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Low-Complexity MMSE Precoding for Coordinated
Multipoint with Per-Antenna Power Constraint

Tae Min Kim, Fan Sun, and Arogyaswami Paulraj

Abstract—We propose a low-complexity minimum mean square
error (MMSE) transmit filter design for the coordinated beamform-
ing (CB) in the coordinated multipoint (CoMP) under the practical
per-antenna power constraint (PAPC). The proposed design is based
on the non-linear Gauss-Seidel type algorithm in which the transmit
filters for given receive filters are computed by iteratively updating
the beamformer of each transmit antenna using simple closed-form
expressions. The proposed approach can significantly reduce the
overall complexity of the alternating optimization while preserving
the optimality in the MSE sense.

Index Terms—MMSE, Coordinated Beamforming, Per-Antenna
Power Constraint, Non-linear Gauss-Seidel Algorithm

I. INTRODUCTION

COORDINATED multipoint (CoMP) transmission has re-
cently attracted much attention as a means to mitigate the

inter-cell interference (ICI) in the cellular networks by using the
base stations (BSs) cooperation. When the BSs are connected
over a limited backhaul, coordinated beamforming in the CoMP
(CoMP-CB) can effectively reduce the ICI by jointly designing
the transmit (Tx) filters at the BSs based on the shared channel
state information (CSI) without sharing the user data across the
BSs as in the joint processing [1].

We consider the downlink CoMP-CB based on the minimum
mean square error (MMSE) approach. The MMSE criterion has
been adopted in various MIMO beamforming scenarios including
the MIMO broadcast channel (MIMO-BC) [2] and the interfer-
ence channel (MIMO-IC) [3], [4] due to its practical importance.
First, minimizing the MSE is closely related to minimizing the
error rate of the system in the finite signal-to-noise ratio (SNR)
regime. More importantly, it has been proven that the sum-rate
maximization in the interfering broadcast channel (IBC) can
be casted into the weighted MSE minimization with optimally
adjusted weights [3]. Locally optimal MMSE Tx filters can be
obtained efficiently using the alternating optimization [3], [4].

Computational complexity of the alternating optimization is
dominated by computing the MMSE Tx filters for the given Rx
filters [5]. Though it is a convex problem under the per-BS power
constraint (PBPC) or the per-antenna power constraint (PAPC),
directly finding the Tx filters with standard convex programming
solvers costs significant computations. Therefore, it has been of
practical interest to develop a numerically efficient algorithm
to compute the Tx filters for the alternating optimization. To
this end, under the PBPC, Shen et al. proposed an algorithm to
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obtain the dual variable corresponding to the PBPC by solving
a polynomial equation [4].

However, while the PAPC is more important constraint in
practice, an efficient low-complexity Tx filter design for the
CoMP-CB under the PAPC has not been studied much in the
literature to the best of the author’s knowledge. Following an
approach similar to [4] would require to solve complicated
multivariate polynomial equations under the PAPC, which is
known to be NP-hard [6]. Furthermore, one previous work in
[7] proposed a heuristic low-complexity design by including
an additional alternating step for the dual variables, yet its
convergence to a feasible solution is not guaranteed in high
SNR or for a large number of Tx antennas. In [8], another low-
complexity Tx filter design based on the uplink-downlink duality
was proposed. However, their design focused on the single-cell
multi-user MIMO and is not easily extensible to the CoMP-CB.

In this letter, we propose a low-complexity MMSE Tx filter
design for the CoMP-CB under the PAPC with the guaran-
teed optimality at each alternating step. Observing the power
constraints in each BS are naturally decoupled across the Tx
antennas, we decompose the original convex problem into a set
of sub-problems each involving the beamforming from only one
antenna with the corresponding PAPC. Specifically, a non-linear
Gauss-Seidel (NGS) type algorithm [9] is employed to iteratively
update the beamformer of each Tx antenna. For given Rx filters,
the proposed algorithm preserves the optimality in the MSE
sense. For each sub-problem, we give a closed-form solution
which can be computed efficiently by simple vector operations.
While achieving the same MSE, complexity analysis and com-
puter simulations show that the proposed algorithm significantly
reduces the overall complexity, e.g., a CPU time reduction of
over 99%, compared to the benchmark which directly finds the
Tx filters using the standard convex programming solvers.

Notation: [·]mn, (·)T , (·)†, and ||·||F denote the (m,n)-th
element, the transpose, the conjugate transpose, the Frobenius
norm of a vector/matrix, respectively. diag(·) is the diagonal
matrix taking only the diagonal terms of a matrix. An m ×m
identity matrix is denoted by Im.

II. PRELIMINARY

A. System Model
We consider a cooperative multi-cell network, where P base

stations (BSs) are connected via backhaul and serve K user
equipments (UEs) per cell. Let BSp and UEpk denote the p-
th BS and the k-th UE in the p-th cell, respectively. Each BSp
and UEpk is equipped with M transmit antennas and N receive
antennas, respectively, and BSp transmits d ≤ N independent
data stream(s) to each UEpk in its serving cell. The data vector
for UEpk, denoted by spk = [s1pk · · · sdpk]† ∈ Cd×1, satisfies
E[spk] = 0 and E[spks†pk] = Id.

Let Hpqk , βpqkH̃pqk be the N × M MIMO channel
from BSq to UEpk where H̃pqk ∼ CN (0, IN ) and βpqk is a
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non-negative constant reflecting a large scale fading. Defining
the aggregated data vector transmitted from BSp as sp ,
[s†p1 · · · s

†
pK ]†, the received signal vector ypk at UEpk is

ypk =

P∑
q=1

HpqkWqsq + npk

where Wp ∈ CM×dK is the precoding matrix at BSp obeying
the PAPC, and npk ∈ CN×1 is an AWGN vector at UEpk
satisfying E[npkn†pk] = σ2IN . Then, in CoMP-CB, the BSs
jointly design {Wp} to mitigate the ICI by sharing their local
CSI through a backhaul.

B. Sum-MSE Minimization based Transceiver Design

We consider the Tx and Rx filter design based on the MMSE
criterion, i.e., minimizing the sum of the MSE across all the UEs
in the network. Let Apk ∈ Cd×N denote the Rx filter at UEpk.
Following the leakage-based MMSE approach in [5], the MSE
contributed from BSp is given by

Mp ,
∑
k

E‖Apk(HppkWpsp + npk)−Bksp‖2F

+
∑
q 6=p

∑
k

E‖AqkHqpkWpsp‖2F (1)

=Tr
(∑
q,k

AqkHqpkWpW
†
pH
†
qpkA

†
qk+
∑
k

σ2ApkA
†
pk+KId

)
− Tr

(∑
k

ApkHppkWpB
†
k +BkW

†
pH

†
ppkA

†
pk

)
(2)

where Bk is a d× dK row selection matrix satisfying spk =

Bksp and Id in (2) is due to BkB
†
k = Id for any k. Note that the

first and second term in (1) corresponds to the signal distortion
at the serving UEs and the leakage interference power to the
neighboring UEs caused by BSp, respectively. Then, the sum-
MSE minimization based transceiver design under the PAPC is

minimize
{Wp},{Apk}

P∑
p=1

Mp (3)

subject to diag(WpW
†
p ) � Ψ for p = 1, · · · , P.

where Ψ = diag(ψ1, · · · , ψM ) is a diagonal matrix denoting the
PAPC in BSp. Though not jointly convex in {Wp} and {Apk},
the objective function in (3) is convex on Wp for the fixed
{Apk}, and vice versa. Therefore, we can use the alternating
optimization between {Wp} and {Apk} to find (at least) a local
optimal solution of (3) as in the MMSE transceiver design under
the per-BS power constraint, i.e., Tr(WpW

†
p ) ≤ Tr(Ψ) [3]–[5].

Specifically, the Lagrangian of (3) is given by

L({Wp},{Apk},Λp)=

P∑
p=1

(
Mp+Tr

(
Λp

(
diag(WpW

†
p )−Ψ

)))
where Λp = diag (λ1, · · · , λM ) � 0 is an M ×M non-negative
real diagonal matrix consisting of M Lagrangian dual variables
for the power constraint at each Tx antenna in BSp. For the
given {Wp}, from the Karush-Kuhn-Tucker (KKT) condition of
∇L(·)
∇Apk

= 0, Apk can be easily obtained in a closed form as

Apk=BkW
†
pH

†
ppk

(∑
q

HpqkWqW
†
qH

†
pqk+σ

2I
)−1

(4)

for each p = 1, · · · , P and k = 1, · · · ,K. Then, for the
alternating optimization, it remains how to find the Tx filters
{Wp} for the given Rx filters {Apk}.

III. LOW-COMPLEXITY TRANSMIT FILTER DESIGN

We first describe the convex formulation under the PAPC and
review the previous works on the low-complexity MMSE Tx
filter design for given {Apk}. Then, we propose the optimal
low-complexity Tx filters design algorithm under the PAPC
and provide the complexity analysis to show the complexity
reduction of the proposed algorithm.

A. Convex formulation and previous works

Observing that any Mq with q 6= p is not affected by Wp,
the Tx filter Wp for the given {Apk} is given by the solution
of the following convex quadratically constrained quadratic
programming (QCQP):

minimize
Wp

Mp (5)

subject to diag(WpW
†
p ) � Ψ.

From ∇L(·)
∇Wp

= 0, the minimizer of (5) is given in a semi-closed
form by

Wp=
(∑
q,k

H†qpkA
†
qkAqkHqpk+Λp

)−1∑
k

H†ppkA
†
pkBk. (6)

However, unlike (4), computing (6) requires an additional step
to find Λp satisfying the complementary slackness condition

Λp

(
diag(WpW

†
p )−Ψ

)
= 0. (7)

Under the PBPC where Λp reduces to a single parameter λ
satisfying λ

(
Tr
(
WpW

†
p

)
− Tr(Ψ)

)
= 0, an efficient algorithm

was proposed to find λ based on solving a polynomial equa-
tion [4]. However, under the PAPC, finding Λp involves the
multivariate polynomial equations of λ1, · · · , λM with degree of
2M , which is known to be NP-hard [6]. Instead, a heuristic sub-
optimal approach was proposed to alternatively optimize {Wp}
and {Λp} [7]. However, this generally requires a large number
of iterations and the convergence to a feasible Wp satisfying the
PAPC is not guaranteed, especially for high SNR or large M .

Noticing that (5) is a convex problem, QCQP solvers such
as CVX [10] can be used to find Wp numerically. However, as
will be shown in Section V, this can cost significant computations
considering that Wp needs to be updated for each BS at every
alternating step. Therefore, it is of practical interest to develop
an efficient algorithm to compute Wp under the PAPC.

Remark 1: In a single-cell multi-user MIMO setup, an iterative
algorithm based on the uplink-downlink duality was proposed to
find the MMSE Tx filters under the PAPC in [8]. However, such
duality does not directly carry on to the CoMP-CB [4].

B. Low-complexity Non-linear Gauss-Seidel (NGS) Algorithm

Observing that each Tx antenna (each row of Wp) is subject to
a separate power constraint, we consider a decomposition method
to obtain the Tx filters by solving the original convex QCQP
through a set of more numerically efficient sub-problems [11].
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1) Decomposition Method: Let w̃†mp be the m-th row vector
of Wp, i.e., W †

p =
[
w̃1p · · · w̃Mp

]
. From (5), we con-

struct a set of M sub-problems where the m-th sub-problem finds
a feasible w̃†mp minimizingMp for given {w̃†np}n 6=m. Then, we
employ the NGS type algorithm [9] to obtain Wp by iteratively
updating each row of Wp as the minimizer of each sub-problem.
Under the NGS principle, the sub-problem for w̃†mp is given by

w̃(t)
mp=arg min

w̃:‖w̃‖2≤ψm

Mp

(
w̃

(t)
1p,· · ·,w̃

(t)
(m−1)p,w̃,w̃

(t−1)
(m+1)p,· · ·,w̃

(t−1)
Mp

)
where we include the arguments in Mp to show its dependency
on the specific rows of Wp. Here, w̃(t)†

mp denotes the interim m-
th row of Wp after the t-th iteration, namely inner iteration in
contrast to the outer iteration which alternates between optimiz-
ing {Apk} and {Wp}. Then, the final Wp for the given {Apk}
is obtained at the MSE convergence point of the inner iteration.

2) Closed-form Solutions for Sub-Problems: For the given
{Apk}, let Fp =

[
f1p · · · fMp

]
be an M × M ma-

trix obtained by the Cholesky decomposition F †pFp ,∑
q

∑
kH

†
qpkA

†
qkAqkHqpk, and let Gp=

[
g1p · · · gMp

]
,∑

kB
†
kApkHppk. Then, the MSE from BSp is expressed as

Mp = Tr(F †pFpWpW
†
p )− Tr(G†pW

†
p +WpGp) + Cp (8)

where Cp is some constant not affected by Wp. Rewriting (8) in
a vector form, the sub-problem (SPmp) for w̃mp is given by

(SPmp): minimize
w̃mp

M∑
i,j=1

f †ipfjpw̃
†
jpw̃ip−

M∑
i=1

(
g†ipw̃ip+w̃†ipgip

)
subject to w̃†mpw̃mp ≤ ψm

where w̃ip (i 6= m) remain fixed while solving (SPmp). The
Lagrangian of the sub-problem and the corresponding first order
derivative condition w.r.t. w̃mp are given by

Ls(w̃mp, λm)=
∑
i,j

f †ipfjpw̃
†
jpw̃ip −

∑
i

g†ipw̃ip

−
∑
i

w̃†ipgip + λm(w̃†mpw̃mp − ψm),

∇Ls(·)
∇w̃mp

=‖fmp‖2w̃T
mp+

∑
n 6=m

fTmpf
∗
npw̃

T
np − gTmp+λmw̃T

mp,

respectively, where λm is the Lagrangian dual variable corre-
sponding to [Λp]mm in (6). Then, from the KKT condition
∇Ls(·)
∇w̃mp

= 0, w̃mp can be expressed as

(‖fmp‖2 + λm)w̃mp = gmp −
∑
n 6=m

w̃npf
†
npfmp. (9)

First, assuming that the minimizer of (SPmp) satisfies the PAPC
with equality, w̃mp during the t-th inner iteration is set to be

w̃(t)
mp =

√
ψm

v
(t)
mp

‖v(t)
mp‖

(10)

where

v(t)
mp , gmp−

∑
n<m

w̃(t)
npf

†
npfmp−

∑
n>m

w̃(t−1)
np f †npfmp. (11)

Then, from (9) and (10), λ(t)m is explicitly given by

λ(t)m =

√
ψ−1m ‖v(t)

mp‖ − ‖fmp‖2. (12)

TABLE I
CONVERGENCE BEHAVIOR FOR (P,M,K,N,d)=(3,4,1,2,2) AT 10 dB SNR

Number of inner iteration (t) 10 20 30 40

max
i,j

∣∣∣[Wp]ij−[W ∗
p ]ij

∣∣∣2∣∣∣[W ∗
p ]ij

∣∣∣2 7.3×10−3 6.0×10−6 8.1×10−9 1.4×10−9

On the other hand, when the resulting λ
(t)
m in (12) is negative

(infeasible), λ(t)m is set to be zero and the corresponding w̃
(t)
mp is

w̃(t)
mp =

v
(t)
mp

‖fmp‖2
, (13)

which means the m-th Tx antenna in BSp is not using full power.
Then, in the proposed algorithm, w̃(t)

1p , · · · , w̃
(t)
Mp are sequen-

tially updated at each inner iteration using (10) or (13) until
W

(t)
p , [w̃

(t)
1p · · · w̃

(t)
Mp]
† (and, thus, the MSE) converges as

shown in the inner iteration in Algorithm 1.
3) Convergence: The following lemma shows that the pro-

posed NGS algorithm preserves the optimality of Wp in the
MSE sense for the given {Apk} in each outer iteration.

Lemma 1. As t → ∞, W
(t)
p obtained from {(SPmp)} in

the proposed NGS algorithm is guaranteed to achieve the MSE
minima in (5) for the given Rx filters {Apk}.

Proof: The MSE Mp in (5) is clearly convex and continu-
ously differentiable function of Wp. Furthermore, for the fixed
w̃np with n 6= m, each sub-problem (SPmp) is strictly convex
on w̃mp for any non-trivial fmp 6= 0. Then, the convergence to
the minima of (5) follows from [9, Prop. 3.9].

From Lemma 1, the proposed algorithm can be interpreted as
to obtain the optimal Λp in (6) as [Λp]mm = lim

t→∞
λ
(t)
m , based

on a series of simple vector operations (10) or (13) instead of
dealing with complicated higher-order multivariate polynomial
equations. For an example of CoMP-CB with (P,M,K,N, d) =
(3, 4, 1, 2, 2), Table 1 shows the element-wise error of Wp

obtained from the proposed NGS algorithm w.r.t. W ∗
p obtained

by directly solving (5) using CVX [10].

C. Complexity Analysis

The complexity to solve the original convex QCQP of (5)
is lower bounded by that of the relaxed problem based on the
semi-definite programming (SDP) [12]. Considering d = N
for simplicity, the overall complexity of SDP to solve (5) is
O
(
(M +NK)

9/2
log(1/ε)

)
where ε is the accuracy target [12].

On the other hand, in the proposed NGS algorithm, com-
puting the Cholesky decomposition to obtain Fp requires
1
3M

3 + 1
2M

2 + 1
6M flops (complex scalar operation) [13].

Next, the complexity to compute (10) or (13) is dominated
by computing v

(t)
mp which requires (2M − 1 + NK)(M −

1) + (M − 1)NK flops, i.e., O(M2 + MNK). Then, the
overall complexity from the proposed algorithm can be given by
O
(
M3 + niterM

(
M2 +MNK

))
≈ O

(
niterM

2 (M +NK)
)

where niter ∝ log(1/ε) denotes the number of the inner iterations
until convergence with the accuracy of ε.

Obviously, in each update of the TX filters, the proposed
algorithm provides significant complexity reduction as M,N
and K grows. In Section V, we will further demonstrate this by
showing the average CPU time of the proposed NGS algorithm
compared to directly solving (5) using QCQP solvers.
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TABLE II
AVERAGE CPU TIME FOR (N,K, d) = (2, 1, 2) AT 20 dB SNR (IN SECONDS)

M 4 6 8 10 12 14 16

MMSE-QCQP 43.3 50.4 57.2 64.2 72.8 78.3 86.5
MMSE-NGS 0.173 0.213 0.256 0.302 0.355 0.397 0.432

IV. ALTERNATING OPTIMIZATION

The alternating optimization for the MMSE beamforming
with the proposed NGS algorithm (MMSE-NGS) is summarized
in Algorithm 1. Since

∑
pMp is bounded from below and

decreasing throughout the outer iteration, the process clearly
converges to a local minimum. Note that MMSE-QCQP will
denote the benchmark where Wp is updated by solving (5) with
QCQP solvers. It is clear from Section III-C that MMSE-NGS
requires much less computations than MMSE-QCQP.

Algorithm 1 MMSE Non-linear Gauss-Seidel (MMSE-NGS)
Initialization:
For all p, randomly generate Wp to satisfy diag(WpW

†
p ) =Ψ

Alternating Optimization:
Outer iteration

1) For each p and k, update Apk using (4)
2) For each p, compute Fp,Gp as in Sec. III, and update Wp:

Inner iteration
a) update t = t+ 1
b) sequentially compute for m = 1 . . .M

w̃(t)
mp=


√
ψm

v(t)
mp

‖v(t)
mp‖

if ‖v(t)
mp‖≥

√
ψm‖fmp‖2

v(t)
mp

‖fmp‖2 otherwise

until the MSE converges, where v
(t)
mp is given by (11).

until the MSE converges

V. NUMERICAL RESULTS

We present the simulation results for the CoMP-CB with three
cells (P = 3). The power constraint at each antenna is chosen
to be the same, i.e., ψm = 1

M Tr(Ψ) for all m. We set βpqk = 1
for p = q and 0.5 otherwise, i.e., the ICI from a neighboring
cell is 3 dB weaker than the desired signal in average. We fix
the number of the outer iteration to 50 and the inner iteration is
terminated when the MSE decreases by less than 0.1%. For the
MMSE-QCQP, we use CVX [10] to compute the Tx filters for
the given Rx filters in each outer iteration.

Figure 1 shows the sum-MSE performance with the MMSE-
NGS and MMSE-QCQP algorithms for varying SNRs, 1

σ2 Tr(Ψ),
and the number of Tx antennas M , respectively. As expected
from the convergence proof, the proposed algorithm achieves
effectively the same MSE performance as the MMSE-QCQP
in both cases. Next, Table 2 shows the average CPU time
corresponding to the case with (N,K, d) = (2, 1, 2) in Fig. 1 (b).
We can see that the proposed algorithm provides a complexity
reduction of more than 99% in terms of the CPU time compared
to the MMSE-QCQP by using efficient decomposition method.
The similar complexity reduction was observed for different
configurations of (N,K, d) and different SNRs.
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Fig. 1. Sum-MSE comparison between MMSE-QCQP and MMSE-NGS

VI. CONCLUSION

We proposed the low-complexity MMSE downlink beamform-
ing for the CoMP-CB under the practical per-antenna power
constraint. The proposed non-linear Gauss-Seidel type algorithm
computes the per-antenna power constrained Tx filters for given
Rx filters by a series of the simple vector operations. Complexity
analysis and numerical results showed that while preserving the
MSE optimality, the proposed algorithm can significantly reduce
the overall complexity of the alternating optimization.
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