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Communication
Pulsed EM Scattering by Dipoles With Time-Varying Loads

Martin Štumpf,Senior Member, IEEE, Giulio Antonini, Senior Member, IEEE, Jonas Ekman,Member, IEEE
and Onďrej Franek,Member, IEEE

Abstract—Pulsed electromagnetic (EM) scattering by short-
wire and small-loop antennas loaded by time-varying (TV) loads
is analyzed with the aid of time-domain (TD) compensation
theorems. TD analytical expressions describing the change of
back-scattered EM fields from dipole antennas due to their TV
load are given. Illustrative numerical examples are presented.

Index Terms—time-domain analysis, electromagnetic scatter-
ing, antenna theory, compensation theorem, reconfigurable intel-
ligent surface.

I. I NTRODUCTION

The back-scattered electromagnetic (EM) field from short
dipoles and small loops can be controlled by lumped elements
connected to their ports [1]. To quantify the impact of such
loads on EM scattering by a scatterer, the compensation
theorem can be used [2, Sec. II.14]. Its vector EM form has
been presented in [3] and its generalized versions applicable
to EM scattering and radiation of multiport antennas can be
found in [4].

Early applications of compensation theorems have been
limited to linear time-invariant EM problems under the as-
sumption oftime-harmonicEM fields [5]–[7]. More recently,
to evaluate the effect ofnonlinear loads, an EM scattering
compensation theorem of the time-convolution type has been
introduced in [8]. With the still increasing interest in modeling
of time-varying (TV) EM systems and devices (e.g., recon-
figurable intelligent surfaces [9]) in mind (e.g., [10], [11]),
this paper provides time-domain (TD) compensations theorems
quantifying the impact of TV loads onpulsedEM scattering
by short-wire and small-loop antennas.

II. PROBLEM DESCRIPTION

We shall describe the impact of a TV load on the transient,
plane-wave EM scattering by a small receiving antenna. The
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Fig. 1. Problem configuration with a short dipole. (a) Receiving antenna with
a TV load; (b) Transmitting antenna excited by a voltage source.

analyzed receiving situation (denoted by R) with a loaded
short-wire antenna is shown in Fig. 1a. The actual receiving
state will be analyzed with the aid of the corresponding trans-
mitting situation (denoted by T) (see Fig. 1b). The antenna
is located in free space that is described by permittivityǫ0
and permeabilityµ0. The corresponding EM wave speed and
wave admittance isc0 = (ǫ0µ0)

−1/2 > 0 and Y0 = c0ǫ0,
respectively.

Position in the problem configuration is specified by co-
ordinates{x, y, z} with respect to an orthogonal Cartesian
reference frame that is defined by its originO and the base
vectors{ix, iy, iz}. The corresponding position vector is then
r = xix + yiy + ziz. The time coordinate is denoted by
t. The differentiation with respect tot is ∂t. The Heaviside
unit-step function is denoted byH(t). The time convolution
is represented by∗ and the time-integration operator is then
defined as∂−1

t f(t) = f(t) ∗H(t).
The receiving antenna is supposed to be irradiated by a

uniform impulsive EM plane wave

Ei(r, t) = αei(t− β · r/c0), (1)

whereα denotes the polarization vector,β is a unit vector
that specifies the direction of propagation, andei(t) is a causal
plane-wave signature. The scattered EM field in the receiving
situation is defined as the difference between the total and
incident EM fields, i.e.,

{Es,Hs}(r, t) = {ER,HR}(r, t)− {Ei,H i}(r, t). (2)

The outgoing scattered EM fields admit the far-field expan-
sions [12, Sec. 29.1]

{Es,Hs}(r, t) =
{Es;∞,Hs;∞}(ξ, t− |r|/c0)

4π|r|

× [1 +O(|r|−1)] as |r| → ∞, (3)

whereEs;∞ andHs;∞ = Y0ξ × Es;∞ are the TD electric-
and magnetic-type far-field scattering amplitudes, respectively,
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and ξ = r/|r| denotes the unit vector in the direction of
observation. A similar far-field expansion applies to the far-
field radiation amplitudes,{ET;∞,HT;∞}(ξ, t), pertaining to
the transmitting situation (see Fig. 1b). The evaluation of(the
change of) the far-field scattering amplitudes at the backward
directionξ = −β (see Fig. 1a) due to (the change of) the TV
load is the main objective of this paper.

III. PROBLEM SOLUTION

The point of departure for our analysis is (the TD counter-
part of) the compensation theorem derived in [4, Sec. 9.2.2]

∆Es;∞(ξ, t) ∗V T(t) = ET;∞(ξ, t) ∗∆V R(t), (4)

where ∆Es;∞ denotes the desired change of the far-field
scattering amplitude,∆V R(t) is the corresponding change of
the voltage across the TV load,ET;∞ denotes the radiation
amplitude in the transmitting state and, finally,V T(t) denotes
the excitation voltage pulse. The latter can be related to the
excitation current,IT(t), through the TD input impedance as
V T(t) = ZT(t) ∗ IT(t).

We shall distinguish between the changes with respect to the
(referential) receiving situations with the open-circuit, short-
circuit and matched loads, i.e.,

∆∞Es;∞ = Es;∞|ZL(t) −Es;∞|ZL
→∞

(5)

∆◦Es;∞ = Es;∞|ZL(t) −Es;∞|ZL
→0 (6)

∆•Es;∞ = Es;∞|ZL(t) −Es;∞|ZL=ZT (7)

respectively.

A. Short Wire Loaded by a Time-Varying Capacitor

We assume that the wire antenna is relatively short. Con-
sequently, its TD input impedance can be approximated by
ZT(t) = C−1

a H(t), whereCa is the wire’s capacitance [13,
Sec. 10.3]. Its radiation amplitude,ET;∞, can be expressed
using the current distribution in state(T) (see [12, Sec. 26.9],
for example), while the change of the load voltage in state
(R), ∆V R(t), can be determined using Thévenin’s equivalent
circuit. The latter is specified by its internal impedance and the
voltage source strength,V G(t), that is related to the radiation
amplitude atξ = −β through the antenna self-reciprocity
relation V G(t) ∗ IT(t) = µ−1

0 ei(t) ∗α · ∂−1
t ET;∞(−β, t)

(see [4, Eq. (5.6)] and [14, Eq. (23)], [15]). Accordingly, if the
wire antenna is loaded by a TV capacitor,CL(t), the change
of the co-polarized, back-scattered far-field amplitude can be
described by

α · ∆∞Es;∞(−β, t) = γe ∂2
t {e

i(t)[Γe(t)− 1]} (8)

α · ∆◦Es;∞(−β, t) = γe ∂2
t {e

i(t)[Γe(t) + 1]} (9)

α · ∆•Es;∞(−β, t) = γe ∂2
t [e

i(t)Γe(t)] (10)

where we usedγe = k2µ0Ca(α · ℓ)2/2 (in m · s2). Here,ℓ
denotes the vectorial length of the wire and factork depends
on the actual current distribution (it takes the valuesk =
{1, 1/2, 2/π} for the uniform, triangular and cosine spatial
current distribution, respectively). Furthermore, we have used

Γe(t) =
Ca − CL(t)

Ca + CL(t)
. (11)

The TD response of a linear TV system can be expressed
through asuperposition integral, the kernel of which, gener-
ally, is not time shift invariant [16]–[18]. A specific example
from this category is the TD electric-field response of a
nondispersive, TV high-dielectric thin layer as describedby
[10, Eq. (18)]. Notably, (the change of) the back-scatteredTD
field response of a short wire antenna loaded by a TV capacitor
as given by (8)–(10) readily follows upon differentiating the
productof the (input) plane-wave pulse with a simple rational
function ofCL(t).

B. Small Loop Loaded by a Time-Varying Inductor

A dual analysis can be carried out for a loop antenna.
Indeed, assuming a relatively small loop of a thin wire carrying
a uniform current distribution [12, Sec. 26.10] and using
the pertaining compensation theorem [4, Sec. 9.2.1] with the
equivalent Norton circuit representation [19], we may write
(cf. (8)–(10))

α · ∆∞Es;∞(−β, t) = −γm ∂2
t {e

i(t)[Γm(t) + 1]} (12)

α · ∆◦Es;∞(−β, t) = −γm ∂2
t {e

i(t)[Γm(t)− 1]} (13)

α · ∆•Es;∞(−β, t) = −γm ∂2
t [e

i(t)Γm(t)] (14)

whereγm = (µ0/La)[(β × α) · A]2/2c20. Here,La denotes
the inductance of a small loop [13, Sec. 10.11] andA is
its vectorial area. Finally, the corresponding TD reflection
coefficient reads

Γm(t) =
La − LL(t)

La + LL(t)
, (15)

whereLL(t) denotes the TV load inductance.

IV. N UMERICAL RESULTS

In this section we shall provide illustrative numerical ex-
amples that validate the closed-form, TD analytical formulas
derived in the paper. To that end, we shall analyze the pulsed
EM field scattered by a short wire antenna loaded by a TV
capacitor. The antenna is irradiated by a uniform plane wave,
the signature of which is described by

ei(t) = 2em
[

(t/tw)
2
H(t)− 2 (t/tw − 1/2)

2
H(t/tw − 1/2)

+ 2 (t/tw − 3/2)
2
H(t/tw − 3/2)

− (t/tw − 2)
2
H(t/tw − 2)

]

, (16)

where we take the unit amplitude,em = 1.0V/m and the pulse
time width, tw > 0, is chosen such that the wire antenna is
relatively small, i.e.,c0tw = 50 ℓ, with ℓ = |ℓ| = 100mm.
To reveal TD EM scattering effects, the plane-wave pulse
shape (16) is chosen to be continuously differentiable, while
its second derivative (cf., (8)–(10)) shows jump discontinuities
at t/tw = {0, 1/2, 3/2, 2}. The pulse shape and its (scaled)
second time derivative are shown in Fig. 2. In the examples
that follow, we shall calculate (the change of) thepolar
component of the far-field amplitude with respect to theopen-
circuit reference, i.e.,∆∞Es;∞

θ (−β, t) (cf. (8)) for θ = π/2,
noting the rotational symmetry of the wire about thez-axis
(see Fig. 1). For the sake of validation, we shall first evaluate
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Fig. 2. Plane-wave pulse shape and its scaled second time derivative.
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1.0 pF. The pulse shapes were calculated analytically via (8) and numerically
using FD-TD and CST-FIT.

the pulsed EM scattering by the antenna loaded by a time-
invariant load capacitance, i.e.,CL(t) = CL

0 = 1.0 pF, for
whichΓe is time independent (see (11)). Consequently, in line
with (8), (the change of) the back-scattered TD field has the
shape of the (scaled) second time derivative of the incident
pulse, i.e.,∆∞Es;∞

θ (−β, t) ∝ ∂2
t e

i(t). Figure 3 shows the
back-scattered signals (scaled byN = k2(Ca/ǫ0)(α · ℓ)2)
as predicted via the approximate analytical expression (8)for
the triangular current distribution (k = 1/2) and using the
Aalborg University’s in-house finite-difference time-domain
(FD-TD) code (e.g., [20]). The FD-TD model of the dipole
has been modeled as two wires with the capacitor load in
between, with a cell size5mm and a time step9.621 ps.
For the sake of validation, the pulsed response has also been
computed with the aid of the finite integration technique (FIT)
as implemented in CST Microwave Suiter. Apart from the
oscillations that can be associated with the dipole’s half-wave
resonance, the analytical model provides a reasonable estimate.
It is further observed that the assumption of the triangle current
distribution underestimates the strength of the scattering effect.
It has been verified that a better result can be achieved with
a higherk of value between1/2 (= triangle distribution) and
2/π (= cosine distribution).

Next, the antenna under consideration is loaded by a lumped
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Fig. 4. Time-varying load capacitance.
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Fig. 5. The change of the EM field (with respect to the open-circuit reference)
as back-scattered by the wire antenna loaded by the TV capacitance (17). The
pulse shapes were calculated analytically via (8) and numerically using FD-
TD and PEEC.

capacitor, the capacitance of which is time dependent. For
example, we take a harmonically modulated load, i.e.,

CL(t) = CL
0 [1 + cos(4πt/tw)]H(t), (17)

with CL
0 = 1.0 pF (see Fig. 4). In this case,Γe is a

function of time (see (11)), which leads to a time-modulated
back-scattered pulse, the shape of which corresponds to
∂2
t {e

i(t)[Γe(t)−1]} (see (8)). As CST Microwave Suiter does
not allow to incorporate a TV lumped load, this result has been
verified using FD-TD and the partial element equivalent circuit
(PEEC) method [21]. As can be seen from Fig. 5, the pulse
shapes correlate very well, thereby successfully validating the
approximate analytical model.

V. CONCLUSION

Novel TD, approximate analytical expressions describing
the effect of TV lumped loads on the pulsed EM field as back-
scattered by small wire and loop antennas have been presented.
Since reconfigurable intelligent surfaces are typically synthe-
sized in the form of ordered array structures consisting of small
receiving antennas loaded by TV loads, it is anticipated that
the presented results will help to understand the pertaining TD
EM scattering effects, thus enabling their efficient design. The
validity of the results has been demonstrated numerically on
illustrative examples.
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