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Automatic abnormality detection in video sequences has recently gained an increasing attention within the

research community. Although progress has been seen, there are still some limitations in current research.
While most systems are designed at detecting specific abnormality, others which are capable of detecting
more than two types of abnormalities rely on heavy computation. Therefore, we provide a framework for
detecting abnormalities in video surveillance by using multiple features and cascade classifiers, yet achieve
above real-time processing speed. Experimental results on two datasets show that the proposed framework
can reliably detect abnormalities in the video sequence, outperforming the current state-of-the-art methods.

1 INTRODUCTION

Abnormality detection is an important problem that
has been researched within diverse research areas and
application domains. Many abnormality detection
techniques have been specially developed for certain
application domains, e.g. car counting (Stauffer and
Grimson, 2000), group activity detection (Cui et al.,
2011), monitoring vehicles (Yu and Medioni, 2009)
etc. A key issue when designing an abnormality de-
tector is how to represent the data in which anoma-
lies are to be found. Considering approaches in the
context of video surveillance, existing methods in the
literature can be classified into two categories:

1) Data analysis by tracking, in which objects are
represented by trajectories. A commonly used ap-
proach is based on obtained clusters of the trajectories
for moving objects, which are later used as an abnor-
mality model. Johnson et al. (Johnson and Hogg,
1995) were probably among the first researches in
this direction, they used vector quantization to ob-
tain a compact representation of trajectories and uti-
lized multilayer neural networks for the identification
of common patterns. Piciarelli et al. (Piciarelli and
Foresti, 2006) proposed a trajectory clustering algo-
rithm especially suited for online abnormality detec-
tion. Hu et al. (Hu et al., 2006) hierarchically clus-
tered trajectories depending on spatial and temporal
information. While trajectory based approaches are
suitable in scenes with few objects, they cannot main-
tain reliable tracks in crowded environments due to
occlusion and overlap of objects (Mahadevan et al.,

2010).

2) Data analysis without tracking, in which fea-
tures such as motion or texture are extracted to model
activity patterns of a given scene. Different features
have been attempted. For example, Mehran et al.
(Mehran et al., 2009) modeled crowd behavior using
a ”’social force” model, where the interaction forces
were computed using optical flow. (Mahadevan et al.,
2010) recently proposed mixtures of dynamic tex-
tures to jointly model the appearance and dynamics
of crowded scenes, to address the problem of abnor-
mality detection with size or appearance variation in
objects. (Zhao et al., 2011) provided a framework of
using sparse coding and online re-constructibility to
detect unusual events in videos.

Although progress has been made, there are still
some limitations in current research: while most sys-
tems are designed at detecting specific abnormality,
others which are capable of detecting more than two
types of abnormalities rely on heavy computation. In
this work, we provide a framework of using multiple
features and cascade classifiers to detect several ab-
normal activities in videos yet achieve real-time pro-
cessing speed.

2 PROPOSED METHOD

Two important criteria to evaluate abnormality detec-
tion systems are time response and types of abnor-
malities that can be detected. To meet the require-
ments of a practical abnormality detection system, our



system is designed to detect multiple unusual events.
To attain this goal, we adopt four types of features,
train their corresponding classifiers, and cascade these
classifiers to determine if the query video contains ab-
normality or not.

2.1 System Overview
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Figure 1: Overview of the system.

An overview of our system is illustrated in Figure 1.
A figure-ground segmentation is carried out to extract
foreground pixels. This not only allows for using ob-
ject size as a feature, but also reduces the aperture
problem related to image motion detection via opti-
cal flow. Foreground segmentation method (Li et al.,
2003) is adopted in this paper for the consideration
of computational cost. Then, three different features -
motion, size and texture - are extracted, where motion
is split into two sub-features, namely amount of mo-
tion and direction. Next, classifiers are trained to de-
tect multiple abnormalities, including motion, out of
place objects and directional abnormal activities. Fi-
nally, to minimize the effect of noise, post-processing
is introduced, which smooth abnormalities over time,
which is based on an easy understood assumption that
abnormal behaviors should last for multiple frames
due to time consistency.

2.2 Feature Extraction

Every input frame is first divided into equal sized and
quadratic regions, then features (motion, size, texture
and direction features) are extracted in each region.

Motion Feature: Optical flow represents apparent
motion of the object relative to the observer. Three
different approaches for estimating optical flow are
here considered: Lucas-Kanade (Lucas and Kanade,
1981), Pyramid Lucas-Kanade (Bouguet, 2000) and
Horn-Schunck (Horn and Schunck, 1981). Both
Lucas-Kanade approaches are local method that oper-
ate on small regions to obtain the optical flow. Horn-
Schunk on the other hand operates as a global method
that uses the global smoothness to compute optical

flow. The flow is calculated on each pixel using these
three methods. Note that we only use foreground pix-
els to represent the feature. This makes the estima-
tions more stable:

miot (i, j) = ZII N (1)

where for each foreground pixel n, v)((n) and v;n) are

the optical flow in both spatial directions and Ny is
the total number of foreground pixels.

To further reduce the effect of noise, the motion
feature for a region is averaged by the motion features
in the same region of the neighboring frames # — 1 and
t+1:

t+1
Z moty (i, j) 2)
u=t—1
Pyramid Lucas-Kanade is a spares method and
the average motion will therefore not be normalized
based on foreground pixels, but rather based on the
number of flow vectors within the region:

mot, (i, j)

mot, i j

L 3)

where for each optical flow vector n, v)((”) and v§") are

the optical flow in both spatial directions and Ny, is
the total number of flow vectors within the region.
Size Feature: Size feature is based on the occupancy
of the foreground pixels in each region combined with
occupancy in its neighboring regions. Neighboring
regions in the current frame are used since the object
might fill up more than one region. A Gaussian kernel
is used to put more emphasis on the current calculated
region and less emphasis on its neighborhood.

i+1 Jj+1
size; (i, j) Z Z Gla—i+1,b—j+1)os(a,b)
a=i—1b=j—1

“)

where G is a 3x3 Gaussian kernel and o; is the occu-
pancy map of the region.
Texture Feature: For the texture feature we apply
the magnitude of the output of a 2D Gabor filter. In
this work we use wavelets in four directions: 0° , 45°,
90° and 135°. To avoid modeling the background,
the texture feature is only extracted for regions that
have foreground pixels. The following definition of
the Gabor filter is used in this work (Lee, 1996):
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where x = xcos +ysin®, yl = —xsin@+ycosO,
o is the radial frequency of the filter, 6 specifies the
orientation and K is the frequency bandwidth. The
resulting vector for the texture feature is given as:

txt; (i, j) = [mo mas moo mi3s] (6)
Direction Feature: The direction feature is here de-
fined as a four bin histogram containing the directions
of the optical flow vectors estimated in motion fea-
ture. For each pixel in the foreground, its optical flow
values are converted to an angle ® € [0°,359°]:

dy dx
O =atan2(—,— 7
aan(dt’dt) )

The directions are quantified into four bin, as il-
lustrated below:

Bin 1: [45°:135°[;

Bin 2: [135°:225°;

Bin 3: [225°:315°;

Bin 4: [315°: 360°[ and [0° : 45°].
The resulting output vector is given as:

diry(i,j) = [b1 by b3 by 8

where b is the first bin etc.
2.3 Classifiers

There are four classifiers, which work in a cascade.
First, the classifier for motion is executed, if no ab-
normality detected, the classifier for size and texture
are combined to determine an abnormality. This is
because size alone does not necessarily constitute an
abnormality, e.g. a group of people standing close.
The direction classifier works independently to detect
direction abnormality.

Different classifiers are adopted to deal with dif-
ferent features. For motion and size features, clas-
sifiers are trained offline by finding motion/size fea-
tures in each frame in a training set. This ends up
with a histogram, which is then smoothed, discretized
and normalized to obtain a probability mass function
(pmf). A region is recognized as abnormal if its pmf
of motion and size satisfies the following two equa-
tions:

pmf . (mOIt(ia ])) < Tinotion &)
pmfsize(Sizet(i7j)) < T;“ize (10)
where T is a decision threshold.

The classifier for the texture feature is based on
an adaptive codebook. The main idea is to calculate
the distance between input features with the entries in
the codebook (also called codewords) to find possible

abnormalities. Considering the ability to normalize
texture contrast variations, we use Pearson’s corre-
lation coefficient (Boslaugh and Watters, 2008) as a
distance measure. To train the classifier, the first 4D
texture descriptor in each region is taken as the first
entry. Then for each new texture feature we measure
the similarity by Pearson’s correlation coefficient:

p(a,b) — (a lutl) (b luh) (11)
la—pallll o—w |
where u, is the mean of vector x and p(a,b) is in the
interval [—1, 1].

The output of the classifier is normality if the dis-
tance between the input vector and all the entries in
the codebook are all larger than a predefined threshold
(0.9 in this work). In that case, the codeword with the
highest correlation coefficient is updated as in equa-
tion 12; otherwise, the input is added as an entry to
the codebook and the output of the classifier is abnor-
mality.

Czew — Cold =+

T (in — 1) (12)

where ¢y is the best matching codebook entry, Wy is
the number of vectors so far assigned to the codebook
entry k and x;, is the input descriptor.

A simple classifier is trained for the directional
feature in order to keep the processing down. We av-
erage over the directional features during training and
then normalizing the resulting vector to 1. A newly
incoming direction feature is first normalized and then
compared to the trained model by simple element-
wise subtraction. The sum of the absolute values of
the four subtractions is compared with a threshold and
judged as an abnormality if it surpassed the threshold:

hl X1
h X

Vdirection = Z hi - xi (13)
/’l4 X4

where 4 is the normalized classifier vector and x is the
normalized incoming direction feature vector.

3 EXPERIMENTAL RESULTS

3.1 Datasets

To test the motion, size and texture features and clas-
sifiers, the UCSD anomaly detection dataset (ucs,
2008) is used, which is a public dataset for anormal-
ity detection. The UCSD dataset consists of two sub-
sets, Ped1l and Ped2, both having training and test-
ing parts. Classifiers are trained and testing frames



containing one or more abnormal features are defined
as abnormalities which are later compared with the
ground truth.

To detect direction abnormality, we obtain hours
of traffic cam footage from a highway in Maryland,
recorded from (mar, 2012). The refresh rate is 5fps
which is sufficient for optical flow given the motion
in the testset. To get more direction abnormalities,
we edit an hour long video sequence and reverse 15
small sections to simulate cars driving in the wrong
direction. The abnormalities are distributed randomly
over the entire video. The length of each sequence
spans from 25 frames (5 sec) to 125 frames (25 sec).
Representative frames in these two datasets are shown
in Figure 2.

3.2 Parameter Tuning

We first tune the texture parameters, then change the
threshold T, to find normalities and abnormalities
in the datasets. Similar to other works, we use False
Positive Rate (FPR) and False Negative Rate (FNR)
to quantify the results. From experimental investiga-
tions, the kernel size is set to approximately half of
the standard region size to get symmetric responses
on each side of the pixels. The radial frequency  is
set to 2.3 and the frequency bandwidth K is set to 7.
The only parameter that will be changed is the thresh-
old T which regulates when a size is found to be
abnormal or not. The region size is set to 16 x 16
since the results are quite similar for all three optical
flow methods while varying the region size.

3.3 Choice of Optical Flow Method

The search window size for the optical flow is set to
15 x 15 pixels in the Lucas-Kanade based methods,
with three pyramid levels and 1000 foreground fea-
tures in Pyramid Lucas-Kanade. For Horn-Schunck
method the stop iteration criteria has been set to 20.
The three optical flow methods are tested with differ-
ent possible thresholds yielding the curves in figure 3
and 4 for the Pedl and Directional datasets, respec-
tively. As can be seen, Pyramid Lucas-Kanade out-
performs the other two methods. This is primarily
due to the utilization of ”good features to track” that
finds structures with a high level of texture that in turn
reduces the aperture problem.

3.4 Results

We test our system and compare the results with
other methods that test on the UCSD dataset. These
are: "Reddy” (Reddy et al., 2011) , ”Social Force”
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Figure 3: Curve for Pyramid Lucas-Kanade, Lucas-Kanade
and Horn-Schunck at 20 histogram bins and region size of
16 x 16. Test dateset: Ped1.
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Figure 4: Curve for Pyramid Lucas-Kanade, Lucas-Kanade
and Horn-Schunck at 20 histogram bins and region size of
16 x 16. Test dateset: Directional.

(Mehran et al., 2009) , "MDT” (Mahadevan et al.,
2010) and "MPPCA” (Kim and Grauman, 2009). The
results at frame level are shown in Figure 5 and 6.
Moreover we compare abnormality results at pixel
level, see Figure 7.

We further calculate the Equal Error Rate (EER)
for frame level and pixel level abnormality detection,
respectively, see Table 1 and 2. It can be seen in
both the figures and tables that our method outper-
forms other methods in frame level abnormality and
for pixel level abnormality detection, the proposed
method performs as good as the best of the other
methods.

For the direction abnormalities we test on our own
dataset as explained above. The results are shown in
Figure 8 for two different strategies for direction vec-



a) A representative training frame
in UCSD.
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b) A representative testing frame
with abnormality: golf car.

¢) A representative frame
from the direction dataset.

Figure 2: Representative frames from two datasets.
Table 1: EER for frame level abnormality detection on Ped1 and Ped2 subsets of UCSD.

Approach | Social Force | MPPCA | MDT | Reddy | Proposed method
Pedl 31.0% 40.0% | 25.0% | 22.5% 20.0%
Ped2 42.0% 30.0% | 25.0% | 20.0% 15.0%
Average 37.0% 35.0% | 25.0% | 21.2% 17.5%

Table 2: EER for pixel level abnormality detection on Ped1 and Ped2 subsets of UCSD.

Approach | Social Force | MPPCA | MDT | Reddy | Proposed method
Pedl 79.0% 82.0% 55.0% | 32.0% 31.0%
Ped2 - - - - 21.0%
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Figure 5: Frame level abnormality detection on Ped1.

tor updating. When computing the four dimensional
vector for direction feature, we can increase the direc-
tion bin by one or adding the gradient to the direction
bin, see results in Figure 8. The difference between
the single increment and the gradient increment of the
motion seems to be negligible. The total error rate is
0.3%.

At last, we show the computational requirements
for the different features. All tests are conducted on
an ASUS U46S with an Intel Core i5-2410M CPU
running at 2.30 GHz and are calculated with an aver-
age FPS in an entire test sequence run. As seen from
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Figure 6: Frame level abnormality detection on Ped2.

Table 3, the system is able to work even faster than
real-time.

4 CONCLUSIONS

We propose a framework to detect multiple abnor-
malities in video surveillance, in which motion, size,
texture, with direction features are used to train inde-
pendent classifiers. Experiments show improvements
compared to related work. This result is partly caused
by less abnormalities in size and texture compared to
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Figure 8: Frame level abnormality detection on the direc-
tional dataset, with the two different updating methods.

motion abnormalities in the datasets. Equally impor-
tantly, our proposed system is able to run faster than
real-time, which allows for connecting four or five
cameras to a single computer.
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