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AbstractWind turbines in a wind farm, influence each other through the wind flow. Downwind
turbines are in the wake of upwind turbines and the wind speed experienced at downwind
turbines is hence a function of the wind speeds at upwind turbines but also the momentum
extracted from the wind by the upwind turbine. This paper establishes flow models relating the
wind speeds at turbines in a farm. So far, research in this area has been mainly based on first
principles static models and the data driven modelling done has not included the loading of
the upwind turbine and its impact on the wind speed downwind. This paper is the first where
modern commercial mega watt turbines are used for data driven modelling including the upwind
turbine loading by changing power reference. Obtaining the necessary data is difficult and data
is therefore limited. A simple dynamic extension to the Jensen wake model is tested without
much success. The best model turns out to be non linear with upwind turbine loading and wind
speed as inputs. Using a transformation of these inputs it is possible to obtain a linear model
and use well proven system identification methods. Finally it is shown that including the upwind

wind direction to explain the wake improve the prediction performance.

Keywords: System identification; Turbines; Wind speeds; Prediction

1. INTRODUCTION

This work is part of the EU project Distributed Control
of Large-Scale Offshore Wind Farms with the acronym
Aeolus. The overall goal in Aeolus is to optimize power
production and minimize fatigue loads in a wind turbine
farm by exploiting that the wind turbines share a common
flow field [Madjidian and Rantzer, 2011, Grunnet et al.,
2010, Knudsen et al., 2009, Aeolus|. The wake behind
a wind turbine is the area where the wind speed are
decreased compared to what it would have been if the
turbine was not there. The flow field can be changed by
controlling the power set point on individual turbines.
When the power set point for a turbine is decreased the
wake behind the turbine also decreases. To use this for
control of a farm it is crucial to know both the size and the
dynamics of this wake effect. Moreover, prediction models
for wind speed at a turbine are useful for control design
methods such as e.g. LQG and MPC.

Static wake models based on first principles can be found
in the literature [Jensen, 1983, Frandsen et al., 2006]. In
Jensen [1983] the well known Jensen model is described.
Also dynamical models have been suggested. In Larsen
et al. [2008] a model is developed based on the assumption
that the wake behind the turbine travels like a passive
tracer in the flow field. However, this model is not verified
experimentally. Considerable amounts of data from large
commercial wind farms has been available to the Aeolus
projects. Until 2011 all these data were from normal
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operation with out power set point changes. Based on
these data models taking upwind wind speed as input
and downwind wind speed as output has been developed
[Knudsen et al., 2011]. In the summer of 2011 the first short
data series became available where the upwind turbine
was excited by changing power reference. To the authors
knowledge these data is the first of its kind.

The contribution in this paper is the application of system
identification to this particular wake modelling problem
where data driven modelling for dynamic models has not
been applied before.

The paper continues with a brief presentation of the
experiment and data. Then different wake models from the
literature, mainly based on physics, are discussed. Based
on this, different linear and non linear model structures
are developed, parameters are estimated and the results
are discussed. Finally a conclusion is made.

2. WIND FARM DATA

Thanet wind farm is located approximately 12 km off
Foreness Point, the most eastern part of Kent in England.
It consist of 100 V90 3MW turbines. The Aeolus project
has been so fortunate to get measurements from a number
of turbines. So far only one measurement series have been
obtained that is suitable for this investigation.

In this experiment there are measurements from two
turbines placed in the corner of the wind farm. The
measurements are started when the wind direction is along
the first row and the average speed is close to rated wind
speed. The upwind turbine faces the free undisturbed flow
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and the wake has on the average a direction towards
the downwind turbine. This is illustrated by the met
mast measurements in figure 1 where the wind direction
measured by the met mast is nicely centered around the
row direction of 318 degrees.

Met mast wind direction and speed for experiment
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Figure 1. Met mast data for the experiment. The turbine
row direction is also indicated with a extra dotted
blue line.

The experiments last for approximately 15 min corre-
sponding to 900 sec and samples are collected with a
sampling frequency of 1 Hz. The excitation is only at the
upwind turbine and it consists of a derating of the power
reference which occurs three times and last for 1 min, 1 min
and 5 min respectively. Figure 2-3 shows relevant signals
for the upwind and downwind turbine. Statistics for these
signals are summarized in table 1.

In table 1 it is clearly seen that the average wind speed
as expected is lower at the downwind turbine compared
to the upwind turbine. Also the turbulence is higher
downwind. The met mast wind direction is 312 compared
to the turbine row direction which is 318 degrees. All these
observations shows that the downwind turbine is in wake
on the average. On the other hand the wake is known
to meander [Larsen et al., 2008] and the wind direction
upwind in figure 2 is not constantly 318 degrees so the
downwind turbine will experience a wake that covers more
or less the turbine rotor. The power reference excitation is
seen in figure 2 as periods with constant power reference
which is lower than the available power which causes the
turbine to control rotational speed by pitching. In between
these periods the turbine is in normal operation where the
nominal generator power is higher than the available power
and then the rotational speed is controlled by generator
torque i.e. power. As seen in figure 3 the downwind turbine
is in normal operation all the time. The careful reader may
notice the smaller met mast average wind speed, which is
most likely a result of the mast being placed in the middle
of the farm where there is a lot of wakes.

3. WAKE MODELS

After having defined the experimental conditions above
the next step is to chose inputs and outputs and the rest
of the model structure.
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Figure 2. Upwind turbine with power reference excitation.

Stat Gen. Nac. Pitch Power Power Wind Wind
rpm dir.  angle ref. dir.  speed
Upwind turbine
Mean 1679  320.5 2.58 1601 1727 319 10.5
Std  18.9 0 4.55 619 762  0.919 0.971
Downwind turbine
Mean 1571  302.8 -2.18 1267 1531 300 8.92
Std 132 2.81 1.07 366 369 3.22 1.65
Met mast
Mean 312 5.57
Std 14.5 1.15

Table 1. Statistics for the experiment

3.1 Input and output

The purpose of the model described in this paper is to
predict the relevant wind speed at a downwind turbine
from measurements from an upwind turbine. The output
is the relevant wind speed at the downwind turbine. The
wind speeds used in the model are not the wind speed
measured directly at the nacelle as they represent wind
speeds in one point in the rotor area and changes with
the pitching and rotor speed even when the free stream
wind speed is constant. The relevant wind speed is the so
called effective wind speed (EWS). In reality the turbine
is exposed to a wind field that changes in both time
and space. The corresponding EWS is the wind speed
that gives a similar behavior when applied to the whole
rotor. This similar behavior of course only covers the main
structural dynamics as e.g. rotor speed, tower movements
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Figure 3. Downwind turbine in normal operation.

and produced power whereas individual blade movements
are not covered. EWS is estimated with an extended
Kalman filter from standard turbine signals as described
in Knudsen et al. [2011]. The resulting EWS for the two
turbines is shown in figure 4 where it is clear that the
EWS is larger for the upwind turbine compared to the
downwind.
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Figure 4. EWS calculated from measurements in figure 2—
3.

Downwind turbine EWS is the model output and the
first model input is the upwind turbine EWS. The second
input should relate to turbine loading. Each turbine in a
farm has a local controller that secures safe and optimal
operation by actuation of blade pitch and/or generator
torque depending on average wind speed. Control of the
turbines by a farm level controller can be done by changing
each turbines power set point. From a control engineering
point of view choosing the upwind turbine power set point
as the second input would hence be the immediate choice.
The physics of the process, however, indicate that the trust
coefficient, C'r, for the wake generating turbine is also a
choice as outlined below.

There are a number of static models for wakes [Frandsen
et al., 2006]. One of the simplest is the Jensen model
[Jensen, 1983]:

vg = (1 = kCr) vy, (1)
1
gy @

where vg is the wind speed at a distance d downwind
from the wake generating turbine, v, is the EWS, D
the rotor diameter and Ct is the trust coefficient of
the wake generating turbine. For a specific turbine the
trust coeflicient is a function of blade pitch and the ratio
between blade tip speed and wind speed. This can all be
calculated [Burton et al., 2008| from the standard signals
shown in figure 2. The wake factor in (2) is only dependent
on farm geometry, for the farm used in this experiment it
is k = 0.1364. The resulting Cr for the two turbines is
shown in figure 5. Figure 5 clearly shows the large variation
in Cp for the upwind turbine due to the power reference
excitation. C'p will be zero for zero power and increase to %
at maximum power and it can not exceed 1. Eq. (1) shows
that the wake can be controlled by the upwind turbine
power reference.
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Figure 5. Cr calculated from measurements in figure 2-3.

Based on the above, both upwind power reference and Cr
can be used as input together with the upwind EWS. Also,
it might be worthwhile to include the upwind wind direc-
tion from the nacelle measurements. However, experience
indicates that this measurement might not be calibrated
to compass direction.
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3.2 Dynamics

The dynamical part of the model has two components.
When the loading and hence the Cp of the upwind turbine
changes the wake is assumed to develop as a first order
system with the time constant [Sgrensen and Madsen,
2006]:
3D
T 20, (3)
where v,, is the 10 minutes average wind speed. The wake
has to travel with the flow to the next turbine which
according to Larsen et al. [2008] approximately results in
the delay:
ta— (4)

Um,
4. SYSTEM IDENTIFICATION

Based on the above different model structures can be
suggested for a dynamic model.

e Extend the Jensen wake model (1) to a dynamic
model in the simplest possible way.

Include filtering of the upwind EWS input.

Include filtering of the upwind C7 input.

Include upwind power reference instead of Cr.
Include the upwind wind direction to modify the
wake.

Even more models can be generated from combining
the choices above. Many of these has been tested. The
more interesting and successful ones are presented below.
Initially the model orders was limited to one to keep things
simple but also because of the limited amount of samples.

4.1 The multiplicative model

In Madjidian and Rantzer [2011] a dynamic wake model
covering all turbines in a row has been developed. This
model is particularly suitable for distributed control design
as it only needs communication between neighboring tur-
bines. If only two turbines are considered and the upwind
faces the free flow, the model in Madjidian and Rantzer
[2011] reduces to (5) below. This model can also be in-
terpreted as the simplest possible extension of the Jensen
wake model (1) into a dynamic model.

Ud(t) = (1 — k'CT(t — td))vu(t — td) =+ w(t — td) , (5)

w(t —tg) 2 (t), e(t) € NID(0,02)  (6)

1
1+dg! ‘
Above, w is a stochastic process that approximates the
wind turbulence spectrum. Here a simple AR(1) process is
used for w. In the model the up and downwind wind speeds
are the EWS at the turbines. In the estimated models the
delay parameter ¢4 is estimated as (4) i.e. the inter turbine
distance divided by the average wind speed which is 49.
Other methods such as DELAYEST from Matlab, which uses
multiple ARX models, have been tested but gave worse
results. For longer time series the delay has to be estimated
in a adaptive manner.

The system identification toolbox for Matlab [Ljung, 2010]
is used for the actual estimation. To use the standard

procedures for estimating k in (5) it is convenient to define
the auxiliary output y as follows:
y(t) = 'Ud(t) — Uu(t — td) 5 U(t) = CT(t — td)vu(t — td)< )
7

then
y(t) = —ku(t) + w(t — ta) (8)

The estimation results for the multiplicative model (5) are
shown in table 2. The first row in the table marked ARX
is where the noise w in (5) and (7) is assumed white such
that (7) becomes a ARX model structure. The second row
is where w is assumed to be a LP filtered white noise so
the model becomes a Box Jenkins (BJ) model structure.
The main results for these two model structures are quite
similar. However, residual test show some differences. Both
the ARX and the BJ model gives no correlation between
residuals i.e. one step prediction errors and input. But as
expected the BJ has close to white residuals whereas the
ARX model shows a large LP type auto correlation in the
residuals. Most important the multiplicative model gives
at least some positive fit. The estimate of the k parameter
at 0.353 is much higher than the so called Jensen model
giving k at 0.136. The data hence suggest that the effect of
derating being larger than prescribed by the Jensen model.

Model k d | Rms-S Fit-S | Rms-P  Fit-P
Mult ARX | 0.353 0.71 0.224 0.71 0.224
Mult BJ 0.356  -0.88 0.71 0.224 0.71 0.228

Table 2. Parameter estimates and performance

for the multiplicative models. Rms-S is rms

values for simulation errors and Rms-P is for
30 seconds prediction errors.

The simulation performance for the multiplicative model
is seen in figure 6. Clearly the simulation follows the
measurements to some extent but it is difficult to identify
the effect of the power reference changes. The reason for

Prediction performance, k= Inf, Turb1>2
12 T T T T
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Figure 6. Simulation performance for the multiplicative BJ
model. The power is on the upwind turbine. The other
signals are for the downwind turbine.

this is mainly that the model assumes the downwind wind
speed to be a pure scaling of the upwind wind speed
plus some added turbulence. From a physical point of
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view the faster variations in the upwind wind speed will
be expected to change or disappear before reaching the
downwind turbine. This therefore suggests LP filtering of
the upwind wind speed which is the topic of the next
section.

4.2 General transfer function models

When leaving the well motivated but rather inflexible
model structure (5) the above discussion suggest to include
LP filtering of input variables. From a physical point of
view it can not apriori be assumed that the dynamics
related to upwind EWS, wake and turbulence is the same.
Consequently, individual transfer functions have to be
tested.

The interesting models are listed below:

lt) = gy (ol = t) +e) )
valt) = Tt = ta) + Tgge(®) (10
1MQ:TI%Fﬂm%@—m) "
+ b.Crp(t — ta)vu(t — tq) + e(t))
va(t) :#vu(t —tq)
4 1+f’fﬁcm —tauu(t—ta) (1)
14+cq!
gt
e(t) € NID(0, 02) (13)

The first two (9) and (10) are single input single output
(SISO) models with only upwind EWS to predict down-
wind EWS. These models are only included to test the
improvement from including loading. The first one (9) is a
ARX model with common dynamics to test the improve-
ment of the BJ model (10). The next two are multiple
input (MISO) models. The models (11) and (12) includes
the extra input vC7r to describe the wake effect due to
loading. The thrust coefficient C'rr could be included in
a non linear model. By adding the extra input vC7p the
model is kept linear and the wake is proportional to v as
in the physical model (1). In (12) the loading is measured
by the trust coefficient as suggested by physics [Jensen,
1983]. It has also been tested to replace C by the upwind
generator power divided by nominal power as this also
measures loading.

From a wind turbine engineering point of view time
constants is a common way to present dynamics. Therefore
they are included in the results according to the ZOH
transformation:

b —1
Gd(qil) - 1_|_qfq—1 =
Gl b1 ! (14)
Ay e v

Also the size of the wake dependence on loading is of inter-
est in wind engineering. Therefore a factor corresponding
to k in (1) is calculated for the model (12). This is done by

rewriting the stationary version of (12) in a form similar
to (1) as follows.

vg = kyvy + kCroy

= (1+ky — Dvy + kCro,
= vy + k.Cro, + (kv - 1)vu = (15)
-1
= Uy + (kc + kvc,T ) CTUu
k, —1 by be
s k= k= 16
( * CT) 1+ f, 1+ fe (16)

An estimate of k from (16) is obtained by inserting all the
parameter estimates and then the average value for C'r.

The results are given in table 3. The ARX SISO model has
a bad fit. The BJ SISO model improves this a little due to
different dynamics for input and disturbance/turbulence.
Including the upwind turbine loading in the model via Cr
significantly improves the model as the rms values are close
to half of the previous models rms. The BJ model is again
superior due to individual dynamics. The first steady state
gain for the BJ MISO model is close to 1 as expected.
The second steady state gain can be compared to the k
parameter as discussed above. The wake factor k ~ 0.38
is similar to the one in table 2 for the multiplicative
model and thus much higher than the Jensen parameter.
There is a quite heavy LP filtering of the upwind EWS as
Ty ~ 131. The dynamics related to the wake dependence
on loading is faster with 7. ~ 17 which can be compared
with the dynamic inflow time constant from (3) which

here is Qixl%% = 12.7. The disturbance/turbulence time
2L

constant seconds can be compared to the value == =
2><170 1

= 10.2 used in the Kaimal spectrum in Knudsen
of al. [2011]. This value is for point wind speed which is
the reason why it is smaller compared to the values here
around 22 second which is for EWS i.e. rotor averaged
wind speed. The MISO models are also clearly superior
to the multiplicative models. The smallest rms values are
obtained in the last rows of table 3 where the power is
used for measuring the loading. This does not comply with
physics and furthermore the very fast dynamics for the
upwind EWS input is a bit surprising.

Finally the simulation performance of the best BJ MISO
models is shown in figure 7. To see the effect of the
power reference changes this signal scaled to MW is also
included. Residual test for the BJ MISO model (12) has
also been performed. Both residual auto correlation and
cross correlation between residual and input variables are
within significance limits.

4.3 Non linear models including wind direction

The MISO models (11)-(12) are non linear in the two
inputs v, and Cp but they are linear when the inputs
are chosen as v, and v,C7. This linearity is hard to
retain when including the wind direction measured on the
upwind turbine. The wake profile in the lateral direction
is assumed to have a bell shape around the wake center.
A good way to account for this is to include this profile
as a Gaussian function multiplied with the wake i.e. to
exchange the wake term in e.g. (12) with

(g

Cr(t —ta)v,(t —ta)e ) (17)
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Model ko ke k To Te 74 | Rms-S Fit-S | Rms-P Fit-P
ARX SISO 0.836 21.3 1.13  -0.225 0.97 -0.051
BJ SISO 0.838 6.6 84.5 1.09 -0.198 0.84 0.073
ARX MISO-CT 1.065 -0.481 0.378 7.5 0.643 0.301 0.64 0.303
BJ MISO-CT 1.072 -0.502 0.387 | 130.8 17.2 22.7 0.585 0.364 0.585 0.364
ARX MISO-P 1.065 -0.428 6.4 0.584 0.365 0.583 0.366
BJ MISO-P 1.079  -0.443 2.1 7.6 209 0.564 0.386 0.560 0.390
BJ MISO-CT-Dir-NL | 1.075 -0.592 0.473 474 204 194 0.542 0.410 0.559 0.392

Table 3. Parameter estimates and performance for the models.

Prediction performance, k= Inf, Turb1>2
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Figure 7. Simulation performance for the first order BJ
model including upwind EWS and thrust coefficient.

where 6 is the upwind wind direction, 6, is a possible bias
and 6,, is a measure of the wake width. A simple search
shows that improvement from this is possible as 6, = 1
and 0, = 5 degrees gives even better results than without
the wind direction included as seen in the last row in table
3.

5. CONCLUSION

Control of individual turbines in a farm is recognises as a
important tool for optimisation of overall farm production
and minimization of fatigue. To do this in practise it
is crucial to have verified models for the effect upwind
turbines have on downwind turbines. To the authors
knowledge this is the first investigation using system
identification methods based on data from real commercial
wind farms.

Unique experimental data that include the upwind turbine
load cycling has allowed the definition and analysis of a
series of wake models. The wake effect is significant and
clearly visible in the time series. This is also verified by
the improvement from including upwind turbine loading
into the models. The wake effect can be measured by the
k factor as expressed in the static Jensen wake model.
For the present measurement conditions this factor is k =
0.136. The corresponding dynamic wake factor estimated
here is at least twice as large. The results confirms the wake
dynamics to be a combination of average transport delay
plus first order dynamic inflow. Because of the limited
amount of data the models are limited to first order, but
they include physical inspired non linear terms in the
inputs upwind wind speed, thrust coefficient and wind

direction. The superior model structure is a Box Jenkins
type non linear model.

While these results indicate the effectiveness of system
identification in establishing models in this challenging
area, it is very important to stress that this is very
preliminary results based on only one data series lasting
only for 15 minutes and that no cross validation has been
performed.

REFERENCES

Aeolus. Aeolus - distributed control of large-scale offshore
wind farms. Internet http://ict-aeolus.eu/, 2008.
Tony Burton, David Sharpe, Nick Jenkins, and Ervin
Bossanyi. Wind Energy Handbook. John Wiley, 2008.
Sten Frandsen, Rebecca Barthelmie, Sara Pryor, Ole Rath-
mann, Sgren Larsen, and Jorgen Hgjstrup. Analytical
modelling of wind speed deficit in large offshore wind

farms. Wind Energy, 9:39-53, 2006.

Jacob D. Grunnet, Mohsen Soltani, Torben Knudsen,
Martin Kragelund, and Thomas Bak. Aeolus toolbox
for dynamics wind farm model, simulation and control.
In Furopean Wind Energy Conference and Ezhibition
(EWEC) 2010, Warsaw, Poland, Tuesday 20 - Friday
23 April 2010, 2010. European Wind Energy Association
(EWEA).

N. Jensen. A note on wind generator interaction. Technical
Report ris-m-2411, Risg National Laboratory, 1983.

Torben Knudsen, Thomas Bak, and Mohsen Soltani.
Distributed control of large-scale offshore wind farms.
In Furopean Wind Energy Conference and Ezhibition
(EWEC) 2009, Parc Chanot, Marseille, France 16—
19 March, 2009. European Wind Energy Association
(EWEA).

Torben Knudsen, Mohsen Soltani, and Thomas Bak. Pre-
diction models for wind speed at turbine locations in a
wind farm. Wind Energy, 14:877-894, 2011. Published
online in Wiley Online Library (wileyonlinelibrary.com).
DOLI: 10.1002/we.491.

Gunner C. Larsen, Helge Aa. Madsen, Kenneeth Thomsen,
and Torben J. Larsen. Wake meandering: A pragmatic
approach. Wind Energy, 11:377-395, 2008.

Lennart Ljung. System identification toolbox - online help.
Matlab internet pages, 2010.

Daria Madjidian and Anders Rantzer. A distributed
coordination scheme for fatigue load minimization in
wind farms. In American Control Conference 2011.
American Control Conference, 2011. Submitted.

N. N. Sgrensen and H. Aa. Madsen. Modelling of transient
wind turbine loads during pitch motion. In Proceedings
of the European Wind Energy Conference 2006, Milan,
May 2006.

1682



