Sensitivity analysis of optimization results. (a) Bode plots of 𝑌𝑜2(𝑠), 
and (b) its corresponding closed-loop pole maps using the optimization result 

with 𝑟 = 0.7, along with real parameters, 𝐿1 and 𝐿2, drifting. 

TABLE II 

OPTIMIZATION RESULTS OF PROPOSED STATE FEEDBACK CONTROL 

 

r J K 

1 [−1.04 0.04 1.58 1.0] [14.01 −14.26 2.22 −1.23] 
0.7 [0.68 0.10 −0.23 −0.33] [−1.14 −9.04 1.81 −1.13] 

 
 



 

 

the magnitude curve is also flat and smaller indicating an 

improvement in external stability. Besides, a smaller magnitude 

in the output admittance is favorable since the influence of 𝑣𝑝𝑐𝑐 

on 𝑖2 is smaller. Furthermore, by setting 𝑟  to 0.7, the poles 

retreat back into the unit circle, enabling the system to maintain 

stability even with 𝐿1  and 𝐿2  reducing to 0.8 times their 

nominal values (see Fig. 8(b)). 

Additionally, the Bode plots of 𝑌𝑜1(𝑠) and the pole map of the 

conventional control are presented in Fig. 9. The phase curve of 

𝑌𝑜1(𝑠)  starts to become non-dissipative around the critical 

frequency (
𝜔𝑠

6
≈ 833 Hz) when 𝐿1 and 𝐿2 decrease to 0.7 times 

their nominal values. Besides, all phase curves pass through 

−90° line around 2000 Hz, that is, 𝑌𝑜1(𝑠) is non-dissipative 

around the Nyquist frequency. The closed-loop pole map (Fig. 

9 (b)) indicates that the with −20% parameter drift, the system 

will become unstable, which is less robust than the proposed 

optimal state feedback control (see Fig. 8(b)). Note that the pole 
map of conventional control is obtained by equivalently 

converting it to state feedback control using (11), and then 

solving the characteristic equation (31). 

IV. EXPERIMENTAL VERIFICATION 

To demonstrate the theoretical analysis, experiments were 

conducted on two three-phase grid-connected VSCs equipped 
with an LCL filter, as depicted in Fig. 10. VSC-I and VSC-II 

are identical in hardware expect for their LCL filter. The grid 

emulation was accomplished using a high-fidelity linear 
amplifier APS 15000. The half-bridge module of VSC-I and 

VSC-II and their corresponding control platform are sourced 

from an Imperix system, consisting of a PEB-SiC-8024 module 
and a B-BOX RCP control platform, respectively. 

A. Internal Stability Validation 

According to the impedance-based stability criterion, the 
internal stability is the prerequisite for the system’s stability. To 

verify the internal stability of both conventional control and 

proposed state feedback control, both control schemes are 
implemented in VSC-I separately with no grid impedance, that 

is, the dashed part in Fig. 10 is removed. S1 in Fig. 10 is closed 

and S2 in Fig. 10 is open. Only resonant controller tuned at the 
fundamental frequency is implemented for both controls. Fig. 

11(a) and (b) present the experimental results using 

conventional control and proposed state feedback control 
respectively. The PWM of the VSC is enabled at 0.04 s. During 

the subsequent 0.04 s, the q-axis current reference is set to 0, 

and d-axis current reference is given by the DC-link voltage 
regulator to establish a 700 V DC-link voltage. Note that the 

DC-link of VSC is a sole capacitor without DC source. Then, 

in the following 0.04 s, DC-link voltage has been established 
and the d-axis current reference reduces to about zero. 

Meanwhile, the q-axis current reference is set to 15 A in 

magnitude. As it can be seen from Fig. 11(a) and (b), both 
controllers operate stably. This is in consistency with the pole 

maps shown in Fig. 8(b) and Fig. 9(b). 

B. Stability Validation with Passive Grid Impedance 

Except for the non-dissipative region around the Nyquist 

frequency of the conventional control, both the conventional 

control and the proposed control are dissipative below the 
Nyquist frequency. Thus, they are stable when connected to a 

grid with a passive grid impedance. To verify their stability with 

passive grid impedance, 𝐿𝑔  and 𝐶𝑔  are connected into the 

circuit as shown in the dashed part in Fig. 10. Their parameters 

are shown in Table I. Therefore, the grid admittance will be: 

𝑌𝑔(𝑠) = 𝑠𝐶𝑔 +
1

𝑠𝐿𝑔

(44) 

Fig. 12 presents the frequency responses of 𝑌𝑔(𝑠) (black line) 

along with those of VSC-I’s output admittances using 

conventional control (blue line) and proposed control (red line). 

Only the resonant controller tuned at fundamental frequency is 
implemented for both control methods. As it can be seen, all 

PMs are positive indicating that both control methods can 
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Fig. 9. Sensitivity analysis of conventional method. (a) Bode plots of 𝑌𝑜1(𝑠), 
and (b) its corresponding closed-loop pole maps using the conventional 

control, along with real parameters, 𝐿1 and 𝐿2, drifting. 
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Fig. 10. Experimental setup using two three-phase LCL-filtered VSCs and a 

grid simulator. 



 

 

stabilize the system. 

The corresponding experimental results are shown in Fig. 

13(a) and (b). The starting process is the same as that in Section 
IV-A and will not be repeated here. Obviously, both control 

methods result in a stable waveform in consistency with the 

analysis of Fig. 12. 

C. Stability Validation with Non-Dissipative Grid Impedance 

The large phase absolute value of the output admittance using 

conventional control tends to destabilize the system with non-
dissipative grid impedance. To verify this, VSC-II is connected 

to the grid, and its parameters are listed in Table III. VSC-II 

adopts the same conventional control as detailed in Section II-
B. Two R controllers are implemented in VSC-II. One is tuned 

at fundamental frequency with the compensation angle set the 

same as (43). The other is tuned at the 17th order harmonic with 

the compensation angle set to zero. It is worth noting that 
generally a series of R controllers tuned at the 1st, 5th, 7th, 11th, 

13th, 17th, and 19th order harmonics should be added to the 

controller for suppressing harmonic current arising from 
harmonic voltage. However, in this paper, for clearly 

demonstrating the effect of a single harmonic R controller, only 

the 17th harmonic R controller is added for harmonic control. 

The output admittance of VSC-II, 𝑌𝑜1,𝑉𝑆𝐶−𝐼𝐼(𝑠), is also shown 

in Fig. 12. Obviously, it is dissipative around the fundamental 
frequency because of the correct compensation angle used. 

However, around 17th order harmonic frequency, its phase 

curve exceeds 90° largely resulting in non-dissipative region 

because of the incorrect compensation angle. Notwithstanding, 
VSC-II can stabilize the system since all PMs are positive. 

When both VSC-I and VSC-II are connected to the grid, the 

admittance of VSC-II is a part of grid admittance in the point of 

view of VSC-I. The equivalent grid admittance, 𝑌𝑔,𝑒𝑞(𝑠), is: 

i2 [10A/div]

i1 [10A/div]

vc [250V/div]

 
(a) 

i2 [10A/div]

i1 [10A/div]

vc [250V/div]

 
(b) 

Fig. 11. Experimental results for stability verification with no grid impedance 

using (a) conventional control, and (b) proposed state feedback control. 
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Fig. 12. Frequency responses of the grid admittance, 𝑌𝑔(𝑠), and the VSC’s 

output admittances using conventional control and the proposed control. 
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(b) 

Fig. 13. Experimental results for stability verification with 𝐿𝑔 = 4 𝑚𝐻, and 

𝐶𝑔 = 20 𝜇𝐹 using (a) conventional control, and (b) proposed state feedback 

control. 

TABLE III 

MAIN PARAMETERS OF VSC-II 

 

L1 Converter-side inductance 2 mH 

L2 Grid-side inductance 1 mH 

C Filter capacitance 5 μF 

Sn Rated power 7 kVA 

Vdc DC-link voltage 700 V 

fsw Switching frequency 10 kHz 

fs Sampling frequency 10 kHz 

krh for ℎ ∈ 𝐻 Resonant current controller gain 2000 Ω/s 

 



 

 

𝑌𝑔,𝑒𝑞(𝑠) = 𝑌𝑜1,𝑉𝑆𝐶−𝐼𝐼(𝑠) + 𝑌𝑔(𝑠) (45) 

Fig. 14 presents the Bode plots of 𝑌𝑔,𝑒𝑞(𝑠), along with the 

output admittance of the VSC-I using conventional control and 

the proposed control. Obviously, the equivalent grid admittance 
is non-dissipative around the 17th order harmonic because of 

the non-dissipative VSC-II. The PMs in the distance of the 17th 

order harmonic are not marked out since they are all stable. 
Only the PMs around 17th order harmonic are marked out. As 

it can be seen, the PM of conventional control is negative 

indicating instability, whereas the PM of proposed control is 
positive indicating stability. The reason lies in the difference of 

their phase curves. The phase curve of proposed method is 

flatter and closer to zero compared with that of conventional 
control, and thus can provide more phase margin. 

The fact is further verified by experiments. Fig. 15(a) and (b) 

show the experimental results of the system using conventional 
control and proposed control respectively. In experiments, 

VSC-II is started first. After VSC-II enters steady state, VSC-I 

is enabled. As it can be seen, even though the divergence is 
slow, the waveform using conventional control (see Fig. 15(a)) 

become divergent at the end of the waveforms, whereas the 

waveform using proposed control (see Fig. 15(b)) remain 
stable. These two experiments verify the superior capabilities 

of the proposed control to the conventional control in stabilizing 

the non-dissipative grid impedance. 
Additionally, it is notable that the initial current of the 

proposed state feedback method is significantly higher, at 

approximately 10A, than that of the conventional method, as 
shown in Fig. 11, Fig. 13, and Fig. 15. This is because, the CVF 

coefficient for the state feedback control is 1.8, leading to a 

substantial discrepancy between the output voltage and the 
capacitor voltage at the starting moment. This discrepancy 

results in a higher starting current compared to the conventional 

control, whose CVF coefficient is 0.9. Typically, addressing 
this issue of high starting current requires special starting 

technique like setting a specific initial value for the R controller. 

However, to keep the result faithful to the original setups, no 
modification has been made. 

D. Current Reference Step Response  

The experimental result of the current reference step response 
using the proposed state feedback control is shown in Fig. 16. 

Grid impedance adopting the combination of 𝐿𝑔  and 𝐶𝑔  as 

listed in Table I. VSC-II is disconnected from the grid, whereas 

VSC-I is connected to the grid using the proposed state-

feedback control. Current reference steps from half load (7.5A) 
to full load (15A) increasing by 7.5A or 0.5 p.u.. As it can be 

seen, the system can operate stably with almost no current 

overshoot, and the transient time is about 2 ms. The proposed 
state feedback control can work well under both steady state 

and transient state. Besides, before the step change occur, the 

waveform of 𝑖2 contains obvious harmonics. These harmonics 

are mostly 2nd and 4th order harmonics caused by sampling-

induced switching harmonic aliasing. This issue can be tackled 
by multiple sampling or increasing switching frequency [37], 

[38]. 
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Fig. 14. Frequency responses of the equivalent grid admittance, and the 

VSC’s output admittances using conventional control and the proposed 

control. 
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Fig. 15. Experimental results for stability verification using (a) conventional 

control, and (b) proposed state feedback control (𝐿𝑔 = 4 𝑚𝐻, 𝐶𝑔 = 20 𝜇𝐹, 

and VSC-II connected). 
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Fig. 16. Reference current step change performance using proposed state 

feedback control. (𝐿𝑔 = 4 𝑚𝐻, 𝐶𝑔 = 20 𝜇𝐹) 



 

 

V. CONCLUSION 

This paper introduces an advanced state feedback control 

approach utilizing optimization methods to address the 

limitations of conventional non-optimal parameter tuning in 
passivity-based controller designs. The proposed state feedback 

control does not entail more sensors than the conventional 

control strategy. In line with the impedance-based stability 
criterion, an output admittance having a phase curve nearing 

zero and a reduced magnitude curve is beneficial to external 

stability. Thus, the optimization objective is formulated as the 
product of the 2-norms of the phase and magnitude curves of 

the output admittance, with the restriction of the VSC’s internal 

stability. Due to the complexities of solving the feasible region 
in the s-domain, it is resolved in the z-domain instead. The 

resultant optimal state feedback control enhances system 

stabilization in the presence of non-dissipative grid impedance, 
and generally achieves dissipativity below the Nyquist 

frequency. The efficacy of this state feedback control method is 

demonstrated through experimental validation across various 
operating scenarios. 

APPENDIX 

𝑟 assumes its maximum, 1, and thus the (33) can be expressed 

as 

|
−𝑏1 ± √𝑏1

2 − 4𝑐1
2

| ≤ 1 (46) 

The sign of 𝑏1
2 − 4𝑐1 decides whether the two roots are real or 

not. 

Situation 1: 𝑏1
2 − 4𝑐1 ≥ 0 

In this situation, (46) infers that the quadratic equation: 

𝑓(𝜆) = 𝜆2 + 𝑏1𝜆 + 𝑐1 = 0  has two real roots within [−1, 1]. 

Therefore, 𝑓(𝜆) crosses the 𝜆-axis twice within [−1, 1], and 

the following simultaneous inequality should hold 

𝑓(1) = 1 + 𝑏1 + 𝑐1 ≥ 0 (47) 

𝑓(−1) = 1 − 𝑏1 + 𝑐1 ≥ 0 (48) 

−1 ≤ −
𝑏1

2
≤ 1 (49) 

where (49) restricts the minimum point of 𝑓(𝜆) , i.e., −
𝑏1

2
, 

within [−1, 1].  
The solution is: 

I = ([

−1 −1
1 −1

−1 0
1 0

] [
𝑏1

𝑐1
] ≤ [

1
1
2
2

])⋃(𝑏1
2 − 4𝑐1 > 0) (50) 

which can be visualized by the blue region (region I) in Fig. 6. 

Situation 2: 𝑏1
2 − 4𝑐1 < 0 

In this situation, (46) infers that the quadratic equation: 

𝑓(𝜆) = 𝜆2 + 𝑏1𝜆 + 𝑐1 = 0  has two complex roots with a 

modulus smaller than or equal to one. The roots can be written 

in the form of real and imaginary parts: 

𝜆1,2 = −
𝑏1

2
± 𝑖

√−(𝑏1
2 − 4𝑐1)

2
(51) 

The restriction on modulus requires: 

(−
𝑏1

2
)
2

+ (
√−(𝑏1

2 − 4𝑐1)

2
)

2

≤ 1 (52) 

Therefore, the solution of this situation is 

II = (𝑐1 ≤ 1) ⋃(𝑏1
2 − 4𝑐1 < 0) (53) 

which can be visualized by the red region (region II) in Fig. 6. 
The final solution is the union of the two situations, i.e., 

I⋂II = ([
−1 −1
1 −1
0 1

] [
𝑏1

𝑐1
] ≤ [

1
1
1
]) (54) 

which is the triangular region in Fig. 6. 
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